
A&A 442, 929–946 (2005)
DOI: 10.1051/0004-6361:20053563
c© ESO 2005

Astronomy
&

Astrophysics

Disk populations from HIPPARCOS kinematic data

Discontinuities in the local velocity distribution�

S. Alcobé and R. Cubarsi

Dept. Matemàtica Aplicada IV, Universitat Politècnica de Catalunya, 08034-Barcelona, Catalonia, Spain
e-mail: rcubarsi@mat.upc.es

Received 3 June 2005 / Accepted 26 July 2005

ABSTRACT

The full space motions – including radial velocities – of a stellar sample drawn from HIPPARCOS catalogue are used to discriminate differ-
entiated statistical behaviours that are associated with stellar populations in the solar neighbourhood. A sampling parameter is used to build
a hierarchical set of nested samples, where a discontinuous pattern, based in a partition introduced by two normal distributions, scans the
subsamples. Two quantities inform whether any subsample fits properly into the discontinuous model. A χ2 test measures the Gaussianity of
both components, and the entropy of the mixture probability gives account of how informative the resulting segregation is. The less informative
partition is the one with maximum population entropy, which provides most representative kinematic parameters. Each new population merged
to the cumulative subsample produces a discontinuity in the plot entropy versus sampling parameter, that allows to determine the number of
populations contained in the whole sample. The resulting method has been named MEMPHIS, Maximum Entropy of the Mixture Probability
from HIerarchical Segregation.
In addition to both main kinematic components, thin and thick disk, with respective velocity dispersions (28±1, 16±2, 13±1) and (65±2, 39±
9, 41 ± 2) km s−1, two discrete non-Gaussian subcomponents are detected within the thin disk. These populations are identified with early-type
and young disk stars. Moreover, a continuous old disk population is mixed with the foregoing subcomponents composing all together the thin
disk. Older thin disk stars have a velocity dispersion overlapping a wing of the thick disk. Although they could appear like an intermediate
continuous population, nested subsamples distributions allow us to conclude that they definitively belong to the thin disk, and that a clear
discontinuity detaches thick from thin disk. Almost the same qualitative results, but with less accuracy, are obtained whether MEMPHIS is
applied to subsamples from the Third Catalogue of Nearby Stars (CNS3).
A dynamic model according to Chandrasekhar’s approximation, under particular symmetry hypotheses, allows to interpret the results. The
non-vanishing vertex deviation – lower for older stars – of all Galactic components is suggesting that, at least, point-axial symmetry is required
in order to explain the local kinematic behaviour. According to this model, the oldest thick disk population, with no net radial movement, can
be extrapolated, having heliocentric velocities of −76 ± 2 km s−1 in rotation, and −18 ± 1 km s−1 in the radial direction. Early-type stars show
a worthy local singularity, nearly with no net radial motion, similarly to the oldest thick disk stars. Older populations – half of the thin disk
and the whole thick disk – share a common differential galactic movement, suggesting a common dynamical origin for the rupture of the axial
symmetry.
The relationship between the maximum stellar velocity of a sample and its average age τ is discussed, finding an approximate relation |V|max ∝ τ.
Local stellar populations can be described from a Titius-Bode-like law for the radial velocity dispersion, σ1 = 6.6 ( 4

3 )x, so that for natural values
x = 2, 3, 5, 8 it determines average energy levels of discrete populations, while for continuous intervals x ≤ 5 and x ≥ 7 it describes the velocity-
age evolution of thin and thick disk components, according to x ∼ 1.5 ln τ.
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1. Introduction

Stars in the solar neighbourhood are generally associated with
Galactic components. Several works on stellar populations (e.g.
Wyse & Gilmore 1995) confirm the presence of three main
populations: thin disk, thick disk and halo. Nevertheless, since
Baade’s work in 1944, the idea of stellar populations has

� Tables 7 to 12 are only available in electronic form at
http://www.edpsciences.org

largely evolved. Nowadays a stellar population can be defined
as a group of stars that have a similar and regular set of proper-
ties in some subset of a multi-dimensional parameter space. In
general, spatial distribution and kinematics allow to define dis-
tinct morphologic components, while age and abundance de-
scribe other populations within those components (King 1995).

From a kinematic viewpoint, a common working hypoth-
esis is to assume the velocity density function of each single
stellar component as Gaussian. For example Ojha et al. (1996)
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assume that in a particular volume of the Galaxy there exists
a finite mixture of discrete stellar populations, and such pop-
ulations are modelled as normal ones. Let us remember two
advantages of such assumption. By one hand the Gaussian dis-
tribution is a particular solution of Chandrasekhar equations for
statistical equilibrium (Chandrasekhar 1942), so that popula-
tion parameters can be dynamically interpreted. On the other
hand, from a bayesian viewpoint, the normal distribution is
the one containing the maximum uncertainty compatible with
known means and covariances and, therefore, it is well suited
as a prior distribution.

In a previous paper (Cubarsi & Alcobé 2004, hereafter
Paper I) we had already identified thin and thick disk compo-
nents in a local sample of HIPPARCOS Calatogue. However,
between both kinematic components we had found some inter-
mediate subcomponent, not being clear what population these
stars belong to. In other words, the old question of whether
there is or is not a continuous transition between thin and thick
disks had arisen.

In the present paper we analyze in more detail the possi-
ble discontinuities of the stellar velocity distribution in the so-
lar neighbourhood, by drawing a set of hierarchically selected
samples from HIPPARCOS catalogue. Our technique is a com-
bination of two separate procedures: a sample selecting filter
and a segregation method. By continuously increasing an ideal
sampling parameter, we build a set of nested subsamples that
may contain an increasing number of populations. Then, a bi-
modal pattern is applied in order to identify some differentiated
kinematic behaviour within the subsamples. The segregation
may be done by any numerical algorithm that approximates the
working sample as a mixture of two Gaussian components, giv-
ing also a measure of the plausibility of such approach, in our
case the χ2 error. However, the Gaussianity of segregated com-
ponents is not strictly required, since the model is used as a
less informative prior hypothesis. We apply the algorithm de-
scribed in Paper I, which works from the cumulants up to fourth
order of the total input sample, although other strategies could
be used in future works.

Once the subsample has been partitioned, the entropy of the
mixture probability as a function depending on the sampling
parameter, gives a plot that informs about the number of kine-
matic populations contained in the whole sample. This is based
on the fact that the population entropy is a measure of how
representative, less informative the segregation is. Thus, while
selecting stars belonging to a population that already existed in
a previous subsample, the entropy remains nearly constant, or
at maximum relative levels. Alternatively, when enlarging the
subsample with stars belonging to a new population, the plot
shows a straight downward slope, or a discontinuity.

The complete method has been named MEMPHIS
(Maximum Entropy of the Mixture Probability from
HIerarchical Segregation). Therefore, entropy maxima in-
form us about number of populations, and values of χ2

measure the Gaussianity. It is worth noting that relative
minimums of χ2 take place on intervals with relative maxima
of population entropy, being the later a more efficient indicator.

It is well known that, in order to discriminate populations,
some parameters like the velocity component perpendicular to

the galactic plane, the rotational velocity component, and the
modulus of the velocity have been used. For more than two
populations, we found that the one closest to an ideal discrim-
inating parameter is the absolute value of the total space mo-
tion, |V|, referred to the cumulative local standard of rest of the
nested subsamples (cumulative subcentroid). The properties of
such an ideal sampling parameter will be discussed in next sec-
tions.

In general, we looked for stellar groups large enough as to
be considered a population in the statistical sense, even they
had not a normal distribution. In such a case, the Gaussian
approach might give a sufficient good estimation of popula-
tion parameters. Hereafter the non-Gaussian populations will
be referred as subcomponents, while the Gaussian ones will be
named kinematic components.

The method was applied to HIPPARCOS Catalogue (ESA
1997), with the whole velocity space obtained from Hipparcos
Input Catalogue (ESA 1992) (see Paper I for details). The
sample was limited to 300 pc, so that only stars belonging to
Galactic disk were included, with a total of 13 678 stars. In or-
der to compare the improvement of the results in front of older
catalogues, the Third Catalogue of Nearby Stars CNS3 (Gliese
& Jahreiß 1991) was also used.

The application of MEMPHIS to HIPPARCOS leads to
the following stellar populations with the following velocities
(km s−1) expressed in a cylindrical heliocentric coordinates
system.

The main disk structure is supported by two stellar compo-
nents, obtained from a maximum value of the sampling param-
eter |V|max = 209 km s−1:

– thin disk, with 91% stars of the overall sample, with dis-
persions (σ1, σ2, σ3) = (28 ± 1, 16 ± 2, 13 ± 1), and vertex
deviation ε = 10 ± 2o;

– thick disk, with 9% of stars, (σ1, σ2, σ3) = (65 ± 2, 39 ±
9, 41 ± 2), ε = 7 ± 3o.

Two subcomponents with non-Gaussian distribution are also
found within the thin disk structure, for |V|max = 51 km s−1.
Both groups have a high deviation from Gaussianity in ra-
dial velocity, but not in other directions. Hence the follow-
ing dispersions are estimations apart from a normal distribu-
tion context. The first subcomponent may be associated with
early-type stars, with smaller dispersions, slower rotation, and
a clear radial expansion. It is far from Stroemberg’s law for
the asymmetric-drift of disk stars, and it may be identified
with the local Gould’s belt structure. Instead, the other group,
which is composed of young disk stars, is consistent with the
asymmetric-drift relation of the whole thin disk.

– Early-type stars, about 37% of the overall sample,
(σ1, σ2, σ3) = (12 ± 31, 11 ± 1, 7 ± 1);

– young disk stars, with 38% stars and (σ1, σ2, σ3) = (16 ±
22, 14 ± 1, 14 ± 1).

Nevertheless, the subsamples limited by |V|max lower than
51 km s−1 are dominated by moving groups, that could not be
assimilated to homogeneous statistical populations.

The remaining 16% of the thin disk is a continuous old disk
population that spreads out as a wing of the young disk stars. Its
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radial velocity dispersion reaches values up to σ1 = 50, while,
for subsamples with 51 ≤ |V|max ≤ 125, the whole thin disk
component increases as 16 ≤ σ1 ≤ 28. However, the vertical
dispersion remains nearly constant at σ3 = 13.

The extreme old disk stars are mixed with a broad wing of
the thick disk in the range 38 ≤ σ1 ≤ 50, what simulates the
existence of an intermediate population that would provide a
continuous transition between thin and thick disks. However, as
enlarging the subsamples, |V|max ≤ 145, the intermediate popu-
lation is progressively reorganized, so that stars with smaller
rotation and vertical velocities are included in the thin disk
component, while a major number of stars builds up the thick
disk component, having a ratio between vertical and rotation
velocity dispersions around 1. For |V|max > 145 the thick disk
is free from thin disk stars. These results are similar to those of
Soubiran et al. (2003), although we have found vertex devia-
tion also for old stars, which leads to reject the axial symmetry
hypothesis for the local stellar components.

The axial symmetry can be relaxed by assuming a stel-
lar system with point-to-point symmetry with respect to an
axis, the one orthogonal to the galactic plane at the galactic
center. This type of symmetry should be induced by a gravita-
tional potential with similar features in opposite and equidis-
tant points of the symmetry axis, allowing helicoidal and el-
liptic behaviours around this axis. If such a point-axial model
is assumed, then the decreasing vertex deviation of older stars
may be related with the radial and rotation mean velocities, so
that the mean rotation galactocentric velocity for an extreme
axisymmetric, steady-state thick disk, with zero radial mean
velocity, can be extrapolated at 144 ± 2 km s−1.

Therefore, working only from the velocity space of
HIPPARCOS local sample we have got a portrait of the popula-
tions composing the local Galactic disk, that can be labeled ac-
cording to their radial dispersions: Early-type stars (σ1 ≈ 12),
young disk stars (σ1 ≈ 16), old disk population (21 ≤ σ1 ≤
50), all together composing the thin disk component (σ1 ≈ 28).
On the other hand, the local thick disk component has a value
σ1 = 65 km s−1. Clear discontinuities have been found be-
tween early-type and young disk subcomponents, as well as
between thin and thick disk components, while continuity of
kinematic parameters takes place within old disk, thin disk and
thick disk, as increasing the sampling parameter. Such charac-
teristic radial dispersions can be described through a heuris-
tic Titius-Bode-like law, σ1 ≈ 6.6 ( 4

3 )x, so that natural values
of x represent specific populations. Thus, if x = 0 represents
a hypothetic spherical population with σ1 = σ2 = σ3 = 6.6
(similar to the z-velocity dispersion of the earlier detected pop-
ulation), then early-type and young disk stars can be associ-
ated with x = 2 and 3, the complete thin disk component with
x = 5, and the thick disk component can be assigned to a value
x = 8. These values could be associated with the average epicy-
cle energy (e.g. Lacey 1984; Jenkins 1992) that disk popula-
tions reach in the secular heating process. Moreover, by using
the age-velocity law describing the disk heating, we find that
the sampling parameter |V|max and the age τ are approximately
proportional within the thin disk, though the thick disk shows
an similar trend. Also a relationship x ∼ 1.5 ln τ is estimated.

Finally, some conclusions about the differential movement
of populations can be pointed out. A lag of rotation between
both Galactic components of 51±3 km s−1, and in radial move-
ment of 4 ± 3 km s−1 is obtained, similarly than in Paper I.
Early-type stars and young disk stars have a radial differential
movement of 28±9 km s−1. Young and old disk stars, as well as
thin disk, are moving in the same direction with respect to the
thick disk. Hence, by referring such populations to the extrap-
olated oldest thick disk, with no net radial velocity, the mean
radial galactocentric velocity of HIPPARCOS sample can be
estimated as Π0 = 8 ± 1 km s−1 toward the Galactic centre.

Our results are in good agreement with the analysis of
Famaey et al. (2005) about local streams of dynamic origin,
as well as the chemical and kinematic distribution of Milky
Way’s disk by Soubiran & Girard (2005). In addition we have
provided an answer to the question about the radial solar mo-
tion referred to a point with no net radial motion, which would
correspond to the stars labeled as early-type, as well as the old-
est thick disk stars.

The outline of the paper is as follows. The second section
explains the statistical model. We review some basic concepts
on stellar systems. In Sect. 2.1 the notation used for the mixture
distribution model is defined, explicitly depending on the sam-
ple selecting parameter. In Sect. 2.2 the entropy of the mixture
probability is introduced. In Sect. 2.3 we study requirements
for an ideal sampling parameter in order to induce a hierar-
chy in the nested subsamples. In Sect. 2.4 entropy variations
from a sample with three or more populations are analyzed. In
Sect. 2.5 entropy variation curves are explained by using syn-
thetic samples. In Sect. 2.6 the method is named.

The third section shows the application. HIPPARCOS sam-
ple is introduced in Sect. 3.1. In Sect. 3.2 the steps composing
MEMPHIS algorithm are outlined. In Sect. 3.3, as a predictor
step, the method is applied to HIPPARCOS heliocentric sub-
samples. In Sect. 3.4, as a corrector step, re-centred velocity
subsamples are used. In Sect. 3.5 the number of populations
composing the stellar sample is discussed. In Sect. 3.6 the re-
sults are summarized. In Sect. 3.7 MEMPHIS is applied to
CNS3 catalogue, in order to compare results.

The fourth section is for discussion of results, where some
general conclusions are summarized. In Sect. 4.1 some kine-
matic consequences are pointed out. In Sect. 4.2 the results are
interpreted according to a Chandrasekhar model under point-
axial symmetry hypothesis. In Sect. 4.3 we compare our analy-
sis with two recent studies of the small and large-scale structure
of the velocity distribution. In Sect. 4.4 the sampling parame-
ters and the population velocity dispersions are related to the
age-velocity law of disk heating.

2. Statistical model

Let us assume that the Galactic system is composed of sev-
eral stellar populations. According to Chandrasekhar’s ap-
proach, if a population has reached the statistical equilibrium,
its phase space density function f (t, r,V) at time t, in the
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Table 1. Non-null means, central moments and vertex deviation in a galactocentric coordinate system, depending on symmetry hypotheses, for
one Gaussian population, under the assumption of a symmetry plane z = 0. Time dependency for point-axial systems introduces only qualitative
differences in the potential function.

Rotation symmetry Time dependence Mean velocity Second moments Vertex deviation
Axial symmetry

∂
∂θ
= 0 ∂

∂t = 0 Θ0 µ��, µθθ, µzz, µ�z ε = 0

∂
∂θ
= 0 ∂

∂t � 0 Π0,Θ0, Z0 µ��, µθθ, µzz, µ�z ε = 0

Point-axial symmetry

f (θ) = f (θ + π) ∂
∂t = 0 Π0,Θ0, Z0 µ��, µθθ, µzz,

µ�z, µ�θ, µθz

ε = ε(θ)

f (θ) = f (θ + π) ∂
∂t � 0 Π0,Θ0, Z0 µ��, µθθ, µzz,

µ�z, µ�θ, µθz

ε = ε(θ)

six-dimensional phase space defined by star’s position and ve-
locity, can be assumed of normal type in the peculiar velocities,

f (t, r,V) ∝ e−
1
2 (Q+σ) (1)

where Q is a positive definite quadratic form. Let u be the mean
velocity, then Q ≡ (V − u)T · A · (V − u) = 1 is the velocity el-
lipsoid, A(t, r) is a symmetric second-rank tensor, and σ(t, r) a
scalar function, both depending on time and position. Though f
could be assumed an arbitrary quadratic function of the inte-
grals of motion of the stars, the Gaussian hypothesis represents
an agreement point between gas dynamics theory, algebraic
simplicity, the central limit theorem, and the bayesian criterion
of less prior information.

The dynamic of such a kinematic component is then lo-
cally described according to a conservative dynamic system.
The stars move under a common gravitating potential, and
their phase space distribution function satisfies the Liouville
equation. The substitution of Eq. (1) into Liouville equation
leads to the well known Chandrasekhar system of equations
(Chandrasekhar 1942). Since it is a linear differential system
in f , the superposition principle can be applied in order to ob-
tain the kinematic parameters of each stellar population, as well
as the shape of the potential function.

It is also useful to characterize the geometry of the stellar
system in order to assume specific symmetries that simplify the
algebraic development and solution of system equations. The
most usual simplified hypotheses are:

– Spatial symmetries: symmetry plane, axisymmetry and
point-axial symmetry of the stellar system.

– Time dependence: stationary potential and steady state stel-
lar system.

– Differential movement: non-differential movement of stel-
lar components in a given direction.

A discussion on the consequences of assuming such sym-
metries, in the context of the velocity distribution, can be
found in Paper I and in Alcobé & Cubarsi (2004). Table 1
shows a summary of relevant kinematic parameters (in galac-
tocentric cylindrical coordinates) depending on the symmetry

or time dependence that is assumed in the model. We point
out a few aspects addressed to the discussion of our results.
Chandrasekhar had demonstrated that a steady-state stellar sys-
tem must have an axisymmetric potential function. A gener-
alization of Chandrasekhar systems was carried out by Orús
(1952). Axisymmetric systems were studied by Català-Poch
(1972), Sala (1990) and, under superposition, by Cubarsi
(1990). However, under quite general potential functions, ax-
isymmetric models were not able to explain the vertex devi-
ation of velocity ellipsoids and a non-vanishing radial mean
velocity. If axisymmetry is replaced by the point-axial sym-
metry hypothesis, where f (θ) = f (θ + π) for the phase space
distribution and the potential functions, then it allows to ex-
plain possible non-cylindrical features, like bars, spiral arms,
elliptical movement of centroids, angular dependence of the
vertex deviation ε(θ), etc. (Sanz-Subirana & Català-Poch 1987;
Juan-Zornoza 1995). Therefore, the point-axial assumption, to-
gether with the superposition principle, in order to give rise to
non-null odd-order moments, are able to explain the main kine-
matic and dynamic features of stellar systems. For example,
most samples drawn from CNS3 (Gliese & Jahreiß1991) and
HIPPARCOS (ESA 1997) catalogues lead to some non-null
moments related to the vertex deviation, as well as non-null
third moments (e.g. Paper I).

For point-axial systems, a measure of deviation from ax-
ial hypothesis is the axiallity index I (Juan-Zornoza 1995) ob-
tained from Oort’s constants according to I = C/(A + B). This
quantity is defined from the second central moments, so that
I = −µ�θ/µθθ. Similarly, the radial mean velocity depends on
the index I. While for an axial system the radial mean velocity
is obtained as Π(cyl)

0 = 1
2

k̇1
k1
�, with k1 an arbitrary function of

time, for a point-axial system it depends on the axiallity index
and on the mean rotation velocity Θ0, so that it can be written
as follows,

Π0 = Π
(cyl)
0 − I Θ0. (2)

Hence, above equation explains the deviation from circular mo-
tion of the centroid, since it predicts an elliptical movement
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whose radial direction is related to the vertex deviation mo-
ment µ�θ.

The outlined properties about symmetry hypotheses will
provide a framework for the interpretation of single kinematic
components after applying the segregation model.

2.1. Mixture distribution

Let P be a parameter representing a property that delimits a
stellar sample, for example, the distance to the Galactic plane
for a fixed local cylinder, the modulus of the perpendicular ve-
locity in a particular volume of the Galaxy, the absolute value
of the star’s velocity , etc. Requirements for such a parameter
will be discussed in Sect. 2.3. Then, a subsample S (P) may be
drawn from an overall stellar sample, with a number of stars
noted by #S(P). We assume that a finite number of stellar pop-
ulations, c, is present in S (P), so that a partition of populations
A = {A1, A2, ..., Ac} composes the subsample.

For fixed time and position, the velocity density function,
f (V), is expressed as a mixture of c-partial density functions
g(i)(V|C(i)), which are associated with stellar components de-
pending on a set of population constants C(i). It may be writ-
ten as

f (V) =
c∑

i=1

p(Ai) g(i)(V|C(i)) (3)

where p(Ai) is the mixture proportion of the ith population.

Obviously
c∑

i=1
p(Ai) = 1. The partial densities are assumed as

normal trivariant functions for all the populations according to
Eq. (1). Hence we can write g(1) = g(2) = ... = g(c) ≡ g, and they
depend on population parameters C(i) =

{
u(i),M(i)

2

}
, where u(i)

is the mean velocity and M(i)
2 the second order central moment

or covariance matrix of the ith population.
We are interested in to stress the relationship between the

mixture parameters and the selecting property P of the sub-
sample S (P), hence we write p(Ai) = n(i)(P) and C(i) = C(i)(P).
Thus the density function of Eq. (3) becomes,

f (V|P) =
c∑

i=1

n(i)(P) g(V|C(i)(P)). (4)

In order to estimate the mixture parameters we have applied
the numerical-statistical method described in Paper I, although
the foregoing concepts are quite general and independent of the
segregation method. The velocity distribution is approximated
from a two-component normal trivariate mixture, by using the
total central moments and cumulants up to fourth order. A χ2

test is used to evaluate the error and the reliability of the ap-
proach.

In our original segregation algorithm, if more than two
components were present in a sample, under certain conditions,
the method separated the extreme and most dispersed popula-
tion from the others, and the less dispersed populations were
mixed up in a new component alone. Then, the algorithm could
be recursively applied (Alcobé 2001).

The conditions enabling a recursive segregation were basi-
cally three: (1) the mean velocities of the mixture components

had to preserve an order, for example increasing or decreas-
ing in any of the velocity components; (2) consecutive popu-
lation means had to be enough differentiated, as much as the
velocity dispersion of the less dispersed population in the cor-
responding velocity component; (3) the population dispersions
had to be non-decreasing in the direction inducing the hierar-
chy. Therefore, a recursive segregation did work from grater
to smaller velocity samples. This facts suggested the idea of
constructing a hierarchical set of samples by means of an ideal
sampling parameter P, so that the recursive segregation does
work from smaller to greater velocity samples, by improv-
ing the original procedure, and without needing of the third
condition.

2.2. Entropy of the mixture probability

Let us review the relationship between probability and entropy
(see e.g. Papoulis 1989). The function

z(t) =

{ −t ln t, 0 < t ≤ 1
0, t = 0

(5)

is non-negative, continuous and strictly concave. It allows to
evaluate the entropy H(A) of a partition A = {A1, A2, ..., Ac},
with probabilities p(Ai), respectively, according to the follow-
ing expression,

H(A) =
c∑

i=1

z(p(Ai)). (6)

With the foregoing notation, for a sample S (P), the entropy can
be written explicitly depending on the parameter P, as follows

H(Ai|P) =
c∑

i=1

−n(i)(P) ln(n(i)(P)). (7)

Above equation can be interpreted as the expected value of the
uncertainty I(Ai|P) = − ln(n(i)(P)), so that entropy variations
measure uncertainty variations in the mixture parameters. The
greater the entropy, the less the information of the population
parameters. In general, most useful parameters are those de-
scribing large populations, instead of the ones describing an
excessively informative partition, for example with very few
stars in one group.

Hence, we are interested in to determine samples S (P) that
provide mixture parameters associated with maximum values
of H. This will be done by tuning the parameter P. Indeed only
a two-component mixture model is needed, since the entropy-
based algorithm will detect discontinuities of the entropy every
time that one new population is merged to the sample.

In a two-component partition {A1, A2}, for a fixed P, taking
n ≡ n(1), n(2) = 1 − n, we can express the entropy as

H(n(P)) = −n(P) ln(n(P)) − (1 − n(P)) ln(1 − n(P)). (8)

If we assume that the first population A1 is the prominent one
(n ≥ 1

2 ), H, as a function explicitly depending on n, is a posi-
tive, decreasing and differentiable function which satisfies

0 < H(n) < ln 2 and
dH
dn
< 0, for

1
2
< n < 1. (9)
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2.3. Ideal sampling parameter

An ideal sampling parameter should work in the following
way. If a global sample is composed of a set of populations
{A1, A2, ..., Ac}, a hierarchical set of subsamples S (P) should
progressively incorporate the populations A1, A2 and so on,
by preserving an order, as continuously increasing the parame-
ter P.

Then, for a two-component partition {A1, A2} the sampling
parameter P should satisfy the following conditions:

C1 The number of stars of the subsample S (P) increases with
P, without losing any star. In other words, for two parame-
ter values P1 and P2, we have

P1 < P2 ⇒ S (P1) ⊆ S (P2)⇒ #S (P1) ≤ #S (P2). (10)

C2 P should induce an ordered incorporation of stars to the
subsample S (P) so that, as P increases, stars of population
A1 are first included in the sample, and when such process
has been completed, stars of population A2 are successively
merged to it. Hence, the mixture proportion of the first pop-
ulation satisfies

P1 < P2 ⇒ n(P1) ≥ n(P2). (11)

More precisely, while the alone A1-population increases,
we have a constant population fraction

n(P1) = n(P2) = 1 (12)

but, in presence of the incoming A2-population, the follow-
ing inequality is always fulfilled,

n(P1) > n(P2). (13)

C3 If we assume that the transition between populations is
enough smooth, then n(P) is a continuous and differentiable

function of P. Thus Eq. (11) is equivalent to
dn
dP
≤ 0, be-

ing n(P) a non-increasing function.
Under previous assumptions, and taking into account
Eq. (9), the entropy H(n(P)), or simply H(P), is a non-
decreasing function of P in the interval 1

2 < n < 1:

dH
dP
=

dH
dn

dn
dP
≥ 0. (14)

Therefore, the entropy evolves, depending on the parameter
P, according to the following property

P1 < P2 ⇒ H(P1) ≤ H(P2). (15)

Thus, for a stellar sample composed of two populations, if the
second population is merged to a subsample containing only
the first population, according to the hierarchy that has been in-
duced by the ideal sampling parameter, then the entropy of the
mixture probability is a non-decreasing function of the sam-
pling parameter.

2.4. Sample with more than two populations

Now we may ask about the behaviour of the function H(P) for
a sample with three populations {A1, A2, A3}. Let us assume a
continuous incorporation of stars to the subsample S (P) by in-
creasing P. Then, whether a small number of stars is added
to the subsample S (P), one of the following situations is pro-
duced:

(a) The new stars belong to population A1. For an ideal sam-
pling parameter this is only possible if the subsample S (P)
does not contain A2- and A3-stars (Eq. (12)).

(b) The new stars belong to population A2. Case corresponding
to Eq. (13).

(c) The new stars belong to A3-population. If they are enough
different from A2 stars, hence also from A1-population, the
two-component segregation model should to mix up the
two closest populations A1 and A2 in the first component,
and reserve the second ellipsoid for the population A3.
Therefore, a third condition is required:

C4 The partition {A1, A2, A3} is reduced to a two-component
partition, with a cumulative population S 2 = A1 ∪ A2, or
even the less restricted condition A1 ∪ A2 ⊂ S 2, and the
new population A3. In this case the relationship of Eq. (13)
is no more fulfilled. Instead, the initial values n = 1 and
H(P) = 0 are reset.

Notice that, though for two populations A1 and A2 the seg-
regation algorithm is able to discriminate two velocity el-
lipsoids with similar means, the entering population A3 is
only recognized as a new one if it has an enough differenti-
ated mean from the others.

Hence, in a general case of more than two components, the fail-
ure of condition C4 would indicate that the sampling parameter
is not able to completely induce the hierarchy in the subsam-
ples, and some populations could remain mixed.

The behaviour of population entropy while increasing the
sampling parameter can be summarized in the following way.
For a three-population sample there exist a couple of values
PA and PB (that corresponds to sampling parameter values for
which the first and the second populations, respectively, have
been completely included in the subsample) satisfying:

(1) if P < PA then H(P) = 0. The subsample is only composed
of A1 stars;

(2) if P ∈ (PA, PB) then H(P) > 0 and dH
dP > 0. During the

mixture of two populations A1 and A2 there is an interval
with continuously increasing entropy;

(3) if P −→ PB, then H(P) −→ 0 and n(P) −→ 1. An entropy
drop takes place when the new A3-population, enough dif-
ferentiated from A2-population, appears.

Above situation is easily generalized for any greater number of
populations, so that the case (c) can be repeated for each new
entering population. Then, the entropy H(P) can show several
relative maxima and subsequent drops. Also notice that in each
iteration, the informative population is the one entering, which
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produces the discontinuity, while the previous ones become in-
distinguishable in a cumulative component.

Obviously, it does not exist a strictly ideal kinematic pa-
rameter. Usually the entropy does not fall straight down to zero
when the second population is completed, but it does show a
strong drop. Hence we must look for relative maximum levels
of entropy, or intervals with a continuous increasing entropy,
followed by a significant downward slope, that indicates that a
new population has been merged to the subsample and that stars
of the next incoming population are being detected. In this way,
it is possible to know how many populations are contained in
the sample. Hence, if k is the number of entropy maxima, the
number of stellar populations in the sample is k + 1.

Let us remark that, by continuity conditions, as a few new
stars of a population already in the sample are entering, the
entropy level remains slowly increasing, and the mixture pa-
rameters do not significantly vary. In the interval where that
situation occurs, since the segregation method provides a χ2

fitting error, it is profitable to choose the sample S (P) giving
the minimum χ2.

Some candidates to ideal sampling parameters, that can
serve to discriminate between kinematic populations, are, for a
particular volume of the Galaxy, the velocity component per-
pendicular to the Galactic plane |V3|, the rotational compo-
nent V2, the modulus of the star’s velocity |V|, or for a particu-
lar section of the disk, the distance z to the Galactic plane. We
have found that a small correction on |V|, the modulus of the
velocity referred to the cumulative local standard of rest, has
the best selecting behaviour, specially for large samples and
for more than three populations. The later will be referred as
re-centred velocity.

2.5. Monte Carlo simulation

The entropy variations and the behaviour of the segregation al-
gorithm, depending on the sampling parameter, can be illus-
trated through a numerical simulation from synthetic samples.
The samples were generated from pseudo-random algorithms
(Press et al. 1992) to get trivariate normal data. The simulations
have been used for testing the reliability of the results depend-
ing on the number of data vectors of the input samples. The al-
gorithm was able to segregate normal population samples with
around 100 data vectors, otherwise the normality of these com-
ponents could not be asserted, for example whether non-null
third central moments are obtained. A successful segregation
was always reached if the difference between the means was
greater, at least in one direction, than the standard deviation
of the less dispersed population, although in some cases, de-
pending on the other velocity components, this amount could
be reduced to the half (Alcobé 2001). The data vectors for star
velocities were originally obtained as three independent normal
variates. Then the vectors were rotated around two coordinate
axes in order to get a velocity ellipsoid with an arbitrary orien-
tation, and hence trivariate vectors.

The Fig. 1 illustrates several typical situations for a four-
component mixture. In the first row of graphics, the first plot
shows the stellar density N(P) as a function of the sampling

parameter. In this case example a superposition of four pure
Gaussian populations have been assumed. The second plot
shows the theoretical entropy behaviour when the segregation
is made by using the prior information about the population the
sampling parameter is scanning. The third plot shows the en-
tropy curve when the segregation method works without any
prior information. Thus, three relative entropy maxima are ob-
tained according to a four-component mixture.

In the second row of graphics, the simulation of a real situ-
ation is shown. Now synthetic samples have been used, which
have some random deviations from Gaussianity. Moreover, the
mixture components have quite overlapping wings. Once again,
when the segregation is carried out with the information about
the population that is being scanned, only small waves of en-
tropy are produced, due to the fluctuations of the entering popu-
lation distribution. However, if the segregation algorithm works
without any prior information, the overlapping wings produce a
smaller entropy drop, but still very significant. In this example
the small entropy oscillations are associated with fluctuations
around 10% of the entering population, while local maxima
still reflect the total number of stars involved in the bimodal
pattern.

2.6. Naming the method

The combination of the sample filtering procedure and the seg-
regation method provides an efficient algorithm which allows
to determine the kinematic parameters (i.e. mean velocities,
dispersions and mixture proportions) of the populations com-
posing the stellar sample. For a hierarchical set of subsam-
ples, each relative maximum level of the entropy of the mix-
ture probability provides an optimal segregation containing the
last entered population, while the fitting error of the segregation
method allows to assert whether the populations are Gaussian.
The method will be referred as MEMPHIS, Maximum Entropy
of the Mixture Probability from HIerarchical Segregation.

3. Stellar samples

3.1. HIPPARCOS samples

In order to carry out our analysis, a stellar sample composed
of a large number of stars with known velocity space was se-
lected. It was obtained by crossing HIPPARCOS Catalogue
with radial velocities from Hipparcos Input Catalogue HINCA,
with 19 466 stars (see Paper I). The completeness of the cata-
logue is reduced for larger distances since it has been limited
by star magnitude, and the sample was limited to a trigono-
metric distance of 300 pc. The resulting sample was composed
by 13 678 stars, where the only input data were the velocity
components (V1,V2,V3) in a cartesian heliocentric coordinate
system, with V1 toward the direction of Galactic centre, V2 in
the rotational direction, and V3 perpendicular to Galactic plane,
positive in the direction of the North Galactic pole.

It is well known that stellar samples with radial veloci-
ties are biased toward stars with high-proper motions (Binney
et al. 1997). Nevertheless, in Paper I we had exhaustively an-
alyzed the features of our working sample, where we found a
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Fig. 1. First row: the first plot shows the stellar density N(P) as a function of the sampling parameter for a simulated case example. A super-
position of four pure Gaussian populations was assumed. The second plot shows the entropy variations the exactly known mixture. The third
plot shows the entropy curve when the segregation method works with no prior information. The four-component mixture provides three net
local maxima. second row: the synthetic populations have been used, which have some random deviations from Gaussianity and a significant
superposition of partial distribution wings. The resulting segregation, working from the prior information about the real population components
(second plot) produces small entropy waves (here, the small entropy oscillations are associated with fluctuations around 10% of the new enter-
ing population), but if the segregation method works without such information (third plot) then the effect of the overlapping wings produces a
smaller but still significant entropy drop.

homogeneous and unbiased kinematic behaviour within each
mixture component.

3.2. Application of MEMPHIS

In Paper I the sample was selected by applying the criterion
of taking the modulus of its mean velocity, v, and their to-
tal standard deviation, σv, so that the star velocities satisfy
|V| < v + kσv, with k between 2 and 3. Then, among the fore-
going samples, we looked for the best approximation of the
velocity distribution by a two-component mixture, given by the
minimum χ2 error. Now, the selection of the subsamples will be
done according to Sect. 2.4. The subsamples are obtained look-
ing for maxima of entropy of the mixture probability. However
if |V| is chosen as sampling parameter, with the velocity re-
ferred to the Sun, then a bias could be introduced due to the
eventual exclusion of stars from the sample whose heliocentric
velocity modulus is greater than the imposed limit, but closer
to the mean of the population where they belong to. In order to
avoid this bias, we shall apply the selection procedure in two
steps.

1) Predictor step: MEMPHIS is applied to the heliocentric
subsample, filtered by the sampling parameter correspond-
ing to the last maximum of entropy.

2) Corrector step: the star velocities are displaced to the cu-
mulative subcentroid, that is the mean of the cumulative
subsample corresponding to each entropy maximum, and
MEMPHIS is applied again by selecting stars with the mod-
ulus of the velocity referred to the new origin.

Obviously, this iterative procedure is irrelevant in a two-
component mixture, but it leads to a significant improvement
for three or more populations. Thus the corrected sampling pa-
rameter becomes more ideal and it improves the contrast be-
tween entropy drops and maxima.

3.3. Heliocentric subsamples

After scanning the whole sample, two main relative high lev-
els of entropy are found. As main we mean either a relative
maximum of entropy followed by a significant entropy drop,
or a constant level of entropy before a decreasing interval. As
expected, some oscillations around the main maxima are de-
tected. Such variations can be interpreted as produced by small
groups of stars, whose characteristic parameters are slightly
different from those of the population where they belong to.
They could be stars from moving groups. Furthermore, around
a relative maximum of entropy, the relative minimum of χ2 pro-
vides us with the best fit. Anyway, the resulting central mo-
ments of the distribution are quite stable for small variations
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Fig. 2. Entropy variations for HIPPARCOS heliocentric samples are plotted as continuous line depending on the selecting maximum velocity
of the sample |V| (km s−1). Relative variations of χ2 are also showed (dashed line).

Table 2. HIPPARCOS heliocentric subsamples: Mixtures at maximum population entropy, predictor step. The sampling parameter is P = |V|max

referred to the Sun.

P χ2 #S (P) Pop. µ11 µ22 µ33 µ12 v1 v2 v3 n
51 150 10 195 A1 135 116 44 3.3 –21.3 –14.7 –5.9 0.50

A2 251 208 189 –1.6 6.3 –7.7 –6.9 0.50
131 75 13 315 S 2 742 254 167 82 –10.4 –13.5 –7.2 0.90

A3 2722 843 879 280 –9.7 –48.1 –7.2 0.10
209 12 13 530 S 3 794 258 160 93 –10.7 –14.1 –7.2 0.91

A4 4275 1371 1642 333 –13.0 –63.1 –7.9 0.09

of entropy. Notice that, if both population fractions are similar
(n = 0.5), the entropy is the highest possible (H(0.5) = ln 2),
hence the drops are more visible, but if the first component of
the mixture becomes dominant, the population entropy is get-
ting much lower (H(1) = 0), and ulterior drops are smaller.
Figure 2 shows the entropy evolution depending on the sam-
pling parameter |V|.

The main relative maxima of entropy are placed at P1 = 51
and P2 = 131 km s−1. Also, there is a large interval, from 155
to 220 km s−1, where the entropy remains nearly constant, with
a small relative maximum at P3 = 209 km s−1 and a relative
minimum of χ2. Tables 7–9 show the velocity moments and
cumulants up to fourth order for the subsamples selected ac-
cording to the foregoing values of the sampling parameter.

Table 2 shows the mixture parameters for pairs of segre-
gated components, where P = |V|max is the sampling param-
eter value, χ2 is the fitting error with 15 degrees of freedom,
#S (P) is the number of stars of the subsample, Pop. names
the population, µi j are the second central moments, vi is the
mean heliocentric velocity, and n is the mixture proportion.
For the first entropy maximum, the large value of χ2 shows
that the Gaussian hypothesis is not fulfilled. For the second
maximum, the normal distribution of components is still inad-
equate but errors in the determination of kinematic parameters
are much lower. For the third maximum, instead, the approxi-
mation by normal distributions becomes plausible. Though first

and second maxima of entropy lead to not-Gaussian compo-
nents, MEMPHIS has shown that important discontinuities in
the velocity distribution have occurred at the corresponding
values of P.

3.4. Re-centred samples

The catalogue is now displaced to the new velocity origin, cor-
responding to each one of the cumulative subcentroids (repre-
sented by S i in Table 2). Figure 3 shows the entropy evolution
depending on the new sampling parameter P. Mixture parame-
ters for pairs of components, which approximate each selected
subsample, are shown in Table 3. Now the entropy maxima of
the heliocentric sample are more stable.

The new representative entropy maxima are placed at P2 =

124 and P3 = 209 km s−1. From χ2 values, a significant im-
provement of contrast is noticed, that leads to better approxi-
mations.

As we had commented, the significance of the relative max-
ima and the minor waves of entropy is related to the number
of stars of the new detected population. After a local entropy
maximum, the number of stars of the entering population suf-
fers a worthy drop (see Fig. 4), while along the small oscil-
lations it is much smaller. Also, as we shall discuss later, the
moments of the first cumulative population remain nearly con-
stant, while the kinematic parameters of the second population
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Fig. 3. Entropy variations for HIPPARCOS re-centred samples are plotted as continuous line depending on the selecting maximum velocity of
the sample |V| (km s−1). Relative variations of χ2 are also showed (dashed line).

Table 3. HIPPARCOS re-centred subsamples: Central second moments, mean velocities, and population fraction for mixtures at maximum
population entropy. The sampling parameter is P = |V|max referred to the cumulative subcentroid.

P χ2 #S (P) Pop. µ11 µ22 µ33 µ12 µ13 µ23 v1 v2 v3 n

51 >150 10 195 A1 135 116 44 3 55 –17 –21.3 –14.7 –5.9 0.50
±719 30 12 127 57 8 4.3 0.3 0.2 0.01

A2 251 208 189 –2 –46 16 6.3 –7.7 –6.9 0.50
±710 30 11 125 57 8 4.3 0.3 0.2 0.01

124 75 13 325 S 2 730 248 162 81 –7 5 –10.3 –13.3 –7.2 0.89
±21 30 9 9 8 5 0.3 0.2 0.1 0.01

A3 2624 853 866 265 –65 84 –11.6 –47.8 –7.2 0.11
±116 231 54 43 46 28 0.4 1.0 0.1 0.01

209 12 13 541 S 3 796 249 157 91 –4 4 –10.6 –14.0 –7.2 0.91
±33 69 16 15 12 10 0.4 0.3 0.3 0.01

A4 4288 1525 1710 334 –150 66 –14.7 –64.8 –8.3 0.09
±280 710 149 117 99 79 2.9 2.7 2.7 0.01

sensibly vary. The velocity moments of the entering population
become more significant as larger is this population. For this
reason, the local maximum of entropy, the relative maximum
of second population stars, and the relative minimum of χ2 are
nearly simultaneous.

3.5. Total number of components

According to its definition, the sampling parameter introduces
a hierarchy in the subsamples so that the smaller P, the smaller
number of populations contained in the subsample. As ex-
plained in case (c) of Sect. 2.4, if the value P1 of the sam-
pling parameter leads to the segregation of populations A1 and
A2, the next value P2 builds a partition with S 2 ≈ A1 ∪ A2

and A3. In general, the ith maximum of entropy, defined by
the parameter Pi (i > 1), leads to a partition formed by the
cumulative population S i ≈ ∪i

k=1Ak, and the last entered popu-
lation Ai+1. Therefore, as we have got three relative maxima of

entropy, we should have four different populations in the total
sample. Let us note that there is a difference of more than 10%
stars between the subsample corresponding to the first maxi-
mum of entropy, A1 ∪ A2, and the cumulative population S 2

of the second maximum. This means, #S 2 � #A1 + #A2, but
#S 2 = #A1 + #A2 + #B2, with #B2 = 1, 485 stars. Thus, S 2

is composed of two discrete subcomponents, A1 and A2, and
other stars, B2 which are mixed with the above subcomponents
within S 2.

What happens with A3 is more interesting. The segregation
induced by the parameter P2 = 124 leads, on one hand, to a
population S 2 (11 726 stars) with a similar kinematics to S 3

(12 326 stars) obtained from P3 = 209, and, on the other hand,
to a population A3 (1465 stars), which is kinematically dis-
tinguishable from S 2, for example by looking at the shape of
the velocity ellipsoids. Then, the population A3 is broken into
two groups B3 (about 465 stars) and C3 (about 1000 stars), so
that B3 is merged to S 2, by giving S 3, without modifying in a
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Fig. 4. The number of stars that are identified as the new entering pop-
ulation, N′′, is plotted as a function of the sampling parameter. The
entropy drop around |V| = 130 km s−1 is highly significant, since
an amount of 650 stars are involved, which represent about 40% of
that population. On the contrary, the small oscillations from 140 to
220 km s−1 only represent relative variations lesser than 18%. These
fluctuant stars belong to the region where the wings of the partial dis-
tributions are overlapping, and the segregation method interprets them
alternatively either from the first or from the second population, up to
reach the optimal parameter value.

significant way the shape of the velocity ellipsoid, and C3 is
included within A4, which is a stellar component normally dis-
tributed. Let us note that the increase in moment µ11 from the
subsample with A2 (Table 7 ) to the sample S 2 is due to a group
of stars with a radial dispersion similar to the one of A3. Since
#S 3 < #S 2 + #A3, the condition C4 of Sect. 2.4 is not fulfilled.
Thus, B3 seems to be a broad wing of S 2, while C3 belongs to
the wing of A4, which are overlapping. Such situation will be
further analyzed in following sections. Therefore, although the
sampling parameter is unable to completely unfold this group
of stars, we interpret the entropy level around P = 124 as asso-
ciated with the detection of a new population.

Therefore, we have found the non-Gaussian subcompo-
nents A1, A2 and A3, and the Gaussian components S 3 and A4.

3.6. Results

The final kinematic parameters for the three segregations of
Table 3, expressed in terms of standard deviations and vertex
deviation, ε, are the following ones:

A1 subcomponent with (σ1, σ2, σ3) = (12 ± 31, 11 ± 1, 7 ± 1).
A2 subcomponent with (σ1, σ2, σ3) = (16±22, 14±1, 14±1).
S 3 Gaussian component with (σ1, σ2, σ3) = (28 ± 1, 16 ±

2, 13 ± 1), ε = 10 ± 2o.
A3 subcomponent with (σ1, σ2, σ3) = (51 ± 1, 29 ± 4, 29 ± 1),
ε = 8 ± 2o.

A4 Gaussian component with (σ1, σ2, σ3) = (65 ± 2, 39 ±
9, 41 ± 2), ε = 7 ± 3o.
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Fig. 5. For the stellar populations obtained from HIPPARCOS sub-
samples, the total velocity dispersion σ2 is plotted versus the oppo-
site of the mean heliocentric rotation velocity. The fitting of young
disk stars, A2, and two thin disk evaluations, S 2 and S 3, contain-
ing an increasing number of old disk stars allowed us to estimate
the slope of Strömberg’s law for the asymmetric drift of disk stars,
ρ = −σ2/v2 = 86±3 km s−1. The population of early-type stars, A1, as
well as the increasing thick disk, from A3 to A4, do not fit in the linear
relationship.

These groups may be interpreted as follows. If we begin with
the Gaussian components, the third sampling parameter P3 =

209 of Table 3 shows the best value of χ2. This cut excludes
only few stars from the overall sample that can be considered
noisy, with large velocity errors. For such sample, the obtained
segregation is totally consistent with Gaussian distributions,
and can be identified, as in Paper I, with thin disk, S 2 ≈ S 3,
and thick disk, A4.

The subcomponent A1 shows velocity dispersions similar to
early-type stars (Skuljan et al. 1999), it may be a stellar popula-
tion belonging to a spiral arm (Dehnen & Binney 1998). Such
population has not a Gaussian distribution, especially in the
radial direction, and their kinematic parameters are computed
with large errors.

The subcomponent A2 has a typical velocity dispersions of
young disk population (see e.g. estimations of kinematic pa-
rameters for such components from the Besançon model in
Ojha et al. 1994). Not either it has a Gaussian distribution,
mainly in the radial velocity, and the given kinematic parame-
ters are also orientative. Nevertheless we must point out that the
asymmetric drift given by the ratio dispersion over heliocentric
velocity is similar to the one of the thin disk, ρ = −σ2/v2 =
86 ± 3 km s−1 (Fig. 5).

The subcomponent A3 has a wider velocity ellipsoid with
a ratio σ2/σ3 ≈ 1, similarly to the thick disk. The asymmetric
drift relation, ρ = 91±6, is slightly different from the one of the
thin disk. The whole thick disk is ρ = 116±13. Thus, we could
identify the subcomponent A3 as the beginning of the thick disk
A4, although still mixed with old thin disk stars. Therefore, old
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Table 4. CNS3 heliocentric subsamples: Mixtures at maximum population entropy, predictor step. The sampling parameter is P = |V|max

referred to the Sun.

P χ2 #S (P) Pop. µ11 µ22 µ33 µ12 v1 v2 v3 n
40 114 897 A1 227 35 33 –71 –13.8 –19.6 2.1 0.44

A2 250 80 121 –20 2.7 –1.0 –11.7 0.56
135 29 1874 S 2 1089 352 309 96 –7.3 –15.6 –7.4 0.84

A3 2389 1136 848 –131 –27.4 –47.0 –10.1 0.16
180 23 1915 S 3 1272 463 340 132 10.1 –18.7 –7.9 0.93

A4 4759 2223 1895 –62 –29.8 –63.9 –7.5 0.07

Fig. 6. Entropy variations for CNS3 re-centred samples are plotted as continuous line depending on the selecting maximum velocity of the
sample |V| (km s−1). Relative variations of χ2 are also showed (dashed line).

disk stars can be described as a continuous population compos-
ing S 3 − (A1 ∪ A2).

3.7. CNS3 samples

It is well known that HIPPARCOS is nowadays the most ac-
curate astrometric catalogue, and results derived from it are
the most reliable. Nevertheless, in order to compare our kine-
matic results, MEMPHIS has been also applied to a completely
different catalogue. Such results may be also compared with
similar ones obtained in earlier works (Cubarsi 1992; Alcobé
& Cubarsi 2001). The Third Catalogue of Nearby Stars in-
cludes all known stars within a distance of 25 pc from the Sun.
Even though a lot of stars of CNS3 are present in HIPPARCOS
Catalogue, there are also many others out of the limiting mag-
nitude of HIPPARCOS satellite. So, the selected criteria for
building CNS3 are not correlated with those used for defining
HIPPARCOS. The sample has been obtained taking into ac-
count all stars from CNS3 with known velocity space. These
are 1946 stars in total. As the subdwarfs are not considered be-
longing to the Galactic disk (Erickson 1975), six stars among
them which are so described have been also rejected. Anyway,
the obtained results are not significantly different to those de-
rived if such stars were included. Nevertheless, as errors were
slightly smaller if these stars are excluded, the criterion was
maintained.

For CNS3 subsamples, similar maxima of entropy were
found. These maxima for the heliocentric sample are placed
on (see Table 4) P1 = 40, P2 = 135, and P3 = 180 km s−1.
Tables 10–12 show their velocity moments and cumulants up
to fourth order.

By repeating the process as for HIPPARCOS sample, the
star velocities were displaced to the cumulative subcentroids
computed from the heliocentric sample (Table 4).

Figure 6 shows the equivalent maxima for the re-centred
samples. They show a shape very similar to ones from
HIPPARCOS catalogue: The new maxima are placed at P2 =

145 and P3 = 190 km s−1.

The first relative maximum leads to a segregation with large
χ2 leading to a non Gaussian mixture. The second value of the
sampling parameter, P2 = 145, leads to a nearly Gaussian mix-
ture, and the segregation from P3 = 190 produces a clearly
normal mixture.

Notice that the sampling parameter from heliocentric veloc-
ities (Table 4) leads to an intermediate population A3. However
it is totally deconvolved while working from re-centred pecu-
liar velocities (Table 5), since the second and third segregations
are nearly the same one (almost with the same number of stars).

Therefore, CNS3 sample is segregated into four compo-
nents or subcomponents: two main stellar components with
Gaussian distribution, and two stellar subcomponents. Their
moments are shown in Table 5.
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Table 5. CNS3 re-centred subsamples: Central second moments, mean velocities, and population fraction for mixtures at maximum population
entropy. The sampling parameter is P = |V|max referred to the cumulative subcentroid.

P χ2 #S (P) Pop. µ11 µ22 µ33 µ12 µ13 µ23 v1 v2 v3 n
40 114 897 A1 227 35 33 –71 74 56 –13.8 –19.6 2.1 0.44

±196 192 137 171 163 143 3.6 1.9 4.4 0.02
A2 250 80 121 –20 42 76 2.7 –1.0 –11.7 0.56

±155 152 109 136 129 113 4.6 2.4 5.6 0.02
145 26 1904 S 2 1272 450 334 125 –57 3 –10.8 –18.5 –7.7 0.93

±76 117 37 37 34 22 0.9 0.8 3.8 0.02
A3 4240 1951 1840 556 564 –145 –18.3 –63.8 –7.7 0.07

±727 1544 409 348 342 181 2.8 6.8 4.6 0.02
190 15 1924 S 3 1167 358 274 127 –78 –5 –11.2 –17.0 –7.8 0.85

±127 231 59 58 55 34 1.8 1 0.9 0.02
A4 4095 2087 1549 384 295 –25 –15.0 –52.3 –8.3 0.15

±634 1309 310 279 279 152 9.0 4.8 4.1.5 0.02

A1 subcomponent with (σ1, σ2, σ3) = (15 ± 7, 6 ± 16, 6 ± 12).
A2 subcomponent with (σ1, σ2, σ3) = (16 ± 5, 9 ± 9, 11 ± 5).
S 3 Gaussian component with (σ1 : σ2 : σ3) = (34 ± 2, 19 ±

6, 17 ± 2), ε = 9 ± 5o.
A4 Gaussian component with (σ1, σ2, σ3) = (64 ± 5, 46 ±

14, 39 ± 4), ε = 10 ± 10o.

Like in HIPPARCOS sample, the Gaussian components may be
identified with thin disk, S 2 ≈ S 3, and thick disk, A4. The thin
disk is subdivided in early-type stars, A1, young disk stars, A2,
and a non discrete population of old disk stars S 3 − (A1 ∪ A2).

4. Discussion

MEMPHIS has demonstrated to be useful in order to iden-
tify stellar populations within nearby stars by using only sta-
tistical kinematic properties. A sampling parameter produced
a hierarchical set of nested samples in order to detect signifi-
cant discontinuities of their velocity distribution. The modulus
of the velocity, referred to the cumulative subcentroid of the
nested subsamples, provided us with a good approximation to
an ideal sampling parameter. Although the method had been
designed to identify normal distributions, it also provided, as
a less prior information pattern, a good approach to segregate
non-Gaussian populations. Entropy variations of the mixture
probability allowed us to estimate the number of components
or subcomponents without any prior assumption about such a
number.

4.1. Galactic components

The detected local populations show kinematic parameters and
mixing proportions that worthy improve results of Paper I. As
expected, thin disk with (σ1, σ2, σ3) = (28± 1, 16± 2, 13± 1),
and thick disk with (σ1, σ2, σ3) = (65 ± 2, 39 ± 9, 41 ± 2),
are the basic components of our local sample. Within the thin
disk, three different statistical populations were identified, with
specific kinematic properties. Both of them are discrete non-
Gaussian populations: early-type stars, (σ1, σ2, σ3) = (12 ±
31, 11 ± 1, 7 ± 1), and young disk stars, (σ1, σ2, σ3) = (16 ±
22, 14 ± 1, 14 ± 1). The other subcomponent is a continuous

population of old disk stars, that expands as a wing of the young
ones. Its radial velocity dispersion varies in the interval 16 ≤
σ1 ≤ 50, but the vertical dispersion remains nearly constant at
σ3 = 13.

In the Fig. 7, the velocity ellipsoids (projected on the V1V2

plane) of the obtained populations are displayed. Both non-
Gaussian stellar populations, early-type stars A1, and young-
disk stars A2, as well as the non-continuous population of old
disk stars compose the thin disk component S 2 (similar to S 3).
The beginning of thick disk population – although mixed with
old disk stars – is represented by the ellipsoid A3. The thick
disk component, A4, is progressively build as enlarging the sub-
samples (points labeled as T ). Let us note that the centroids
of populations A2, A3 and A4, as well as the partial thick disk
populations T obtained from sampling parameters |V| ≥ 145
are clearly aligned. This is suggesting that all the local popu-
lations, except the early-type stars A1, are moving in the same
direction with respect to the thick disk component. Therefore
they are dominated by the same galactic differential movement,
while A1 presents a clearly expanding behaviour. This subcom-
ponent can be identified with the local Gould’s Belt within a
distance of 300 pc (e.g. Moreno et al. 1999; Asiain et al. 1999a,
Torra et al. 2000).

The Fig. 8 shows, in a bilogarithmic plot, the moments
µ11 = σ

2
1, µ33 = σ

2
3, and the square of the total dispersion σ2,

that is, the quadratic sum of the dispersions of the three veloc-
ity components. The vertical dashed lines correspond to sam-
pling parameter values of optimal segregations. From the pair
of points (a, b) up to the beginning of lines (c, d) MEMPHIS
only detects a single component, that will become the thin disk
(c) as enlarging the subsamples. Notice the continuous and lin-
ear trend of partials thin disk (c) and thick disk (d). When the
thick disk has been completely build up (e), then the thick disk
changes its slope (f).

Therefore, the extreme old disk stars are mixed with the
thick disk in the range 38 ≤ σ1 ≤ 50, suggesting the exis-
tence of a false intermediate population. As enlarging the sub-
samples, such intermediate population becomes progressively
redistributed between thin and thick disk components.

Most stars with |V| < 51 km s−1 belong to the young disk,
most stars with |V| < 131 km s−1 belong to the thin disk, and the



942 S. Alcobé and R. Cubarsi: Disk populations from HIPPARCOS kinematic data

–120

–100

–80

–60

–40

–20

0

20

40

–100 –80 –60 –40 –20 20 40 60

A2A1 S2

A3

A4
T

Hy

I W

Cy
He

P

Ce

V

V

2

1

Fig. 7. Projection of velocity ellipsoids on the plane of rotation-
radial heliocentric velocities (rotation velocity V2 is positive in the
direction of galactic rotation, and radial velocity V1 is positive to-
ward the Galactic centre) for discrete populations obtained from local
HIPPARCOS subsamples. Old disk stars were not obtained as a dis-
crete stellar component, but as a broad wing of the young-disk pop-
ulation A2. All together with early-type stars, A1, they make up the
thin disk component S 2 (similar to S 3). The subcomponent A3 con-
tains some old thin disk stars and a larger number of thick disk stars,
that becomes the thick disk when wider local samples are considered.
Notice that the populations A2, A3 and A4, as well as the increas-
ing thick disk populations (T), obtained from sampling parameters
|V| ≥ 145 km s−1, can be clearly fitted according a straight line. This
fact is suggesting that all the local populations, except the early-type
stars A1, are moving in the same direction with respect to the thick
disk component. They are dominated by a common differential galac-
tic movement, mainly, but not only, in rotation. Some moving groups
(Eggen 1971) are also displayed so that they may be associated with
any of the obtained major populations. The displayed moving groups
are Hyades (Hy), Wolf 630 (W), ε Indi (I), ζ Herculis (He), 61 Cygni
(Cy), σ Puppis (P), η Cephei (Ce). Other moving groups composed
of young disk stars, like Pleiades and Sirius (not displayed) belong to
the subcomponents A1 and A2, within the thin disk component S 2. In
particular, the subcomponent A1 may clearly identified with the ex-
panding local Gould’s Belt structure.

remaining ones to the thick disk (those with |V| > 209 km s−1

are few stars with extreme kinematic behaviour, probably from
the halo, or with large velocity errors). However, we have
shown that the sampling parameter itself is not able to decon-
volve the mixture of populations. For each sampling parameter
two components or subcomponents were found, and a second
filtering step is needed through a bimodal mixture model.

Around 10% of moment µ12 is due to the velocity difference
between subcentroid components by showing that the radial ve-
locity difference is not null. Stars with smaller peculiar veloc-
ities have greater vertex deviation, as known since long time
ago (e.g. Delhaye 1965). Vertex deviation is greater for stars
with smaller velocity perpendicular to galactic plane. These re-
sults are also compatible with the idea that younger stars have
greater vertex deviation and greater rotational velocity. The

differential movement between the complete thin and thick
disks produces a lag in rotation of 51 ± 3 km s−1, as well as an
small but significant lag in the radial direction of 4±3 km s−1, as
it was found in Paper I. Although early-type stars expand with
reference to young disk stars with radial differential velocity of
about 28 ± 9 km s−1.

By comparing HIPPARCOS and CNS3 catalogues, we
have found entropy maxima, stellar populations and kinematic
parameters very similar, though errors are much smaller for
HIPPARCOS. This situation is produced even though the sam-
ples are different in their conception and limiting distances,
300 pc for HIPPARCOS and 25 pc for CNS3. We conclude
that both samples give the same qualitative portrait of the solar
neighbourhood.

4.2. Symmetries

We are able to interpret the results according to the dynamic
models described in Sect. 2, according to particular symme-
try assumptions. For HIPPARCOS sample, thin and thick disk
components have non-null vertex deviation. This result agrees
with authors who find not negligible vertex deviation of all stel-
lar populations (Dehnen 1998). Then the stellar system model
would not be consistent with the axial symmetry hypothesis
and, at least, point-axial symmetry would have to be assumed,
allowing barred or spiral features (Mühlbauer & Dehnen 2003).
Nevertheless, for CNS3 samples the vertex deviation of thick
disk component vanishes. In fact negligibility of vertex devia-
tion is possible for old stars or thick disk at lower scale heights,
and it depends on star age. It becomes null after a long time
(e.g. Gomez et al. 1997).

As discussed in Paper I, the non-null values of µ111 and
µ122 for the global samples (Tables 8, 9, 11 and 12) point out
the existence of a non-vanishing radial differential movement
of components (Tables 3 and 5). On the other hand, nearly null
values of odd-order moments in the z-velocity component are
suggesting the existence of a Galactic plane of symmetry, and
that the star samples are very close to it.

As we had commented in Sect. 2, the axiallity index I =
µ12/µ22 can be used as a measure of the non-cylindrical be-
haviour. Now we shall use not the galactocentric coordinates
system (Π,Θ, Z), with Π pointing to the Galactic anticentre,
but the heliocentric (V1,V2,V3) system, with V1 toward the
Galactic centre. The axial dependency was related to the mean
radial velocity according to Eq. (2), now written as follows,

v1 − v(cyl)
1 =

µ12

µ22
Θ0. (16)

On the other hand, thick disk stars (Fig. 7) show a decreasing
trend of vertex deviation as increasing the sampling parameter
(|V|max = 125, 145, 165, 190, 209 km s−1), which is related with
a trend to axial-symmetry. Then, if we plot the galactocentric
rotation mean velocity Θ0 against the differential radial mean
velocity referred to a cylindrical system, v1 − v(cyl)

1 , the rotation
mean velocity of an hypothetical axially symmetric thick disk
can be extrapolated, as shown in Fig. 8 (left), leading to a value
Θ0 = 144 ± 2 km s−1. Moreover, if we assume that such an
extreme thick disk is nearly in steady state, which is a plausible
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Fig. 8. The figure on the right shows, in a bilogarithmic plot, the trend between the moment σ2
1 and the sampling parameter P = |V|max, for

populations segregated from several nested HIPPARCOS subsamples (dots). The dashed vertical lines indicate optimal segregations according
to MEMPHIS algorithm. The first significant segregation was obtained by ln P = 3.9 (P = 51 km s−1), leading to a) early-type and b) young
disk populations. From ln P between 3.9 to 4.4 (P from 51 to 85 km s−1) the method only detected a single population: the seed of the thin disk
c). From ln P = 4.4 to 4.8 (P between 85 and 125 km s−1) an intermediate population d) was segregated, as an independent population from c).
It was the beginning of the thick disk, overlapped with old disk stars. When the complete thin disk e) was build, for ln P between 5 and 5.4 (P
from 145 to 210 km s−1), the thick disk f) became clearly identified. The continuous dark lines represent the continuous evolution of thin and
thick disk populations. The slopes of the regression lines are c) 0.90 and f) 0.86, which is extrapolated (grey line) in order to isolate thick disks
stars from d). A similar trend was fulfilled by other velocity components. Left hand side figures show the total dispersion σ2 and σ2

3 against
the sampling parameter. For the total velocity dispersion, the slopes of regression lines are 0.63 (increasing thin) and 0.76 (thick). On the other
hand, horizontal dashed lines are values of x in the equation σ1 = 6.6 ( 4

3 )x, for natural values of x. The level x = 0 represents a hypothetical
spherical population with σ1 = σ2 = σ3 = 6.6, similar to the z-velocity dispersion of the earlier stars. Early-type a) and young disk stars b)
have levels x = 2 and 3. The increasing thin disk component c) emerges from x = 3 to 5, while the continuous old disk stars are in the range
from x = 3 to 7. The foregoing populations make up the thin disk component e), at level x = 5. Finally, from x = 7 onward, the local thick disk
component alone f) is detected, up to level x = 8.

assumption for the oldest stars, then we can admit a null radial
mean velocity for the oldest thick disk (Chiba & Beers 2000;
Soubiran et al. 2003).

Similarly, Fig. 8 (right) displays the location of young disk
population A2, as well as samples of the progressive old disk
stars, up to the complete local thick disk A4, which are clearly
aligned in the plane of radial-rotation heliocentric velocities
V1V2. Their regression line is extrapolated up to reach the
heliocentric rotation velocity of the foregoing extreme thick
disk, V2 = −76 ± 2 km s−1, with zero radial velocity (by as-
suming a solar mean rotation velocity Θ0 = 220 km s−1).
Hence the heliocentric radial velocity of such axisymmetric
population with no radial movement may be estimated about
V1 = −18 ± 1 km s−1 referred to the Sun, which is quite
similar to the radial velocity of early-type stars A1 and thick
disk stars A4. Therefore, the point-axial symmetry assump-
tion allow us to predict an approximated radial galactocentric

velocity of the LSR of Π0 = 8 ± 2 km s−1 toward the Galactic
centre. Therefore, the conjectured expansion of Gould’s Belt
now becomes a contraction of most disk stars, since the former
have a very small radial galactocentric velocity.

4.3. Small and large-scale structures

Recently Famaey et al. (2005) have published an analysis of
a larger complementary sample of HIPPARCOS stars with ra-
dial velocities. Their results in the region where their method
is consistent with this paper give results in very good agree-
ment with the present results. Moreover our results clarify the
question about the radial solar motion referred to a point with
no net radial motion. In their total sample of 6030 stars, a
large scale structure of the velocity distribution was found,
which was composed of three stellar groups. By one hand the
high-velocity stars (HV, 401 stars), similar to our thick disk
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Fig. 9. The figure on the left shows how the mean rotation velocity Θ0 and the excess of mean radial velocity, referred to an axial system,
are related, according to a point-axial system. This excess explicitly depends on the vertex deviation of the velocity ellipsoid in the way
v1 − v(cyl)

1 = µ12Θ0/µ22. We can assume that the oldest thick disk population follows the trend toward zero vertex deviation, with a vanishing
mean radial movement. In other words, the extreme thick disk would be nearly an axisymmetric stellar system. The plotted points correspond
to several increasing thick disk samples, whose kinematic parameters show a continuous dependence on the sampling parameter (|V|max =

125, 145, 165, 190, 209 km s−1). The continuous line is the regression curve of the points, that intersects the vertical axis at Θ0 = 144±2 km s−1,
with a slope of 0.44 ± 0.05. Thus, the extrapolated value may be assumed as the approximated rotation velocity of the oldest thick disk
population. The figure on the right displays the location of young disk population A2, and older populations, from A3 to the local thick disk A4,
which share a common direction in the plane of radial-rotation heliocentric velocities (V1V2). Their straight line fit (V2 = −25.4(0.6)+2.79(0.06)V1)
is extrapolated up to reach the heliocentric rotation velocity −76 ± 2 km s−1 for the extreme thick disk with zero radial velocity (by assuming a
local mean rotation velocity Θ0 = 220 km s−1). Hence the heliocentric radial velocity of such axisymmetric population, with no radial galactic
movement, may be estimated about −18 ± 1 km s−1, which is very close to the radial velocity of earlier stars A1.

component A4, and, on the other hand, the group of young
kinematics stars (Y, 413 stars) and the group of “normal” stars
(5216 stars), which compose our thin disk component S 3. A
further analysis of the small-scale structure of their “normal”
stars revealed the existence of three subgroups over a smooth
background: Hercules stream (He, 529 stars) with kinemati-
cal properties of the hottest thin disk, like an important part
of the subcomponent A3; Hyades-Pleiades supercluster (HyPl,
392 stars), with kinematics corresponding to the subcompo-
nent A1; and the Sirius moving group (Si, 268 stars), that to-
gether with the smooth background (4027 stars), may be iden-
tified with our A2 subcomponent.

In addition, Soubiran & Girard (2005) have analysed the
chemical distribution of solar neighbourhood stars, and they
compare their kinematics with the stellar groups of Famaey
et al. (2005). Their results are also completely consistent with
our 3D-velocity based analysis. Thin disk, thick disk and
Hercules stream were described according to three ellipsoidal
distributions. They have found thin and thick disks well sepa-
rated, although greatelly overlapped in metallicity. On the other
hand, Hercules stream was found to be mainly made of thin
disk stars, with a few thick disk stars. The authors suspect that
previous studies had included this group within the thick disk.
This situation clarifies the description of our subcomponent A3

– containing the Hercules group – which was still composed
of 32% of thin disk stars, and that could be prematurely inter-
preted as the thick disk. Moreover, in order to study the thin

disk small-scale structure, they subtracted the Hercules stellar
group from the thin disk. A different chemical and kinemati-
cal behaviour was obtained between the super metal rich part
and the rest of the thin disk. The half of the thin disk stars,
with [Fe/H] > +0.20, had motion consistent with that of the
Hyades-Pleiades supercluster, the one that Famaey et al. (2005)
propose to be originated from a common large molecular cloud,
radially perturbed by a spiral wave. Such result is clearly con-
sistent with the segregation of thin disk’s subcomponent A1 –
that we had associated with the Gould’s Belt structure – and the
remaining subcomponent A2.

Let us note that our method is devoted to the study of the
large-scale structure of the velocity distribution, in order to as-
sess the main dynamical trend of solar neighbourhood stars. We
avoid to manually clean any stellar component from an spe-
cific group of stars, since the Central Limit Theorem is then
no more fulfilled. On the other hand, we needed the maximum
number of stars to carry out a full statistical analysis of star’s
kinematical properties. Such analysis allowed us to determine
a common trend of half of the thin disk (subcomponent A2)
and the increasing thick disk, which share a common move-
ment direction referred to a no net radial motion point, which
is the claimed reference point by Famaey et al. (2005). Along
that direction, as the average age of stars gets older and their
velocity dispersions increase, the mean radial and rotation ve-
locities, as well as the vertex deviation, decrease up to reach
a point in the velocity space which moves in a pure circular
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Table 6. Comparative of values with TBLL σ1(x) = 6.6
(

4
3

)x
.

n σ1 from TBLL σ1 from MEMPHIS MEMPHIS component Stellar populations

0 6.6 – – spherical population at birth

2 12 12 A1 early-type stars

3 16 16 A2 young disk stars

5 28 28 S 3 thin disk

7 50 50 A3 thick disk + old disk stars

8 66 65 A4 thick disk

orbit, the one consistent with the axisymmetric hypothesis.
Thus, the cumulative effect over galactic rotations of a dynamic
perturbation, such a galactic bar or a spiral wave, would pro-
duce the rupture of the axial symmetry at star formation time,
and would provide the younger stellar populations with a net
radial motion up to reach the dynamic equilibrium, associated
with an elliptical orbit of the centroid around the galactic cen-
ter. As disk populations get hotter, the trend towards axisym-
metry arises again. The region of thin disk’s velocities where
the axiallity would be disrupted corresponds to the A1 sub-
component (around Hyades-Pleiades supercluster), in whose
neighbourhood above authors have found significant dynami-
cal streams of stars, with quite mixed ages, and other authors
(Skuljan et al. 1999) have described a three branch structure,
which is distributed along the major axis of our thin disk com-
ponent S 3. Therefore our results, under the framework of a su-
perposition of point-axial Candrasekhar’s systems, stress a dy-
namical origin for such transient features.

4.4. A Titius-Bode-like law

A more detailed analysis is shown in Fig. 8, where the
radial velocity dispersion is represented against the sampling
parameter P = |V|max, in a bilogarithmic plot. If we compare
the radial velocity dispersions σ1 of HIPPARCOS populations
(Table 3), we get, quite accurately, the following ratios,

σ1(A2)
σ1(A1)

∼ 4
3
,
σ1(S 3)
σ1(A2)

∼
(

4
3

)2
,
σ1(A3)
σ1(S 3)

∼
(
4
3

)2
,
σ1(A4)
σ1(A3)

∼ 4
3
·

Therefore, it would seem reasonable to describe the radial dis-
persion of obtained populations through a law σ1 ∝ ( 4

3 )x. For
example,

σ1(x) = 6.6

(
4
3

)x
· (17)

We have taken the radial dispersion of the thin disk S 3, σ1 =

28, as a reference value, so that the level x = 0 is associated
with the closest value to the lowest vertical velocity dispersion
σ3(A1) obtained from our subsamples, in order to represent a
hypothetical population at birth, with spherical distribution. In
any case, it is an arbitrary value. Hence, the populations con-
tained in our HIPPARCOS velocity sample can be described
from natural values of x according to the Table 6.

It is well known, since eighteenth century, that the em-
piric Titius-Bode distribution determines the radii of orbits in a

Keplerian planetary system depending on a natural number, al-
though the possibility of an underlying physical explanation for
the observed distribution remains open (Lynch 2003). Now we
have obtained a similar relation between radial velocity disper-
sions of stellar populations and natural numbers. For similarity,
we shall name Eq. (17) Titius-Bode-like law (hereafter TBLL).
Such results are consistent with Galactic formation models that
predict some quasi-continuous stellar populations (see e.g. re-
view from Majewski 1993) in the sense that the continuity is
constricted by σ1 levels of TBLL.

The physical meaning of the variable x involved in the
TBLL may be related with the average epicycle energy ER ∼
σ2

1 of the stars (Lacey 1984; Jenkins 1992), representative of
the disk heating process. It shows continuity from x = 3 to 5
for the thin disk, and from 7 to 8 for the thick disk, but dis-
creteness from x = 2 to 3 between early-type and young stars,
and from 5 to 8 between thin and thick disk components. For
the thin disk, for example, the level x = 5 should represent the
saturation point of maximum velocity dispersion, likely corre-
sponding to the limited predicted by the observed wavenumber
of spiral structure of the Milky Way, while the discontinuity at
|V|max ∼ 145 km s−1, from x = 5 to 7.5, indicates an abrupt
jump in the average energy, that was produced when the thick
disk was formed about 10 ± 1 Gyr ago (e.g. Quillen & Garnett
2001). On the other hand, for values x ≤ 3 our model could
not detect continuous variations of the velocity distribution,
since the velocity distribution is not enough homogeneous, and
it mainly reflects star streams or moving groups.

Usually the disk heating process is described through the
age-velocity law for stellar scattering (e.g. Wielen 1977), given
by the approximate equation

σ(t)n = σ(t0)n +Cv t (18)

where Cv is the apparent diffusion coefficient. The foregoing
diffusion equation may also be written in the form,

σ(τ) = σ(t0) τα, with α =
1
n
, τ = 1 +

t
t0
, t0 =

σ(t0)n

Cv
·(19)

It may be either applied to radial or vertical velocity dispersions
(Jenkins 1992; Kroupa 2002), as well as to the total velocity
dispersion of the peculiar velocities.

In the Fig. 8 we have shown a similar dependence of
lnσ versus the sampling parameter |V|max defining the nested
subsamples. The greater the sampling parameter, the greater
the average age of merged stars. Thus, a the relationship be-
tween |V|max and age can be approximately established.
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The variable τ of Eq. (19) measures the age of the stars rel-
atively to an arbitrary quantity t0 (it may be interpreted as the
necessary time for a population to reach a dispersion 2ασ(t0)
from the initial value σ(t0)). In the solar neighbourhood, de-
pending on the heating mechanism (scattering only by clouds
or together with a spiral wave, with or without accretion, etc.),
some accepted values for σ(t0) and α are 15 km s−1, 0.2 (Lacey
1991), 8 km s−1, 0.33 (Binney et al. 2000), 10 km s−1, 0.5
(Wielen et al. 1996), and t0 may vary from 0.01 to 0.45 Gyr
(Asiain et al. 1999b). Hence, for stars with ages of a few Gyr,
like most of the solar neighbourhood, the variable τ can be used
simply as the relative age to t0. The continuous line (c) in Fig. 8,
that fits the progressively heated thin disk, has a slope ∼0.90,
hence, according to Eq. (19) (for radial velocities, σ = σ1 and
α = α1) we can write σ2

1 ∝ τ2α1 ∝ |V|0.90
max, hence we can esti-

mate |V|max ∝ τ
α1

0.45 . Notice that the regression line (f) for the
thick disk has a slope very similar, 0.86, which would indi-
cate an intriguing similar heating rate for the thick disk stars.
Similarly, the slopes of the regression lines for the total veloc-
ity dispersion σ2 (Fig. 8, upper-left side) are ∼0.64 (thin disk)
and ∼0.76 (thick disk), once more very similar. If we had ac-
cepted the most recent value α = 0.33 for the law velocity-age
(Binney et al. 2000), then we should have nearly the age esti-
mation through our sampling parameter,

|V|max ∝ τ α
0.32 ∼ τ. (20)

On the other hand, in Eq. (17) we had adopted an initial value
for the radial velocity dispersion σ1 = 6.6, for a spherical
distribution of stars at birth, with an initial total dispersion
σ = 11.5 ≈ 6.6

√
3, which is consistent with above referred

values. Thus, if we compare intervals with continuous varia-
tion of Eqs. (17) and (19) for the radial velocity dispersion σ1,
and we assume the approximate relationship of Eq. (20), it is
possible to roughly estimate α1 ∼ 0.45 and x ∼ 1.5 ln τ.

Then, by reading Fig. 8 from right to left, and according to
Eq. (19), a continuous heating of the thin disk (c) from x = 5
(its origin, after the formation of the thick disk) to 0 (actual
date) during 10 Gyr (its approximate age) would provide an
estimated value t0 = 0.4 Gyr. Also, the time before the dis-
continuity between thin and thick disk could be estimated from
x = 8 to 7.5 along (f), leading to an age of 13.8 Gyr for the
thick disk. The foregoing roughly estimations are totally con-
sistent with the actual portrait of the galactic disk (e.g. Binney
et al. 2000; Fuchs et al. 2001; Soubiran & Girard 2005) and are
only an example of the information that can be obtained only
from kinematic data.
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Table 7. Central moments and cumulants for HIPPARCOS heliocentric sample, limited by |V| = 51 km s−1, with 10 195 stars.

i Vi i jk µi jk

1 –7.43 ±.19
2 –11.18 .13 111 2414.01 ±133.17
3 –6.42 .11 112 124.02 61.18

122 616.82 45.47
i j µi j 222 476.23 68.22
11 384.48 ±4.87 113 275.90 34.12
12 48.59 2.37 123 59.64 29.25
22 174.57 2.49 223 91.52 37.06
13 –3.07 2.15 133 354.14 40.22
23 –2.25 1.57 233 231.35 32.74
33 117.18 2.18 333 220.78 57.56
i jkl µi jkl i jkl κi jkl

1111 389505.86 ±8920.82 1111 –53973.13 ± 11028.73
1112 36120.20 2825.80 1112 –19928.17 3454.60
1113 1565.02 2591.00 1113 5100.74 2973.43
1122 59566.47 1437.56 1122 –12273.37 2333.03
1123 –760.31 894.78 1123 401.35 1097.42
1133 47210.88 1341.73 1133 2139.26 1945.77
1222 9427.84 1602.30 1222 –16019.75 1850.65
1223 –102.54 673.21 1223 650.90 783.23
1233 2991.07 683.06 1233 –2716.63 783.50
1333 556.81 1361.56 1333 1634.38 1433.46
2222 93835.38 3809.14 2222 2415.54 4096.61
2223 1060.50 1317.91 2223 2237.02 1404.33
2233 25202.44 965.39 2233 4737.05 1176.77
2333 1213.02 1202.16 2333 2002.76 1245.98
3333 62223.93 2875.00 3333 21031.87 3008.22

Table 8. Central moments and cumulants for HIPPARCOS heliocentric sample limited by |V| = 131 km s−1, with 13,315 stars.

i Vi i jk µi jk

1 –10.35 ± .27
2 –17.05 .18 111 2497.22 ±983.54
3 –7.24 .13 112 –6279.45 386.69

122 –1150.26 298.98
i j µi j 222 –8662.00 448.13
11 944.63 ±14.77 113 –122.28 328.78
12 99.71 6.83 123 119.91 170.32
22 424.50 7.62 223 –299.52 194.91
13 -13.43 5.63 133 50.37 226.55
23 10.83 4.03 233 –2265.19 185.45
33 240.36 5.28 333 30.14 325.81
i jkl µi jkl i jkl κi jkl

1111 3796357.00 ±132175.24 1111 1119360.12 ±140732.81
1112 183822.64 36654.71 1112 –98735.20 39142.15
1113 –74239.09 36496.32 1113 –36174.01 37726.85
1122 631699.04 20993.54 1122 210815.36 25016.57
1123 7438.00 11370.37 1123 –117.43 12078.38
1133 422382.55 18225.00 1133 194965.64 20125.78
1222 118875.61 21987.01 1222 –8101.72 22882.96
1223 –11807.29 9077.28 1223 –8265.72 9437.38
1233 18538.18 7942.35 1233 –5136.62 8234.74
1333 –30101.79 15112.02 1333 –20416.04 15312.08
2222 953476.55 43783.72 2222 412864.80 45195.12
2223 23912.47 15755.64 2223 10115.51 16059.13
2233 216543.68 11228.97 2233 114273.29 11945.19
2333 –3100.13 13918.00 2333 –10912.29 14031.04
3333 428653.51 31433.98 3333 255328.64 31739.67
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Table 9. Central moments and cumulants for HIPPARCOS heliocentric sample limited by |V| = 209 km s−1, with 13 530 stars.

i Vi i jk µi jk

1 –10.86 ±.28
2 –18.25 .20 111 –1816.31 ±1883.96
3 –7.27 .15 112 –13413.33 864.04

122 –2399.29 751.44
i j µi j 222 –20390.95 1406.62
11 1091.77 ±19.55 113 –159.77 666.01
12 121.87 9.98 123 339.50 388.35
22 540.24 12.91 223 –191.01 559.59
13 –15.31 7.61 133 –659.45 453.92
23 10.49 6.55 233 –5667.18 474.23
33 286.41 7.30 333 –235.41 585.99
i jkl µi jkl i jkl κi jkl

1111 6363554.95 ±318091.89 1111 2787687.85 ±326572.65
1112 398882.89 116713.07 1112 –272.86 118957.05
1113 –146806.98 96850.45 1113 –96666.77 97992.36
1122 1362095.13 78776.76 1122 742572.73 82615.38
1123 22168.02 37971.88 1123 14444.49 38708.40
1133 784584.24 52065.51 1133 471419.86 53804.97
1222 246216.17 88605.76 1222 48700.87 89422.91
1223 –27222.66 34791.88 1223 –21509.60 35081.19
1233 72597.64 27733.59 1233 38014.26 27986.78
1333 –13619.80 42830.96 1333 –466.10 43014.61
2222 2545140.85 218636.92 2222 1669556.37 219966.77
2223 –9405.17 67345.34 2223 –26409.79 67645.47
2233 580888.25 50011.35 2233 425936.06 50591.69
2333 –12789.16 47716.14 2333 –21804.26 47835.90
3333 802499.71 66491.61 3333 556403.52 66884.62

Table 10. Central moments and cumulants for CNS3 heliocentric sample limited by |V| = 40 km s−1, with 897 stars.

i Vi i jk µi jk

1 –4.59 ±.59
2 –9.18 .40 111 1229.92 ± 283.68
3 –5.57 .38 112 370.22 134.91

122 478.13 101.04
i j µi j 222 427.51 170.56
11 307.29 ±11.27 113 263.56 19.20
12 33.48 6.38 123 –112.09 72.48
22 145.23 6.80 223 170.30 111.38
13 .04 6.30 133 282.21 106.07
23 3.96 4.82 233 166.04 84.27
33 129.17 6.75 333 404.25 135.78
i jkl µi jkl i jkl κi jkl

1111 208279.16 ±13859.91 1111 –75002.06 ±18328.11
1112 25430.61 5337.89 1112 –5430.22 6700.69
1113 5915.21 4406.77 1113 5874.66 5536.52
1122 37665.03 2627.29 1122 –9204.94 4598.58
1123 1637.67 1704.74 1123 417.14 2306.23
1133 35552.32 2605.56 1133 –4141.73 4388.15
1222 3204.61 2989.68 1222 –11381.00 3596.88
1223 1304.64 1363.12 1223 1032.96 1662.59
1233 331.00 1461.10 1233 –3993.64 1799.97
1333 –503.23 3235.48 1333 –520.27 3528.99
2222 62556.84 8574.23 2222 –721.05 9231.34
2223 1830.12 2583.89 2223 103.73 2873.83
2233 20813.61 1908.45 2233 2021.79 2664.91
2333 2071.27 2683.15 2333 535.77 2908.95
3333 57608.70 6125.75 3333 7550.47 6830.80
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Table 11. Central moments and cumulants for CNS3 heliocentric sample limited by |V| = 135 km s−1, with 1,874 stars.

i Vi i jk µi jk

1 –10.52 ±0.85
2 –20.64 0.57 111 8876.25 ±3406.31
3 –7.86 0.46 112 –5408.54 1348.51

122 –2003.15 1007.97
i j µi j 222 –12751.01 1518.78
11 1351.75 ±49.52 113 –182.91 1059.98
12 144.68 23.40 123 –872.04 651.81
22 609.54 26.22 223 245.21 720.99
13 –11.31 20.32 133 –67.10 820.45
23 –3.02 15.21 233 –2228.39 773.33
33 396.37 19.97 333 –32.55 1342.73

i jkl µi jkl i jkl κi jkl

1111 6423533.21 ±514972.64 1111 941856.18 ±564779.46
1112 585108.65 148337.71 1112 –1593.17 162852.12
1113 –54903.61 138022.29 1113 –9054.92 146310.84
1122 1047434.96 75808.21 1122 181621.52 100724.51
1123 –42884.09 44089.91 1123 –35525.23 48922.00
1133 773938.37 62729.44 1133 237886.31 78164.93
1222 225710.01 76839.98 1222 –38851.31 82962.41
1223 26413.31 36545.39 1223 34179.78 38816.65
1233 24774.37 31593.87 1233 –32640.10 33857.17
1333 –24339.55 63496.37 1333 –10895.36 65095.92
2222 1659618.08 163083.29 2222 544986.71 172222.76
2223 –32602.98 62668.70 2223 –27073.56 64727.60
2233 433553.75 53532.41 2233 191928.92 58094.71
2333 –59220.13 63066.55 2333 –55624.48 63942.37
3333 904761.36 151700.94 3333 433427.48 154160.14
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Table 12. Central moments and cumulants for CNS3 heliocentric sample limited by |V| = 180 km s−1, with 1915 stars.

i Vi i jk µi jk

1 –11.45 ±.90
2 –21.82 .61 111 1309.94 ±5171.06
3 –7.89 .48 112 –10721.67 2083.96

122 –3364.21 1701.10
i j µi j 222 –20668.71 2700.51
11 1540.75 ±60.98 113 363.02 1701.32
12 176.23 29.42 123 –1167.35 1145.48
22 718.23 34.46 223 –1209.85 1373.29
13 –32.96 25.11 133 –463.73 1234.83
23 .13 20.11 233 –4552.48 1230.22
33 448.26 23.38 333 103.41 1664.87

i jkl µi jkl i jkl κi jkl

1111 9496012.75 ±889329.83 1111 2374280.91 ±947023.58
1112 774222.95 257767.71 1112 –40361.94 275462.75
1122 1688972.74 158797.21 1113 –382109.69 247953.42
1222 367630.44 164384.71 1122 520238.20 186603.42
2222 2790107.92 348373.02 1123 9268.46 103853.96
1113 –534445.90 237724.51 1133 515423.35 133450.10
1123 –2148.25 98828.48 1222 –12095.58 171005.50
1223 –63455.81 88772.96 1223 –39830.47 90957.37
2223 49508.22 148346.63 1233 –12795.59 75430.32
1133 1208247.43 117425.10 1333 5828.21 106339.50
1233 66192.73 73411.24 2222 1242526.03 358769.24
2233 774329.70 109298.75 2223 49229.30 150442.26
1333 –38491.60 104279.83 2233 452376.20 113954.90
2333 –114497.42 111341.34 2333 –114671.49 112431.32
3333 1247892.30 192332.12 3333 645089.73 195729.12


