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ABSTRACT

Solving the Boltzmann collisionless equation under the axisymmetric hypothesis introduces serious limitations on describing the
kinematics of a single stellar system according to the local Galactic observables. Instead of relaxing the hypothesis of axisymmetry,
one alternative is to assume a mixture model. For a finite mixture of ellipsoidal velocity distributions, the coexistence of several
stellar populations sharing a common potential introduces a set of conditions of consistency that may also constrain the population
kinematics. For only a few potentials, the populations may have independent mean velocities and unconstrained velocity ellipsoids.
In this paper, we determine which axisymmetric potentials are connected with a more flexible superposition of the stellar populations.
The conditions of consistency are checked against recent results derived from kinematic surveys of the solar neighbourhood that
include RAdial Velocity Experiment (RAVE) data. Several key observables are used to determine whether the axisymmetric mixture
model is able to account for the main features of the local velocity distribution, such as the vertex deviation associated with the second
central moment 4, the population radial mean velocities, the radial gradient of the moment (., the tilt of the velocity ellipsoids,
and the existence of stars with no net rotation. In addition, the mixture moments for an arbitrary number of populations are derived in
terms of the one-to-one mean velocity differences in order to study whether a more populated mixture could add any new features to
the velocity distribution that remain unnoticed in a two-component mixture.

According to this analysis, the quasi-stationary potential is the only potential allowing arbitrary directions of the population mean
velocities. Then, the apparent vertex deviation of the total velocity distribution is due to the difference of the mean velocities of
the populations whose velocity ellipsoids have no vertex deviation. For a non-separable potential, the population velocity ellipsoids
have the same orientation and point towards the Galactic centre. For a potential separable in addition in cylindrical coordinates, the

population velocity ellipsoids may have arbitrary tilt.
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1. Introduction

One of the classical approaches to describing the local kine-
matics and dynamics of the Galaxy consists of solving the
Boltzmann collisionless equation (BCE) by assuming a phase
space density function that depends on a quadratic integral of
motion whose coefficients are functions of time and position
(Chandrasekhar 1960). This involves a number of linear com-
binations of the classical integrals of the galactic dynamics (Sala
1990). Usually, to simplify the process, a velocity distribution
of Schwarzschild type may be assumed, that is, a trivariate
Gaussian function in peculiar velocities, which is the maximum
entropy distribution with known means and covariances. In this
way, the coefficients of the integral of motion are directly related
to the mean and the central moments of the velocity distribution.
The kinematics of the stellar system is then studied from a statis-
tical viewpoint: the individual orbits of the stars are replaced by
the average orbit of their centroid with its associated distribution
statistics.

Some symmetries are usually introduced for the mass and
velocity distributions to simplify the solution of the BCE.
Commonly, it is assumed that the Galaxy is axisymmetric, has a
plane of symmetry, and is in a steady state. These hypotheses,

* Appendices are available in electronic form at
http://www.aanda.org
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however, provide serious limitations to the stellar kinematics,
such that it is impossible to describe the local velocity distribu-
tion in a realistic way. Following are examples of these well-
known limitations. The steady state hypothesis, which yields
an axisymmetric potential (Chandrasekhar 1960), supports only
stellar systems with differential motion in rotation. A quadratic
integral provides a symmetric velocity distribution that cannot
account for odd-order central velocity moments (Cubarsi 1992).
A quadratic axially symmetric velocity distribution is not able to
show any vertex deviation of the velocity ellipsoid (Sala 1990).

In this context, there are basically two complementary alter-
natives for allow a more flexible description of the stellar kine-
matics. One is to to relax some of these hypotheses, in particular
the one of axial symmetry. The other alternative is to introduce
a mixture model associated with several kinematic populations.
This paper will explore the latter option, by trying to find out
whether it is possible to fit the actual kinematic observables of
the Galaxy working from a finite mixture distribution and still
maintain the axisymmetric assumption.

From Kapteyn’s theory of the two star streams in 1905,
which is to my knowledge the first mixture model in astronomy,
there have been different approaches to construct velocity distri-
butions that fit specific observables of the Galaxy. The first sta-
tistical and numerical approaches were developed by Kapteyn
(1922), Stromberg (1925), and Charlier (1926), in order to fit up
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to the fourth moments of the velocity distribution. Most kinemat-
ical models construct the velocity distribution from a function
depending on two or three integrals of motion, and by addition
or products of these functions. Quadratic distributions and mix-
tures of them are a particular case of this. References to these
methods can be found in Cubarsi (2010), who describes a math-
ematical technique that combines the moments method and a
maximum entropy distribution function, which is able to fit any
desired set of velocity moments of a stellar sample. On the other
hand, more recent dynamical models use parametrised velocity
distributions that are analytic functions of the action integrals of
motion (Binney 2010, 2012; Binney & McMillan 2011), which
also allow the constraint of the parameters of the Galactic poten-
tial (Ting et al. 2013).

The approach this work revisits benefits from both kinematic
and dynamic models. When the quadratic integral of motion is
introduced into the BCE, a direct analytical relationship between
the potential and the velocity distribution function of each stellar
population emerges. On the other hand, if each stellar population
is associated with a Gaussian distribution, the segregation of the
populations composing the mixture may be worked out from a
number of standard statistical and numerical techniques that are
independent from the dynamical model.

1.1. Mixture of stellar populations

From a statistical viewpoint, the mixture assumption is a pow-
erful approach, since a well-mixed stellar sample resulting from
a single quadratic velocity distribution is actually never found
in kinematic surveys. For our stellar mixture, it suffices that the
sample can be approximated by a finite number of quadratic dis-
tributions. In particular, Schwarzschild distributions may be used
instead of other less meaningful quadratic distributions, perhaps
at the expense of increasing the number of populations slightly.
Then, the whole velocity distribution will show non-vanishing
odd-order central moments on condition that the radial and ver-
tical mean velocities of the population components are non-null.
Therefore, the introduction of the mixture hypothesis is neces-
sary to gain degrees of freedom for the velocity distribution, al-
though for axially symmetric systems it requires the removal of
the steady state hypothesis.

The mixture hypothesis is in agreement with the actual de-
scription of the Galaxy through stellar populations conforming
its structural components, such as the stellar disc, the stellar
halo, the central bulge, or the dark matter halo (e.g., Freeman
& Bland-Hawthorn 2002). The local Galactic components are
generally fitted from a trivariate Gaussian distribution, although,
as will be discussed below, an accurate description of the thin
disc may need several Gaussian components.

Recently, Pasetto et al. (2012a, 2012b) adapted the approach
based on the cumulants method proposed by Cubarsi (1992) and
Cubarsi & Alcobé (2004) to the newest radial velocity data from
the RAdial Velocity Experiment (RAVE) survey (Siebert et al.
2011; Zwitter et al. 2008; Steinmetz et al. 2006) for obtaining
the kinematics of the thin and thick discs in the solar neigh-
bourhood. They provided the mean velocities and the whole set
and trends of the second central moments. Similarly, Moni Bidin
et al. (2012) and Casetti-Dinescu et al. (2011) provided moments
and gradients for the thick disc, and Carollo et al. (2010) and
Smith et al. (2009a, 2009b) discussed the halo kinematics. Also,
using the HIPPARCOS (ESA 1997) and the Geneva-Copenhagen
Survey (GCS) catalogues (Nordtrom et al. 2004; Holmberg et al.
2007), Cubarsi et al. (2010) and Alcobé & Cubarsi (2005) pro-
vided a kinematic classification of the populations that compose
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the solar neighbourhood. In addition, smaller Galactic structures
produced by a large enough number of stars, such as those of
early-type, younger, and older disc stars within the thin disc,
were described through more detailed Gaussian multicomponent
mixtures (e.g., Bovy et al. 2009; Famaey et al. 2007; Soubiran
& Girard 2005).

In most of these cases, the techniques to disentangle the
mixture distribution yielded a characterisation of the popula-
tion components that was totally independent from dynamical
assumptions. For example, Pasetto et al. (2012a, 2012b) based
their segregation algorithm on previous works involving devel-
opments of the moments method in three dimensional veloc-
ity space to obtain the best fit for the total distribution cumu-
lants, which are better statistics than the moments. This approach
takes advantage of the symmetry shown by the distribution cu-
mulants about the axis along the centroids of a two-component
quadratic mixture distribution (Cubarsi 1992). In the beginning,
when this method was applied to HIPPARCOS’s samples (Cubarsi
& Alcobé 2004), it was only capable of disentangle two popula-
tions. Further improvements, however, based on the construction
of a series of nested subsamples depending on optimal proper-
ties of a sampling parameter associated with an isolating integral
of motion, allowed for identification of several stellar popula-
tions contained in the total sample. These included early-type
and young disc stars within the thin disc, as well as thin disc,
thick disc, and halo populations (Alcobé & Cubarsi 2005). In
particular, the segregation of populations improved when the
GCS catalogue was used. These populations were associated
with partitions of the total sample providing the best estimates
for population kinematical parameters and mixture proportions,
according to both criteria of minimum chi squared error and
maximum partition entropy (Cubarsi et al. 2010).

After segregation, the population kinematics, described
through the population means and the second central moments
(or covariance matrix), needs to be interpreted in the framework
of a dynamical model to test the consistency of these observables
with the hypotheses and variables of the model. Most recent re-
sults show, among other features, that the disc populations have
non-vanishing vertex deviation, the thick disc has a radial mean
motion differing from the thin disc, and the halo velocity ellip-
soid is slightly tilted.

For a dynamical model to explain such a features, Pasetto
et al. (2012b) and Steinmetz (2012) suggest that the axisymme-
try assumption should be relaxed, perhaps towards a model with
rotational symmetry of 180°. Since these results provide enough
material to review in detail the dynamical model sustaining such
a mixture of stellar populations in the solar neighbourhood, we
shall try to answer that question by testing the consistency of
the axisymmetry assumption against the kinematic observables.
Often, the validation of the axial symmetry hypothesis is made
by identifying the stellar system with a single population, and it
ignores the fact that a mixture of populations with arbitrary mean
velocities gives a totally different shape to the velocity distribu-
tion through their moments and gradients.

1.2. Dynamical model

From a dynamical viewpoint, stellar mixtures can be introduced
for the sake of the superposition principle, since the BCE is lin-
ear and homogeneous in regard to the phase space density func-
tion, for a given potential. Thus, we may assume that the whole
stellar system is composed of a finite number of stellar popula-
tions in statistical equilibrium, which have the most probable
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phase distribution of Schwarzschild type (e.g., Ogorodnikov
1965; Lynden-Bell 1967).

The term statistical equilibrium is a notion coming from sta-
tistical dynamics that, in analytical dynamics, should be inter-
preted as associated with an invariant density function in the
phase space under the BCE. Dissipative forces, such as dynam-
ical friction, which are essential to statistical dynamics, emerge
as solutions of the BCE via non-steady state phase density func-
tions and potentials. Then, for a given potential, the Jeans’ direct
problem yields the most probable distribution function for an
equilibrium configuration of the Galaxy, and provides us with in-
formation about the functional form of the distribution function
and the conserved quantities of the stellar motion. Otherwise,
when there is some kinematic knowledge about the stars’ inte-
grals of motion, or the velocity distribution function is already
known, the Jeans’ inverse problem leads to the most probable
potential function.

For a mixture model, the natural approach is the Jeans’ in-
verse problem, once the populations have been characterised
from their velocity distributions. In wide regions of the Galaxy,
this is usually done by associating each stellar component with
a Schwarzschild distribution function. It is assumed that each
population has a centroid that moves with a mean velocity that
is a continuous and differentiable function of time and position.
This is known as the differential motion of the stellar system
and it is guaranteed by the existence of a helicoidal symmetry
axis (Chandrasekhar 1939). For that reason, it is generally as-
sumed that the stellar system has rotational symmetry, also re-
ferred as axisymmetry. This hypothesis substantially simplifies
the dynamical model, although other symmetries, such as point-
to-point axial symmetry, could be more appropriate in describing
ellipsoidal or spiral mass distributions.

The velocity distribution function should be a time depen-
dent function to react to changes of internal gravitational forces
and to allow arbitrary mean velocities of the populations. That
is, the mean motion of the populations should not be restricted
to rotation alone as is the in case stationary systems.

For the potential, it is assumed that the whole set of popula-
tions produces a total self-gravitating system yielding a unique
galactic potential, so that the self-gravitation of a single popu-
lation is negligible. Similar to the velocity distribution function,
the potential is expected to be non-stationary.

Then, the BCE relates the dynamics of each stellar popu-
lation to the common potential shared by all of the population
components. When solving the BCE for each population, a set
of integrability conditions arises to obtain an admissible poten-
tial consistent with all the populations. They will be referred to
as conditions of consistency for a multicomponent stellar sys-
tem. These conditions may force the potential function to adopt
a specific functional form, by allowing the velocity and mass!
distributions a number of degrees of freedom.

For axisymmetric systems, these conditions were studied by
Cubarsi (1990). It was shown that the more general solution for
the potential provides populations differing only in mean rota-
tion. However, particular families of potentials, which are inde-
pendent of specific population parameters, give rise to kinemat-
ically independent populations. This means that the populations
may have arbitrary mean velocities and unconstrained velocity

! In the current approach the Poisson equation is not used together

with the BCE, since some population components like bulge, dark mat-
ter, etc., might have unknown velocity distribution. Instead, the mass
distribution of each population is derived from each partial phase space
density function.

ellipsoids. In this case, the centroids of the stellar populations
that occupy the same position in the Galaxy do not follow a cir-
cular orbit around the symmetry axis. Instead, they may visit
other centroid orbits and mix with other populations of their
neighbourhood, which is a more realistic situation. Some aspects
of the former study can now be reformulated and improved.

In general, there is a tug of war between the potential func-
tion and the population velocity ellipsoids in that when the po-
tential function is more general, the stellar populations are more
kinematically constrained. This conjures up the well-known Bob
Dylan song, “You’re gonna have to serve somebody”.

The aim of this work is to revisit and study in more detail the
conditions of consistency for mixtures of axisymmetric systems
by determining what potentials are connected with more flexible
superposition cases in regard to the population kinematics. It will
be tested against actual values of moments and gradients for the
thin disc, the thick disc, and the halo, to determine whether an
axisymmetric dynamical model is still able to describe the main
kinematical features of the solar neighbourhood.

Hereafter, the sections are organised as follows. First, we
go over the dynamical model sustaining one stellar population.
Second, we study the constraints induced by a finite mixture of
populations to the potential and the population velocity distribu-
tions. This is organised into several cases, going from greater
to less general potential. Third, the observables of the veloc-
ity distribution for thin disc, thick disc, and halo samples are
checked according to previous cases. In the end, the results are
summarised.

2. Chandrasekhar’s approach

In a seminal work?, Chandrasekhar (1960, hereafter Book I)
adopted the Jeans’ inverse problem approach for a generalised
Schwarzschild velocity distribution. He assumed the phase space
density function depending on an integral of motion quadratic in
the peculiar velocities and left free the functional dependency on
time and space. Such a quadratic integral is the simplest way of
labelling one statistical population through the whole set of first
and second moments. However, the symmetry of this velocity
distribution does not allow non-null odd-order central moments,
which means that a mixture of populations is needed to account
for other statistics of the distribution. Under particular symme-
try hypotheses, basically for an axisymmetric velocity distribu-
tion of a disc, Chandrasekhar showed how a common potential
shared by two stellar populations introduces links between their
kinematic parameters (Book I, p. 126).

This approach is not likely to be valid for the entire Galaxy,
but it is a good approximation for the populations existing in
solar neighbourhood. Although the population velocity ellip-
soids and their rotation curves have a local meaning, we may
use the mixture model as a collage representation of the Galaxy.
Nevertheless, some properties and symmetries of the velocity
distribution and, in particular, the potential should be valid for
the entire Galaxy.

For the whole three dimensional space, under the axial sym-
metry hypothesis, Sala (1990, hereafter Paper I) determined the
family of potential functions that was consistent with a quadratic
integral of motion, and Cubarsi (1990, hereafter Paper II) studied
what constraints would apply to a mixture of stellar populations.

2 Chandrasekhar’s works (1939, 1940) on stellar dynamics were com-
piled in 1942 in the book Principles of Stellar Dynamics. In 1960, a new
edition of the book was published and three new capital articles were
added.
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However, in 1990 the lag of accuracy in the stellar catalogues,
especially in the radial velocity data, left open a long list of suit-
able models to explain the local kinematics, which now is possi-
ble to discuss in more detail.

2.1. Single population

A single stellar population is associated with a quadratic velocity
distribution function in the peculiar velocities (u, uy,u3). The
phase space density function is written as f(Q + o(z,r)) with
0 = %, Aij(t, 1) ujuj, where A;; are the elements of a symmetric,
positive definite matrix. Hence, Q + o is an isolating integral of
the star’s motion, which is a combination of some of the classical
integrals. Generally, from statistical criteria, the velocity distri-

bution is assumed of Schwarzschild type, f = e~3(0+0) thatis, a
trivariate Gaussian function in the peculiar velocities. Then, the
elements of the covariance matrix are y;; = Ai‘jl, and the equation
Q = 1 defines the velocity ellipsoid. From a Bayesian criterion,
this is the less informative distribution with known means and
covariances.

By substitution of the quadratic density function in the BCE,
Chandrasekhar obtained a system of partial differential equa-
tions for the potential function U, the scalar function o, the
mean velocity v, namely velocity of the centroid, and the ten-
sor A. These equations are equivalent to the infinite hierarchy
of the stellar hydrodynamic equations, which can be reduced to
equations of orders n = 0, 1, 2, 3, for the sake of a set of closure
conditions (Cubarsi 2007, 2010a).

Under axial symmetry, we also assume z = 0 as a symmetry
plane for the mass and the velocity distributions. We note the
star’s position r = (@, 6, z) and the velocity V = (I1, ®, Z).

The BCE may be solved in two blocks. The first one, us-
ing the same notation as in Cubarsi (2007, 2013), may be
described as

3V A=(0)7°, (D
6@—?:2V*(A~v), )

which yields (Paper I) the functional form for the elements of A
and the population mean velocity v. They are explicitly written
in Appendix A.

The second block, which generalises Chandrasekhar’s equa-
tions (Book I, Eq. (3.703)), with the same previous notation may
be described as

0 1
a—l;+v'Vv+VU=§A_1'V0', 3)
(?3—OI-+U-V0'=0. 4)

They provide the solution for the potential U and the func-
tion o. These equations are not exactly written as derived by
Chandrasekhar. They become equivalent if the new variables
A=A -vand X = —A-v - o are used. Then we have

oA 1
A-VU+—=-=V 5
Ut G =¥ )
16X
A-VU = =22
U=3% ©

With the elimination of X between Egs. (5) and (6), with the
new variables 7 = Ew and { = ;zz, which are appropriate
to the symmetry plane of the system, the following set of three
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second-order partial differential equations for the potential are
obtained:

QU U PU  _aU QU
2y [+ L2 22 2% -
4[Ta AP gagz o "%
(7)
P _,
ki — k -0,
+(ky — 3)6 Y.
o (0U oU
ol = |22 - 22
45&(37 ag)
2 2 2 (8)
FU, PU U L P
K Ay Ly —0
TS T MG T M e T2 +’faag ’
o (oU oU
e L (L
4T (ag (9‘1')
2 2 2 (9)
QU PU U 1. . U
K 6l Lok Ly Ay - 0.
thalom TRy T e TR M Ty

The particular case k4 — 0 corresponds to Chandrasekhar’s
equations for a flat velocity distribution of a rotating disc. This
yields the potentials shown in Table 1, Egs. (I), (IT), and (III).
Then, the elements of A and the tensor of the second central
moments g do not depend on z. In particular, the moments iy
and u,, do not depend on @ and z (which is obvious from the
Appendix A.2, by taking k4 = 0). Thus, the velocity distribu-
tion is isothermal in these directions’. In addition, if k; = k3, the
distribution is isotropic in the @ and z directions.

Alternatively, for k4 # O the foregoing equations describe a
non isothermal three-dimensional distribution and provide two
families of compatible potentials. One family of potentials not
dependent on the constant k4 are displayed in Table 1, Egs. (IV)
and (V), corresponding to Eq. (2.7) of Paper 1. Another family
of potentials are dependent on that constant, which are given by
Eq. (2.9) of Paper I, are not displayed in Table 1. The latter is
a family of Stickel potentials, separable in prolate ellipsoidal
coordinates.

For ks # 0, the velocity distribution is in general non-
isothermal regardless of the solution for the potential. The @
and z gradients of the moments pi,, and g, are in general non-
null out of the Galactic plane (GP). The velocity ellipsoid of an
axially symmetric population has no vertex deviation*, which is
associated with the central moment fig.

3. Conditions of consistency for mixtures

Chandrasekhar calls the circumstances under which we can re-
gard a stellar system as consisting of two or more independent
populations sharing the same potential conditions of consistency.
Since the potential may depend on the population parameters in-
volved in the velocity distribution function, the less the potential
depends on them, the less constrained the populations are. In par-
ticular, we are interested in potentials allowing the populations

3 A mixture of such isothermal distributions in the Galactic plane is
also isothermal in the z direction, but is not in the @ direction, provided
they have different radial mean velocities. Similarly, a mixture of two
isotropic distributions in the @ and z directions, with different radial
mean velocities, is non-isotropic.

4 As explained in Paper II, Appendix A, this is indeed a consequence
of assuming z = 0 as a plane of symmetry for the elements the tensor
of covariances and for the mean velocity. If axial symmetry had been
the only assumption, the vertex deviation would be null in z = 0, but
non-null on either side of the plane.
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Table 1. Potentials that are consistent with a flat velocity distribution.

ky =0

k=k =ks U=AD T+ +1U (5% @
k=ki =k 22 =0 U=AD @+ +10(2)+ L0, (%) (In
ki # ks 2L =0 U=AT+AM0+ LU (E)+ £0:(5)  am
ky # 0

k=ki =k U=AW@T+0)+1U (5F)+ 242 (1V)
ki # ks 2L =0 U=AD@+)+2+¢ V)

Table 2. Some kinematic observables of the Galaxy are analytically related to the potential cases arising from the conditions of consistency for

mixtures.

Observables Axisymmetric general case

Flat velocity distribution

Non-separable Quasi-stationary Separable, k; # k3

Velocity ellipsoid semiaxes How _ ﬂi/m = 'u,—,“ unconstrained unconstrained unconstrained
M Mo Hz
) — 1" # 0
I, - 11"y =0 I, - 11"y =0 Z,-Z2"y#0 I, - 11"y # 0
Mean velocity differences 0 0 0 0 0 0 0 0
Z,-7"=0 Z,-72"=0 77" . Z, -7 #0

I'lb—l'[”g p

Vertex deviation e=¢&=¢"=0

e=¢&=&"=0

c#0, &="=0 e#0,&d=¢"=0

Tilt 0=0¢=9"

0=6=06"=0

0=0=6"=0 unconstrained

Sign(te;) sign(z)

sign(z) sign(z) unconstrained

to have different mean velocities and arbitrary orientations of the
velocity ellipsoids.

For a stellar mixture, say two populations with fractions »n’
and n”, the total moment p¢ depends on the radial and rota-
tional mean velocity differences, according to (Cubarsi 1992),

foo = 1ty + 11 g+ 0/ (Il = T0)(@) — ©”0).  (10)
In addition, according to Appendix A.2, for axisymmetric dis-
tributions the partial moments y_, and p” 4 vanish. Therefore,
if the radial and rotational mean velocity differences between
both populations are non-null, the total moment i is non-null
too. Since steady state systems are only capable of rotational
differential motion, it is necessary to assume a mixture of time
dependent systems.

Depending on the potential function, the axisymmetric mix-
ture model will lead to the following main cases. First, the gen-
eral case of a potential depending on the constant k4, hereafter
referred as axisymmetric general case. Second, the case of a
potential that does not depend on k4, hereafter referred to as
consistent with a flat velocity distribution, which leads to three
particular situations: (a) a potential non-separable in cylindrical
coordinates® with k = k; = ks, whose time dependency is ex-
plicitly expressed in terms of the population parameter k(¢); (b) a
non-separable potential with k = k; = k3, referred to as quasi-
stationary potential, whose time dependency is carried through
a unique function A(#), allowing different mean velocities of the
stellar populations, with untilted velocity ellipsoids; and (c) a

5 As we are studying the axisymmetric model, hereafter a non-
separable potential will mean that it is not separable in addition in cylin-
drical coordinates.

separable potential satisfying %)Ug = 0, with k; # k3, also de-
pending on time through A(#), allowing arbitrary mean veloci-
ties of the populations and arbitrary tilt of the velocity ellipsoids.
Both main cases and their subcases are analysed in the the fol-
lowing subsections, by ending with the Table 2 that summarises
them.

3.1. Axisymmetric general case

For a single population, the elements of A (Appendix A.l)
depend on the functions of time ki (), k3(7), and on the con-
stants ky, k4, 3. However, the constants S and k, do not appear
in Eqgs. (7)—(9). There is a trivial case where the same poten-
tial is valid for all populations. It happens when the potential
depends on the population parameters &y, k3, and k4, but these
parameters are proportional among populations, so that we get
a system of equations identically planned for each population
(Paper II). Then, for a two-component mixture, the constant ratio
between parameters is transferred to the second central moments
(Appendix A.2), so that they satisfy

= v /Iuwz ’ = //'u = 7 . (]1)
l‘lmm_#zz H oo —H z

’ ’
How _ Hey

” -
Moo H o

Then, the velocity ellipsoids, in addition to having two propor-
tional semiaxes, have the same orientation in any @z plane,
that is, the same tilt. The mean velocity components satisfy
[T, = "”p and Zj = Z”y. Hence, according to Eq. (10), the radial
differential motion of the centroids is null and it is impossible to
get a non-vanishing total central moment tigy.

On the other hand, since the rotation mean velocity ® and
the second moment gy depend on the constants 8 and k;, these
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two quantities are not constrained by the potential. They are in-
dependent among populations. Thus, the axisymmetric assump-
tion allows for the potential not to constraint the velocity distri-
bution in the rotation direction.

Such kinematical behaviour is not far from the actual portrait
of the Galaxy in the solar neighbourhood; although, as is well
known, small violations of this ideal situation have long since
been observed, such as the vertex deviation, mainly for the thin
disc, and the existence of non-null central moments involving
odd powers of the radial velocity (Erickson 1975).

3.2. Flat velocity distribution

The solution for a potential that does not depend on k4 (but de-
pends on &y, k3) is the same as the potential obtained with k4 = 0,
although the populations are still ks-dependent. This is a gener-
alisation of the case studied in Book I (pp. 116-121), associated
with an ideal rotating disc. An isothermal velocity distribution in
the direction perpendicular to the disc does not imply an isother-
mal mass distribution, but a relatively small scale height, since
the dependence of the mass distribution on z comes through the
potential as well®.

The general solution for the potential will not depend on
ks when the terms being multiplied by this constant in the
Eqgs. (7)—(9) are zero’. This provides two additional and fun-
damental integrability conditions

#U U U ,0U ’uU
R e e T T (12
0 (oU 0U

5o %)

The condition of Eq. (12) leads to a potential function in the
formU =U(t+ ¢, D)+ — r+§ U, (¢ /7, t) (a deduction can be found

in Paper II, Appendix C). The condition of Eq. (13) forces U, to
be time-independent. Then, Eq. (7) simply remains as

o*U

(k1 — k3)878§

=0, (14)

and Eqgs. (8) and (9) become

. 0*U ’uU ou 1 ’uU
ki S 4ok Rk )
el i e L T )
PU  PU . OU 1. . U
2 = 0.
34’ é’ +kgata§ + k; a§ + 2/(3 +lea§(9T 0

The conditions of consistency now have to be studied in rela-
tion to Eq. (14). We investigate the cases where 2 e ag is null or

non-null separately. These correspond to a non-separable or sep-
arable potential in cylindrical coordinates, respectively®.

® The stellar density is given by Eq. (A.5), where o depends on the
potential through Egs. (3) and (4) (Paper I).

7 The general solution of a differential equation is a continuous and
differentiable function of its parameters.

8 The above reasoning can also be made as follows. If Eq. (7) is di-
vided by k4, the expression becomes separated into two terms. One of
them, Eq. (12), is independent of the population parameters. Then, the
other term, Eq. (14), must vanish in order to allow the potential not to
depend on the population parameters.

A141, page 6 of 16

For the particular case of a steady state system, where k;
and k3 are constant, and %_Ll/ = 0, both relationships in Eq. (15)
vanish. We then obtain the stationary potential

U (/1)
T+

which is independent from the population parameters. A steady
state system is thus free from conditions of cons1stency, but only
allows differential rotation of populations since k; = k3 = 0, as
is obvious from Eq. (A.2). The overall vertex deviation of the
mixture distribution is null and the most significant odd-order
central moments are forbidden.

U=Ut+)+ (16)

3.2.1. Non-separable potential

According to Eq. (14), if gﬂgj # O then k = k; = k3. The con-

dition is directly related to the tilt of the velocity ellipsoid. In a
three-dimensional velocity distribution with k4 # 0, according
to Eq. (A.9), if k; = k3, one of the principal axes of the veloc-
ity ellipsoid points towards the Galactic centre (GC). Then, the
population velocity ellipsoids are not tilted.

In this case, the existence of a quadratic integral involves
three independent integrals of motion (Paper I) and allows for a
general solution for the potential in the following form:

7+\, U2({/1)
U=A@)(t+ )+ U ( ) EeALIAY 17
O@+0+ U7 )+ =2 (17)
with the function A(7) satisfying
k K2 c
AlD) = —— + — + —; R. 1
(1) 2k+4k2+k2’ ce (18)
We may assume that the two possible terms of U;, which are
'r+{

proportional to —= and —g are already accounted for in the first
and third terms of Eq. (17), respectively.

The above potential, if expressed in spherical coordi-
nates (R, 0, ¢), with R = > + 7> and tan¢ = z/r, satisfies the
property

(RUR.$))=0 (19)

(’)R(’)qb
that is, RZU(R, ¢) is separable in addition in spherical coordi-
nates.

The first term of Eq. (17) is an harmonic potential. For a
stellar mixture, A(f) must be the same computed from either
populations, and determines the function k() according to a lin-
ear differential equation. Thus, if we eliminate the constant ¢ in
Eq. (18), by multiplying by & and taking the time derivative, we
find
k + 4Ak + 24k = 0. (20)

For a given A(?), this is a third order homogeneous equation in
k(2). If (1), pa(t), p3(t) are three linearly independent solutions
of Eq. (20), then its general solution is

k(1) = a@i(1) + Bea(0) + ye3(1); - a.B,y €R.

Therefore, in each population, k(f) must be a particular solution
to the above general solution®.

2y

 On the other hand, for a given function k(f), the Eq. (20) is a first-
order, linear, non homogeneous differential equation for A(z), that has

Eq. (18) as its general solution, with the term —— being the general

c
k(1)
solution of its homogeneous part.
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An attractive force is associated with values A > 0, which
guarantees the existence of stable orbits. In particular, if A > 0
is constant, the above differential equation becomes k +4Ak = 0,
so that

k(f) = @ + Bcos(2 VA 1) + v sin(2 VAD). (22)

The term U; in Eq. (17) is a spherical potential associated with
a generic central force. In the general case U; # 0, the poten-
tial also depends on time through the function k(#), which is a
population parameter.

The term with U, may depend on the elevation angle about
the GP and it is responsible for producing a flattened poten-
tial. Similar to Binney & McMillan (2011), we find that non-
spherical potentials may coexist with velocity distributions with

a vanishing tilt of the velocity ellipsoid. Notice that U’@é/f) is

of the same type as the perturbation of a point-mass potential
induced by a tidal force, although as we assumed a symmetry
plane, this force is symmetric about this plane. Hence, this force
can only have the direction perpendicular to the GP or a direction
along the same plane, with the application point in the GC. The
interest of a potential sufficiently general like Eq. (17) is that its
functional dependence may support its own perturbations.
According to Appendix A.1, the non-rotational mean motion
of a population is associated with time variations of the stellar
system. In the current case, these velocity components satisfy

1k 1k Zo z
Zo=—— ===
2T Tk

HO >
2k Iy, w©

(23)
meaning that each population centroid moves on a circular conic
surface with the apex in the GC. For a mixture of two popula-
tions, the second central moments satisfy

w7
T 22— 2 24)

"
H o

1"
Mz

’
He: _
’ o
How — Hz

44
H oo —

Then, the semiaxes of the velocity ellipsoids are not proportional
as in the general case, but have vanishing tilt.

Nevertheless, as remarked above, the spherical potential
term %U | must be common among the populations. Then, for a
two population mixture, it is easily deduced that &’ and k" must
be proportional. Therefore, according to Eq. (23), the mean ve-
locity differences satisfy I, — I1"¢ = Z; = Z" = 0.

More precisely, being &' and k" solutions of the same lin-
ear and homogeneous dlfferentlal equatlon Eq. (20), k" is pro-
portional to k" if, and only if, %5 . Hence, IIj — 11"y =
Z, = 2"y = 0if, and only if, £’ and k” are linearly dependent.
For that reason, for a potential to allow different non-rotational
motion of the centroids, we have to search for a particular solu-
tion to Eq. (17) that is independent from the quantity &/k.

Therefore, a potential containing a general spherical term
does not allow independent radial and vertical mean motions of
the populations.

3.2.2. Quasi-stationary potential

For k = k| = ks, in regard to Egs. (12) and (13), we define
PU _PU ,U PU 82 ,U
2F(t,1,0) = — = . (5
T =T~ e T arar Pag )
U U
Gt,1,0)= — = —- 26
70 = 580 = amoe (26)

Then, both expressions in Eq. (15) can be written as a unique
equation

k 1%
2-F -——=0.
T +G+2k 0

By Eqg. (20), since

27)

%% = —2—£A — A, Eq. (27) then becomes

2§(F—A)+G—A=0. (28)

As the functions A(?), F(t, 1, (), and G(t 7,{) depend on the po-
tential, a potential not dependent on ¢, which is population-
dependent, must satisfy F' = A. Therefore G = A is also held.

Hence, by Eq. (26), the potential must satisfy %—lt/ = A(D(T + ).
Then, by Eq. (17) we find
U, =0. (29)

By taking Eq. (26) into account, the above condition for a po-
tential allowing for different radial and vertical population mean
velocities can also be expressed as

9 oU _
otdl ot

The time derivative of the potential has to be separable in cylin-
drical coordinates. We are then left with the potential

U (¢/7)
T+<(

This potential will be referred to as a quasi-stationary potential,
since if we force the general potential Eq. (17) to be stationary,
we get the same solution as Eq. (31) (with U; = 0), but with
the condition A = constant. Thus, the quasi-stationary potential
depends on time through a unique function A(#), which is popu-
lation independent.

For U, > 0, the second term of Eq. (31) can be associated
with a repulsive force, which is relevant at low distances from
the GC. It may be interpreted as a gravitational force due to the
outer mass of a dark matter halo, and it is then possible to have
stable orbits even for those stars with no net angular velocity
(Appendix B). In the GP, this repulsive force would produce a
decreasing circular velocity towards the centre. This seems to
be the actual situation, mainly for the Galactic components ex-
isting in the solar neighbourhood (Reid et al. 2009; Levine et al.
2008; Xue et al. 2008). Otherwise, for U, < 0, the circular veloc-
ity would increase towards the centre, where it would be a non-
realistic singularity. However, this model is only valid where the
motion of stars admits a quadratic integral in peculiar velocities,
so that it might not be extrapolated near the GC.

It is interesting to note the difference between the potential
of a steady state system and the stationary potential of a non-
stationary system. In steady state systems, k is constant. Then,
Chandrasekhar’s equations yield a stationary potential in the
form of Eq. (16). Indeed, if we assume k(t) = 0 in Eq. (17),
we are left with Eq. (16). However, if we force the potential of
Eq. (17) to be stationary in a stellar system where k is not con-
stant, which means that A(f) must be constant, we obtain the
quasi-stationary potential of Eq. (31), which is a very particlar
case of Eq. (16). Therefore, in non-steady state systems, only a
particular family of stationary potentials is allowed.

As the functional dependence of k is given by Eq. (21), k(t)
has three degrees of freedom for each population'®. Hence, this

(30)

U=AD(T+)+ 31)

10" This result corrects Papers I and II where it was stated that, for non-
stationary potentials, X" and k" were proportional.
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functional dependence allows the mean velocities of each popu-
lation to be decoupled,
H6 # 11", Z(/) +7Z",
which provides the possibility of an apparent vertex deviation
for the total velocity distribution.

However, as Eq. (23) is satisfied, the velocity differences are
not totally independent. They still maintain the proportion

7 7"
07”0 — i’ (32)
HE)—H 0 w

that of populations moving on a conic surface with the apex in
the GC.

3.2.3. Separable potential

When k; and k3 are non-equal functions of time, both satisfying
Eq. (20), according to Eq. (14), the potential must separable in

addition in cylindrical coordinates, that is, % = 0. Then, the
potential becomes a particular case of the quasi-stationary po-

tential Eq. (31), with U; =0,

U=A<r><r+§)+§+E (33)

¢

with B and C constant. We may assume C = 0 by continuity
conditions in the plane z = 0. This is a first order approximation
of the general potential Eq. (17) near the GP.

Both relationships in Eq. (15) allow for a decoupling of kine-
matics in the directions @ and z. This is related to the existence
of an extra isolating integral of motion involving the vertical ve-
locity alone (Paper I). However, the decoupling is not absolute
like in Chandrasekhar’s case with ks = 0 (Book I, Eq. (3.743)),
since the potential must be consistent with the general solution
found in Eq. (17).

According to Appendix A.l, the case k; # k3 allows for a
total independence of the population mean velocities and of the
shape of the velocity ellipsoids. According to Eq. (A.8), their
tilt may have a non-vanishing tilt. In addition, the overall distri-
bution may show an apparent vertex deviation. This is the only
axisymmetric case allowing for a total independence of the pop-
ulation’s kinematics. However, notice that the necessary and suf-
ficient condition for a tilted velocity ellipsoid is k; # k3, while
the separability of the potential is only a necessary condition. A
potential may be separable and the ellipsoid may have no tilt if
ki = k3.

If A(?) is constant, that is, if the potential is stationary, the
population centroids move, in general, on a toroidal surface with
elliptical section (Cubarsi et al. 1990) or, in particular cases, over
a cone, a hyperboloid, an ellipsoid, or a circular band restricted
to the GP.

The second term of Eq. (33), as a particular case of the quasi-
stationary potential, is related to the angular momentum integral
of the stars with stable orbits. For disc stars, if B > 0, this term is
associated with a repulsive force (Appendix B). It is then possi-
ble to have stable orbits even for those stars with no net angular
velocity. Otherwise, if B < 0, the potential term is associated
with an attractive force that only allows stable orbits for stars
trespassing a threshold angular velocity.

In summary, Table 2 shows how some observables are re-
lated to the different potential cases arising from the conditions
of consistency. The observables are the ratio between semiaxes
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of the velocity ellipsoids, the difference between radial and ver-
tical mean velocities of the populations, the angles for the vertex
deviation & and the tilt 6 of the population velocity ellipsoids,
and the sign of the moment g, in terms of z (which is dis-
cussed below). The quantities without accents refer to the total
stellar distribution and those with accents refer to two popula-
tions, which are easily generalised to any finite mixture. Each
stellar population is assumed of Schwarzschild type, so that the
deviation angles with accents apply to real velocity ellipsoids.
However, the angles without accents measure the apparent ver-
tex deviation and tilt of the whole stellar distribution from their
total second central moments. The main cases for the potential
are: an axisymmetric general case, for a potential depending on
the population parameter k4, and a flat velocity distribution, for
a potential not dependent on the population parameter k4. This
case splits into: the non-separable potential (Eq. (17)), when
the potential depends on the population parameter k; the quasi-
stationary potential (Eq. (31), when the potential does not de-
pend on the population parameter k; and the separable potential
(Eq. (33)), when the potential does not depend on the population
parameters k; # ks. Therefore, regarding to the potential, the
cases range from general to particular.

Figure 1 displays the stellar density of a single stellar popu-
lation obtained for the harmonic potential (left); and, in contrast,
the stellar density for the quasi-stationary, non-separable poten-
tial (centre), which allows for stellar orbits all around the GC;
and the stellar density for the separable potential (right), for
which the stars orbit around the rotation axis of the stellar
system.

4. The solar neighbourhood

We shall check the kinematic features of the local thin disc,
thick disc, and halo components, in connection to the cases stud-
ied above to examine whether the hypothesis of axisymmetry is
valid yet. We shall pay attention to the velocity moments and
gradients, and, in particular, to four key observables: the vertex
deviation, the trend of the moment , around the sun, the tilt
of the velocity ellipsoid, and the existence of stars without net
rotation.

4.1. Thin disc

The results obtained by Pasetto et al. (2012b) show that the
velocity moments (5 and u,, for the thin disc are approxi-
mately constant in the solar neighbourhood (z = 0), the lat-
ter slightly decreasing towards the Galactic anticentre, with an
anisotropy coefficient y,. /s # 1, with the same decreasing
trend. In addition, the moment g9 also increases towards the
GC. According to the expressions of the moment gradients in
Eq. (A.11) (Appendix A.3), by fixing z = 0, we get a constant
value for aﬁ%, while % and %Lw are decreasing functions of @.
Therefore, the thin disc, or the stellar populations composing the
thin disc, have a velocity distribution which, in good approxima-
tion, are consistent with such a trend and with a small value of
k4, close to that of a flat velocity distribution, and a small, but
non-null value of ;.

The thin disc shows a net vertex deviation and is the Galactic
component in the solar neighbourhood more distant from the
steady state. According to our analysis, it is possible to account
for an apparent vertex deviation, even under axisymmetry, for
the sake of the difference of radial and rotation mean veloc-
ities. Such a feature is in agreement with a previous analysis
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Fig. 1. Stellar density of a single population for the harmonic potential (/eft), for the non-separable quasi-stationary potential (centre), and for the

potential separable in addition in cylindrical coordinates (right).

(Cubarsi 2010), where the stellar subsystems around whose the
kinematics of the thin disc is articulated became undisclosed
by working from increasingly eccentricity layers. A maximum
entropy method was applied to fit the velocity moments up to
the tenth order, without assuming any type of symmetry or any
specific velocity distribution other than a single maximum en-
tropy density function. The thin disc stars drawn from the GCS
catalogue with very low planar eccentricity could be associ-
ated with star streams with a relatively small number of stars.
However, as increasing the sample up to eccentricity e = 0.15
(with maximum height zm,x = 0.5 pc), the sample of 9545 stars
had incorporated and averaged the features of the discrete mov-
ing groups, and showed a clear and general trend. Its velocity
distribution was close to a mixture of two ellipsoidal compo-
nents, each one without vertex deviation, but producing an ap-
parent vertex deviation of the whole distribution, as displayed in
Fig. 2 (U = —II is the radial heliocentric velocity, positive to-
wards the GC, and V is the rotational heliocentric velocity, pos-
itive in the direction of the Galactic rotation), with approximate
dispersions (13,9, 11) km s~V and (14,7, 11) kms™!, a difference
of mean velocities of (43,26, —22) kms~', and proportions 80%
and 20%, respectively. One component contains the main groups
of Hyades and Pleiades, and the other is built around the Sirius
and UMa streams. As the eccentricity is continuously increased
up to e = 0.30 (11826 stars), a unimodal velocity distribution,
similar to that of the thin disc (Cubarsi et al. 2010), was reached,
with dispersions (30, 18.5, 15.5) km s~!, and with a vertex devia-
tion of about 10°, by orienting the velocity ellipsoid in the direc-
tion connecting both previous centroids. Therefore, the thin disc
may be approximately fitted from a mixture of two populations
with no vertex deviation, with a significant radial mean veloc-
ity difference, in addition to an overlapped old disc component,
all of them consistent with a mixture of axial symmetric popu-
lations. This kinematic interpretation of the vertex deviation is
also in agreement with recent studies of the shape of velocity
ellipsoids in spiral galaxies (Vorobyov & Theis 2008), confirm-
ing that the magnitude of the vertex deviation is not correlated
with the gravitational potential, but is strongly correlated with
the spatial gradients of the mean stellar velocities.

In contrast to our finite mixture distribution approach, other
models prefer to describe the thin disc from a continuous mix-
ture distribution (e.g., Binney 2010, 2012), by integrating the
distribution functions associated with different ages and veloc-
ity dispersions, as a consequence of a continuous star formation
rate. However, it is no doubt concerning that discrete populations
exist in the solar neighbourhood, which, in addition, account for

Fig. 2. Velocity distribution isocontours projected onto the GP for stars
with eccentricity up to 0.15 (left) and up to 0.30 (right), both for
GCS stars (Cubarsi 2010).

most stars of the local samples. It is not a bad approach, then,
to handle the continuous mixture of the remaining disc stars
through another discrete Gaussian component to apply the cur-
rent dynamic model for quadratic distributions.

It is more difficult to explain the behaviour of the moment
U, around the GP, as described by Pasetto et al. (2012b), than
it is to explain the vertex deviation. The moment takes opposite
signs at different distances from the GC for non-null z values. For
instance, by picking up only values with uncertainty below 2o
levels, we see in Table 6 (and also the third column of Fig. 4), in
Pasetto et al. (2012b), that stars with height —0.3 < z < —0.1 kpc
have increasing moment values —83 < i, < 34 km?s72, as the
distance to the GC increases from 8 to 8.8 kpc. Similarly, for the
same range of distances to the GC, stars with height 0.1 < z <
0.3 kpc have decreasing moments 121 < 5. < —98 km?s™2.
In both cases, if these values were meaningful, the moment u,
would take opposite values around the solar position for a fixed
height, z # 0. Therefore, according to Eq. (A.8), the apparent tilt
of the thin disc distribution oscillates around that of an ellipsoid
pointing to the GC. This feature is boosted if the stars belong to
the bins z € (-0.5,-0.3] and z € (0.3,0.5], although the error
bars are then much greater.

The central moment pg,, from Eq. (A.7) in the
Appendix A.2, is proportional to z by a factor that is al-
ways positive. Therefore, we might expect moment values with
constant sign on both sides of the GP, positive if z > 0, negative
if z < 0, and null on the plane. Then, for a single population, the
moment (, can never show such an actual trend.

To explain this possible behaviour of that moment it is
necessary once more to use the mixture approach. For a two-
component mixture we obtain, similar to Eq. (10),

7", 1

Moz =1y + 11 o + 0’0" (0 = T170)(Z) — Z"), (34)
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disc (green), thick disc (blue), and halo stars (red).

now with non-null partial moments, which have the same sign
as z. To allow a change of sign in the total moment near the solar
position for low values of |z] # 0, it is necessary (1) that the third
term involving the mean velocity differences be non-null, and (2)
that their sign be opposite to that of the partial moments. This is
only possible if (I, — I1”¢)(Z) — Z"p) has the sign of —z.

Thus, in a first instance, the general axisymmetric case and
the non-separable potential case of a flat velocity distribution
have to be excluded because they provide values ITj, = I1”¢ and
Zy = Z"¢. On the other hand, the particular case of a quasi-
stationary potential with k = k; = k3 does allow unconstrained
mean velocities (k' /k’ # k" /k’") and provides values

1k 1k 1k” 1k”
I = 7 = . I, = - — 7Ny = = —
0T 2™ 0Tkt 0T o™ 20T gkt
that yield non-null values for I}, — I1”¢ and Z) — Z"¢. However,
we get
4 144 4 (44 1 i(, i(" 2
(ITy = " 0)(Zy — Z 0)=Z i s

which has the same sign as z. Hence, this case would also have
to be excluded, at least for a two-population mixture.

Then, we could still wonder if a mixture of more than two
populations with unconstrained mean velocities would be able
to provide a contribution of the same sign than —z in the gener-
alisation of Eq. (34). The answer is no. In Appendix C, a general
mixture with an arbitrary number of components is studied. It
is found that the contribution of the population mean velocity
differences to the second moments is of the same type as for a
two-component mixture, as shown in Eq. (C.8). Hence, the same
reasoning about the sign of that moment is proven to be valid for
a general mixture.

If actual data are to be trusted, to explain the trend of this
moment in the solar neighbourhood only the case k; # k3
with a separable potential would be left, where the product
(ITy — T1”0)(Zy — Z”¢) may have an arbitrary sign. Therefore,
we cannot discard the possibility that such a behaviour is due to
a sampling problem, although it could also be due to small local
deviations from the non-separable, quasi-stationary potential.

4.2. Thick disc

For the thick disc, Casetti-Dinescu et al. (2011) obtain vanish-
ing values for the moment gradlents ‘9"“‘” and ‘9""" , anearly zero

value within the error bars of A - and clearly non-vamshlng val-

ues of %= -, 6§f" , and = It is easy to verify that these quantities

are qualltatlvely in agreement with the assumption of a single
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population with k4 # 0, although small. Thus, by naming € = k4,
from Appendix A.3 we write explicitly the moment gradients in
terms of € and z, for fixed @. We then get the following order
estimations:

6luww 2.2 Hzz 2 Hoo
e = = 0(€7), s O(€°7), e O(ez),
(35)
Ottn _ Optz; _
o O(ez), o O(e).

Opee

In addition, the value 72 is approximately constant and non-
null, unless k, = 0. Notice that the gradients of moments that are
odd in the variable z may show diminished values, since the sam-
ples were selected by different values of |z], by averaging stars
from both sides of the symmetry plane. Therefore, the thick disc
kinematics may be described from a single quadratic population
with small, but non-null values of k4 and k,. Similarly, these au-

thors find a small value for g)” = O(ez), which is also consistent
with the small values of k4 and z.

On the other hand, they find a non-vanishing tilt of 8.6° + 1.8
for the thick disc velocity ellipsoid, which should be associ-
ated with the separable potential, while the vertex deviation is
consistent with zero. The non-vanishing tilt was also found by
Siebert et al. (2008) and Fuchs et al. (2009). The general kine-
matic features of the thick disc are also in agreement with the
results obtained by Carollo et al. (2010), Pasetto et al. (2012a),
and Moni Bidin et al. (2012), although the latter find a non-null
vertex deviation of thick disc stars, which increases with the dis-
tance to the GC. It is worthwhile to remark that an axial symmet-
ric model with a mean velocity non-symmetric about the plane

= 0 provides a vertex deviation proportional to z (Paper II,
Appendix A).

In addition, for the thick disc there is evidence of a net pe-
culiar radial mean velocity towards the GC of 9.2 + 1.1 kms™,
that is, U ~ 19 kms~! referred to the Sun. The result, which
agrees with those of Girard et al. (2006), Bramich et al. (2008),
and Smith et al. (2009b), was also found by Cubarsi & Alcobé
(2006) by working from nested HIPPARCOS subsamples, despite
Casetti-Dinescu et al. (2011) saying that HIPPARCOS-based re-
sults are unlikely to detect this. These nested HIPPARCOS sub-
samples were built to contain an increasing number of thick
disc stars. They showed a trend that was interpreted as a sin-
gle point-axial symmetric population (Juan-Zornoza 1995) ap-
proaching an ideal, axial, steady state population, with no net
Galactocentric radial mean velocity. The zero mean velocity of
this ideal population was then extrapolated by leading to a helio-
centric velocity of ca. 20 kms~! towards the GC.

Hence, this analysis confirms that a mixture of stellar pop-
ulations with independent radial differential motions is required
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to explain the disc kinematics, which is still possible in axially
symmetrical systems.

4.3. Halo

Halo stars, either from the inner or the outer halo, despite the
uncertainty of their velocity statistics, seem to have velocity el-
lipsoids with non-vanishing tilt (Carollo et al. 2010; Smith et al.
2009a; Chiba & Beers 2000), and also a differentiated mean ra-
dial motion (Smith et al. 2009b), in addition to a retrograde ro-
tation of the outer halo. The outer halo has close values of g
and pgg, by providing a nearly zero value of k,, which, according
to Eq. (A.2), would correspond to an almost rigid body rotation
for fixed values of z. However, a more detailed analysis (Smith
et al. 2009a) suggests that the halo, in particular the inner halo,
would be approximately at rest, close to steadiness and spher-
ical symmetry, aside from a slight masking produced by some
disc and bulge stars. These authors, based on an analysis of in-
tegrals of motion and Poisson equation, claim that the potential
associated with a triaxial velocity dispersion tensor of the halo
should be spherical and the ellipsoid should not show any tilt.
However, according to the authors, although the potential of the
ellipsoidal dark halo is the one dominant over the whole Galaxy,
which is associated with the harmonic potential term, the total
potential produced by the mixture of the Galactic components,
and in particular by the disc, breaks the overall sphericity.

Our approach is totally different from the approach of Smith
et al. (2009a). We consider a time dependent potential and
specifically avoid the Poisson equation, which they used as the
main reason to reject the term depending on the elevation an-
gle in Eq. (17). Further, we need streaming motions (which they
rejected) to account for asymmetries in the disc velocity distribu-
tion. However, somehow, we are led to a similar result: a general
spherical potential is inconsistent with a tilted velocity ellipsoid.
The harmonic potential is the only spherical potential allowing
tilted ellipsoids. However, the term depending on the elevation
angle in Eq. (31) is not always responsible for the tilt. It only
occurs when k; # k3, by forcing the potential to be separable in
cylindrical coordinates.

In order to get unconstrained population mean velocities,
once again U; = 0 is required. That is, the spherical terms of
the potential must be proportional to (t + &) and (r + )L

A similar analysis, as in the previous section, of the mean
velocity gradients provides an order estimation 6{9—(20 = O(ez),
which agrees with non-null, but small values of k4. Thus, each
halo component could be fitted through a single Schwarzschild
distribution with no vertex deviation.

In addition, according to Appendix B, the existence of stars
with null Galactocentric rotation velocity requires a potential
with a positive value of U, in Eq. (31), associated with a repul-
sive force field. These stars can be drawn, e.g., from a GCS clas-
sified sample (Cubarsi et al. 2010). For each star, we compute

. 2 2 . . .
the fraction F? = 7 +M(O”;2’:f3 +:$’2:“(’2)le)2 of kinetic energy, which

is not involved in the rotation. In Fig. 4.1, the plot F against the
Galactocentric velocities U, V, W uses colours to label the stars
belonging to the thin disc (green), the thick disc (blue), and the
halo (red), as they were segregated in Cubarsi et al. (2010). For
the Sun, we assumed a Galactocentric rotation vy = 220 kms™!
and radial and vertical peculiar velocities uy, = 10 kms™' and
we = 7 kms™!, opposite from the heliocentric centroid veloc-
ity of the sample. We also assumed that the radial and verti-
cal Galactocentric velocities of the local centroid vanished. The
graphs show that there are stars with no net rotation that belongs

to the halo, which have a symmetric distribution in the radial and
vertical motions. These stars have the highest eccentricities. The
shape of the graph is basically the same when a slightly different
absolute solar motion is adopted.

5. Conclusions

To simplify the solution of Chandrasekhar’s equations, it is nec-
essary introduce some symmetries for the mass and the velocity
distributions, such as the assumptions of axisymmetry, steady
state, or Galactic plane of symmetry. These hypotheses provide
serious limitations for describing, in a realistic way, the kine-
matic observables of the Galaxy. Recently, several kinematic
analyses using the newest radial velocity data from the RAVE
survey confirmed that the thin disc had non-vanishing vertex de-
viation, the thick disc had a radial mean motion differing from
that of the thin disc, and the halo velocity ellipsoid was likely
to be tilted. It was suggested (Pasetto et al. 2012b; Steinmetz
2012) that the axisymmetry assumption should be relaxed to-
wards a model with a rotational symmetry of 180° to account
for some of these features. In this paper, we have adopted a mix-
ture model to check the axisymmetric hypothesis. We have deter-
mined what axisymmetric potentials are connected with a more
flexible superposition of stellar populations, so that they can de-
scribe, in a realistic way, the main kinematic features of the solar
neighbourhood.

The conditions of consistency are integrability conditions al-
lowing a stellar system composed of several independent popu-
lations to share the same potential function in the BCE. Since the
potential may depend on the population parameters involved in
the velocity distribution, the less the potential depends on them,
the less kinematically constrained the populations will be. Thus,
in solving the BCE, we looked for potentials permitting differ-
ent mean velocities of the populations and arbitrary orientation
of the velocity ellipsoids. We found that these potentials do not
depend on the population parameter k4. They were consistent
with a flat velocity distribution and did not constrain the axes of
the velocity ellipsoids.

For k = k; = k3, we obtained the family of potentials of
Eq. (31), designated as quasi-stationary, which, in general, are
non-separable in cylindrical coordinates. Their time dependency
is carried through a unique function A(f), which is population
independent. Then, the stellar populations have untilted velocity
ellipsoids and their centroids move on conic surfaces with the
apex in the GC.

The other possible solution was a potential separable in
cylindrical coordinates, for which the values k; and k3 may dif-
fer. Their time dependency is also carried through a unique func-
tion A(7). If k; # ks, in addition to unconstrained mean ve-
locities, the populations show an arbitrary tilt of the velocity
ellipsoids.

Therefore, with the mixture model, we should be able to fit
the general features of the actual velocity distribution in the solar
neighbourhood without the requirement of relaxing the axisym-
metrical hypothesis. Four key observables have been evaluated
to prove it.

First, the vertex deviation, which is clearly non-zero for the
thin disc. There is a tendency to associate the vertex deviation
of the velocity ellipsoid with the break of axisymmetry, which is
only true for a single population. The vertex deviation is easily
explained as a result of the superposition of two or more axisym-
metric populations with different radial and rotational mean ve-
locities. Such a situation requires the quasi-stationary potential
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Eq. (31). This interpretation of the vertex deviation was con-
firmed by the fact that the isocontours of the velocity distribu-
tion obtained by Cubarsi (2010) for disc stars with eccentricities
lower than 0.15 gave a clear picture of a bimodal distribution,
each mode approximately ellipsoidal with no vertex deviation,
which were overlaid with a significant difference in the radial
mean velocities. Upon completion of the sample with higher ec-
centricity stars, the overall thin disc distribution arose as a mix-
ture of three axisymmetric populations with an apparent vertex
deviation.

The second key observable is the behaviour of the radial gra-
dient of the moment y, in the solar neighbourhood. If the re-
sults of Pasetto et al. (2012b) are right, although the moment
is nearly null at the GP, there is a change of sign of this mo-
ment, above and below the plane, near the solar radius, instead of
maintaining a constant sign, as a single population would do. To
account for this behaviour, it is not sufficient to consider a popu-
lation mixture with different radial and vertical mean velocities.
It is necessary that the differences (I, — I1”¢) and (Z; — Z"¢)
be non-proportional. This is only possible for a quasi-stationary
potential with k; # k3, which yields the potential separable in
cylindrical coordinates of Eq. (33).

The possibility of explaining such a behaviour from a mix-
ture of three or more populations with a non-separable potential
was also dismissed. The second moments of a mixture with an
arbitrary number of populations were obtained with this purpose
in the Appendix C. They were related to the one-to-one mean ve-
locity differences to verify that the change of sign of p, is only
possible under a separable potential, regardless of the number of
population components.

The third point to check is about the tilt of the population
velocity ellipsoids. The tilt could be non-null for thick disc and
halo stars. The most recent analyses show a preference for ac-
cepting a slight tilt of both Galactic components. If these re-
sults are conclusive, they are consistent with a separable poten-
tial with k| # k3.

The fourth and last key observable is the existence of halo
stars with no net rotation. This is consistent with a potential more
general than the harmonic one, such as Eq. (17), containing a
term U, > 0 associated with a repulsive force, e.g., due to the
outer mass of a dark matter halo.

According to these results, the axisymmetric quasi-
stationary potential is consistent with the local Galactic observ-
ables. The non-separable potential, with k; = k3, even containing
a term depending on the elevation angle, would be admissible
for a mixture of populations with non-tilted ellipsoids. Then,
the slight tilt of the halo and the uncertain tilt of the thick disc
should be interpreted as local perturbations or a statistical fluc-
tuations, instead of intrinsic characteristics of the stellar sys-
tem. Otherwise, the potential separable in cylindrical coordi-
nates, with k; # k3, supports populations with tilted velocity
ellipsoids as a general feature.

The analysis undertaken in this paper is obviously limited
by its own hypotheses. By taking the validity of the BCE for
granted, the two basic assumptions are: first, that a stellar pop-
ulation is associated with a quadratic velocity distribution; and,
second, that the whole stellar system is obtained as a finite mix-
ture of populations.

In regards to the first assumption, we may recall that, al-
though the hypothesis fails when a quadratic distribution is asso-
ciated with a moving group with hundreds of stars, if kinemati-
cally unbiased samples of thousands of stars are considered, the
velocity distribution generally shows a multimodal shape, close
to a superposition of quadratic distributions. Therefore, the first
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hypothesis should be accepted for describing general trends of
large stellar populations, but admitting that local statistical fluc-
tuations may exist depending on the size and bias of the sample.

On the other hand, the limitations concerning the second as-
sumption will depend on the goodness of the fit when a real
continuous mixture of stellar populations is replaced by a single
quadratic population. In two cases, the error produced by such an
approximation is negligible. One case occurs when a continuous
mixture represents a small fraction of the total sample, which
is composed mostly of discrete populations. Then, the approxi-
mation may produce small changes in the wings of the discrete
distributions. As mentioned above, this is the case in the solar
neighbourhood. The other case involves a continuous mixture of
Gaussian distributions with nearly the same mean takes place, by
producing a positive excess of kurtosis. In that case, the result-
ing distribution is also quadratic (Cubarsi 2007) and, therefore,
is consistent with the current model.

The current analysis started with an additional assumption
to be tested: the axial symmetry. We have concluded that, even
under this hypothesis, it is possible to describe the general kine-
matic features of the solar neighbourhood from a finite mixture
of quadratic populations. Although from a statistical viewpoint
both basic hypotheses do not introduce serious limitations to our
problem, from a dynamical viewpoint it is clear that the solu-
tions for the potential have been greatly reduced. In this regard,
two further analyses could be done to find out whether more gen-
eral potentials are admissible. In the first, we would investigate
the conditions of consistency for point-axial symmetry models
(Juan-Zornoza 1995; Sanz-Subirana 1987). That is, to relax the
axisymmetric hypothesis to see how this affects the potential. In
the second analysis, we would relax the assumption of a sym-
metry plane for the mass and velocity distributions, because, as
we said, it is convenient that the general solution for the poten-
tial could account for the self perturbations, such as those pro-
duced by tidal forces, which may occur out of the symmetry
plane, yielding then to potentials and velocity distributions that
are non-even functions in the variable z.
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Appendix A: Axisymmetric stellar system

The importance of the axial symmetry hypothesis arises
from two of Chandrasekhar’s results (Chandrasekhar 1960,
pp- 104—105). One result is that a stellar system in steady state
with differential motions is characterised by an axis of helical
symmetry. The other result is that if a stellar system is in steady
state, the potential is axisymmetric. For this reason, it is worth
studying a slightly more general situation of a non-steady state,
axisymmetric system with differential motions not only in ro-
tation, with a potential that may or may not be explicitly time
dependent.

Chandrasekhar’s approach assumes the phase space density
function as a generalised quadratic function of the stellar ve-
locity V referred to the population mean velocity v(z, ), which
depends on time and position. By noting the peculiar velocity
u = V — v, the phase space density function may be written as
an arbitrary function f(Q + o), with Q = u'- A - u, where A(t,r)
is a symmetric, positive definite second-rank tensor, and o (¢, r)
a scalar function.

In cylindrical coordinates, we note the star position and ve-
locity as r = (@,0,z), V = (I1,0,Z), and the mean velocity
of the stellar system as v = (Ily, @, Zy). The radial direction is
positive towards the Galactic anticentre, the rotation is positive
in the direction of the Galactic rotation, and the vertical direction
is positive towards the North Galactic Pole.

A.1. Components of A and v

Under the axisymmetric hypothesis, by also assuming a symme-
try plane for the mass and velocity distributions, the elements of
the tensor A, which are solution of Egs. (1) and (2), are (we use
the set of subindices {w, 6, z} as in Paper I):

Aww = kl + k4zz’
Ay =k3 + k4w2,

Agg = ki + kyw? + kyZ?,
Apsg =0, Ap, =—kywz, Ag =0.

(A.1)
Its determinant is
|A| = (ki + kow?® + kg2 (kiks + kika@? + kskaz?),
where ki, k3 are time dependent, positive functions, and ky, k4
non negative constants'!.
Similarly, the mean velocity v is obtained from Egs. (1)

and (2). Its components are

E k1k3 + k]kﬂD’z + k3k422

I = ,
07 2 kiks + kikaw? + kakyZ?
Pw
®p=-———"""—"—, A2
0 k1 + k2w2 + k4Z2 ( )
Z k.3k1 + k1k4w'2 + k3k4Z2
Zy =

B 5 k1k3 + k1k4w2 + k3k4Z2

with B8 constant. The dots mean time derivatives. Therefore, a
steady state system is only capable of differential rotation.

""" The model also provides two parameters, ks, ks, which depend on

time and are generally neglected. The first would determine a plane of
symmetry for the velocity distribution at z = —ks/ks, while k¢ would
allow a non-symmetric mean velocity on either side of the GP.
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In the case k = k; = k3, we get

1k
Ho—z;w, Bw
Qp=—-—"7—"""—"7"—"7""7, A3
0 Z(+k21D’2+k4Zz ( )
Y
O—ZkZ.

A.2. Second central moments

The stellar density is obtained with the integration of the phase
space density function over the velocity space 'y,

N:ffdv.
I'y

For a Schwarzschild velocity distribution, f = e2(@*)_ we get

(A4)

N = 2n)?|A| Te 2. (A.5)

Then, the tensor of second central moments, which is defined as

1

p== | V- 0)®? £ dV (A.6)
Iy

satisfies'?

u=A"

According to Eq. (A.1), its elements have the following func-
tional dependency,

_ k3 + kaw? _ 1
How = s + kikea? + kaka2” M = 1 + loo? + ka2
_ ki + kaZ?
" kil + kikew? + kaka2 M

_ k4wz
T kiks + kikgw? + kakaZ?’

Mzz

Hoo =0, g, =0. (A7)

The tilt § of the velocity ellipsoid, u’ - ' - u = 1, satisfies

Py 2k
fan26 = —HT 4% — (A.8)
Moo — Mzz k3 _kl +k4(1U —Z )
In the case k = k| = ks, the above relationship becomes
tan26 = —2 (A.9)

Then, 6 = arctan() or 6 = arctan(%) + 5, so that one of the
principal axes of the velocity ellipsoid points towards the GC.

On the other hand, the vertex deviation ¢ of the velocity el-
lipsoid satisfies

lemé)
Moo — Moo

tan2¢e = (A.10)

so that, if ug = 0, as in the current axisymmetric case, the vertex
deviation is null.

12 For a generalised Schwarzschild distribution, we get a similar rela-
tionship, although multiplied by a factor depending on o~ (Cubarsi 2007,
Eq. (74)).
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A.3. Moment gradients

The @ and z gradients of the central moments are

o _ 2Uskiws’ o _ _ —2kskaz(ks+ksm?)
0w~ (kiks+kikam 2 +kska2)? 9z (kiksthkiksm? +kska22)2
Opey 2k, Opgy —2ksz

0w~ (ki +koyw?+ksz?)? 0z = (kythkow?+kyz2)?

e 2kikaw(ky+haz) Otz _ 2k 2w’z

0w (hkthikior+hak 2’ 0z (kkatkikso2tkska 22

O _ kaztkiky—kikyw® +kskaz?) ez _ kaw(ky ks+k kyw?—ksksz®)

9w~ (ks thkoi ki) 0 oz ks Hh ka2 hsks 2)2
(A.11)
. ey Otter s
Notice that, for z = 0, the values %2, %= and %= are expected
0w * 0w 0z

to be non-null, in general.
In the GP, the kinematic parameters can be evaluated from
the following relationships,

_ 1 _ 1 1 1
b= k= (- )
(A.12)

Ot — .1 10u
k3 )’ k4_ 21714%:

’

(2

I
Rl
—

—
+
[

which, on the other side, provide the conditions tyo > e,

Otz _m
e <0,and - 7= <y,

Appendix B: The meaning of U,(0)
in the quasi-stationary potential

For a quasi-stationary potential, either in the form of Eq. (31)
or in its separable form of Eq. (33), the motion of a star near
the GP can be studied by using the reference frame of a circular
motion point in the plane. The second equation of motion (e.g.,
Book I, p. 152) provides the axial component of the angular mo-
mentum integral J = @26, while the first equation of motion

allows for the description of the radial motion in terms of the
effective potential energy V(w, z) = 21—1; +U(w,z),as @ = —ZT‘;.
The circular orbit in the GP satisfies @ = 0 and corresponds to a

local minimum of V(w, 0) at a radius @, satisfying

oV (w,0) . AU(0) + J?
o @Il - 2O r S B.1
P et AQ) (B.1)
under the condition
2
IV@Ol o s A > 0. (B.2)
0w? o,

Therefore, 4U,(0) + J*> > 0. This is the condition for a stable
circular orbit and all the stable non-circular orbits around it. The
third equation of motion is consistent with the condition of min-
imum in z = 0. The circular orbit is a degenerate case of the
bounded orbits in its neighbourhood and, from the epicycle ap-
proximation, it is possible to prove that they have the same sta-
bility as the circular orbit.

In the GP, a repulsive force is associated with a value
U,(0) > 0, which allows for stable orbits for all the stars, even
for stars with no angular velocity (J = 0), with an oscillating
movement along the radial and the vertical directions. This ex-
cludes the existence of circular orbits within a radius lower than
wmin = [4U2(0)/A(?)]7. Otherwise, an attractive force is associ-
ated with U,(0) < 0, which allows for bounded orbits only for
stars trespassing a threshold angular velocity, with a minimum

angular momentum integral Jim = —4U,(0). The other orbits
become unstable.

The circular velocity in the plane is given by @O (w) =
[A(@* — 4U,(0)@ 217. For low values of @, if U,(0) < 0,
O.(w) decreases similarly to @', while if U(0) > 0, O.(@)
is null for @w < @, and increases for @w > wpin.

Appendix C: Second moments of a n-population
mixture

In Cubarsi (1992), Cubarsi & Alcobé (2004), and Pasetto et al.
(2012a, 2012b), the velocity moments and cumulants of a two-
component mixture were evaluated in terms of the partial statis-
tics and the mean velocity differences between populations. In
this appendix, this relationships are generalised to a n-population
mixture, by obtaining the total mixture of the second moments
in terms of the one-to-one mean velocity differences.

For the ith population, for fixed time and position, let f; rep-
resent the velocity distribution function. According to Eq. (A.4),
its stellar density is given by N; = frv fi dV. Each normalised
velocity distribution function ¢; = f;/N; defines the respective
mean velocity as v; = frv V; dV. If the total mixture is written
without a subindex and the population fractions are defined as
n; = N;/N, we may obtain the following basic relationships for
the normalised density functions, the population fractions, and
the mean velocities:

f=zn:fi = l//=zn:nikbi,
i1 P

n

n
Znizl, DZZH[U,'.

i=1 i=1

(C.1)

The tensor of the second central moments pu, defined in
Eq. (A.6), can be expressed working from the population com-
ponents in terms of the peculiar velocity referred to each popu-
lation, u; = V — v;, as follows:

po= L (V=0 ydV= [ (V-0 5L g dV
= D1 T fru(ui +0; = 0)*Y; du;
(C.2)
= D i (fr”(ui)®2¢i du; +2(vi —v)® fr upy; du;
+(; — v)*? fr Wi dui).

Since fr uyy; du; = 0 and fr Y; du; = 1, by substitution of the
mean velocity given in Eq. (C.1), we get

o= i+ Y i - X n)®

(C.3)
n n n ®2
= Sy mip+ Xy i (2 i - 0))
We prove the following equality
n n ®2 n
I= Z n; [Z I’lj(l)i - Uj)] = Z nin‘,-(vi - Uj)®2 (C4)
i=1 Jj=1 ij=1

i<j

A141, page 15 of 16



A&A 561, Al141 (2014)

by writing I as the addition of the series I} + I, so that Similarly, the series I, may be written as
L =55, N _D. o
] = Zi n; (Zjii nj(vi _ vj)) ® (Zkii nk(vi _ vk)) , 2 Zl Zj:#t Zk#:j, k#i nln]nk(vl U]) ® (vl vk)
= i Xjoi 2k j ki Ml [ (0 = 0) ® (0; — vg)
Ly = 20 2 jai 2iki k=j 10 — 0;) ® (U; — vg)
(C.5) +(@; —v) ® (vj — ;)] (C.7)
= Yimi X 50 — 0)%2,
L = i Xjsi Dk ki il jk(0; @ 0; — 20, @0 + 0 QV))

Iy = 300 2 i Zkri, ke j 110 = 1) © (0 = 0p). = XS ot S s i iv; — 0))°2.

: : 13

The series /; may be written as Finally, by addition of Egs. (C.6) and (C.7) we are led to
Eq. (C.4). Then, Eq. (C.3) becomes

11 = Zi Zj>i(n,n? + njnf)(v[ - vj)®2

n n
- . (. — 1 P2
=53 e+ 1) — p )2 H= anﬂl + Z ninj(v; —v;)°". (C.8)
- I Laj>i nln](n‘] + nl)(vl - v,/) i=1 e
i<j
= 2 2 il (1= Ypsi g )0 — )2 Notice, however, that the set of 1n(n — 1) differences {(v; —v))};

for i < j are linearly dependent. A reduced set of n — 1 indepen-

=2 2 s min (v — v -3, D joi Dkt ke il (0 — v)®%. dent quantities is, e.g. {(vx —v1)}k for k > 1, since any difference
(C.6) v; — v; can be obtained as (v; —vy) — (vj — vy).

13" Any series 3, 3 i @ij over the elements g;; of an arbitrary matrix is
equivalent to 3, ;. (aij + aji).
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