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ABSTRACT

Under a common potential, a finite mixture of ellipsoidal velocity distributions satisfying the Boltzmann collisionless equation pro-
vides a set of integrability conditions that may constrain the population kinematics. They are referred to as conditions of consistency
and were discussed in a previous paper on mixtures of axisymmetric populations. As a corollary, these conditions are now extended
to point-axial symmetry, that is, point symmetry around the rotation axis or bisymmetry, by determining which potentials are con-
nected with a more flexible superposition of stellar populations. Under point-axial symmetry, the potential is still axisymmetric, but
the velocity and mass distributions are not necessarily. A point-axial stellar system is, in a natural way, consistent with a flat velocity
distribution of a disc population. Therefore, no additional integrability conditions are required to solve the Boltzmann collisionless
equation for such a population. For other populations, if the potential is additively separable in cylindrical coordinates, the populations
are not kinematically constrained, although under point-axial symmetry, the potential is reduced to the harmonic function, which, for
the Galaxy, is proven to be non-realistic. In contrast, a non-separable potential provides additional conditions of consistency. When
mean velocities for the populations are unconstrained, the potential becomes quasi-stationary, being a particular case of the axisym-
metric model. Then, the radial and vertical mean velocities of the populations can differ and produce an apparent vertex deviation
of the whole velocity distribution. However, single population velocity ellipsoids still have no vertex deviation in the Galactic plane
and no tilt in their intersection with a meridional Galactic plane. If the thick disc and halo ellipsoids actually have non-vanishing
tilt, as the surveys of the solar neighbourhood that include RAdial Velocity Experiment (RAVE) data seem to show, the point-axial
model is unable to fit the local velocity distribution. Conversely, the axisymmetric model is capable of making a better approach. If,
in the end, more accurate data confirm a negligible tilt of the populations, then the point-axisymmetric model will be able to describe
non-axisymmetric mass and velocity distributions, although in the Galactic plane the velocity distribution will still be axisymmetric.
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1. Introduction

The purpose of the present work is to complete some aspects
of the analysis of conditions of consistency for mixtures of
axisymmetric stellar systems (Cubarsi 2014, hereafter Paper )
by studying the more general point-axial symmetry (or bisym-
metry) case, i.e., rotational symmetry of 180° for the potential
and the phase space density functions.

To simplify the solution of the Boltzmann collisionless equa-
tion (BCE) it is necessary to introduce some symmetries for the
mass and the velocity distributions, such as the assumptions of
axisymmetry, steady state, or Galactic plane of symmetry. These
hypotheses provide serious limitations for describing in a realis-
tic way the kinematic observables of the Galaxy unless a mixture
model is assumed. The conditions of consistency are integrabil-
ity conditions allowing for a mixture of independent populations
of generalised Schwarzschild type to share the same potential
function. Since the potential may depend on the population pa-
rameters involved in the velocity distribution, the less the po-
tential depends on them, the less kinematically constrained the
populations will be.

Several kinematic analyses using the newest radial veloc-
ity data from the RAdial Velocity Experiment (RAVE) survey
(Siebert et al. 2011; Zwitter et al. 2008; Steinmetz et al. 2006)
confirmed that the thin disc has non-vanishing vertex deviation,
the thick disc has a radial mean motion differing from that of the
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thin disc, and the halo velocity ellipsoid is likely to be tilted (e.g.,
Pasetto et al. 2012a,b; Moni Bidin et al. 2012; Casetti-Dinescu
et al. 2011; Carollo et al. 2010; Smith et al. 2009a,b).

It was suggested (Pasetto et al. 2012b; Steinmetz 2012)
that the axisymmetry assumption should be relaxed towards
a model with point-axial symmetry to account for these fea-
tures. However, in Paper I we proved that an axisymmetric
mixture model is able to describe the actual velocity distri-
bution in the solar neighbourhood provided that the potential
is quasi-stationary' and the phase space density function is
time-dependent. This family of potentials is consistent with pop-
ulations having different mean velocities producing a non-null
vertex deviation of the disc distribution. In addition, if the poten-
tial is separable in cylindrical coordinates, the velocity ellipsoids
may have an arbitrary tilt.

Unlike in the axisymmetric model, in steady state point-axial
systems, non-null radial and vertical differential motions are also
possible (Sanz-Subirana 1987; Juan-Zornoza 1995). Point-axial
symmetry is indeed not a relaxation of the axial symmetry, but a
more informative symmetry which may account for ellipsoidal,

' In cylindrical coordinates (w, 6,z) the stationary potential consis-

tent with a quadratic velocity distribution is U = 1A (@® + 2%) +
V(z/w)/(w? +z%), with A constant and V an arbitrary function that does
not depend on time. When A is a time dependent function, the potential
was called quasi-stationary in Paper I.
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spiral, or bar structures, and includes axial symmetry as a de-
generate case. In particular, along with a quadratic velocity dis-
tribution, a point-axial symmetry model provides triaxial mass
distributions and velocity ellipsoids with non-vanishing vertex
deviation. However, a quadratic point-axial velocity distribution
is still symmetric in the peculiar velocities, so that it has null
odd-order central moments. Therefore, either in axial or in point-
axial symmetric systems, a mixture model is compulsory to fit
the full set of local velocity moments. Nevertheless, if each pop-
ulation of the mixture had a velocity ellipsoid with an arbitrary
orientation, as, in principle, in the point-axial model, a lower
number of populations would likely be required to fit the overall
velocity distribution.

Hereafter, this analysis is organised as follows. In the next
two sections we review the solution of the BCE for a single
point-axial population. In a first step, Chandrasekhar’s system
of equations provides the kinematic parameters involved in the
velocity distribution function whilst, in a second step, they pro-
vide an axisymmetric potential. In the fourth section we find the
general solution for the potential, in both the separable and non-
separable cases. In the fifth section we study the conditions of
consistency for point-axisymmetric mixtures. In the last section
we discuss the results in contrast to the axisymmetric case.

2. Point-axial system

For fixed position and time (r, ), a single stellar population is
usually described through a Gaussian velocity distribution func-
tion, which is a particular case of a generalised quadratic ve-
locity distribution function in terms of the peculiar velocities
(1, uz, u3), that is, f(Q + o) with Q = 3, ; A;j(r, 1) ujuj, where
A;; are the elements of a symmetric, positive definite second-
rank tensor. Under point-axial symmetry these functions satisfy,
in cylindrical coordinates, A; (@, 0, z, 1) = A;j(w, 0+, z, 1), like-
wise the function o~ and the components of the mean velocity v.

For the above generalised Schwarzschild velocity dis-
tribution, the BCE yields the Chandrasekhar equations
(Chandrasekhar 1960), which are equivalent to the moment
equations (Cubarsi 2007, 2010). Their solution provides the ten-
sor A, the function o, the mean velocity v, and the potential U.
The two first Chandrasekhar equations are Egs. (1) and (2) in
Paper I, that may be written, with the notation used in Paper I
and using the variable A = A - v, as

3V x A =(0), )]
A
E_2V*A, )

which yield the elements of the second-rank tensor A and the
vector A. In the point-axial model these elements have the func-
tional form (Juan-Zornoza et al. 1990; Juan-Zornoza & Sanz-
Subirana 1991)

Apo =K1 + KuZ?;  Agg = %(K; + K2%);
A, = —Kywz;  Agy = K} + kow? + K[2%; 3)
Ap. = -AK,mz; A = ks + Kywo?s

and

Ay = 3Ki@; Ag = (K - 4B)w; A; = 3kaz; 4)
with

Ky =k +qsin(20+ ¢1); K] = ki — gsin(20 + ¢1);

' . (%)
K; = ks — nsin(20 + ¢,);

Ky = k4 +nsin(20 + ¢»);
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where ki, ks, q,¢; are time dependent functions and kp, k4, 1,
2, 8 constants. The condition that A is positive-definite implies
that ki, k3 are positive functions and k,, k4 non-negative con-
stants, with the requirements k; > ¢ > 0, ks > n > 0. If K,
is null, the velocity distribution is independent from z and, in
addition, if k; is null, then it is independent from @ too, which
makes no sense in a three-dimensional and finite Galaxy. Thus,
in general, these constants are assumed to be positive, with the
exception of the limiting case K4 = 0 of a two-dimensional disc
distribution®. The particular case k, = 0 will not be considered
here, although it is discussed at the end of the Conclusions sec-
tion. It would correspond to a particular stellar component with
constant angular rotation at fixed height z, similarly to the ax-
isymmetric model.

The uppercase letter K is used for a function also depend-
ing on 6. The accents mean derivatives with respect to the angle
and the dots with respect to the time. As expected, the functional
form of A is similar to the axisymmetric case in Paper I, with the
difference that some parameters, those written in capital letters,
have an additional term depending on cos 26 and sin 26, respon-
sible for the rotational symmetry of order 2.

As in the axisymmetric case, the model also provides a time
dependent parameter k5 that determines a plane of symmetry for
the tensor A at z = —ks/ks. Without loss of generality (Camm
1941) this symmetry plane may be assumed as the Galactic
plane, being fixed by taking ks = 0, resulting then in a symmet-
ric velocity distribution about this plane. Therefore, the point-
axisymmetric model, with the inherent symmetry plane, also
possesses point-to-point central symmetry.

3. Equations for the potential

The remaining Chandrasekhar equations are Egs. (3) and (4) in
Paper I, which provide the potential U and the function . They
can be written more easily by using the variable X = -A-v — o
as follows:

0A 1
A-V — =—--V 6
U+8t 5 X, (6)
10X
A-VU = = —.
v 2 ot )

By elimination of X between Egs. (6) and (7), with the new
variables 7 = 1@? and ¢ = 1z%, which are appropriate to the
symmetry plane of the system, six second-order partial differen-
tial equations for the potential are obtained. In their vector no-
tation they can be found in Chandrasekhar (1960, Eqgs. (3.448)
and (3.450), p.100). After substitution of the elements of A and
the components of A, Sanz-Subirana (1987) and Juan-Zornoza
(1995) proved that continuity conditions on the function X
force the potential to be axisymmetric. A similar result was ob-
tained by Vandervoort (1979) for point-axial systems, which he
called galactic bars, although the study was limited to a two-
dimensional disc with a steady-state potential.

3.1. The potential is axisymmetric

These equations are explicitly written in the Appendix.
Their solution is tedious and long, and, unfortunately, the

2 1In Paper I, the asymptotic case Ky — 0 was called flat velocity

distribution, which, according to Chandrasekhar (1962), applies to the
velocity distribution of an ideal disc. Although a disc stellar population
can be approximated by this model, the other populations have a veloc-
ity distribution that must depend on z. Therefore, in general we must
assume that K4 is non-null.
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above-mentioned thesis papers cannot be accessed easily. Since
this is one of the key properties of the point-axial model, we shall
see a shorter and alternative justification to this crucial fact.

‘We note that in the Galactic plane = 0, the three Egs. (28)-
(30) in the Appendix are reduced to Eq. (30) by providing the
basic dependence of the potential on the radius and the angle
variables. Hence, we focus on this equation in its complete form.
First, we consider the main case K| # 0, hence g # 0, since if
K does not depend on 6, the velocity distribution has no vertex
deviation in the Galactic plane3, which was one of the most im-
portant observables that justified trying a non-cylindrical model.

If K7 is non-null, we write Eq. (30) as

FU 24kzr+(K|—K;)+2(K4—K;)ga_U _ 42| 2K QU
962 K[+2K;¢ 90 — ar ~ K|+2K,{ 9707 )
147 2kyt—(K,—K{)-2(K4—K}) PU 4 8Kst{ U .
K[+2K;{ 9700 T K| +2K,{ 9706
We define the function V = 2 and bear in mind that the continu-

ae
ity and differentiability of the potential, at least up to the second

derivative, implies that V is also differentiable. In the Galactic
plane, the foregoing equation becomes

OV LU _ 4kt + (K - KY) 2kt — (K1 — K}) 8V
T — = V+4r —_—

a9 or K] K| ar
©)

Since K, is a m-periodic function of the angle, a simple recall
to the mean value theorem provides us with a value 6y € [0, 7)
for which K{ (6p) = 0. Then, if V and ‘;—‘g — 47?2 ‘ZTU are non-null
functions, in order to avoid any singularity, the right-hand side
member of the above equation must vanish, at least for 8 = 6.
We see that the potential does not satisfy

62_U_4 282_U

=0.
062 or?

If so, the solution would be that of the wave equation in the
new variable x = In T, hence the solution satisfies U = F(x +
20) + F>(x — 26), but the potential is a one-valued function and
a periodic function of 6 with period* 27; therefore, U(x + 20) =
U(x + 2(0 + 2kn)) = U((x + 4kr) + 206) is fulfilled for all k € Z.
However, as the Galaxy is of finite extent, such a potential taking
the same value at all points x + 4k is unrealistic.

On the other hand, the right-hand side of Eq. (9) is non-null.
If so, it would be a linear and homogeneous differential equation
in V, with solution V oc T%(Kl Ki - 2k2‘1')‘l

. In partlcular when K{(6) = 0, accord-

which is discon-

. K-
tinuous at 7 2k

ing to Eq. (5), the singularity takes place at 7 = k,‘ It is worth
noticing that for k; = 0 such a singularity does not exist, so
that we might have non-cylindrical potentials in that degenerate
case. Therefore, the only admissible, continuous, and differen-
tiable solutions to Eq. (9) are axisymmetric potentials satisfying
V = 0, otherwise, in the Galactic plane, the potential is not dif-
ferentiable.

This means that, the axial symmetry is the way that the differ-
ential equations for the potential avoid the singularity produced
by any root of the function K7. It is actually a situation similar to

3 As pointed out in Paper I, the second-order central velocity moments
satisfy gt o« A™". In the Galactic plane, from Eq. (3), we get fimg < K.

4 Although we assume that the velocity distribution is 7-periodic, we
cannot discard that part of the potential function could still admit a
2m-periodic solution.

the axisymmetric model, where the equations for the potential,
in the quasi-stationary case in Paper I, did avoid the singular-
ity produced by the zero of the time-dependent function k; by
providing a solution that does not depend on ki /k;.

The case where K i is null, consequently K} — K} also van-
ishes, requires that K} be non-null, otherwise the velocity distri-
bution is axisymmetric. Similarly, as in the above case, there is
also an angle 6; for which K 4(91) = 0 that would produce a sin-
gularity in the solution of Eq. (8), for { # 0, unless the potential
is axisymmetric’.

4. Potential

Therefore, in a rotating point-axial system, the potential consis-
tent with a quadratic velocity distribution is still axisymmetric.
The set of partial differential equations for the potential in the
Appendix generalises the ones for the axisymmetric model in
Paper 1. We write these equations once they are simplified by
taking advantage of the potential satisfying %—Z = 0. The first
three equations, derived from Egs. (28)—(30), are

2o (3 - ) oo (3 - ) e 3 - )

or a or a
+(K — k3) 2L =0, (10
1 3)373[
’ AU _ U 9 (oU 1 PU _
2K [2(% - 5+ ¢ (5 - B+ K 5 = 0. (1)

The remaining three equations, obtained from Egs. (31)—(33),
are

2K4§6t (B_U - (?9_((/)

(13)
+K]Tz9‘r2 +K]6t(9‘r+2K] 1K1 +k%§(’i‘r{9( O,
Jd (oU ou
+is 54 +kq6m( +265% + Sy + KT 2l = 0,
2K, 5 (% - %) + K 2L + 2K %2 + 1K = 0. (15)

However, Eqgs. (11) and (12) can be simplified further. By taking
the 6-derivative in Eq. (10) and subtracting from Eq. (11), we get

19 (U _ U\ _
K2 (% -%2)=0. (16)
Also, by taking into account Eq. (12), we get
K] %f; =0. (17)

Similarly, Eq. (15) can be expressed in a simpler form. By taking
the #-derivative in Eq. (13) and subtracting from Eq. (15) we

PO\
In this czase we first prove that, if 22 09 # 0, the equation %5 —
i

472 (F - [i‘r_O() = 0, with the variables x = In7,y = {/7, provides a

solution proportional to an exponential function on the argument x + 6,
which is not periodic and, hence, unacceptable. We then verify that the
remaining terms of Eq. (8) do not vanish, otherwise, its solution, which
Ua-Kr-(Ky—K)E\ 1 3% . .

W) T2 2K has disconti-
nuities either at £ = 0 or at points satisfying (ky — K4)7— (K4 — K};){ = 0.

5

takes the general form V = F (
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get K; ‘2} Y = 0, which does not add any new condition to the
previous equation.

Therefore, the equations for the potential in the pont-axial
model are the set of Egs. (10)—(14), which are similar to the ones
of the axial case (Paper I, Egs. (7)—(9)), with the additional in-
tegrability conditions given by Egs. (16) and (17). We note that
the equations for the potential do not depend on the parameters
K} and K. Under axial symmetry, the conditions depending on
the f-derivatives K/ (6, 1) and K (6) are identically null. Thus, in
a mixture model these equations are similarly planned for each
population component, and depend on the respective population
parameters K (60, 1), k3(t), and K4(6).

In the axisymmetric case, when applying the conditions of
consistency for a flat velocity distribution, that is, for a potential
independent from the population parameter K4, the potential be-
comes dramatically simplified. In the point-axial case, we shall
see that a similar reasoning and solution are inherent to the point-
axial symmetry assumption, since the reasoning can be done in
regard to the angle dependence as well as to the population de-
pendence of the parameters. In other words, a point-axial system
is consistent with a flat velocity distribution unless it degenerates
towards an axisymmetric system.

Thus, being at least one of the population parameters K, K4
functions of the angle 6 (otherwise the system is axisymmetric),
Eq. (10), once divided by K4, becomes separated into two parts,
one independent from 6 and the other depending on 6, which
must be null separately®,

(——)—(——)4(——)

(18)
(K k3)an9(

These equations are equivalent to the conditions of a potential
independent from K, in Paper I, Eqgs. (12) and (14). The lat-
ter equation leads to the two typical cases of a potential addi-
tively separable in cylindrical coordinates, or a non-separable
potential.

4.1. Separable potential
The separable potential satisfies

PU
i

In the point-axial model, at least one of the parameters K| or Ky
depends on the angle. In particular, if K; = 0, owing to Eq. (11),
the potential must be separable, otherwise K| = 0 would be held,
rendering the axisymmetric model.

For a separable potential, either with K 4/1 null or non-null, we
are led to the same equations as for the axisymmetric case in
Paper I, Eq. (15), with the addition of Egs. (16) and (17), which
add the new condition £¥ = 0, yielding a separable potential in
their harmonic form

32

U=A®(t+7), (19)

where continuity conditions in the Galactic plane have been ap-
plied in order to neglect the term proportional to % Therefore,

6 Similarly, by reasoning in regard to a population mixture, the poten-
tial is independent from the population parameters only if both parts are
null separately.

A46, page 4 of 7

the separable potential reduces to the simple case of the har-
monic function, and does not depend on the population kine-
matic parameters except for the unique function A(f) discussed
in Paper L.

Hence, under a separable potential, the kinematics of a point-
axial symmetric system is totally free from conditions of con-
sistency in regard to a mixture of populations. The population’s
mean velocities, the semiaxes of the velocity ellipsoids, and their
orientations remain unconstrained.

4.2. Non-separable potential
The non-separable potential satisfies

o*U
otol

#0

and

k() = K, = ks.

Then, K = 0. According to Egs. (16) and (17), the point-
axial symmetry assumption requires K; # 0. Hence, Egs. (11)
and (12) provide the conditions

2(a_U_a_U) a(au au) 0.

ot oc)  Car aC
o0 (0U oU
ot (E - a_g) ’ (20)

which separate Eq. (18) into two identically null equations.
Hence, we can consider only one of them. Similarly, the same
reasoning of the preceeding section (either in regard to the
dependency on the angle or on the population) applied to
Egs. (13)—(15) yields the conditions

o (0U aU

— ——]=0, 21
o ( ot 8{) @l
. 0*U  0PU ou 1. o*U
A Y Ay Y -0
T TR Y G ok kG =0,
. 0’U  PU ou 1. . U
i [y Y Sy - 0. 2
Cor Raar TR ar Yk gy 22)

Thus, we reach the same set of equations as for an axisymmet-
ric model consistent with a flat velocity distribution (Paper I,
Egs. (13) and (15)) by providing the potential U = A(¢) (t+) +
U,y (”{) T+( U,(Z/7), although in the point-axial model we
stlll have to submit it to Eq. (20). Therefore, the resulting poten-
tial must adopt the separable form U = fi(7 + {) + f2({), so that

(23)

B 1 T+
U—A(t)(T+§)+ZU1( )

k

where, by continuity conditions in the Galactic plane, an addi-

tional term proportional to % is neglected.

5. Conditions of consistency

For a separable potential, there are no conditions of consistency,
similarly to the axisymmetric model.

For a non-separable potential, all the system dependency on
0 is carried through K4(6). Therefore, according to Eq. (3), and
bearing in mind that K] = 0, in the Galactic plane the tensor
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elements Agy and Ag, are null, as in the axisymmetric model.
Hence, the velocity ellipsoid has no vertex deviation in z = 0.
In addition, according to Paper I, since K| = k3 the ellipsoid has
no tilt in a meridional Galactic plane (i.e., the intersection of the
ellipsoid with a meridional Galactic plane has an axis pointing
toward the Galactic centre), and the mean velocities Iy and Z
are the same as in the axisymmetric case. In the Galactic plane,
the only moment depending on 6 is u,,, whilst ®y and the other
second moments are also axisymmetric.

In summary, in the Galactic plane the velocity distribution of
such a stellar system is basically axisymmetric and does not pro-
vide the most important feature we expected a point-axial system
should provide, that is, the vertex deviation.

Similarly, as for the axisymmetric case, the potential of
Eq. (23) constrains the mean velocity components Iy and Z; to
satisfy % = Z.For a two population mixture we get ITj—I1j = 0
and Zj — Z7 = 0, unless, according to Paper I, the function k(?) is
linearly independent among populations and the potential does
not depend on k(#)/k(®). In that case, an apparent vertex devia-
tion of the mixture distribution is possible. The potential allow-
ing unconstrained population mean velocities must then satisfy
the condition

& ou
aroe ot

(24)

obtained in Paper I, and the potential takes the quasi-stationary
form
U= A0 T+ + —— 25)
= T )
T+
with B = const, which is a particular, spherical case in Paper I,
Eq. (31).

6. Conclusions

The conditions of consistency studied in Paper I proved that
a finite mixture of stellar populations was able to describe the
main features of the local velocity distribution without having to
change the axisymmetry hypothesis. However, in the Galactic
plane, single populations had velocity ellipsoids without ver-
tex deviation, so that the apparent vertex deviation of the disc
velocity distribution was the result of different radial and rota-
tion mean motions of the populations. Now, as a corollary, we
have investigated the same problem under point-axial symmetry,
in order to see how it might improve the velocity distribution
approximation.

For the point-axial symmetry case, the local kinematic fea-
tures are similarly derived from a mixture of stellar populations,
each one according to a quadratic velocity distribution in the
peculiar velocities satisfying the BCE, with a common poten-
tial allowing for the populations to be kinematically indepen-
dent. This means that the populations should differ not only in
rotation, but also in radial and vertical mean motions. Under
the point-axial hypothesis we should also expect single popu-
lations with velocity ellipsoids having non-null vertex deviation
and non-vanishing tilt, as well as a point-axial mass distribution.

An important fact is that the potential must be axisymmet-
ric in order to support a quadratic integral of motion for each
population, which usually represents a stellar system in statisti-
cal equilibrium. That is, we assume that the stellar system has
achieved relaxation and satisfies regularity conditions about the
definition of the local standard of rest, continuity, and differen-
tiability of its velocity, and that higher-order velocity moments

exist. Although dissipative forces related to third and odd-order
moments does not appear in the moment equations planned for
a single population, they are indirectly connected with the as-
sumption of the mixture model.

The first result we obtain is that the point-axial symmetry
is, in a natural way, consistent with the flat velocity distribu-
tion of a disc population, by providing potentials not depending
on the population parameter K4, which is responsible for non-
isothermal velocity distributions. In axisymmetric systems, only
a particular family of potentials is consistent with a flat velocity
distribution, while in point-axial systems any potential always
is.

We find two possible solutions depending on the separability
of the potential:

(a) The point-axial model admits a potential additively separable
in cylindrical coordinates that is the harmonic potential. As
in the axisymmetric model, for a separable potential there is
no need of conditions of consistency in regard to a mixture
distribution, since the potential only constrains the popula-
tion parameters through the function A(7) (Paper I, Eq. (20)).
For each population, the radial and vertical mean velocities
can be different, and their velocity ellipsoids can have dif-
ferent orientations, including the both vertex deviation and
tilt.

For a non-separable potential, the condition given by
Eq. (24) provides nearly non-constrained population kine-
matics, by leading to a spherical and quasi-stationary poten-
tial. Then, the radial and the vertical mean velocities can dif-
fer among populations, although they are coupled, and they
may produce an apparent vertex deviation of the whole ve-
locity distribution. However, single population velocity el-
lipsoids have no vertex deviation in the Galactic plane and
no tilt in their intersection with a meridional Galactic plane,
similarly to the axisymmetric case.

(b)

In both of these cases, the potential for the point-axial model
becomes a particular function of the potential for the axisym-
metric model. The non-separable potential loses the dependency
on the elevation angle, and the separable potential loses the non-
harmonic term that they showed in Paper I (Egs. (31) and (33),
respectively).

We can check the foregoing cases according to the main lo-
cal kinematic trends analysed in Paper I. Against option (a) is
the evidence that there are halo stars near the Sun with no net
rotation velocity for which the harmonic potential is not able to
support their orbits. On the other hand, option (b) really provides
a potential, Eq. (25), with a non-harmonic term, which may be
associated with a repulsive force (if B > 0) produced by the outer
dark matter halo, as discussed in Paper 1. This allows stable or-
bits for stars with no net rotation. However, the potential forces
the population velocity ellipsoids to point toward the Galactic
centre, although, out of the Galactic plane, the ellipsoids may
show some vertex deviation.

Then, according to the point-axial model, how can we ex-
plain that the thick disc and the halo ellipsoids have no vanish-
ing tilt, as Casetti-Dinescu (2011), Carollo et al. (2010), Fuchs
et al. (2009), Smith et al. (2009a), and Siebert et al. (2008)
suggest? By assuming that the harmonic potential is not realis-
tic, under the point-axial model we cannot explain it. Similarly,
the point-axial model is unable to explain the trend of the mo-
ment ji, for the thin disc population described by Pasetto et al.
(2012b), which was only possible under a separable potential, as
discussed in Paper I.
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Conversely, if the thick disc and the halo ellipsoids actually
have a non-vanishing tilt, the axisymmetric model is capable of
making a reasonable approach to the local features of the local
velocity distribution. Therefore, we must conclude that the ve-
locity distribution in the solar neighbourhood reflects a basically
axisymmetric Galaxy.

Nevertheless, we should not discard the fact that some of the
stellar samples used to describe the thick disc and the halo could
have stars that were not sufficiently mixed to produce well de-
fined velocity ellipsoids, or were contaminated by disc stars, as
Smith et al. (2009a) suggest. If newer and more accurate anal-
yses yielded non-tilted velocity ellipsoids for the thick disc and
the halo, both models would be capable of describing the local
velocity distribution from a non-separable potential, which, in
all cases, would provide an axisymmetric velocity distribution
in the Galactic plane.

However, for the stellar density, point-axial symmetry mat-
ters. We may assume a Schwarzschild velocity distribution with-
out loss of generality to discuss the shape of mass distribution.
In that case, the stellar density is N « \/dleﬁ e 37 (Eq. (40) in
Appendix A.2 in Paper I) and depends on the angle through
K4(0). Leaving aside the simple and unrealistic case of a sep-
arable and harmonic potential, for the non-separable potential
with k = K; = ks, Eq (25) is a particular case of Eq. (23) with

Ui = ¢t + {) + =%. The function o involved in the stellar
density satlsﬁes

1 1 crk Bt

—oc=—T+0+ - + t. 26
20T T O T T i 2r s 2K T O™ (26)

For ¢ = 0, o does not depend on 8. However, for { = 0, we have
detA = k(k + kyo?)(k + Kyw?), (27)

so that, in the Galactic plane, the stellar density N depends on 6.
This dependency of the mass distribution on the angle is bal-
anced out by the velocity distribution, which also depends on 6,
while the potential maintains the axisymmetry. This is the only
basic feature that the point-axial model adds to the axisymmet-
ric model. While, in the Galactic plane, for the velocity distri-
bution, according to Egs. (3) and (27), the tensor element A,
and det A, which depend on 0, lead to moments fyq, i, alsO
depending on the angle, although each population component is
unable to provide a non-vanishing moment 1. Thus, similarly
to the axisymmetric case, for ellipsoidal velocity distributions
under a non-separable potential, the apparent vertex deviation of
the velocity distribution is a consequence of the coexistence of
two or more populations with different radial and rotation mean
velocities.

Then, a point-axisymmetric stellar system would, in princi-
ple, be able to show a triaxial or bar-like structure in any of the
population’s mass distributions. It would be a matter of time that,
for the specific population, the rotation curve could transform a
bar-like into a spiral-like structure. In that situation, the point-
axial model would have the ability to describe a point-axial mass
distribution, while the axial model would not. However, we note
that the degenerate case of a rigid rotating bar, with k&, = 0,
which was the only remaining case that could admit, a priori, a
non-cylindrical potential as a solution of Eq. (9), cannot coex-
ist with three-dimensional ellipsoidal velocity distributions un-
der a common differentiable point-axial potential. Hence, any
phase mixing process involving a rigid rotating bar with a non-
cilyndrical potential must be considered as a state previous to
statistical equilibrium, which is not associated with stellar popu-
lations having ellipsoidal velocity distributions, even with point-
axial symmetry.
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Appendix

The first three partial differential equations for the potential, ob-
tained by taking the curl in Eq. (6), are

U _ U 8 (dU _ 8U U _ dU
sKir|2(% - %)+ 5 (% - %)+ e (% - %)
+47(K) - k) 2L + 2K, & (9 + U + (%) + K 22 =0,
(28)

where a common factor proportional to * was simplified;

’ ou ou ’ 6 U
4K, T[Z(F - %)k (5 - B ki iy
+4K;T sl LA 23K - K4) + 4[(473937 (29)

[Z(k; — K?) + 4Ky — k)T — 4K | 2 M =0,

where a common factor proportional to 3 was simplified; and

(L2 (3 - ) + K24 - k) 2K0 28

+8K4T§m + 4T 2k2T - (K]

K} - 2(Ks - KD 2 (30)

(%)ﬁT
+2 4kt + (Ki = K7) + 2(Ks — K)Z| 9 = 8.

Those equations which were proportional to ¢ > become null at
the Galactic plane.

The remaining three equations, which are obtained by taking
the gradient in Eq. (7) and the time derivative in Eq. (6), are

U ou
2K 5 (% - a—,:)
+1<1‘1'0_r2 + K1 Btar + 2K1 + K1 + k3§678{

+L (K] - 4p)r 2L + (K| + 2K, 28 + (K] +2K;,028 [ = 0

(31)
o (oU ou
2K4T— (6_( — E)
+k2( o + k"[)ta( + Zk'; + kq + KITB{B (32)

+(K’

12U _ (.
45) aaag - 'K4 000t — 0;

in the last one, a common factor ¢ * was also simplified; and

’ ou 7
T[zK gﬁr (_ - _) Kl 1T
vt + (K| - 4B)60° + kggaaag

K + 2ko7 + 2K EU + LK + 4K

)

107 + K/]

(33)

= 24r.

These equations complete the first set of three equations given
by Sanz-Subirana (1987). They may be simplified by assuming
that the parameter S is constant, which was actually derived by
this author in solving them for the separable potential case, and
by Juan-Zornoza (1995) for the general case. This fact is not
relevant for our purpose.
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