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ABSTRACT

An analytical model based on the maximum entropy approach is proposed to describe the eventual asymmetries of the velocity
distribution, which are collected through its sample moments. If an extended set of moments is available, the current method provides a
linear algorithm, associated with a Gramian system of equations, that leads to a fast and suitable estimation of the velocity distribution.
In particular, it could be used to model multimodal distributions that cannot be described through Gaussian mixtures. The method
is used with several samples from the HIPPARCOS and Geneva-Copenhagen survey catalogues. For the large-scale distribution,
the phase density function may be obtained by fitting moments up to sixth order as a product of two exponential functions, one
giving a background ellipsoidal shape of the distribution and the other accounting for the skewness and for the slight shift in the
ellipsoidal isocontours in terms of the rotation velocity. The small-scale distribution can be deduced from truncated distributions,
such as velocity-bounded samples with |V| ≤ 51 km s−1, which contain a complex mixture of early-type and young disc stars. By fitting
up to ten-order moments, the maximum entropy approach gives a realistic portrait of actual asymmetries, showing a clear bimodal
pattern: (i) around the Hyades-Pleiades stream, with negative radial mean velocity and (ii) around the Sirius-UMa stream, with slightly
positive radial mean velocity. Among metallicity, colour, and other star properties, the eccentricity of the star’s orbit behaves as a very
good sampling parameter to find a more detailed structure for the disc velocity distribution, allowing distinctions between different
eccentricity layers. For subsamples with eccentricities e < 0.15, star velocities are approximately symmetrically distributed around
the LSR in the radial direction, with a dearth of stars at the LSR. For e = 0.15, the core distribution of the thin disc is supported by
two major stellar groups with opposite radial velocities. Several simulations confirm that such a double-peaked distribution comes
from the lognormal distribution of the velocity amplitudes. For maximum eccentricity 0.3 and maximum distance to the Galactic
plane 0.5 kpc a representative thin disc sample is obtained. The “U-anomaly” along the radial direction is estimated straightforwardly
30−35 km s−1 from the contour plots. An explanation of the apparent vertex deviation of the disc from the swinging of those major
kinematic groups around the LSR is then possible, which predicts a continuously changing orientation of the disc’s pseudo ellipsoid.
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1. Introduction

The asymmetry of the local velocity distribution was first studied
in 1905 by Kapteyn in his theory of two star streams and further
developed by Kapteyn (1922), Strömberg (1925), and Charlier
(1926), which considered up to fourth moments of the velocity
distribution. However, those moments were not determined with
a sufficient degree of accuracy up to Erickson (1975). During
the past decade, higher order velocity moments with better pre-
cision could be obtained from large and representative stellar
samples of the solar neighbourhood, like the HIPPARCOS ca-
latogue (ESA 1997) or, more recently, the Geneva-Copenhagen
Survey (GCS) (Nordtröm et al. 2004), accounting for velocity
discontinuities and kinematic populations in the solar neighbour-
hood (Cubarsi & Alcobé 2004; Alcobé & Cubarsi 2005). Several
approaches have been tried to describe the asymmetry of the
velocity distribution. In the beginning, an anisotropic velocity
distribution was obtained by superposition of isotropic phase-
density functions with different means. Later, the Schwarzschild
distribution, based on a single trivariate Gaussian distribution,
could easily handle the basic anisotropic features, and more pa-
rameters could be controlled by assuming non-Gaussian ellip-
soidal distributions. However, to account for non-null, odd-order

central moments, it was once again necessary to return to mix-
ture models.

In addition to the works describing the actual velocity dis-
tribution from a mixture of stellar populations (e.g. Soubiran
& Girard 2005; Vallerani et al. 2006), there is a wide variety
of approaches that generally do not make use of the velocity
moments, such as the two- or three-integral models based in
Fricke (1952) components (Evans et al. 1997; Famaey et al.
2002; Jiang & Ossipkov 2007) or even a combination of a
Gaussian part of the density function with a perturbation fac-
tor expressed in a polynomial form in terms of the integrals of
motion (van der Marel & Franx 1993; Gerhard 1993; Kormendy
et al. 1998). The velocity distribution is sometimes numerically
estimated (Dehnen 1998; Skuljan et al. 1999; Bovy et al. 2009),
although it is also frequently the analytical modelling (Famaey
et al. 2005; Veltz et al. 2008). However, in the latter case, ac-
cording to today’s observational data, some intricate trivariate
distribution functions (or with a very high number of compo-
nents) may be obtained. In most of these works, there is the job
of describing the detailed structure of the velocity distribution,
or of associating specific moving groups with the density func-
tion components, although in most cases the small groups do
not have a clear visual impact on the overall density function.
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There is also a desire for a simple, qualitative description of the
distribution in terms of basic measures of spread or asymmetry
like the skew or for a comparison to Gaussian distributions, like
the curtosis. For trivariate distributions with strong asymmetries,
e.g. the structure that lies under the groups of young and early-
type stars, the statistical moments are the natural tool for such
a description of the basic geometric trends. To this purpose, the
method of moments is revisited here.

An alternative analytical model based on the maximum en-
tropy approach is proposed to describe the eventual asymmetries
of the velocity distribution, which are collected through its sam-
ple moments. Even though such an approach has been widely
used to solve many univariate technical and scientific problems,
to my knowledge there has been no general application to stellar
kinematics. There are several numeric algorithms for estimating
the maximum entropy density function, which are not computa-
tionally trivial for the trivariate case. However, if an extended set
of moments is available, the method described in this work al-
lows a parameter estimation by solving a linear system of equa-
tions. Its simplicity makes it worthwhile using it to construct any
ad hoc velocity distribution function.

The maximum entropy approach will be used to describe
the main kinematical features of solar neighbourhood stars by
working from the two formerly mentioned large and kinemat-
ically representative local stellar samples. In the first case,
the large-scale distribution of the local disc is inferred from
Sample I (Cubarsi & Alcobé 2004), obtained by crossing
the HIPPARCOS Catalogue with radial velocities from the
HIPPARCOS Input Catalogue (ESA 1992). In the second case,
the method is applied to Sample II from the GCS catalogue.
It has new and more accurate radial velocity data than the
HIPPARCOS sample, and contains the total velocity space of F
and G dwarf stars, which are considered the favourite tracer pop-
ulations of the history of the disc. In both cases, the largest sam-
ples providing stable velocity moments are used. The preceding
applications provide and confirm some general and well known
trends in the background velocity distribution, such as the over-
all vertex deviation, the skewness, or the symmetry plane of the
distribution. These stellar samples, which mainly contain thin
and thick disc stars, can be sufficiently described from an expo-
nential density function with a four-degree polynomial, although
a six-degree polynomial provides a more accurate portrait of the
local velocity distribution. According to the maximum entropy
modelling, it is possible to interpret the velocity distribution as
a product of two exponential functions, the one giving a back-
ground ellipsoidal shape of the distribution and the other, which
is even and at least quadratic in the rotation velocity alone, acting
as a perturbation factor that breaks the distribution symmetry.

On the other hand, the small-scale velocity distribution of
the local disc can be deduced from truncated distributions.
According to Alcobé & Cubarsi (2005), hereafter Paper I, a se-
lection of stars with an absolute value of the total space motion
|V| ≤ 51 km s−1 leaves the older disc stars aside. Such a se-
lection is analysed in more depth and their properties described
better. It contains a complex mixture of early-type and young
disc stars for which a Gaussian mixture approach is not feasi-
ble. Thus, Sample III is built as a subsample of Sample I with
|V| ≤ 51 km s−1. Finally, Sample IV is drawn from Sample II
under the same condition on the absolute velocity.

It is also possible to obtain a more detailed structure of the
velocity distribution for specific subsamples, allowing the re-
sults of our approach to be compared with the small-scale struc-
ture sustained by moving groups. Among metallicity, colour, and
other star properties, the eccentricity of the star’s orbit is found

to behave as a very good sampling parameter that allows dis-
tinguishing between different eccentricity layers within the thin
disc, and allowing visualisation of the underlying structure of
the distribution. In particular, for maximum eccentricity 0.3 and
maximum distance to the Galactic plane 0.5 kpc, we get a repre-
sentative thin disc sample.

For these truncated distributions, the density function needs a
six-degree polynomial to describe their strong asymmetries and
their main kinematic features. The improvement in the GCS cat-
alogue over the HIPPARCOS catalogue provides a higher reso-
lution contour plot for the inner thin disc, which in addition to
describing a velocity distribution far from the ellipsoidal hypoth-
esis, explains a clear bimodal structure. Therefore, the maximum
entropy modelling can be presented as an alternative way instead
of mixture models.

The paper is organised as follows. In Sect. 2 the notation is
introduced while reviewing some basic concepts of stellar statis-
tics. Maximum entropy density functions are introduced and the
meaning they have in mathematical statistics and statistical me-
chanics discussed. The mathematical formulation of the current
functional approach is developed in Appendix A. In Sect. 3 the
method is applied to local stellar samples from the HIPPARCOS
and the GCS catalogues, for either complete (large-scale) or
truncated (small-scale) distributions. Some aspects of the results
and of the subsamples are analysed. In Sect. 4 a link to a dynam-
ical model allows interpretation of the major kinematical groups
sustaining the disc structure and of its possible swinging vertex
deviation. Finally, in Sect. 5, the conclusions are presented.

2. Method

We study the necessary complexity of the velocity distribution
for satisfying a set of moment constraints. The current approach
simplifies both analytical dependence and parameter estimation
of the distribution function under the following circumstances.
We choose a density function maximising Shannon’s informa-
tion entropy. The maximum entropy approach to the solution of
inverse problems was introduced long ago by Jaynes (1957a,b),
so that it provides a unique solution that is the best one for not
having to deal with missing information. It agrees with what is
known, but expresses maximum uncertainty with respect to all
other matters. It is a flexible and powerful tool for density ap-
proximation, which collects a complete family of generalised ex-
ponential distributions, including the exponential, normal, log-
normal, gamma, and beta as special cases. Other properties of
maximum entropy distributions are outlined in Appendix A.

An interesting application of the maximum entropy approach
is the problem of moments (Mead & Papanicolaou 1984), which
is described along with introducing the notation accordingly to
the astronomical formulation.

2.1. Stellar statistics

For fixed values of time t and position r, the macroscopic prop-
erties of a stellar system can be described from the moments
of the distribution, which provide indirect information on the
phase-space density function f (t, r,V), which is normalised with
regard to the velocities. It is well known that the first moments,
accounting for the mean, give the more elementary property of
the distribution; the second central moments describe how much
the distribution is spread around the mean; the third moments
describe distribution asymmetries like the skewness; the fourth
moments are used to quantify how peaked the distribution is;

Page 2 of 25



R. Cubarsi: Large and small-scale structures of the local Galactic disc

and so forth (e.g. Stuart & Ord 1987). In general, the symmetric
tensor of the nth-order, non-centred trivariate moments is ob-
tained from the expected value

mn(t, r) = 〈(V)n〉 ≡
∫
ΓV

(V)n f (t, r,V) dV, n ≥ 0 (1)

where (·)n stands for the nth-tensor power, and ΓV the velocity
domain. The tensor mn then has

(
n+2

2

)
different elements accord-

ing to the expression

mi1i2...in = 〈Vi1 Vi2 . . .Vin〉, (2)

so that the indices belong to the set {1, 2, 3}, depending on the
velocity component. Sometimes, instead of the component nota-
tion, namely Latin indices, it is also used a notation to make the
velocity powers explicit, namely Greek indices, according to

mαβγ = 〈Vα
1 Vβ

2 Vγ
3 〉. (3)

Obviously, m0 = 1 and m1 = u(t, r), which is the mean velocity,
or velocity of the centroid.

In a similar way, the symmetric tensor of the nth-order cen-
tred moments is obtained by working from the peculiar velocity

u = V − u(t, r), (4)

defined as μn = 〈(u)n〉, with elements μi1 i2...in = 〈ui1 ui2 . . . uin〉.
In this case, μ0 = 1 and μ1 = 0.

Hereafter, when studying the velocity dependence of the dis-
tribution function from a statistical viewpoint, the variables of
time and position are omitted, although they might be used in
the framework of a dynamical model for the whole phase-space
distribution function.

Ellipsoidal distributions, such as the Schwarzschild distri-
bution, can be described in terms of their central second mo-
ments μi j, which sometimes are written with Latin indices,
such as σ2

i j = 〈ViV j〉 − 〈Vi〉〈V j〉 (e.g. Binney & Tremaine 1987,
pp. 194−211). However, in other standard astronomy reference
books, the Greek index notation is used (e.g. Gilmore et al. 1989,
p. 135−138), in particular when the velocity variables are ex-
pressed in the (U,V,W) coordinate system (without subindices),
where the nth moments mαβγ satisfy α + β + γ = n. The second
central moments account for the shape and orientation of the
velocity ellipsoid and for the variance σ2

l of the velocity distri-
bution function in an arbitrary direction l of the peculiar velocity
space. According to the coordinate system, if c1, c2, and c3 are
the corresponding direction cosines, we have

σ2
l = 〈(c1u1 + c2u2 + c3u3)2〉 =

∑
i, j

cic jμi j; i, j ∈ {1, 2, 3}. (5)

The symmetric tensor μ−1
2 (inverse of the second central mo-

ments μ2) is then associated with the peculiar velocity ellipsoid

uT · μ−1
2 · u = 1, (6)

so that the velocity dispersions σ1, σ2, and σ3 are the semiaxes
of the ellipsoid that refers to the same coordinate axes. For these
distributions, higher order central moments can be computed de-
pending on the second ones; in other words, they cannot take ar-
bitrary values, as shown in Appendix B. However, for arbitrary
distributions, the variances and the velocity ellipsoid are mean-
ingless, unless they could be used as a Gaussian approximation.
Similarly, the skewness and the curtosis are also meaningless for
multivariate distributions far from Gaussians, which have to be
qualitatively described from moments of order higher than two,
up to a sufficient degree of approximation of the basic distribu-
tion trends.

2.2. Maximum entropy

Therefore, more general and anisotropic distributions have a
wider set of independent moments, and, in the more general
case, the exact distribution may be univocally determined by the
infinite hierarchy of independent moments. Provided an order
for a set of moments (for example according to the Latin in-
dices notation 0, 1, 2, 3, 11, 12, 13, 22, and so on) if the first
m moments are known, it is possible to find an infinite variety
of functions whose first m moments coincide with the above
set. Various approximation procedures exist to find a sequence
of functions fm, which fulfils the foregoing moment constraints
and converges to the true distribution as m approaches infinity.
Fortunately, between those sequences of functions, a uniquely
maximum entropy sequence exists that maximises the entropy
functional

W( fm) = −
∫
ΓV

fm(V) ln fm(V) dV. (7)

Then, the maxima f = fm is usually called the least biassed se-
quence of approximations, and, by using Lagrangian multipliers,
it can be shown (e.g. Kagan et al. 1973) that it has the form

f (V) = eP(V), (8)

where P(V) is a power series of the velocity components con-
taining m terms, as many terms as the number of moment con-
straints, so that each coefficient is related to a single moment
constraint. Then, the sequence fm of maximum entropy func-
tions, such as increasing m, is able to fit more complex and in-
formative systems, so that the higher the number of moment con-
straints, the lower the entropy, the symmetry, and the algebraic
simplicity of fm.

The solution of the maximum entropy problem usually con-
sists in solving a set of m nonlinear equations in the form

mk =

∫
ΓV

(V)k eP(V) dV. (9)

However, these solution techniques are typically not easy to gen-
eralise to the multidimensional problem. On the other hand, even
for the unidimensional problem, an analytical solution generally
does not exist for higher than second moments. Generally, the
numerical techniques for solving the coefficients of the polyno-
mial P are based on nonlinear optimisation, Legendre transfor-
mation, etc. (e.g. de Bruin et al. 1999; Kouskoulas et al. 2004),
and either way, they are not easy to implement. However, if an
extended set of moments is known, then the parameters can be
estimated by solving a linear system of equations, as explained
in Appendix A.2. In the case of trivariate distributions, for a
polynomial of degree n in three variables, it is necessary to com-
pute moments up to order 2(n − 1).

Thus, the current purpose is to infer the trivariate velocity
distribution from a finite set of moment constraints. To simplify
estimation of the polynomial coefficients of P(V), an alternative
method has been developed, based on a unique assumption that
the velocity distribution satisfies the boundary conditions asso-
ciated with the stellar hydrodynamic equations, also known as
moment equations.

If the phase-space distribution function f satisfies the col-
lisionless Boltzmann equation, D f

Dt = 01, then by multiplying

1 The Stokes operator D(·)
Dt is generally used to simplify the notation of

the Lagrangian derivative ∂(·)
∂t + V · ∇r(·) + V̇ · ∇V(·).
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it by the nth-tensor power of the star velocity and by integrat-
ing over the whole velocity space, the family of stellar hydrody-
namic equations is obtained:∫
ΓV

(V)n D f
Dt

d3V = (0)n, n ≥ 0. (10)

In Cubarsi (2007), the above equations were derived in terms
of the central or comoving moments, in a completely analyti-
cal way, for any order n and without any additional hypotheses.
Then, if the above integrals exist and since there are no stars with
velocity beyond ΓV , the following boundary conditions were,
as usual, assumed in the integration process:

V → ∂ΓV =⇒ (V)n f (t, r,V)→ (0)n, n ≥ 0. (11)

These boundary conditions are satisfied by a wide family of dis-
tributions that are bell-shaped in any direction of the velocity do-
main. One of the integral properties that was derived in Cubarsi
(2007) will allow, in Appendix A.1, establishment of a Gramian
system of equations for solving our estimation problem. From
a purely statistical inference viewpoint, the requirement of esti-
mating the distribution parameters is not that the phase density
function is the solution to the collisionless Boltzmann equation,
but it is enough that it satisfies, or approximately satisfies, the
above boundary conditions.

The entropy functional W( f ), as defined in Eq. (7), is far
from containing all the information about the Boltzmann equa-
tion (with or without collisions) since W( f ) only depends on the
velocity space, similar to the collision operator of the complete
Boltzmann equation. In the following section, we discuss how
such a maximum entropy density function may or may not be a
solution to the collisionless Boltzmann equation.

In review, two typical cases of maximum entropy distribution
function are solutions to the whole set of moment equations. The
simplest case is an isothermal velocity distribution of Maxwell
type in the peculiar velocities, which according to the Maxwell-
Boltzmann law, represents a system with the more basic thermal
equilibrium

ψ(t, r, u) = e−
1
2 μ
−1 |u|2 (12)

where μ(t, r) > 0 is a continuous and differentiable function in
both arguments accounting for the variance in the distribution,
which is the only constraint. Therefore, the distribution is totally
isotropic. It has equal diagonal second central moments, vanish-
ing off-diagonal second moments, and zero odd-order moments
as well.

Another well known example is the Schwarzschild distribu-
tion, that is, an exponential density function that depends on the
peculiar velocities in a quadratic way (Chandrasekhar 1942),

ψ(t, r, u) = e−
1
2 (Q+σ), Q = uT · A2 · u (13)

where Q is a quadratic, positive-definite form, with A2(t, r)
a second-rank symmetric tensor and σ(t, r) a scalar function,
which are continuous and differentiable in both arguments.
As a result, the distribution is Gaussian in the peculiar veloc-
ities, although it is multiplied by an arbitrary function of time
and position. In such a way, the quadratic form Q can explain
three isolating integrals of star motions, and the distribution may
have some different diagonal second central moments and non-
vanishing off-diagonal moments, although the odd-order mo-
ments still vanish. Therefore it is a maximum entropy function
constrained by the whole set of moments up to second order.

The above examples, which are integrable functions in an in-
finite velocity domain, satisfy the boundary conditions, Eq. (11),
and can be generalised according to an exponential function,
Eq. (8), with as many polynomial terms as available moment
constraints, under the necessary conditions over the polyno-
mial coefficients to obtain an integrable distribution function.
For higher-degree polynomials, the distribution function is in-
tegrable if the polynomial is upper bounded, and therefore the
polynomial must be even. On the other hand, truncated distribu-
tions, which are associated with velocity-bounded stellar sam-
ples, |V − V0| ≤ const., have a finite velocity domain. Then the
boundary conditions are still a good approximation if the trun-
cated distribution vanishes enough when approaching the con-
tour of the velocity domain, so that the density function may be
assumed null out of this boundary. Thus, for a domain that is
either bounded or unbounded, we assume that the velocity dis-
tribution is continuous, differentiable, and positive in the interior
of the velocity domain ΓV and that the boundary conditions are
fulfiled in its contour ∂ΓV .

2.3. Information entropy

Let us briefly explain how to interpret a maximum entropy den-
sity function, or better, what is the appropriate context for its
use. Up to a change of sign, Shannon’s information entropy is
defined as the Boltzmann H-functional, which first appeared in
statistical mechanics in works by Boltzmann and Gibbs in the
19th century. However, it is not exactly the same concept.

Boltzmann’s functional is used for non-equilibrium systems
and is related to the irreversibility of dynamical processes in a
uniform gas. For elastic collisions involving short-range forces
and in the absence of boundaries, mass, momentum, and en-
ergy are conserved in binary encounters (e.g. Cercignani 1988).
They are usually referred to as collisional invariants. There
is only one distribution function, the Maxwellian distribution,
fulfiling all of the following properties: it depends on a lin-
ear combination of the collisional invariants, the collision term
of the Boltzmann equation is exactly zero, and it minimises
Boltzmann’s entropy. This solution represents a local equilib-
rium state, in the sense that other solutions to the Boltzmann
equation will become closer to it as the time goes by. Depending
on the potential, boundary conditions, and dissipative or colli-
sion effects (e.g. Villani 2002), maximum entropy solutions can
be non-Maxwellian.

Shannon’s information entropy2 was introduced in commu-
nication theory to measure the redundancy of a language and
the maximal compression rate, which is applicable to a mes-
sage without any loss of information. It is defined for complex
systems and is related to Boltzmann’s entropy as a measure of
the number of microstates associated with a given macroscopic
configuration. On the other hand, the Fisher information was in-
troduced as part of his theory of coefficient statistics as a mea-
sure of the uncertainty. It is also related to Shannon’s entropy,
so that the entropy quantifies the variation of information. If we
maximise the entropy subject to some constraints (e.g. statistics

2 The quotation by Shannon, extracted from Martin & England (1981),
is amusing: my greatest concern was how to call it. I thought of calling
it “information”. But the word was overly used, so I decided to call it
“uncertainty”. When I discussed it with John Von Neumann, he had a
better idea. He told me: “you should call it entropy, for two reasons.
In the first place your uncertainty has been used in statistical mechanics
under that name, so it already has a name. In the second place, and more
important, no one knows what entropy really is, so in a debate you will
always have the advantage”.
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describing macroscopic properties) we get distributions contain-
ing maximum uncertainty that is compatible with these con-
straints.

For given mass and energy, the Fisher information takes its
minimum value and Shannon’s entropy its maximum value in the
form of Maxwellian distributions. For a given covariance matrix,
they take extreme values for Gaussian distributions. The number
of constraints involved in the Lagrange multipliers may reach
higher order moments, by reflecting more complex situations in
which the stars interact with the potential and with themselves,
as well as having different masses.

We quote Jaworsky (1987) to point out that these two typical
viewpoints for interpreting the entropy as uncertainty. In mathe-
matical statistics and information theory, the entropy functional
is maximised by attending to some constraints that express any
available information of a complex physical system, which de-
pend on the actual experimental situation. In statistical mechan-
ics the entropy is used to study the thermodynamic equilibrium
or non-equilibrium of a physical system, generally a uniform
gas, in terms of the mean values of some physical quantities,
which describe the macroscopic state of a physical system as a
whole, like energy or number of particles. Thus, statistical me-
chanics based on this principle can be interpreted as a special
type of statistical inference. The use of higher order statistical
moments in addition to the mean values represents a generalisa-
tion of the thermodynamic concept of entropy, which is used to
approximate the exact probability distributions for a few spec-
ified random variables when a finite number of their moments
is known.

The maximum entropy principle implies that the the result-
ing distribution belongs to the exponential family. The actual
moment constraints are a direct consequence of the isolating in-
tegrals of the stellar motion, or more precisely, they reflect par-
ticular combinations of the isolating integrals that are conserved.
More complex distributions exist than the Maxwellian, which
are maximum entropy distributions and are solution of the colli-
sionless Boltzmann equation. These solutions are generally ob-
tained by assuming that Liouville’s theorem is satisfied, so that
the essential information about the density function is provided
by the isolating integrals of the motion of the stars. Thus, if we
assume that the polynomial formP of Eq. (7) depends on the in-
tegrals of motion and is itself an integral of motion, Liouville’s
theorem is equivalent to the collisionless Boltzmann approxima-
tion. Then, the collisionless Boltzmann equation obviously takes
the form
d f (P)

dP
DP
Dt
= 0 (14)

so that the factor d f
dP accounts for the maximum entropy condi-

tion, and the factor DP
Dt is, in fact, the collisionless Boltzmann

condition. Thus, both conditions are independent and compati-
ble. If the maximum entropy criterion is fulfiled, then the func-
tion f (P) = eP takes the smoothest possible form, while the de-
pendence ofP in terms of the powers of the velocity, as well as in
terms of time and position through its polynomial coefficients, is,
in this approach, independent of the maximum entropy condi-
tion. Thus, we may affirm that the maximum entropy procedure
is non-essential to the solution of the collisionless Boltzmann
equation.

The physical mechanism providing such a maximum en-
tropy function is irrelevant to the statistical approach. In con-
trast, what is important is the set of statistical moments account-
ing for the macroscopic state, which, of course, have a dynam-
ical significance in terms of viscosity, conductivity, or diffusion

effects. The present statistical approach adopts the opposite
viewpoint of studying possible warming mechanisms that mod-
ify a Schwarzschild distribution, and to then test how the dis-
tribution fits the actual velocity moments (e.g. Dehnen 1999).
In the current method, the available information is condensed
within the polynomial P(V). The maximum entropy approach
then gives a very good mathematical estimation of the density
function and of its velocity derivatives involved in DP

Dt = 0, al-
though it may or may not match any physical model. On the
other hand, the maximum uncertainty in the light of the missing
information is guaranteed by the function f (P) = eP.

The maximum entropy density function may be explicitly
written as

f = ψn ≡ ePn

Pn =

n∑
k=0

∑
α+β+γ=k

λαβγ(t, r) Vα
1 Vβ

2 Vγ
3

(15)

where the subindex n does not represent the number of polyno-
mial terms, but rather the maximum polynomial power.

If the velocity domain ΓV is all the space R3, the polyno-
mial Pn must be upper bounded to satisfy the integrability con-
ditions. As a result, the power series of the velocities reaches
a natural value n, which must be even, and, for the highest de-
gree k = n, the n-adic form

∑
α+β+γ=n λαβγ(t, r)Vα

1 Vβ
2 Vγ

3 must be
negative definite.

Equation (15), in addition to including Eqs. (12) and (13)
as particular cases, also contains, in general, any desired type
of two- or three-integral functions (e.g. Hénon 1973; Dejonghe
1983; White 1985). It represents a general functional approach,
in a similar way to Fricke (1952), with the difference that, while
the distribution function in the Fricke-based models is either a
linear combination or product of the powers of integrals of mo-
tion, in Eq. (15) the linear combination of powers of integrals of
motion appears as the argument in the exponential function.

The mathematical formulation of the maximum entropy
functional approach is detailed in Appendix A. The smoothest
density function that is consistent with an extended set of mo-
ment constraints is provided by the Gramian system of equations
in Eq. (42). The resulting system allows computation of the el-
ements of tensors λk; 1 ≤ k ≤ n in terms of the velocity mo-
ments up to order 2(n − 1), which is the highest order involved
in Eq. (40), as discussed in Appendix A.2. For the case n = 2,
it is easy to solve the Gramian system in an analytical way and
to find out how moments of order higher than two depend on
the second ones (Appendix B). For higher values of n, however,
it must be done by using the numerical procedure outlined in
Appendix A.3. Also, for n = 2, the integrability of the distribu-
tion function in an infinite velocity domain is easily derived from
the tensor λ2, since λi j = − 1

2μ
−1
i j , where the tensor of second cen-

tral moments μ2 is positive-definite. For n ≥ 4, it is impossible to
guarantee the definiteness of the tensor λn in a general way. This
is a problem related to Hilbert’s 17th problem, which is obvi-
ously beyond the scope of the present work. However, by using
a finite velocity domain, one as wide as needed, according to the
working stellar sample, such a problem may be easily avoided
for truncated distributions, as described in Appendix A.1.

3. Application

Several illustrations of the current functional approach are used
to describe the main kinematical features of the solar neighbour-
hood. The first two cases give the whole velocity distribution
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Fig. 1. Contour plots of the local velocity distribution in terms of the peculiar velocities for HIPPARCOS’ Sample I and Sample I’. The plots
are centred on the mean heliocentric velocity (−10.85,−19.93,−7.49) km s−1 of Sample I’, with radial velocity errors up to 2.5 km s−1. The case
n = 4, by fitting up to sixth moments, leads to more realistic contour plots than a pure ellipsoidal distribution (n = 2), although n = 6 provides a
slightly improvement, by fitting up to tenth moments. The contours indicate levels ( 1

2 )k; k = 0, ..., 10, and the black contour line corresponds to an
approximate level 10−2 surrounding nearly the whole distribution, as confirmed in the last row, also for n = 6, from the sections of the velocity
density function (not normalised) in each velocity component.

of the local disc, which is usually fitted by a mixture of trivari-
ate Gaussian distributions. In the first application, a nearly com-
plete and kinematically representative local sample, Sample I
(Cubarsi & Alcobé 2004) with 13 678 stars, is used. It was
obtained by crossing the HIPPARCOS Catalogue (ESA 1997)
with radial velocities from the HIPPARCOS Input Catalogue
(ESA 1992). To get a representative sample of the solar neigh-
bourhood, it was limited to a trigonometric distance of 300 pc,
where the only input data points were the velocity compo-
nents (U,V,W) in a cartesian heliocentric coordinate system,
with U toward the Galactic centre, V in the rotational direction,
and W perpendicular to Galactic plane, positive in the direction
of the North Galactic pole. In Paper I it was found that the op-
timal subsample containing thin and thick disc stars could be
obtained by selecting stars with absolute heliocentric velocity
|V| ≤ 210 km s−1. The sample has undergone a deeper statisti-
cal analysis in Cubarsi et al. (2010), hereafter Paper II, where
the subsamples selected from |V| > 400 km s−1 contain, in ad-
dition to above disc populations, a fraction up to 1% of halo

stars, with very stable computed moments. To compare results
with the next sample, the velocity domain is limited to the abso-
lute space velocity of 500 km s−1, which only excludes five stars
from the whole sample. The resulting Sample I is then composed
of 13 673 stars. The distribution smoothly vanishes in reaching
the velocity boundary, as shown in the last row of Fig. 1. For all
practical purposes, the sample may be considered as unbounded.
To compare between different fittings, Eq. (42) up to n = 6 is
used, by taking up to tenth moments into account. According to
Appendix A.3, by normalising to the number N of equations, the
squared error of the fit is then given by the expression

χ2 =
1
N

N∑
i=1

1

ε2
i

∣∣∣yi − gi jx j

∣∣∣2 . (16)

The maximum entropy procedure with n = 2 tries to represent
the whole distribution from an unique ellipsoidal distribution.
Thus, odd-order moments and even-order moments higher than
four are not fitted. The resulting fitting error χ2 = 83.93 is not
acceptable. Let us point out, however, that more than the value χ2
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itself, which is more significant is the increase or decrease in this
quantity, since it may become distorted because over or under-
estimating observational errors, or undesired error distribution.
The approach with n = 4 by using up to sixth moments gives
a clearly improved result χ2 = 1.05. A symmetric distribution
around the plane W = 0 is also quite admissible, with χ2 = 2.85,
which is the same order as the previous error. The approach with
n = 6 is also computed by fitting up to the tenth moments, which
gives a very accurate fit, χ2 = 0.02, even with symmetry around
the plane W = 0, χ2 = 0.62. The contour plots of the veloc-
ity distribution on each velocity plane are displayed in Fig. 1,
as well as the bell-shaped sections of the density function in
each velocity component. The coordinate system is centred in
the mean velocity of the sample (−10.83,−20.47,−7.32) km s−1,
referring to the Sun.

In a second example, the method is applied to Sample II,
drawn from the GCS catalogue (Nordtröm et al. 2004; Holmberg
et al. 2007). It has new and more accurate radial velocity data
than the HIPPARCOS sample and contains the total velocity
space of 13 240 F and G dwarf stars, which are considered the
favourite tracer populations of the history of the disc. According
to the authors, the main essential features of the sample are the
lack of kinematic selection bias and the radial velocity data,
which allowed to reject stars that have not taken part in the evo-
lution of the local disc. The same cartesian heliocentric coordi-
nate system is used. For this sample, according to the analysis in
Paper II, the moments are computationally stable for all the ve-
locity components in the range 400 ≤ |V| ≤ 500 km s−1. The lim-
itation up to an absolute velocity space of 500 km s−1 excludes
five stars. The halo component is present in the total sample in
a fraction less than 0.5%. Therefore, for practical purposes, this
sample may also be considered as unbounded. The results and
the graphs are similar to those of Sample I.

In the next section we confirm that the GCS sample pro-
vides more accurate moments of the disc velocity distribution
than HIPPARCOS’ due to its more precise radial velocities.
In Table 1, centred and non-centred velocity moments up to or-
der four are listed for the GCS Sample II, along with their stan-
dard errors. These are moments for a mixture of thin disc (94%),
tick disc (5.5%), and halo (0.5%), as discussed in Paper II. They
allow some measures of spread and asymmetry of the distribu-
tion in the desired variables to be computed, as the non null
skewness in the rotation velocity V , γV = μ030 μ020

− 3
2 = −3 ±

0.5 (in the Greek indices notation), which is zero in the other
components. The moments also lead to a non-significant cur-
tosis in the vertical velocity W, cW = μ004 μ002

−2 − 3 = 34 ±
40, or the non-vanishing vertex deviation on the UV plane δ =
1
2 arctan[2μ110 (μ200 − μ020)−1] = 11.3◦ ± 2.3.

Therefore, the main features of the maximum entropy dis-
tribution for Samples I and II, which show a reasonable devia-
tion from an ellipsoidal distribution, may be easily deduced from
Fig. 1, either for n = 4 or n = 6. The main features are:

(i) the velocity distribution is not symmetric around the mean,
mainly in the rotation direction;

(ii) the whole distribution has a clear vertex deviation on the
plane UV and no deviation on other planes;

(iii) there is some skewness in the variable V . As a consequence
of both previous situations there is a wider distribution wing
towards lower U and V velocities, which is likely caused by
thick disc stars;

(iv) the curtosis in the W variable vanishes and is zero or very
small in the U velocity (see Table 3);

(v) the plane W = 0 is basically a symmetry plane.

Table 1. Centred moments μαβγ and non-centred moments mαβγ with
their standard errors up to fourth order for the GCS Sample II.

αβγ μαβγ Δμαβγ mαβγ Δmαβγ

100 0.00 ±0.30 –9.97 ±0.30
010 0.00 0.22 –18.59 0.22
001 0.00 0.16 –7.16 0.16

200 1205.49 ±30.08 1304.84 ±30.94
110 114.33 20.02 299.63 22.96
020 657.33 28.67 1002.95 34.28
101 –28.26 11.81 43.09 12.32
011 14.09 10.97 147.17 12.65
002 332.93 17.33 384.17 17.82

300 –5410.36 ±6929.41 –42 446.74 ±7693.93
210 –29 820.51 4514.01 –56 357.61 5178.37
120 –1883.35 3918.62 –16 130.85 4722.18
030 –50 726.61 6922.64 –93 813.02 8810.45
201 –1529.39 2007.04 –10 306.27 2143.30
111 1567.29 1482.29 –192.55 1670.70
021 –1486.53 2027.51 –9189.67 2515.32
102 –2581.18 2450.85 –6005.75 2637.40
012 –9440.44 1724.77 –16 784.25 2090.32
003 –5661.87 5733.57 –13 178.21 6024.02

400 13 430 320.65 ±2 125 166.40 14 374 454.53 ±2 291 035.07
310 1 460 621.61 1 270 588.16 3 175 498.30 1 469 075.82
220 5 317 165.76 948 783.69 7 064 506.56 1 153 512.90
130 322 235.30 930 673.62 1 480 869.49 1 171 917.48
040 11 308 141.98 1 962 964.12 16 562 919.85 2 562 819.68
301 –1 192 280.95 478081.09 –851 132.23 485 712.04
211 62 741.79 322 480.47 454 274.09 354 935.98
121 –315 560.92 289 850.40 –248 097.44 344 247.93
031 234 834.16 517 841.17 1 003 877.53 647 019.02
202 1 845 208.39 421 200.10 2 010 427.12 459 870.47
112 315 298.09 262 885.04 506 475.65 323 652.27
022 1 593 831.34 251 847.69 2 140 083.38 327 148.87
103 139 487.68 845 660.69 321 923.19 926 678.48
013 492 111.63 552 721.46 941 999.67 688 288.39
004 4 084 082.40 2 190 306.74 4 351 176.92 2 325 987.63

The resulting density function, according to the most significant
polynomial coefficients, can be expressed as a product of two
exponential functions in the form

f = ϕ1(Q) ϕ2(h) (17)

where Q is a quadratic negative-definite form, which gives the
background ellipsoidal shape of the distribution, with axis ra-
tios 1:0.7:0.5, symmetry plane W = 0, as expected for disc stellar
samples, and overall vertex deviation in the UV velocity compo-
nents of about 12◦. The function ϕ2(h) can be expressed in terms
of the angular momentum integral h, and may be interpreted as
a perturbation factor. It is even and is at least quadratic in the
V velocity alone, which accounts for the skewness and the shift
in the ellipsoidal isocontours in terms of the rotation velocity.

The bulk of the local velocity distribution does not show any
substructure reflecting the existing moving groups, even by asso-
ciating these moving groups with different proxy Gaussian com-
ponents (Bovy et al. 2009). Then, it results in a smooth back-
ground distribution. However, by selecting specific subsamples
by colour, or by using different analysis techniques where the
resolution scale may vary, the substructures of the velocity dis-
tribution arise. We discuss it in the next section.
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Fig. 2. Contour plots of the velocity distribution for Sample III, from the HIPPARCOS catalogue, for stars with |V | ≤ 51 km s−1. The peculiar
velocities are centred on the heliocentric mean velocity (−7.49,−11.25,−6.41) km s−1. The approach n = 4 uses moments up to sixth order, and
n = 6 up to tenth order. The asymmetry of the velocity distribution, mainly on the UV plane, may be sufficiently described in the case n = 6.

The next two examples are used for two new purposes: first,
to test the ability of the maximum entropy method in recon-
structing a truncated velocity distribution associated with a ve-
locity bounded sample; second, to try a magnifying glass effect
over the distribution and to focus on a specific velocity domain.
According to Paper I, the selection of local stars with an abso-
lute value of the total space motion |V| ≤ 51 km s−1 had left the
older disc stars aside, which are the originators of an important
softening of the distribution. Such a selected group of stars con-
tained a complex mixture of early-type and young disc stars for
which a Gaussian mixture approach was unreliable because of
the large fitting errors. This small-scale structure of the veloc-
ity distribution was strongly asymmetric in comparison to the
background distribution. It was also observed in other analyses
of the solar neighbourhood (e.g. Famaey et al. 2005; Soubiran &
Girard 2005).

Sample III is then composed of 10 195 stars from the
HIPPARCOS Sample I, with |V| ≤ 51 km s−1. The maximum en-
tropy approach for n = 2 gives a fitting error χ2 = 0.66, accord-
ing to Eq. (16). Although it could seem a very low value com-
pared to previous samples, we might bear in mind that Samples I
and II contain stars with higher velocity than Sample III, which
increases the uncertainty of the computed moments. Because of
this, the fitting errors for Sample III are expected to be much
smaller. Once again, we must pay attention to the variation in χ2.

For n = 4, the approach is able to provide a more real-
istic, non-ellipsoidal map of the truncated distribution by fit-
ting moments up to sixth order. In this case the fitting error is
χ2 = 0.12. Nevertheless, for n = 6, the maximum entropy ap-
proach gives a much improved portrait by fitting up to tenth mo-
ments. The fitting error χ2 = 0.008 is about 102 times lower
than the ellipsoidal approach. The contour plots of the velocity
distribution on each velocity plane are displayed in Fig. 2. The

coordinate system is centred in the heliocentric mean velocity
(−7.49,−11.25,−6.41) km s−1.

Finally, Sample IV is drawn from the GCS catalogue by se-
lecting 9733 stars with absolute velocity lower than 51 km s−1.
As in the above example, the approaches with n = 2 (χ2 = 1.09)
and n = 4 (χ2 = 0.29) are not able to provide a realistic map
of the truncated distribution. However, for n = 6, with a fitting
error χ2 = 0.002, more than 102 lower than the case n = 4, the
maximum entropy approach gives a detailed portrait of actual
asymmetries, in particular on the UV plane. The contour plots
of the velocity distribution on each velocity plane are displayed
in Fig. 3. The coordinate system is centred in the mean heliocen-
tric velocity (−6.12,−11.23,−6.18) km s−1. In Table 2, centred
and non-centred velocity moments up to fourth order are listed
as well with their standard errors. The skewness in the rotation
velocity V is small, γV = 0.23 ± 0.03, but non-zero, being sim-
ilar in the U direction. The curtosis in the vertical velocity W,
cW = 0.7 ± 0.3, is also very low. The vertex deviation on the
UV plane is δ = 8.7◦ ± 0.6. Although it is caused by both sub-
jacent structures, it is nearly the same as the one obtained in
Paper II for the thin disc component. The results are summarised
in Table 3.

The improvement of the GCS catalogue over the
HIPPARCOS catalogue, mainly for the bounded sample,
provides a higher resolution contour plot of the velocity distri-
bution, which in addition to describing a velocity distribution far
from the ellipsoidal hypothesis, shows a clear bimodal structure,
as displayed in Fig. 4.

The results are consistent with the contour plots obtained
by Dehnen (1998) when inferring the velocity distribution of
his total sample (AL), in particular for the innermost dark con-
tour. Also, the shape of the velocity distribution for early-type
stars (Skuljan et al. 1999) is similar to ours, which is now
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Fig. 3. Contour plots of the velocity distribution for Sample IV, from the GCS catalogue, with |V | ≤ 51 km s−1. The peculiar velocities are centred
on the heliocentric mean velocity (−6.12,−11.23,−6.18) km s−1. The strong asymmetry of the velocity distribution, mainly on the UV plane, may
only be described in the case n = 6, by fitting moments up to tenth order.

derived only from velocity moments. By using the GCS cata-
logue, Famaey et al. (2007) describe a similar small-scale struc-
ture of local stars; however, the entropy approach provides the
smoothest density function that is also consistent with the data.
In Figs. 3 and 4, two regions with higher probability densities are
clearly identified, even using a large sample containing most of
the thin disc with 9733 stars. The highest peak is placed around
the Hyades-Pleiades moving groups, and the lower peak around
the Sirius-UMa stream. However, our method works in the oppo-
site direction of methods based on an arbitrary number of mix-
ture components, or on wavelet transforms on arbitrary smaller
scales. As Bovy et al. (2009) point out, adding a new compo-
nent could substantially increase the goodness of the fit over the
model with less complexity, while still being far from the truth.
Similarly, Dehnen (1998) points out that structures on scales of
a few km s−1 are likely to be spurious. On the contrary, the maxi-
mum entropy approach is a technique for computing the simplest
and smoothest approach to the distribution function that fulfils
the provided set of moment constraints. For a good estimation,
the only requirement is that the sample is bell-shaped enough
and the moments have enough accuracy. The method tends to
smoothing all the statistical fluctuations of the sample, since the
moments are obviously means. However, as shown in the above
examples and in the next sections, if more complexity or resolu-
tion is desirable, either a larger set of constraints must be taken
into account or specific subsamples must be selected.

3.1. Analysis of samples

In the preceding sections, the method has been applied to four
case examples to show how the fitting of the distribution func-
tion is getting more informative depending on the degree of
the polynomial Pn and on the complexity of the sample. We

now discuss some aspects of the results and samples. Samples I
and II were chosen because they contain the maximum number
of available stars with known velocity space, so that the veloc-
ity moments have minimum sampling variances. The main goal
was to build the largest samples with stable velocity moments.
However, these samples contain data with great uncertainty that
could hamper the fitting of the distribution function.

The main source of data error, a matter of consequence for
the HIPPARCOS sample, is the radial velocity, which is mostly
measured from high proper motion stars. This may introduce a
kinematical bias into the sample (Binney et al. 1997), although
Skuljan et al. (1999) proved that the kinematic bias does not sig-
nificantly affect the core of the disc distribution. Therefore, the
description of disc kinematics from star velocities lower than
|V| ≈ 75 km s−1 should not reflect such a bias. To see how the
error in the radial velocity could change the shape of the dis-
tribution function, and in particular the computed velocity mo-
ments, we select some new samples (Sample I’ and Sample II’)
with radial velocity errors up to 2.5 km s−1, a similar value to the
mean observational error (Figueras et al. 1997). Sample I’ from
the HIPPARCOS catalogue now contains 9534 stars (70% of
Sample I) and Sample II’ from the GCS catalogue contains
11 514 stars (87% of Sample II). Clearly the GCS catalogue has
stars with more accurate radial velocities. The velocity moments
of Sample I’ correspond now to a colder sample, with similar
standard errors despite the small size of the sample. The diag-
onal second central moments are (1310.09 ± 45.20, 951.40 ±
60.85, 345.39 ± 16.85) instead of (1431.46 ± 45.23, 1073.89 ±
54.95, 372.73 ± 16.25) of Sample I. The velocity moments of
Sample II’ are not significantly changed and also have simi-
lar standard errors. Now, the diagonal second central moments
are (1236.14 ± 31.60, 681.60 ± 31.59, 344.70 ± 19.60) com-
pared to (1205.49 ± 30.08, 657.33 ± 28.67, 332.93 ± 17.33) of
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Fig. 4. Density functions on the plane UV for the HIPPARCOS Sample III (left) and the GCS Sample IV (right). The plots show a bimodal
structure around the Hyades stream (highest peak) and the Sirius-UMa stream (lowest peak) for a distribution far from the ellipsoidal hypothesis.

Table 2. Centred and non-centred moments with their standard errors
up to fourth order for the GCS Sample IV.

αβγ μαβγ Δμαβγ mαβγ Δmαβγ

100 0.00 ±0.22 –6.12 ±0.22
010 0.00 0.14 –11.23 0.14
001 0.00 0.13 –6.18 0.13
200 462.82 ±5.41 500.27 5.56
110 41.10 2.75 109.85 3.82
020 199.40 2.87 325.63 3.95
101 –5.00 2.53 32.82 2.81
011 –1.72 1.90 67.71 2.35
002 153.41 2.55 191.61 2.92
300 2173.59 ±157.78 –6551.81 ±276.03
210 –145.28 70.79 –6268.73 109.93
120 530.94 53.23 –2385.18 97.37
030 638.37 79.37 –7500.56 158.75
201 330.59 20.62 –2700.19 82.60
111 131.81 34.76 –480.42 47.48
021 96.46 40.55 –1877.37 64.93
102 337.15 46.93 –773.54 62.06
012 308.20 37.83 –1823.19 53.07
003 142.89 65.05 –2937.69 110.67
400 499 489.15 ±10 136.14 551 669.32 ±9932.67
310 34 551.28 3316.06 115 444.19 4479.28
220 75 113.83 1635.32 153 794.57 2498.65
130 6595.67 1901.12 50 161.86 3041.40
040 119 660.84 4596.79 257 920.40 6223.25
301 –1064.18 2965.11 32 799.70 3070.77
211 –299.90 1022.52 32 365.54 1356.19
121 –102.22 838.49 10 219.59 1199.62
031 3803.90 1762.48 46 257.99 2182.27
202 62 272.91 1472.05 78 158.49 1552.90
112 2098.65 788.56 8713.72 991.04
022 35 099.21 1149.57 58 305.32 1340.04
103 1025.32 1640.64 12 177.32 1815.65
013 –1390.25 1394.34 25702.11 1649.39
004 86 642.60 3447.49 119 730.52 4100.98

Sample II. The same criterion is applied to the bounded sam-
ples. Sample III’ is 71% of Sample III, while Sample IV’ is 86%
of Sample IV. In these cases the velocity moments and their
standard errors do not change at all. Although the respective
fractions are similar to those in the previous samples, the mo-
ments remain stable, which confirms that the kinematic bias is

associated with higher velocity stars. In all the cases a similar
shape of the velocity distribution is obtained as well as a slightly
improvement of the χ2 fitting error (in particular for the complete
Samples I’ and II’ with n = 4).

Another issue to clarify is the cut |V| ≤ 51 km s−1 for the
bounded Samples III and IV. The main reason to choose them is
the discontinuity noticed in Paper I, which has also been borne
out in Paper II for the GCS sample. The recurrent segregation
method used in these works (MEMPHIS algorithm) analysed the
variations of two parameters accounting for a mixture approach:
the entropy of the partition and the fitting error. By increasing
a sampling parameter, in that case the absolute star velocity, the
first significative discontinuity of those parameters took place
at 51 km s−1. After this value the method was able to segregate
thin and thick discs with a decreasing fitting error. Therefore,
this is not an astronomical reason but a statistical fact. We can
now investigate the astronomical facts. Since the GCS samples
have more accurate velocities, the analysis is centred in this cata-
logue. In Fig. 5 the graphs show how the stars are distributed into
populations in terms of absolute velocity, eccentricity, metallic-
ity, and colour. According to Paper II, the three bands of the
vertical axis represent the expected value of a star to belong to
any Galactic component (thin disc in the bottom, thick disc in
the middle and halo at the top). Except for the eccentricity plot,
the blue dots correspond to stars with |V| ≤ 51 km s−1, which
clearly belong to the thin disc. This is also true for eccentricities,
but now the blue dots correspond to stars with |zmax| ≤ 0.5 kpc.
In the |V| plot we see that a large fraction of thin disc stars are
still beyond 51 km s−1. They are mixed with thick disc stars, es-
pecially from 65 km s−1 onward. From the eccentricity plot we
deduce that thin disc stars are below 0.3, as discussed in Paper II,
but beyond 0.1 they are increasingly mixed with the thick disc.
However, when the condition |zmax| ≤ 0.5 is applied, no thick disc
or halo stars are included for eccentricities below ≈0.3. On the
other hand, it is well known that the metallicity is appropriate
for distinguishing the halo from the disc, [Fe/H] ≤ −0.5, but
not between thin and thick discs. For the Strömgren photom-
etry, the b − y colour is spread along the three main popula-
tions. Most of the thin disc stars of the sample may be found
at any index between 0.2 and 0.6, with mode 0.3, while the thick
disc has mode 0.4 and the halo 0.5, with slightly narrower dis-
tributions. Similarly, for the maximum height over the Galactic
plane, |zmax| (not shown), thin and thick disc stars are also mixed
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Table 3. Distribution parameters for HIPPARCOS and GCS samples with radial velocity errors up to 2.5 km s−1 (Samples I’, II’, III’, and IV’)† .

Sample σU σV σW δ [◦] cU cV cW γU γV γW

HIP total 36.2 ± 0.6 30.8 ± 1.0 18.6 ± 0.5 7.6 ± 6.6 9.3 ± 4.0 37.0 ± 13.9 20.7 ± 14.8 0.2 ± 0.2 –4.5 ± 0.8 –0.9 ± 0.5
|V| ≤ 51 19.9 ± 0.1 13.2 ± 0.1 10.7 ± 0.1 12.3 ± 0.8 –0.4 ± 0.1 0.1 ± 0.3 1.5 ± 0.5 0.3 ± 0.0 0.2 ± 0.0 0.2 ± 0.1

GCS total 35.2 ± 0.4 26.1 ± 0.6 18.6 ± 0.5 10.7 ± 2.4 5.5 ± 2.8 22.7 ± 9.3 35.2 ± 42.4 –0.1 ± 0.2 –3.1 ± 0.5 –0.9 ± 1.0
|V| ≤ 51 21.5 ± 0.1 14.1 ± 0.1 12.4 ± 0.1 8.7 ± 0.6 –0.7 ± 0.1 0.0 ± 0.2 0.7 ± 0.3 0.2 ± 0.0 0.2 ± 0.0 0.1 ± 0.0
e ≤ 0.3 29.1 ± 0.2 18.1 ± 0.1 11.6 ± 0.1 9.6 ± 0.6 0.2 ± 0.2 0.4 ± 0.2 –0.4 ± 0.1 0.1 ± 0.0 –0.3 ± 0.0 0.0 ± 0.0

Notes. (†) The last sample contains representative thin disc stars, obtained from eccentricities e ≤ 0.3 and |zmax| ≤ 0.5 kpc. The displayed parameters
are dispersions σU , σV , σW , vertex deviation δ on the UV-plane, curtosis cU , cV , cW , and skewness γU , γV , γW .

Fig. 5. Distribution of GCS sample stars into populations in terms of absolute velocity, eccentricity, metallicity, and colour. The blue dots indicate
stars with |V| ≤ 51 km s−1, except for the eccentricity plot, which are for stars with |zmax| ≤ 0.5 kpc.

in the interval |zmax| < 1 kpc, but, like metallicity, the halo can
be segregated.

In Fig. 6 the distributions obtained from the current method
with n = 6 are plotted in terms of metallicity and colour on the
three velocity planes for subsamples with |V| ≤ 51 km s−1. All
of them reproduce the bimodal structure of Fig. 3 with n = 6,
except metalicities in the range 0 ≤ [Fe/H] < 0.5 and colours
with 0.205 ≤ b − y < 0.300, which correspond to the earliest
F dwarfs of the thin disc, with negative radial mean velocity.
However, such a bimodal shape comes from the velocity cut. For
the whole CGS sample, the distributions for different metalicities
and colours are similar to the deformed velocity ellipsoid of the
whole sample, as shown in Fig. 7, though with a slightly different
mean, depending on the colour and metallicity range.

3.2. Smaller scale

It is however possible to obtain a more detailed shape for the
velocity distribution for specific subsamples, allowing compar-
ison of the results of our approach with the small-scale struc-
ture sustained by moving groups as described by other au-
thors. By selecting samples with bounded peculiar velocity,
such as |u| ≤ 7.5 km s−1 (256 stars), 10 km s−1 (498 stars),
or 20 km s−1 (2817 stars), a more complex structure is manifest

on the UV plane, but also in the vertical direction. The shape of
the distribution becomes softer while increasing the size of the
sample. Because of this, the substructure of thin disc subsam-
ples with less stars become statistical fluctuations within larger
subsamples, up to describing a sufficiently complete distribu-
tion of the thin disc. Thus the clue is to find a clean and rep-
resentative thin disc sample. The cut |V| ≤ 51 km s−1 there-
fore seems to be a good value that includes most of thin disc
stars and excludes thick disc stars, but it is still far from being
a complete thin disc sample. Samples selected from small pe-
culiar velocities have some limitations. On one hand, they con-
tain few stars, so that their distribution may not be bell-shaped
enough. Furthermore, their moments have greater uncertainties.
On the other hand, the boundary of the distribution is fixed by
the velocity limit of the sample, which may cut down some
well-defined structures. Fortunately, there is a way to avoid this
problem. In Papers I and II, consecutive stellar populations were
merged to nested subsamples in terms of several sampling pa-
rameters: maximum absolute velocity, peculiar velocity, verti-
cal velocity, etc. Optimal values of these sampling parameters
allowed the segregation of these populations. For the complete
GCS sample, once the stars are classified according to the prob-
ability of belonging to any of the local Galactic components
(Paper II), a highly significative correlation is obtained between
the expected population of a star and its absolute velocity |V|.
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Fig. 6. Contour plots of the velocity distribution for stars from the GCS catalogue with |V| ≤ 51 km s−1, obtained for n = 6 in terms of metallicity
and colour. The axes are labelled according to heliocentric velocities.

The expected value is similarly highly correlated with the planar
eccentricity, and also correlated with rotation velocity, |zmax| and
metallicity. The colour is few correlated with the expected pop-
ulation and the other preceding properties. Therefore significant
partial correlations between couples of the former star properties
exist. However, when the sample is bounded to |V| ≤ 51 km s−1,

by leaving aside thick disc and halo stars, the only significant
partial correlation that is maintained is the absolute velocity and
the eccentricity, as well as the expected population with them.
That means that the other properties are only relevant for seg-
regating thick-disc or halo stars, but are not useful within the
very thin disc. As discussed in Paper II, the sampling parameter
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Fig. 7. Contour plots of the velocity distribution for stars from the total GCS catalogue, obtained from the entropy approach with n = 6, in terms
of metallicity and colour.

is related to the isolating integrals of the star motion. Both the
absolute velocity and the eccentricity satisfy this requirement.
The former is less discriminant, but is a direct measure from
the star. The latter is more discriminant, but requires computing
the orbital parameters, with the need of additional hypothesis
on the potential, symmetries, stationarity, mean motion, solar

position, etc. Therefore, it is possible to use the eccentricity
not for segregating populations, as e.g., Pauli et al. (2005) or
Vidojević & Ninković (2009), but as an improved sampling pa-
rameter to select subsamples.

For samples with maximum eccentricities 0.01 (220 stars),
0.02 (591 stars), 0.03 (1058 stars), 0.05 (2465 stars), 0.1
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Fig. 8. Series of contour plots and distributions on the UV plane for GCS subsamples selected from |zmax| < 0.5 kpc and eccentricities up to 0.01,
0.02, 0.03, 0.05, 0.1, 0.15, 0.2 and 0.3. The origin is at the Solar velocity.

(7095 stars), 0.15 (9545 stars), 0.2 (10 903 stars), and 0.3
(11 826 stars), with the additional condition |zmax| < 0.5 kpc to
avoid contamination from stars not belonging to the thin disc,
the maximum entropy approach provides the series of plots in
Fig. 8. Both previous limitations introduced by the peculiar ve-
locity boundary have disappeared. For example, the structure de-
scribed by the plot |u| ≤ 10 km s−1 with 498 stars is now more
completely described from the plot with maximum eccentric-
ity 0.05 with 2465 stars. Similarly, the shape of the distribution
is no longer forced by the sampling parameter. The eccentricity

then behaves as a very good sampling parameter that allows us to
distinguish between different eccentricity layers within the thin
disc and enables us to visualise the structure below each layer.
In the lower layers, with maximum eccentricities 0.01 and 0.02,
the velocity distribution shows a hole around the local standard
of rest (LSR), taken as (−10., −5.23, 7.17) km s−1 (Dehnen &
Binney 1998), which is the mean of the distribution. Those low-
est eccentricity stars are moving around the LSR and have veloc-
ities distributed on a ring with some peaks around the LSR. The
radial velocities are symmetrically grouped into two main bulks
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at each side of the LSR. This behaviour is maintained up to ec-
centricity e = 0.03, where the LSR hole begins to be filled by
the group of stars corresponding to the Coma Berenices moving
group, nearly at the same LSR velocity. In addition, three stellar
groups around the LSR conform the basic structure: NGC 1901,
a group that can be part of the middle branch (Skuljan et al.
1999), and a part of the Pleiades group. The structure is the
same as described by Bovy et al. (2009) and by previous works
of Dehnen (1998), Skuljan et al. (1999), Famaey et al. (2005,
2008), with the greatest peak in NGC 1901.

For e = 0.05 the structure is maintained and enlarged. It in-
corporates a new group of stars also associated with the middle
branch, which is not referred to as a moving group by Bovy et al.
(2009), but is the centre of their Gaussian component with the
largest weight. In the range of eccentricities from 0.05 to 0.1,
the small previous structures are diluted in a background distri-
bution, and only the Pleiades group remains. The main weight
of the distribution is now in the stars around the Hyades group.
A stellar group around the Sirius/UMa stream arises at positive
radial velocities. For e = 0.15, that is, approximately the higher
eccentricity before appearing thick disc stars, the distribution is
divided into about half: one bulk with negative radial and rota-
tion mean velocities with respect to the LSR, which contain the
main groups Hyades and Pleiades; and another one with posi-
tive values around Sirius and UMa stream. For higher eccentric-
ities, the distribution becomes similar to the one corresponding
to the thin disc. In particular, for e = 0.3, with a fraction of 90%
of the whole sample, we get a distribution similar to the thin
disc of Paper II (obtained by two different methods: MEMPHIS
algorithm and the method of Galactic orbits), with dispersions
and vertex deviation (σU , σV , σW ; δ) = (29.1 ± 0.2, 18.1 ± 0.1,
11.6 ± 0.1; 10◦ ± 1).

Thus, for eccentricities below 0.15, there is a general trend in
the radial direction: the main weight of the distribution is sym-
metrically placed around the LSR. Thus, the velocity distribu-
tion of the thin disc is supported by two major stellar groups
with opposite radial velocities around the LSR, with a dearth of
stars at the LSR. One bulk, with positive radial velocity, has a
mean velocity similar to the Sun or slightly higher, with a lower
peak but a wider distribution. The other one, with radial veloc-
ity ≈ − 30 km s−1, has a mean rotation ≈ − 20 km s−1 and a
higher peak. This behaviour is definitively broken for eccentric-
ities e ≥ 0.2.

4. Discussion

The situation described in the preceding section, where the star
velocities are distributed for low eccentricities along the U di-
rection with a local minimum at the LSR velocity, may have a
simple explanation: a mixture of stars with a discrete number of
radial oscillation periods. In the special case of a nearly planar
orbit, where the planar eccentricity is low enough that the am-
plitude of the vertical motion becomes independent of the radial
motion, the motion of a star can be studied as a case of epicyclic
orbit. Let us remember that, if a nearly planar orbit is projected
onto the Galactic plane, its distance to the Galactic centre oscil-
lates between two limiting values Rp and Ra. The planar eccen-
tricity e is then defined as

e =
Ra − Rp

Ra + Rp
, (18)

which is a dimensionless measure of the deviation from the cir-
cular motion in the plane of symmetry.

The orbits in the Galactic disc are nearly planar, and their
planar eccentricities may be significantly different from zero
(Vidojević & Ninković 2009). Thus, the epicyclic approxima-
tion can be used for the current disc sample (Paper II). It is com-
monly assumed that moving groups of young stars are born in
nearly circular orbits (e.g. Dehnen 1998) and, with age, they are
transformed into more eccentric orbits, which oscillate locally
around the LSR (assumed to be in circular motion, ULSR = 0,
for steady state and axisymmetric systems). Thus, the radial ve-
locity of a star oscillating around the LSR with a period T may
be written as

U = a sin
2πt
T
, (19)

where the amplitude is proportional to the eccentricity, a =
2π
T (Ra + Rp) e. If the time t is measured in oscillation periods,

we may assume T = 1.
For a sufficiently great t, e.g., taking several periods, we

may also assume that t is uniformly distributed within the in-
terval [0, 1], so that its probability density function is ft(t) = 1,
t ∈ [0, 1], and zero otherwise. We may ask for the distribution
of U around the LSR velocity, that is, for the probability of
finding a star velocity at any given value within [−a, a]. Since
t(U) = 1

2π arcsin( U
a ), and this is a two-valued function, the prob-

ability density function fU (U; a), for a given amplitude a, is eas-
ily obtained as 2 ft(t) |t′(U)|. Thus,

fU (U; a) =
1
π

1√
a2 − U2

, U ∈ [−a, a], (20)

and zero out of this interval. As seen in Fig. 21b, for an arbitrary
value a = 1, it is less probable to find the star with nearly zero
velocity, which means near the extreme positions Rp or Ra, than
around the mean position (Rp + Ra)/2 with maximum absolute
velocity, either negative by going toward the Galactic centre or
positive toward the anticentre.

We may think of a mixture of stars with the same oscillation
period and different eccentricities, from zero eccentricity and
amplitude, a = 0, up to greater amplitudes, say a = A. Let us
assume a normalised density function ρ(a) of stars in terms of
the amplitude a. Then the cumulative density function hU(U; A)
is obtained by integration over a as

hU(U; A) =
∫ A

0
fU(U; a) ρ(a) da. (21)

Depending on how the stars are distributed in terms of the am-
plitude, we may get different symmetric distributions around
the LSR. For a fixed period T , this depends on the distribu-
tion of eccentricity. The distribution of eccentricity is approxi-
mately lognormal, similar to the distribution of wealth in a coun-
try, as shown in Fig. 9 from the histogram for the GCS sample,
where the interval [0, 1] of eccentricities is divided into 50 bins
on the x-axis (x = 50 e is approximately lognormal with m =
1.75 and σ = 0.5).

To find out the shape of hU(U; A) for a group of stars with
the same period, several simulations are carried out for arbitrary
values of the amplitude, by assuming ρ(a) lognormal. Bimodal
distributions around the origin (LSR) are always obtained, like
the plots (c), (d), and (e) of Fig. 10. The mathematical reason is
that the lognormal distribution vanishes in a neighbourhood of
zero. (It is tangent to zero at the origin.) However, the wider the
distribution wing, the less significant the bimodality, since the
behaviour for low amplitudes becomes a smaller structure when
larger amplitudes are considered. The distribution tends to be
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Fig. 9. Distribution of eccentricities for the GCS sample. The proba-
bility density function obtained from the histogram is approximately
lognormal. In the x-axis, the interval [0, 1] of eccentricities is divided
into 50 bins. The variable x = 50 e is lognormal with m = 1.75 and
σ = 0.5 (red dashed line).

Gaussian. In the case of a discrete mixture of stars with differ-
ent periods, we should get a mixture of densities hU(U; A) with
similar properties, which could explain the radial velocity shape
obtained for the inner thin disc. However, for a continuous mix-
ture of populations in terms of oscillation periods, the bimodal
structure may be irrelevant. For example, apart from statistical
fluctuations, as increasing T , the density function ρ(a) may be-
come more populated around zero, so that it is no longer tangent
to zero at the origin of amplitudes. Then, a high-peaked hU(U; A)
may be obtained at the origin, for low values of A. In general,
if in a neighbourhood of the origin, ρ(a) behaves as ap, with
0 < p ≤ 1 we then get smooth unimodal distributions centred at
the origin. On the other hand, it is easy to prove that, if the ra-
dial velocity does not oscillate symmetrically around the LSR
meaning a slight deviation from the epicyclic approximation,
the peaks of hU(U; A) become non-symmetric around the LSR.
Therefore, these simple simulations reproduce the actual situa-
tion for low eccentricities approximately.

As a result, the thin disc contain two major streams mov-
ing with opposite radial directions around the LSR, one with
small positive radial mean velocity and rotation similar to the
Sun, and the other with negative radial mean velocity and lower
rotation. For each subsystem, we could assume some less re-
strictive hypotheses, such as point-axial symmetry (opposite
points through an axis, allowing, in particular, spiral struc-
tures) or a time-dependent model, in order to describe the
non-vanishing radial velocity of their centroids and the ver-
tex deviation of their approximate velocity ellipsoids. Thus,
a general Chandrasekhar point-axial model (Sanz-Subirana &
Català-Poch 1987; Juan-Zornoza et al. 1990, 1995) should be
the simplest approximation, where, despite the non-cylindrical
symmetry of the system, the solution of Chandrasekhar’s equa-
tions system yields an axisymmetric potential. In this case, it is
interesting to recall the relationship between the vertex deviation
and the radial mean velocity.

It is well known that the vertex deviation δ of a velocity el-
lipsoid depends on the second central moments in the form

tan(2δ) =
2μUV

μUU − μVV
· (22)

Thus, if μUU −μVV > 0, the angle δ and the moment μUV have the
same sign. As explained in Cubarsi & Alcobé (2006), the radial
mean velocity referred to an axisymmetric (cylindrical) system
can be related to the increment of rotation mean velocity with
respect to the same axisymmetric system and, in particular, to the
vertex deviation of the velocity ellipsoid, through the expression

U0 − U (cyl)
0 =

μUV

μVV
Θ0 (23)

where U0 is the radial mean velocity, U (cyl)
0 the radial mean ve-

locity of an ideal axisymmetric system (which is now associated
with the LSR), and Θ0 the galactocentric rotation mean velocity.
This is not a special situation, and recent studies of the shape of
velocity ellipsoids in spiral galaxies (Vorobyov & Theis 2008)
confirm that the magnitude of the vertex deviation is not corre-
lated with the gravitational potential (even though it is assumed
non-axisymmetric), but is strongly correlated with the spatial
gradients of the mean stellar velocities, in particular with the
radial gradient of the mean radial velocity.

Thus, according to Eq. (23), a velocity ellipsoid with a pos-
itive [negative] vertex deviation might be associated with a loss
of axisymmetry and with a radial motion towards [against] the
Galactic centre.

In Fig. 11 (left) the two major stellar groups with opposite
radial velocities around the LSR, which support the largest struc-
ture within the thin disc, are associated with two velocity ellip-
soids with similar total dispersions. The one moving toward the
Galactic centre, with radial and rotation galactocentric mean ve-
locities U0 = 15,Θ0 = 220, and the other one, toward the an-
ticentre, with mean motion U0 = −15, Θ0 = 200. The LSR is
placed in the middle of both ellipsoids in a similar situation to
the sample with maximum eccentricity 0.15. By assuming the
same mixture proportions n′ = n′′, the partial diagonal central
moments μ′ii = μ

′′
ii are obtained from totals and from their defer-

ential mean velocity u′i − u′′i , from the usual relationship

μii = n′μ′ii + n′′μ′′ii + n′n′′(u′i − u′′i )2; i = 1, 2, 3. (24)

The vertex deviation of each ellipsoid is obtained from Eq. (23).
The total moments are taken from the sample with maximum
eccentricity e = 0.3. The graph shows the partial ellipsoids uT ·
μ−1

2 ·u = 1, in blue, and the thin disc velocity ellipsoids uT ·μ−1
2 ·

u = 2, 3, in red. The ellipsoid with positive radial velocity has
a positive vertex deviation (although small), and the one with
negative radial peculiar velocity has negative vertex deviation
(also small). The shape of the thin disc, in particular its apparent
positive vertex deviation, is generated from the inner structure.
The green dashed partial ellipsoids represent a situation with the
opposite radial motions, so that, in such a case, the apparent total
vertex deviation should be negative. On the right, the contour
plots in the UV plane (in heliocentric velocities) for the samples
with maximum eccentricity e = 0.15 (blue) and e = 0.3 are
superposed. Simulated and actual plots are totally consistent.

5. Conclusions

Although successfully applied to a wide disparity of actual prob-
lems, the maximum entropy approach has rarely been used
to solve the classical moment problem of stellar kinematics.
Instead, a number of statistical techniques, maximum likelihood-
based multivariate sampling algorithms, wavelet-based algo-
rithms, among others, up to the present date had been proved
to be more appropriate than the moment method for accurately
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(a) ρ(a) = lognormal(0.1, 0.5) (b) fU(U; 1) (c) hU (U; 0.25) (d) hU (U; 1.25) (e) hU (U; 6)

x
0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

U
K2 K1 0 1 2

0.5

1.0

1.5

2.0

U
K0.4 K0.2 0 0.2 0.4

0.001

0.002

0.003

0.004

U
K2 K1 0 1 2

0.05

0.10

0.15

0.20

U
K6 K4 K2 0 2 4 6

0.1

0.2

0.3

Fig. 10. Simulated distribution of radial velocities for arbitrary values of the amplitude, by assuming the epicyclic approximation and ρ(a) log-
normal. Bimodal distributions around the origin (LSR) are obtained. a) Probability density function ρ(a), assumed to be lognormal (0.1, 0.5).
b) Probability density function fU (U; a) for amplitude a = 1. c) Cumulative density function hU (U; A) integrated up to A = 0.25. d) Cumulative
density function hU (U; A) integrated up to A = 1.25. e) Cumulative density function hU (U; A) integrated up to A = 6.
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Fig. 11. (Left) Velocity ellipsoids, in blue, depicted according to Eqs. (23) and (24), from total moments corresponding to the sample with ec-
centricities e ≤ 0.3. They are centred in galactocentric velocities Π0 = 15, Θ0 = 220, and Π0 = −15, Θ0 = 200, with the LSR placed in the
middle of them. Thin disc isocontours, in red, with positive vertex deviation, are generated from the inner structure. The green dashed partial
ellipsoids represent a situation with the opposite radial motions. (Right) Contour plots in the UV plane (heliocentric velocities) for the samples
with maximum eccentricity e = 0.15 (blue) and e = 0.3 (red).

describing the local stellar velocity distribution. The moment ap-
proach had two basic difficulties compared to other methods: the
low accuracy of available data and the complexity of the trivari-
ate model for estimating the parameters. Nowadays, with larger
and more precise stellar catalogues, it is possible to compute
a reasonable number of moments with sufficient accuracy. On
the other hand, the parameter estimation for a maximum entropy
function requires some complex computational procedures when
working from the minimum set of moment constraints. In con-
trast, if an extended set of moments is used, the current method
provides a linear estimation algorithm, so that a Gramian sys-
tem of equations leads to a fast and suitable estimation of the
smoothest velocity distribution that is consistent with the avail-
able constraints. It therefore tends to smooth all the statistical
fluctuations of the sample out, so that it is more appropriate to
study the velocity distribution of large stellar samples, instead of
particular moving groups. The estimation method is, however,
specific to bell-shaped distributions.

The resulting features of the local velocity distribution are
similar for the complete HIPPARCOS Sample I and GCS
Sample II, although, as expected, the latter provides more ac-
curate results due to the lower uncertainties of radial veloc-
ity measurements. The whole distribution shows a nearly con-
stant vertex deviation in the pseudo ellipsoidal level curves,
as well as a nearly constant axis ratio. According to the most
significant polynomial coefficients, the resulting density func-
tion can be expressed as the product of two exponential func-
tions in the form of Eq. (17). The background ellipsoidal shape
has axis ratios 1:0.7:0.5 and a symmetry plane W = 0. The

overall vertex deviation in the UV velocity components is ap-
proximately 11◦. Some characteristic parameters of the distribu-
tion are summarised in Table 3. The function ϕ2(h) may be inter-
preted as a perturbation factor, and is even and at least quadratic
in the V velocity alone. It accounts for the skewness and the shift
in the velocity ellipsoids in terms of the rotation velocity. This
is clearly visible on the UV and VW planes of Fig. 1, and may
be interpreted with regard to the heating of disc stars, which is
also correlated with a decreasing galactocentric rotation velocity,
as expected from Strömberg’s law. The resulting overall distri-
bution has zero curtosis in the W velocity, and, within 2σ level,
in the U component for the more accurate GCS sample.

On the other hand, the entropy method offers an excellent
estimation of the truncated velocity distributions of Samples III
and IV, which only contain thin disc stars. For these subsam-
ples, a Gaussian mixture approach was impossible in Paper I.
This method can therefore be used as an alternative way to study
multimodal distributions. For star velocities |V| ≤ 51 km s−1,
the tentative mixture (with a very large chi-squared fitting er-
ror) obtained in Paper I suggested a superposition of two en-
larged pseudo-ellipsoidal distributions, mainly along the radial
direction, with very overlapped wings, and a separation of 28 ±
9 km s−1 between means. For Sample IV, the separation of the
two peaks (the “U-anomaly”) along the radial direction may
now be straightforwardly estimated in 30−35 km s−1 from the
contour plots obtained from the moment constraints. Figures 2
and 3 show a strongly asymmetric velocity dispersion on the
plane UV , and nearly laminar isocontours of the W velocity
component along the radial direction. There is a large radial
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velocity dispersion on the UV plane, in the direction of the gravi-
tational gradient, and a very small dispersion in the direction per-
pendicular to the galactic plane. On the VW plane, the isotropy is
slightly recovered. However, the higher resolution contour plots
obtained from Sample IV allow more detailed analysis. A first
look at the UW plane of Fig. 3 (n = 6) shows a core distribu-
tion with negative radial peculiar velocity, while there is a clear
unimodal behaviour with positive peculiar rotation velocity on
the VW plane. However, those high-density regions of the distri-
bution are not simultaneous on the UV plane, but are associated
with different large stellar groups.

In addition to limited velocity distributions, other truncated
distributions were analysed in terms of metallicity, colour, max-
imum distance to the Galactic plane, and eccentricity. Those star
properties were correlated with the star’s expected population
obtained in Paper II. The only significant correlations that are
maintained within thin disc stars are the absolute velocity and
the eccentricity, since metallicity and |zmax| are more appropri-
ate for segregating thick disc and halo stars from the thin disc.
In particular, the eccentricity, which is directly related to the iso-
lating integrals of the star motion, is more discriminating than
the absolute velocity for selecting subsamples. However, a part
of thin and thick disc stars may have similar eccentricities. Then,
to isolate thin disc stars, it is necessary to combine two sam-
pling parameters: eccentricity and |zmax|. A representative thin
disc, containing 90% of the whole sample, is selected from max-
imum eccentricity 0.3 and |zmax| ≤ 0.5 kpc. Its central moments
are similar to the ones obtained for the thin disc in Paper II.
Furthermore, within the thin disc sample, the eccentricity be-
haves as an excellent sampling parameter that distinguishes be-
tween different eccentricity layers allowing subjacent structures
to be visualised.

For subsamples obtained from eccentricities e < 0.15, the
maximum entropy method is able to plot the classical moving
groups composing the small-scale structure of the velocity dis-
tribution, as described from other algorithms based on an ar-
bitrary number of mixture components, wavelet transforms, or
maximum likelihood (e.g., Famaey et al. 2008; Veltz et al. 2008;
Skuljan et al. 1999; Dehnen 1998), especially those providing
a modest amount of complexity (Bovy et al. 2009). For these
subsamples with small eccentricities, there is a general trend:
the star velocities are approximately symmetrically distributed
around the LSR in the radial direction. In most cases the distri-
bution is bimodal, with a dearth of stars at the LSR. At the end,
for e = 0.15, the core distribution of the thin disc is supported by
two major stellar groups with opposite radial velocities, referred
to the LSR. One bulk, with zero or small positive heliocentric
radial mean velocity, has a lower peak but a wider distribution
around Sirius/UMa stream. The other one, with radial velocity
about −30 km s−1, has mean rotation ≈− 20 km s−1 and a higher
peak, containing the main groups Hyades and Pleiades.

For stars with a similar period of oscillation around the LSR
in the radial direction (under the epicyclic approximation), sev-
eral simulations allow us to confirm that such a two-peaked dis-
tribution of radial velocities is due to a lognormal distribution
of the eccentricities. For a mixture of stars with different peri-
ods and a lognormal distribution of the velocity amplitude of the
stellar orbits, the bimodal shape is maintained. However, if the
number of stars with nearly vanishing amplitude increases, then
the radial velocity distribution becomes unimodal, similar to the
total thin disc sample with e ≤ 0.3.

The bimodal behaviour of the central disc associated with
the previous major subsystems may then be explained from two
different phenomena. On one hand, it may be a perturbation

similar to a pressure wave acting in part along the radial direc-
tion that induces an oscillation of the radial velocity around the
LSR. Let us remember that the oscillation of each subsystem
centroid along the U direction is also the expected motion of ax-
isymmetric systems under steady state potentials (e.g. Cubarsi
et al. 1990). On the other hand, both kinematical major groups,
which actually are placed at the solar position, are in opposite
oscillation states. In addition both groups have a difference of
about 20 km s−1 in rotation mean velocity, so that one group of
stars actually surpasses the other group. Therefore, the apparent
vertex deviation of the thin disc may stem from the swinging
of those major kinematic groups. A scenario of a continuously
changing orientation of the disc pseudo ellipsoid is then possi-
ble.

Appendix A

We need to write Pn in Eq. (15) by using a slightly different no-
tation, with Latin indices instead of Greek indices, so that each
term accounts for products of the same degree in the velocities.
Thus, by using hereafter Einstein’s summation criterion for re-
peated indices, we may write

Pn = λ0 + λiVi + λi jViV j + · · · + λi1...in Vi1 · · ·Vin . (25)

In the summation term corresponding to the kth-power of the
velocities we have

(
k+2

2

)
different coefficients, since the coeffi-

cients λi1...ik are symmetric; hence, up to the nth-power there are∑n
k=0

(
k+2

2

)
=
(

n+3
3

)
different coefficients. In addition, we use the

relationship

λαβγ =
k!

α!β!γ!
λ1 . . . 1︸︷︷︸

α

2 . . . 2︸︷︷︸
β

3 . . . 3︸︷︷︸
γ

, k = α + β + γ, (26)

which establishes the correspondence between the Greek and
Latin index notations for the coefficients of Pn. Some practi-
cal aspects of the maximum entropy distribution function may
still be pointed out. Under maximum entropy distributions, the
sample moments are maximum likelihood estimators of the pop-
ulation moments.

When n → ∞, Eq. (15) converges to the true distribution.
Then, if the velocity distribution is expressed as a power series
of the velocities, we have

f (t, r,V) = c0

⎛⎜⎜⎜⎜⎜⎜⎝1 +
∞∑

k=1

∑
α+β+γ=k

cαβγ(t, r)Vα
1 Vβ

2 Vγ
3

⎞⎟⎟⎟⎟⎟⎟⎠
= exp

⎛⎜⎜⎜⎜⎜⎜⎝
∞∑

k=0

∑
α+β+γ=k

λαβγ(t, r)Vα
1 Vβ

2 Vγ
3

⎞⎟⎟⎟⎟⎟⎟⎠ (27)

which is a similar relationship between generalised moments
cαβγ and cumulants λαβγ (Stuart & Ord 1987, p. 437), where
the coefficient c0 = exp(λ0) provides the normalisation of the
distribution3.

A maximum entropy distribution function can exhibit several
modes. In the trivariate case, if Eq. (15) is a polynomial of even
degree n, the distribution can exhibit (n/2)3 modes, since an uni-
variate exponential with a polynomial of degree n may have up to
n/2 modes. In general, it is necessary to estimate less number of
parameters for Eq. (15) than for a mixture of trivariate Gaussian
distributions accounting for the same number of modes.

3 When a similar relation holds for the characteristic functionΦ, which
is the Fourier transform of density function f , then the coefficients cαβγ
become proportional to the population moments mαβγ, and λαβγ become
proportional to the cumulants of the distribution καβγ, by a factor 1

α!β!γ! .
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A.1. Boundary conditions

We now study a quite general case for fitting a defined set of
velocity moments, up to order 2(n − 1), with a maximum en-
tropy velocity distribution containing a polynomial of degree n,
which allows a simple and linear estimation of the polynomial
coefficients. By using Latin indices notation for Pn, according
to Eq. (25), we assume that all the moments in Eq. (2) exist,
which is equivalent to considering the distribution function to
be a square-integrable function in the velocity domain ΓV . The
scalar λ0 is the normalisation factor, and, in general, all of the
above coefficients are symmetric elements of k-rank tensors λk;
k = 0, . . .n involved in Eq. (25).

The other coefficients than λ0 can be obtained by using
the property∫
ΓV

∇V

[
(V)mePn

]
d3V = (0)n+1, (28)

which is a direct consequence of Eq. (11) and, in particular, is
fulfilled by any solution of the moment equations.

The above integral is an (n + 1)-rank tensor, which is sym-
metric with respect to the indices of the tensor power (V)m. Thus,
when integrating Eq. (28) by components and the conditions of
Eq. (11) are applied over the domain of any variable Vim+1 , we get∫
ΓVim+1

∂(Vi1 . . .Vim ePn )

∂Vim+1

dVim+1 = Vi1 . . .Vim ePn |ΓVim+1
= 0. (29)

In the case of a finite velocity domain, if the density function is
bell-shaped, the null value of the righthand side might be substi-
tuted by a tolerance error, namely

εim+1 = Vi1 . . .Vim ePn |ΓVim+1
, (30)

such that this value can be neglected on condition of being sig-
nificantly small4.

In particular, for m = 0, since

∂ePn

∂Vk
= ePn

∂Pn

∂Vk
(31)

we have∫
ΓV

∂Pn

∂Vk
ePn d3V = 0. (32)

Similarly, for m = 1,∫
ΓV

∂

∂Vk
(ViePn )d3V =

∫
ΓV

δikePn d3V

+

∫
ΓV

Vi
∂Pn

∂Vk
ePn d3V = 0 (33)

where δik is the Kronecker delta.

4 For example, the velocity density function f of local stars is ap-
proximately Gaussian in the component W perpendicular to the galac-
tic plane, with dispersion σW � 19 km s−1. A finite velocity domain
IW = [−Wmax,Wmax] could be then assumed, with Wmax = 220 km s−1,
where the integral

∫
IW

∂(Wn f )
∂W dW is exactly null for even values of n, and

remains less than ∼10−5 for odd values n < 13. Obviously, the integral
is still lower for wider intervals. Similarly, the local young-disc stars,
with absolute heliocentric velocity up to 51 km s−1, have a velocity dis-
persion σW � 11 km s−1. In the similar situation above, we may then
assume a finite velocity domain for the truncated velocity distribution
with Wmax = 120 km s−1, where such an integral can be neglected up to
powers n = 12.

And, in general, for m ≥ 2, we get

∂(Vi1 . . .Vim ePn )

∂Vim+1

=
(
δi1im+1 Vi2 . . .Vim + . . .

+δi jim+1 Vi1 . . . V̂i j . . .Vim + . . .

+δimim+1 Vi1 . . .Vim−1

)
ePn + Vi1 . . .Vim

∂ePn

∂Vim+1

(34)

where the hat indicates the omitted factors. Once more, bearing
Eq. (31) in mind, the identity Eq. (28) yields∫
ΓV

(
δi1im+1 Vi2 . . .Vim + . . . + δi jim+1 Vi1 . . . V̂i j . . .Vim + . . .

+δimim+1 Vi1 . . .Vim−1

)
ePn d3V

+

∫
ΓV

Vi1 . . .Vim
∂Pn

∂Vim+1

ePn d3V = 0. (35)

Since the first integral is symmetric with respect to permutation
of indices, and in general it is not null, then the second integral

qm+1 =

∫
ΓV

(V)m ⊗ (∇VPn) ePn d3V (36)

must be symmetric, too. Indeed, Eqs. (35) and (36) are equiv-
alent to those obtained in Cubarsi (2007) as Eqs. (22) and (29),
which were derived for expressing the conservation of pressures.

In this new context, the above identities will provide a lin-
ear method of fitting any desired set of moments. In contrast
to the usual maximum entropy methods for the moments prob-
lem, which are nonlinear and not well conditioned enough, the
present method allows all of the coefficients to be determined
with accuracy.

First we evaluate ∇VPn starting from Eq. (25),

∂Pn

∂Vk
= λk + 2λ j1kV j1 + 3λ j1 j2kV j1 V j2 + · · ·
+nλ j1 j2... jn−1kV j1 · · ·V jn−1 . (37)

To obtain all of the elements of tensors λk; k = 1, . . . , n, we
compute the integrals of Eq. (28) for m from 0 to n − 1. For
m = 0, by taking Eqs. (32) and (37) into account, and by using
the moments definition Eq. (1), since m0 = 1, we have

λk + 2λ j1km j1 + 3λ j1 j2km j1 j2 + · · · + nλ j1 j2... jn−1km j1... jn−1 = 0, (38)

which stands for a set of 3 scalar equations, k = 1, 2, 3. For
m = 1, also by taking Eqs. (33) and (37) into account, we get

δik + λkmi + 2λ j1km j1i + 3λ j1 j2km j1 j2i + · · ·
+nλ j1 j2... jn−1km j1 j2... jn−1i = 0. (39)

Hence, this set of relations, for i, k = 1, 2, 3, thanks to the sym-
metry of Eq. (36), provides 6 independent scalar equations.

And, in general, for m = n−1, from Eq. (35) we likewise get

δi1in mi2...in−1+. . .+δi jin mi1...̂i j ...in−1
+. . .+δin−1in mi1...in−2+λin mi1...in−1

+2λ j1in m j1i1...in−1 + 3λ j1 j2in m j1 j2i1...in−1 + · · ·
+nλ j1 j2... jn−1in m j1··· jn−1i1...in−1 = 0, (40)

which consists in a set of
(
n+2

2

)
independent scalar equa-

tions, i1, . . . , in = 1, 2, 3, owing to the symmetry of Eq. (36).
Therefore, we have as many independent linear equations as un-
knowns composing the elements of the symmetric tensors λk,
for k = 1, . . .n, whose elements are the coefficients of Pn. Such
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Table A.1. Matrix G2 is a symmetric matrix of inner products of the velocity components 〈V0 Vi Vj ..., V0 Vp Vq ...〉, according to Latin indices,
with V0 ≡ 1 and the other indices sorted as 1 ≤ i ≤ j ≤ . . . ≤ 3 and 1 ≤ p ≤ q ≤ . . . ≤ 3† .

0 1 2 3 11 12 13 22 23 33 111 112 · · · 333 · · ·
0 1 m1 m2 m3 m11 m12 m13 m22 m23 m33 m111 m112 · · · m333 · · ·
1 m11 m12 m13 m111 m112 m113 m122 m123 m133 m1111 m1112 · · · m1333 · · ·
2 m22 m23 m112 m122 m123 m222 m223 m233 m1112 m1122 · · · m2333 · · ·
3 m33 m113 m123 m133 m223 m233 m333 m1113 m1123 · · · m3333 · · ·

11 m1111 m1112 m1113 m1122 m1123 m1133 m11111 m11112 · · · m11333 · · ·
12 m1122 m1123 m1222 m1223 m1233 m11112 m11122 · · · m12333 · · ·
13 m1133 m1223 m1233 m1333 m11113 m11123 · · · m13333 · · ·
22 m2222 m2223 m2233 m11122 m11222 · · · m22333 · · ·
23 m2233 m2333 m11123 m11223 · · · m23333 · · ·
33 m3333 m11133 m11233 · · · m33333 · · ·

111 m111111 m111112 · · · m111333 · · ·
112 m111122 · · · m112333 · · ·

...
...

...
...

333 m333333 · · ·
...

...

Notes. (†) The external first row and first column refer to the velocity indices. Since the matrix is symmetric, only the diagonal and upper triangular
part are written.

a non-homogeneous system can be associated with a Gramian
matrix, as we see in the next section.

Finally, the scalar λ0 left to be evaluated may be obtained as
the normalisation factor to satisfy∫
ΓV

ePn d3V = 1

e−λ0 =

∫
ΓV

eλiVi+λi jViV j+···+λi1 ...in Vi1 ···Vin d3V. (41)

A.2. Gramian system

The three scalar equations involved in Eq. (38), corresponding to
m = 0, for k = 1, 2, 3, are homogeneous in the elements of ten-
sors λk. In Eq. (39), for m = 1, we group the terms containing the
elements of λk, by writing the other ones on the righthand side,
and likewise for the general equation with m = n − 1, Eq. (40).
Thus we obtain the following linear system of equations for the
elements of tensors λk,

λk + 2λ j1km j1 + 3λ j1 j2km j1 j2 + · · · + nλ j1 j2... jn−1km j1... jn−1 = 0

λkmi + 2λ j1km j1i + 3λ j1 j2km j1 j2i + · · ·
+nλ j1 j2... jn−1km j1 j2... jn−1i = −δik

...

λin mi1...in−1 + 2λ j1in m j1i1...in−1 + 3λ j1 j2in m j1 j2i1...in−1 + · · ·
+nλ j1 j2... jn−1in m j1··· jn−1i1...in−1

= −
(
δi1in mi2...in−1 + . . . + δi jin mi1...î j ...in−1

+ . . .

+δin−1in mi1...in−2

)
. (42)

Such a system of equations can be grouped according to three
different vectors on its righthand side, for k = 1, 2, 3 in the

first two equations and for in = 1, 2, 3 in the general expression.
A similar procedure can be applied to the λk coefficients.

The system matrix, G2 shown in Table A.1, can be
interpreted as a symmetric matrix of inner products with
respect to the weight ePn of the velocity components
〈V0 Vi V j ..., V0 Vp Vq ...〉 according to the Latin indices notation,
with V0 ≡ 1 and the other indices sorted as 1 ≤ i ≤ j ≤ . . . ≤ 3
and 1 ≤ p ≤ q ≤ . . . ≤ 3. Therefore, G2 is a Gram matrix,
symmetric, positive-definite and, among other well-known prop-
erties, it is invertible, meaning the system has a unique solution.
Thus, we may define, according to Table A.2, the following three
column matrices X = [a, b, c] and Y = [A, B,C] so that the fol-
lowing equality is satisfied:

Y = G2X. (43)

This is the numerical form of the system of equations Eq. (42),
ready to be solved.

The coefficients to compute are elements of the symmetric
tensors λk, for orders k = 1, . . . , n, since the zero order coef-
ficient is the normalisation factor. In total there are

(
n+3

3

)
− 1

independent coefficients. Each column of the matrix X is com-
posed of:

– one element of the symmetric tensor λ1, which multiplies
the moments of orders 0, 1, . . . , n − 1 in the first column of
matrix G2;

– three elements of λ2, which multiply the moments of orders
1, 2, . . . , n in the next three columns of matrix G2;

– and, in general,
(
k+2

2

)
elements of the symmetric tensor λk+1,

which multiply the moments of orders k, . . . , k + n − 1, up to
the value k = n − 1.

Therefore the matrix G2 has
(

n+2
3

)
rows and columns, where the

moments up to order 2(n−1) are involved. For example, for n = 2
we use the matrix G2 with the first row containing moments up to
first order (1+3 = 4 columns in total) and the last row containing
moments up to order 2, a 4 × 4 matrix. For n = 4 we use the
matrix G2 with the first row containing moments up to order 3
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Table A.2. The system of Eqs. (42) grouped as a three column matrix, on their righthand side.

A B C a b c
m = 0 0 0 0 λ1 λ2 λ3

m = 1 −1 0 0 2λ11 2λ21 2λ31

0 −1 0 2λ12 2λ22 2λ32

0 0 −1 2λ13 2λ23 2λ33

m = 2 −2 m1 0 0 3 λ111 3 λ211 3 λ311

−m2 −m1 0 2 · 3 λ112 2 · 3 λ212 2 · 3 λ312

−m3 0 −m1 2 · 3 λ113 2 · 3 λ213 2 · 3 λ313

0 −2 m2 0 3 λ122 3 λ222 3 λ322

0 −m3 −m2 2 · 3 λ123 2 · 3 λ223 2 · 3 λ323

0 0 −2 m3 3 λ133 3 λ233 3 λ333

m = 3 −3 m11 0 0 4 λ1111 4 λ2111 4 λ3111

−2 m12 −m11 0 3 · 4 λ1112 3 · 4 λ2112 3 · 4 λ3112

−2 m13 0 −m11 3 · 4 λ1113 3 · 4 λ2113 3 · 4 λ3113

−m22 −2 m12 0 3 · 4 λ1122 3 · 4 λ2122 3 · 4 λ3122

−m23 −m13 −m12 6 · 4 λ1123 6 · 4 λ2123 6 · 4 λ3123

−m33 0 −2 m13 3 · 4 λ1133 3 · 4 λ2133 3 · 4 λ3133

0 −3 m22 0 4 λ1222 4 λ2222 4 λ3222

0 −2 m23 −m22 3 · 4 λ1223 3 · 4 λ2223 3 · 4 λ3223

0 −m33 −2 m23 3 · 4 λ1233 3 · 4 λ2233 3 · 4 λ3233

0 0 −3 m33 4 λ1333 4 λ2333 4 λ3333

m = 4 −4 m111 0 0 5λ11111 5 λ21111 5 λ31111

−3 m112 −m111 0 4 · 5λ11112 4 · 5 λ21112 4 · 5 λ31112

−3 m113 0 −m111 4 · 5λ11113 4 · 5 λ21113 4 · 5 λ31113

−2 m122 −2 m112 0 6 · 5λ11122 6 · 5 λ21122 6 · 5 λ31122

−2 m123 −m113 −m112 12 · 5λ11123 12 · 5 λ21123 12 · 5 λ31123

−2 m133 0 −2 m113 6 · 5λ11133 6 · 5 λ21133 6 · 5 λ31133

−m222 −3 m122 0 4 · 5λ11222 4 · 5 λ21222 4 · 5 λ31222

−m223 −2 m123 −m122 12 · 5λ11223 12 · 5 λ21223 12 · 5 λ31223

−m233 −m133 −2 m123 12 · 5λ11233 12 · 5 λ21233 12 · 5 λ31233

−m333 0 −3 m133 4 · 5λ11333 4 · 5 λ21333 4 · 5 λ31333

0 −4 m222 0 5λ12222 5 λ22222 5 λ32222

0 −3 m223 −m222 4 · 5λ12223 4 · 5 λ22223 4 · 5 λ32223

0 −2 m233 −2 m223 6 · 5λ12233 6 · 5 λ22233 6 · 5 λ32233

0 −m333 −3 m233 4 · 5λ12333 4 · 5 λ22333 4 · 5 λ32333

0 0 −4 m333 5λ13333 5 λ23333 5 λ33333

m = 5 −5 m1111 0 0 6λ111111 6 λ211111 6 λ311111

−4 m1112 −m1111 0 5 · 6λ111112 5 · 6 λ211112 5 · 6 λ311112

−4 m1113 0 −m1111 5 · 6λ111113 5 · 6 λ211113 5 · 6 λ311113

−3 m1122 −2 m1112 0 10 · 6λ111122 10 · 6 λ211122 10 · 6 λ311122

−3 m1123 −m1113 −m1112 20 · 6λ111123 20 · 6 λ211123 20 · 6 λ311123

−3 m1133 0 −2 m1113 10 · 6λ111133 10 · 6 λ211133 10 · 6 λ311133

−2 m1222 −3 m1122 0 10 · 6λ111222 10 · 6 λ211222 10 · 6 λ311222

−2 m1223 −2 m1123 −m1122 30 · 6λ111223 30 · 6 λ211223 30 · 6 λ311223

−2 m1233 −m1133 −2 m1123 30 · 6λ111233 30 · 6 λ211233 30 · 6 λ311233

−2 m1333 0 −3 m1133 10 · 6λ111333 10 · 6 λ211333 10 · 6 λ311333

−m2222 −4 m1222 0 5 · 6λ112222 5 · 6 λ212222 5 · 6 λ312222

−m2223 −3 m1223 −m1222 20 · 6λ112223 20 · 6 λ212223 20 · 6 λ312223

−m2233 −2 m1233 −2 m1223 30 · 6λ112233 30 · 6 λ212233 30 · 6 λ312233

−m2333 −m1333 −3 m1233 20 · 6λ112333 20 · 6 λ212333 20 · 6 λ312333

−m3333 0 −4 m1333 5 · 6λ113333 5 · 6 λ213333 5 · 6 λ313333

0 −5 m2222 0 6λ122222 6 λ222222 6 λ322222

0 −4 m2223 −m2222 5 · 6λ122223 5 · 6 λ222223 5 · 6 λ322223

0 −3 m2233 −2 m2223 10 · 6λ122233 10 · 6 λ222233 10 · 6 λ322233

0 −2 m2333 −3 m2233 10 · 6λ122333 10 · 6 λ222333 10 · 6 λ322333

0 −m3333 −4 m2333 5 · 6λ123333 5 · 6 λ223333 5 · 6 λ323333

0 0 −5 m3333 6λ133333 6 λ233333 6 λ333333

...
...

...
...

...
...

...

(1+3+6+10 = 20 columns in total) and the last row containing
moments up to order 6, as a 20 × 20 matrix. Similarly, for n = 6
we use the matrix G2 with the first row containing moments up
to order 5 (1+3+6+10+15+21 = 56 columns in total) and the
last row containing moments up to order 10, as a 56 × 56 matrix.

On the other hand, since the matrices X and Y consist of
three column vectors, we dispose of a number of 3

(
n+2

3

)
equa-

tions. This number, for n > 1, is always greater than the num-
ber of independent unknowns (leaving out the normalisation fac-
tor). For example, in the case n = 2, we have 12 equations and
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Table A.3. Coefficient submatrix relating the first column A of matrix Y and the first column a of matrix X.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 m1 m2 m3 0 0 0 m11 2 m12 2 m13 m22 2 m23 m33 0 0 0 0 · · ·
m1 0 0 m11 m12 m13 0 0 0 m111 2 m112 2 m113 m122 2 m123 m133 0 0 0 0 · · ·
m2 0 0 m12 m22 m23 0 0 0 m112 2 m122 2 m123 m222 2 m223 m233 0 0 0 0 · · ·
m3 0 0 m13 m23 m33 0 0 0 m113 2 m123 2 m133 m223 2 m233 m333 0 0 0 0 · · ·
m11 0 0 m111 m112 m113 0 0 0 m1111 2 m1112 2 m1113 m1122 2 m1123 m1133 0 0 0 0 · · ·
m12 0 0 m112 m122 m123 0 0 0 m1112 2 m1122 2 m1123 m1222 2 m1223 m1233 0 0 0 0 · · ·
m13 0 0 m113 m123 m133 0 0 0 m1113 2 m1123 2 m1133 m1223 2 m1233 m1333 0 0 0 0 · · ·
m22 0 0 m122 m222 m223 0 0 0 m1122 2 m1222 2 m1223 m2222 2 m2223 m2233 0 0 0 0 · · ·
m23 0 0 m123 m223 m233 0 0 0 m1123 2 m1223 2 m1233 m2223 2 m2233 m2333 0 0 0 0 · · ·
m33 0 0 m133 m233 m333 0 0 0 m1133 2 m1233 2 m1333 m2233 2 m2333 m3333 0 0 0 0 · · ·
m111 0 0 m1111 m1112 m1113 0 0 0 m11111 2 m11112 2 m11113 m11122 2 m11123 m11133 0 0 0 0 · · ·
m112 0 0 m1112 m1122 m1123 0 0 0 m11112 2 m11122 2 m11123 m11222 2 m11223 m11233 0 0 0 0 · · ·
m113 0 0 m1113 m1123 m1133 0 0 0 m11113 2 m11123 2 m11133 m11223 2 m11233 m11333 0 0 0 0 · · ·
m122 0 0 m1122 m1222 m1223 0 0 0 m11122 2 m11222 2 m11223 m12222 2 m12223 m12233 0 0 0 0 · · ·
m123 0 0 m1123 m1223 m1233 0 0 0 m11123 2 m11223 2 m11233 m12223 2 m12233 m12333 0 0 0 0 · · ·
m133 0 0 m1133 m1233 m1333 0 0 0 m11133 2 m11233 2 m11333 m12233 2 m12333 m13333 0 0 0 0 · · ·
m222 0 0 m1222 m2222 m2223 0 0 0 m11222 2 m12222 2 m12223 m22222 2 m22223 m22233 0 0 0 0 · · ·
m223 0 0 m1223 m2223 m2233 0 0 0 m11223 2 m12223 2 m12233 m22223 2 m22233 m22333 0 0 0 0 · · ·
m233 0 0 m1233 m2233 m2333 0 0 0 m11233 2 m12233 2 m12333 m22233 2 m22333 m23333 0 0 0 0 · · ·
m333 0 0 m1333 m2333 m3333 0 0 0 m11333 2 m12333 2 m13333 m22333 2 m23333 m33333 0 0 0 0 · · ·
...

...
...

...
...

...
...
...
...

...
...

...
...

...
...

...
...
...
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

9 independent unknowns, because the symmetric coeffi-
cients λ12, λ13, and λ23 are equivalent to λ21, λ31, and λ32, re-
spectively, and similarly for higher values of n. In general, if the
true distribution is indeed a maximum entropy distribution, the
actual moments will be consistent with the symmetry of the
coefficients, but a significant deviation from the maximum en-
tropy property will produce some non-symmetric coefficients5.
To avoid this situation, an equivalent overdeterminate system of
equations is built up, as explained in the next section, where the
symmetric coefficients of tensors λn will not be repeated in the
vector of unknowns. The system is solved by applying a least
squares method, so that to get the minimum squared error of the
fit, it is weighted in terms of the inverse sampling variancesσ2 of
the moments up to order n − 2, in the righthand side of Eq. (42).
In addition, a predictor-corrector method is applied to evaluate
the variance matrix of the unknowns, as detailed below.

A.3. Parameter estimation

The overdeterminate system of equations, which is equivalent to
Eq. (43), is written as

y = g2x, (44)

5 This is true for n > 2, but for n = 2 Appendix B shows that the
coefficients λi j are related to the second central moments μ−1

i j , which are
necessarily symmetric.

where the only unknowns are the non-identical elements of the
symmetric tensors λn. It takes the following form:

The first column A (Table A.2) of matrix Y and the first col-
umn a of matrix X are related by the coefficient submatrix of
Table A.3. The second column B of matrix Y and the first col-
umn b of matrix X are related by the coefficient submatrix of
Table A.4. The third column C of matrix Y and the third col-
umn c of matrix X are related by the coefficient submatrix of
Table A.5.

The resulting g2 matrix is obtained by stacking the three fore-
going submatrices. Vector x now takes the form

x = (λ1, λ2, λ3, 2λ11, 2λ12, 2λ13, 2λ22, 2λ23, 2λ33, 3 λ111, 3 λ112,

3 λ113, 3 λ122, 3 λ123, 3 λ133, 3 λ222, 3 λ223, 3 λ233, 3 λ333, ...)
T. (45)

The factors multiplying the elements of tensors λn in Table 2,
other than those appearing in vector x, have been carried over
the elements of matrix g2.

It is well known that, if Vy is the variance matrix for vec-
tor y, which is taken as the diagonal matrix of its sampling vari-
ances σ2

y, then the least squares system weighted by V−1
y pro-

vides minimum variance estimates for x according to (e.g. Stuart
& Ord 1987)

x = (gT
2 V−1

y g2)−1gT
2 V−1

y y. (46)
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Table A.4. Coefficient submatrix relating the second column B of matrix Y and the first column b of matrix X.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 m1 0 m2 m3 0 0 m11 0 2 m12 2 m13 0 m22 2 m23 m33 0 · · ·
0 m1 0 0 m11 0 m12 m13 0 0 m111 0 2 m112 2 m113 0 m122 2 m123 m133 0 · · ·
0 m2 0 0 m12 0 m22 m23 0 0 m112 0 2 m122 2 m123 0 m222 2 m223 m233 0 · · ·
0 m3 0 0 m13 0 m23 m33 0 0 m113 0 2 m123 2 m133 0 m223 2 m233 m333 0 · · ·
0 m11 0 0 m111 0 m112 m113 0 0 m1111 0 2 m1112 2 m1113 0 m1122 2 m1123 m1133 0 · · ·
0 m12 0 0 m112 0 m122 m123 0 0 m1112 0 2 m1122 2 m1123 0 m1222 2 m1223 m1233 0 · · ·
0 m13 0 0 m113 0 m123 m133 0 0 m1113 0 2 m1123 2 m1133 0 m1223 2 m1233 m1333 0 · · ·
0 m22 0 0 m122 0 m222 m223 0 0 m1122 0 2 m1222 2 m1223 0 m2222 2 m2223 m2233 0 · · ·
0 m23 0 0 m123 0 m223 m233 0 0 m1123 0 2 m1223 2 m1233 0 m2223 2 m2233 m2333 0 · · ·
0 m33 0 0 m133 0 m233 m333 0 0 m1133 0 2 m1233 2 m1333 0 m2233 2 m2333 m3333 0 · · ·
0 m111 0 0 m1111 0 m1112 m1113 0 0 m11111 0 2 m11112 2 m11113 0 m11122 2 m11123 m11133 0 · · ·
0 m112 0 0 m1112 0 m1122 m1123 0 0 m11112 0 2 m11122 2 m11123 0 m11222 2 m11223 m11233 0 · · ·
0 m113 0 0 m1113 0 m1123 m1133 0 0 m11113 0 2 m11123 2 m11133 0 m11223 2 m11233 m11333 0 · · ·
0 m122 0 0 m1122 0 m1222 m1223 0 0 m11122 0 2 m11222 2 m11223 0 m12222 2 m12223 m12233 0 · · ·
0 m123 0 0 m1123 0 m1223 m1233 0 0 m11123 0 2 m11223 2 m11233 0 m12223 2 m12233 m12333 0 · · ·
0 m133 0 0 m1133 0 m1233 m1333 0 0 m11133 0 2 m11233 2 m11333 0 m12233 2 m12333 m13333 0 · · ·
0 m222 0 0 m1222 0 m2222 m2223 0 0 m11222 0 2 m12222 2 m12223 0 m22222 2 m22223 m22233 0 · · ·
0 m223 0 0 m1223 0 m2223 m2233 0 0 m11223 0 2 m12223 2 m12233 0 m22223 2 m22233 m22333 0 · · ·
0 m233 0 0 m1233 0 m2233 m2333 0 0 m11233 0 2 m12233 2 m12333 0 m22233 2 m22333 m23333 0 · · ·
0 m333 0 0 m1333 0 m2333 m3333 0 0 m11333 0 2 m12333 2 m13333 0 m22333 2 m23333 m33333 0 · · ·
...

...
...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
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The minimum fitting error is then obtained from the weighted
norm of the difference between the observed values and their
theoretical predictions,

χ2 = (yT − xTgT
2 )V−1

y (y − g2x). (47)

The error on the results of the least squares fit, that is the vari-
ance σ2

x of vector x, is obtained from the diagonal matrix of

Vx = (gT
2 V−1

y g2)−1. (48)

Some aspects of the fitting procedure must be pointed out:

(1) Some elements of vector y are exact values,−1 or 0 (left part
of Table A.2), thus they have no associated error. However,
an initial tolerance error may be assumed for vector y, which
can be associated with the finite domain beyond which the
density function is negligible, as pointed out in Eq. (30).
This tolerance error is assumed to be constant and signif-
icantly small for all the components (e.g. 10−6), and it is
added to the sampling error σ2

y of the data. The final norm
of the quadratic error is computed as f0 = ‖σ2

y‖.
(2) In the least squares method, it is generally assumed that the

elements of matrix g2 are evaluated from exact values, and
does not contribute to the error of the estimates, although it
is not true in the current case. To evaluate the part of the total
fitting error due to the elements of matrix g2, an iterative
procedure is started by assuming equal uncertainties for all
equations, which are normalised to constant norm f0. Let us
call its predicted quadratic error ε2

I .

(3) By starting from the predicted quadratic error, successive
evaluations of the variance matrix Vy from the error prop-
agation formula

Vy = g2Vx gT
2 (49)

are carried out, so that we obtain a corrected quadratic er-
ror ε2

F , which is used as a new predicted error, by normalis-
ing it to a constant norm f0.

(4) The algorithm is stopped when a fixed point ε2
0 is reached,

that is, when ε2
I and ε2

F have the same direction. It is found
that the final quadratic error ε2

0 of the iterative process does
not depend on the initial predicted error, so that the final
variance matrix Vy is the result of a redistribution of weights
provided by the matrix g2 of the least squares system.

(5) To compute the final fitting error χ2, a total sampling vari-
ance ε2 = ε2

0+σ
2
y is assumed as the sum of both independent

quadratic errors. The fitting error χ2 is only partially signifi-
cant, since it is related to the initial value f0, which depends
on the initial errors of the data y, although this way it is pos-
sible to compare the goodness of different fittings.

Appendix B

The Gramian system and the moment recurrence can be solved
straightforwardly for the case n = 2, which corresponds to
a Schwarzschild distribution. For the sake of simplicity, and
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Table A.5. Coefficient submatrix relating the third column C of matrix Y and the third column c of matrix X.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 m1 0 m2 m3 0 0 m11 0 2 m12 2 m13 0 m22 2 m23 m33 · · ·
0 0 m1 0 0 m11 0 m12 m13 0 0 m111 0 2 m112 2 m113 0 m122 2 m123 m133 · · ·
0 0 m2 0 0 m12 0 m22 m23 0 0 m112 0 2 m122 2 m123 0 m222 2 m223 m233 · · ·
0 0 m3 0 0 m13 0 m23 m33 0 0 m113 0 2 m123 2 m133 0 m223 2 m233 m333 · · ·
0 0 m11 0 0 m111 0 m112 m113 0 0 m1111 0 2 m1112 2 m1113 0 m1122 2 m1123 m1133 · · ·
0 0 m12 0 0 m112 0 m122 m123 0 0 m1112 0 2 m1122 2 m1123 0 m1222 2 m1223 m1233 · · ·
0 0 m13 0 0 m113 0 m123 m133 0 0 m1113 0 2 m1123 2 m1133 0 m1223 2 m1233 m1333 · · ·
0 0 m22 0 0 m122 0 m222 m223 0 0 m1122 0 2 m1222 2 m1223 0 m2222 2 m2223 m2233 · · ·
0 0 m23 0 0 m123 0 m223 m233 0 0 m1123 0 2 m1223 2 m1233 0 m2223 2 m2233 m2333 · · ·
0 0 m33 0 0 m133 0 m233 m333 0 0 m1133 0 2 m1233 2 m1333 0 m2233 2 m2333 m3333 · · ·
0 0 m111 0 0 m1111 0 m1112 m1113 0 0 m11111 0 2 m11112 2 m11113 0 m11122 2 m11123 m11133 · · ·
0 0 m112 0 0 m1112 0 m1122 m1123 0 0 m11112 0 2 m11122 2 m11123 0 m11222 2 m11223 m11233 · · ·
0 0 m113 0 0 m1113 0 m1123 m1133 0 0 m11113 0 2 m11123 2 m11133 0 m11223 2 m11233 m11333 · · ·
0 0 m122 0 0 m1122 0 m1222 m1223 0 0 m11122 0 2 m11222 2 m11223 0 m12222 2 m12223 m12233 · · ·
0 0 m123 0 0 m1123 0 m1223 m1233 0 0 m11123 0 2 m11223 2 m11233 0 m12223 2 m12233 m12333 · · ·
0 0 m133 0 0 m1133 0 m1233 m1333 0 0 m11133 0 2 m11233 2 m11333 0 m12233 2 m12333 m13333 · · ·
0 0 m222 0 0 m1222 0 m2222 m2223 0 0 m11222 0 2 m12222 2 m12223 0 m22222 2 m22223 m22233 · · ·
0 0 m223 0 0 m1223 0 m2223 m2233 0 0 m11223 0 2 m12223 2 m12233 0 m22223 2 m22233 m22333 · · ·
0 0 m233 0 0 m1233 0 m2233 m2333 0 0 m11233 0 2 m12233 2 m12333 0 m22233 2 m22333 m23333 · · ·
0 0 m333 0 0 m1333 0 m2333 m3333 0 0 m11333 0 2 m12333 2 m13333 0 m22333 2 m23333 m33333 · · ·
...
...

...
...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...
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without losing generality, we use the central moments μn, so that
μ1 = 0. Then, the Eqs. (38) and (39), for m = 0, 1, become

λk = 0, k = 1, 2, 3 (50)

and

δik + 2λ jkμ ji = 0 =⇒ λik = −1
2
μ−1

ik , i, k = 1, 2, 3 (51)

where μ−1
ik are the elements of the inverse of the covariance ma-

trix. Therefore, the above relation shows that the tensor of ele-
ments λik is a definite negative form, and it leads to an integrable
distribution function.

Now we can apply the same procedure for m ≥ 2, to obtain
higher order moments in terms of the second moments. Thus,
for m = 2, according to Eq. (40), with m = n − 1, and bearing in
mind Eq. (50), we have

λkμi j + 2λlkμi jl = 0 =⇒ μi jk = 0, i, j, k = 1, 2, 3. (52)

The result accounts for the obvious symmetry of the distribution,
with vanishing odd-order central moments.

Similarly, for m = 3, we get

δi1i4 μi2 i3 + δi2i4 μi1 i3 + δi3i4 μi1 i2 + λi4μi1i2 i3

+2λ ji4μ j i1i2i3 = 0, i1, i2, i3, i4 = 1, 2, 3. (53)

Then, taking into account Eq. (51), we multiply by μki4 . Since
the third moments are null, by reordering indices we obtain the
following moment recurrence relation:

μi1 i2i3i4 = μi1 i4 μi2i3 + μi2 i4 μi1i3 + μi3 i4 μi1i2 . (54)

The above relationship is the well known property of a Gaussian
distribution, which characterises it from having vanishing fourth
cumulants.

And, in general, according to Eq. (40), for even m, we obtain
a vanishing set of odd-order central moments, and, for odd m,
we obtain the relation

δi1im+1 μi2...im + . . . + δi jim+1 μi1...̂i j ...im
+ . . .

+δimim+1 μi1...im−1 + 2λ jim+1μ ji1...im = 0. (55)

Once again, by multiplying by μkim+1 and by reordering indices,
we get

μi1 ...imim+1 = μi1 im+1 μi2 ...im + . . .

+μi jim+1 μi1 ...̂i j ...im
+ . . . + μimim+1 μi1...im−1 . (56)

This is the general relationship of moment recurrence for trivari-
ate normal distributions, which leads to a vanishing set higher-
order cumulants.
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