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Abstract. An alternative parameterization of a trivariate normal mixture for the stellar velocity distribution provides a set of
constraint equations between global cumulants that are used to estimate characteristic constants of the mixture and population
parameters. Under particular distribution symmetries these relationships become simpler and easy to evaluate, and they are used
to test some meaningful mixtures. This method for the analysis of trivariate normal mixtures is applied to local star catalogs
with known velocity space in order to find Gaussian components and underlying distribution symmetries. A large local sample
(13 678 stars, 300 pc) obtained from HIPPARCOS catalog allows us to identify two mixed velocity ellipsoids with parameters
corresponding to thin and thick disk populations, similar to those of samples selected from non-kinematical criteria. In addition
to the usual assumptions of distribution symmetry plane and non-significant differential movement in the radial direction, our
analysis also detects a slight but clear loss of axial symmetry associated with the vertex deviation of both population ellipsoids.
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1. Introduction

In galactic dynamics a stellar system, with an enough large
number of stars, may be represented by a continuous mass dis-
tribution. From properties of the stellar distribution function it
is possible to transform local knowledge of the velocity distri-
bution into knowledge about densities and velocities at other
points of the Galaxy. This information is condensed in some
fundamental equations explicitly depending on the moments of
the stellar velocity distribution.

More precisely, the phase space density function of the
stars, F(t, r,V), is subject to a continuity condition in the six-
dimensional phase space, defined by the three components of
the star’s position, r, and the three components of its veloc-
ity, V, which is expressed by the Liouville equation. It has
has linear properties with respect to the density function, so
that the superposition principle is satisfied. In order to isolate
information about the spatial properties of the stellar system
it is useful to integrate the Liouville equation over the veloc-
ity space. The resulting equation contains moments of the ve-
locity distribution, such as the mean velocity, or the velocity
dispersions. Furthermore the Liouville equation may be multi-
plied through by any powers of the velocities before integrat-
ing, and each choice of powers leads to a different result which
involves different velocity moments. These differential equa-
tions are the stellar hydrodynamic equations or moment equa-
tions (e.g. Gilmore et al. 1989, p. 118). Therefore it is essential

to have good estimations of the velocity moments, and in par-
ticular to know whether some of them are intrinsically null, in
order to solve these equations.

On the other hand, according to Jeans’ theorem, the phase
space density function is a function of the integrals of motion of
the stars, that involve the potential function. Hence the nature
of the phase space density function must be explained from
the dynamics of large stellar groups, sharing a common po-
tential, through integrals like the energy, the angular momen-
tum, or more general quadratic integrals, rather than from the
kinematics of specific groups of stars, such as those producing
streaming motions (Kurth 1957). Thus, by taking into account a
basic set of integrals of motion, and also for the sake of simpli-
fying the calculations in solving the hydrodynamic equations,
the phase space density function may be approximated in two
ways. First by assuming some specific functional dependences,
and second by considering some plausible symmetry hypothe-
ses of the distribution.

The first approximation concerns the superposition princi-
ple. Stellar populations can be identified with galactic compo-
nents, like thin disk, thick disk, stellar halo, etc. For some of
these stellar populations the velocity distribution function, that
is F(t0, r0,V) for fixed time t0 and position r0 (although some-
times F is assumed time-independent), can be represented by
a trivariate Gaussian function, depending on an ellipsoidal in-
tegral of motion, according to Oort’s approach, or to the more
general Chandrasekhar’s approach (Chandrasekhar 1942). This
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fact can be interpreted, according to the theory of gas dynam-
ics, that the population has reached the statistical equilibrium.
Conversely, a Gaussian distribution can be used to define a pure
statistical population. In this situation all the odd-order central
moments vanish, and higher-order moments are explicitly de-
pendent on the second ones. Of course this produces a dramatic
simplification of moment equations, but actual samples do not
show such a pure stellar population alone in the solar neigh-
borhood. However a mixture of trivariate normal populations is
sufficient to explain the most relevant local kinematic features.

In the present work we shall see that an alternative param-
eterization of the mixture, based on the symmetry of the ve-
locity distribution around the direction containing both popula-
tion means, introduces a set of constraint equations between the
overall distribution cumulants, that are associated with charac-
teristic constants of the mixture.

The second approximation concerns the geometry of the
distribution. For example, the velocity distribution of most disk
stellar samples shows a galactic plane of symmetry. Then all
the partial and total central moments which involve an odd-
number of times the velocity component perpendicular to this
plane are null. Similarly, some stellar populations, like thick
disk or halo, may present an axially symmetric distribution
with a velocity ellipsoid whose major axis always points toward
the galactic center (Soubiran et al. 2003). Then their velocity
ellipsoid would have no vertex deviation on two orthogonal
planes of the velocity space and, for these stellar populations,
two of the non-diagonal central moments would be null. Thus,
some perturbations of those velocity moments may be ex-
plained through the influence of a galactic bar (Mühlbauer &
Dehnen 2003). For a normal population alone it is possible
to test the consistency of the above or similar hypotheses by
seeking the indices of the vanishing central moments (Erickson
1975; Vandervoort 1975), while for a mixture of two normal
components it must be done by evaluating the cumulant con-
straint equations that have been obtained. Moreover under spe-
cific distribution symmetries only a subset of non-vanishing
moments may be used, and then the constraint equations adopt
a simpler form.

Therefore we shall study how the foregoing assumptions
are transferred to the moments and cumulants, so that these
statistics can serve for testing the consistency of actual samples
versus the diverse hypotheses. In addition, the analysis based
on the above approximations is converted into a numerical al-
gorithm in order to evaluate the population parameters.

The method is applied to real stellar samples of the solar
neighborhood, mainly obtained from two catalogs: The Third
Catalog of Nearby Stars (CNS3, Gliese & Jahreiss 1991), that
is used to compare the results with early works, and the more
recent HIPPARCOS Catalog (ESA 1997), with a subsample up
to 300 pc from the sun with known radial velocities, which
gives an actual portrait of the local kinematics.

The comparison of samples shows that CNS3 sample
slightly overestimates high velocity stars, due to high proper
motion sampling. It contains a few stars (3%) belonging to a
high velocity component, the thick disk, and a predominant old
thin disk. Nevertheless the local kinematics is better described
when the larger HIPPARCOS subsample is studied. In addition

to verify that a two-component normal mixture is a good ap-
proximation of the local velocity distribution, we find that the
cumulant constraints are consistent with the following features:
(1) A symmetry plane of the distribution, as is commonly as-
sumed. (2) A lag in rotation of thick disk stars behind the thin
disk of 51± 3 km s−1. (3) No significant differential movement
in the radial direction. (4) Although CNS3 sample shows a ve-
locity distribution closer to the axisymmetry hypothesis, the
more accurate data of HIPPARCOS sample, with 13 678 stars,
reveal an incipient deviation from axisymmetry due to the ver-
tex deviation of both, thin and thick disk, velocity ellipsoids.

The paper is structured as follows. In Sect. 2 we intro-
duce the basic notation and statistical definitions. In Sect. 3
we summarize the classical parameterization of the superposi-
tion model and the set of equations to be solved, that is, the
equations of the total cumulants depending on the mixture pa-
rameters. In Sect. 4 the new parameterization is presented, that
leads to the cumulant constraint equations. In Sect. 5 the con-
straint equations are studied by assuming specific distribution
symmetries. In Sect. 6 we explain the steps composing the seg-
regation algorithm. The application to local samples is carried
out in Sect. 7, where the population parameters are estimated.
In Sect. 8 kinematical features of HIPPARCOS sample are dis-
cussed. Finally, in Sect. 9, the symmetry hypotheses are tested
and we discuss and compare our results.

2. Notation and basic definitions

Let us assume that the kinematic behavior of the stellar sys-
tem is described from a conservative linear dynamic system
through the Liouville equation. Then the superposition princi-
ple is satisfied and a composite velocity distribution function
may be assumed. Both ideal stellar populations are associated
with Gaussian components. Notice that, laying aside astronom-
ical considerations, from a Bayesian criterion the Gaussian dis-
tribution is the less informative one with known means and co-
variances (e.g. Koch 1990), and hence it is the usual and less
restrictive approach for the components of a mixture model
without any other prior information. With these basic assump-
tions the notation is hereafter introduced, so that the following
concepts and definitions may be applied to a stellar population
alone in the present section, as well as to the total mixture, in
the following section.

For fixed time t0 and position r0 let be f (V) = F(t0, r0,V)
the velocity density function. The mean velocity, or velocity of
the centroid, is noted as u. The n-rank symmetric tensor of the
n-order central moments is defined according to the following
expected value, depending on the peculiar velocity u = V − u,
that is the velocity referred to the centroid,

Mn = E
[
(u)n] =

∫
V

(V − u)n f (V) dV (1)

where (·)n denotes the n-tensor power. The symmetric ten-

sor Mn of the n-order central moments has
(

n + 2
2

)
different

elements according to the following expression,

µα1α2 ...αn = E
[
uα1 uα2 . . . uαn

]
(2)
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where the indices, depending on the velocity components, be-
long to the set {1, 2, 3}.

The velocity density function of an ideal stellar population,
of normal type, may be written according to the expression

f (V) ≡ ψ(Q) ∝ e−
1
2 Q (3)

being Q = uT · A2 · u a semi-positive definite quadratic form,
and A2 a second-rank symmetric tensor. Note that ψ is here rep-
resenting the Gaussian function. In this case the relationship
between A2 and the second central moments M2, i.e. the co-
variance matrix, is M2 = A−1

2 , and the quadric equation Q = 1
defines the velocity ellipsoid. In general the velocity ellipsoid
is not oriented according to the coordinate axes. A rotation of
angle εi j in the plane uiu j, (i � j) around their orthogonal k-axis
is measured from the following relationship involving the sec-
ond moments

tan 2εi j =
2µi j

µii − µ j j
· (4)

When this rotation is referred to the major semi-axis it is called
vertex deviation. Furthermore, due to the symmetry properties
of Gaussian distributions, all the odd-order central moments
are zero and the even-order central moments may be computed
from the second ones. The fourth central moments satisfy, by
components, the following relationship,

µi jkl = A−1
i j A−1

kl + A−1
ik A−1

jl + A−1
il A−1

jk ; i, j, k ∈ {1, 2, 3} (5)

that can also be expressed in terms of the second moments ac-
cording to the equality

µi jkl = µi jµkl + µikµ jl + µilµ jk; i, j, k ∈ {1, 2, 3}. (6)

These set of equations are explicitly written in the Appendix A,
and they may be used in order to identify a trivariate normal
distribution alone.

The foregoing relationships can be expressed in a more
compact notation (Cubarsi 1992) in order to simplify the alge-
braic notation of the following sections. If Am and Bn are two
m- and n-rank symmetric tensors, we define the tensor Am�Bn

as the obtained by symmetrizing the tensor product Am ⊗ Bn,
and by normalizing with respect to the number of summation
terms. The result is a (m + n)-rank symmetric tensor, whose
components are

Am � Bn|i1i2...im+n =
n!m!

(m + n)!

∑
α

Aαi1...αim Bαim+1...αim+n (7)

where α belongs to the symmetric groupS(m+n). Then Eq. (6)
simply becomes

M4 = 3 M2 � M2. (8)

On the other hand the cumulants, namely Kn, (their tensor el-
ements will be noted with the greek letter κ) may also be used
for describing the velocity distribution. Originally introduced
by Fisher in 1928, they present several attractive properties
coming from their symmetry. Up to fourth order, and with the
notation of Eq. (7), the cumulants can be written from the cor-
responding central moments according to the following rela-
tionships (e.g. Stuart & Ord 1987). For first, second and third

order, K1 = u, K2 = M2, and K3 = M3. The fourth cumulants
satisfy:

K4 = M4 − 3 M2 � M2. (9)

In particular, for a multivariate normal distribution, Kn = 0 is
fulfilled, with n ≥ 3 (obviously the case n = 4 is a conse-
quence of Eq. (8)). Hence for a Gaussian population the only
non-vanishing cumulants are the second ones, which, in addi-
tion to the mean, completely characterize the distribution.

It is known that the sample moments, namely mn, are biased
estimators of the population moments Mn, conversely, under
the assumption of homogeneous observational errors, the pop-
ulation cumulants have as unbiased estimators the correspond-
ing k-statistics, namely kn, or sample cumulants. Let us remark
that whereas the sample moments mn are the same function of
the sample values as the population moments Mn, the same re-
lation does not hold for kn and Kn. Basically the k-statistics are
sums of products of the sample moments, which – like the cu-
mulants and the central moments – are invariant under change
of the origin, except for the first order. The tensor forms for
the k-statistics of a multivariate distribution were published by
Kaplan (1952). The first k-statistic is equal to the mean, and up
to fourth-order they may be obtained depending on the sample
moments according to

k2 =
N

N − 1
m2

k3 =
N2

(N − 1)(N − 2)
m3

k4 =
N2(N + 1)

(N − 1)(N − 2)(N − 3)

[
m4 − (N − 1)

(N + 1)
3 m2 � m2

]
(10)

where N is the size of the sample.

3. Cumulants of the mixture

The overall density function is now obtained from the super-
position of two normal density functions according to Eq. (3),
each one associated with the corresponding stellar component,
(′) or (′′) for the first or second population,

f (V) = n′ψ(Q′) + n′′ψ(Q′′) (11)

where n′ and n′′ represents the respective mixing proportions,
obviously satisfying n′ + n′′ = 1. The quantities u and Mn for
the total velocity distribution – defined in the above section –
may easily be deduced starting from those of the partial ones.
Hence the total mean velocity, expressed from the population
means, satisfies u = n′u′ + n′′u′′.

Let us review a way of computing the mixture moments
and cumulants. The total central moments are written, taking
into account Eqs. (1) and (11), by using the centroid differential
velocity,

w = u′ − u′′. (12)
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By using the product defined in Eq. (7), the tensor of the total
n-order central moments, expressed from the partial ones, has
the following form:

Mn =

n∑
k=0

(
n
k

) {
n′n′′k M′n−k +

(−n′
)k n′′M′′n−k

}
� (w)k. (13)

We explicitly write the total central moments up to fourth-
order. Obviously for n = 0 we get M0 = M′0 = M′′0 = 1,
and for n = 1, M1 = M′1 = M′′1 = 0. The symmetric tensor M2

of the second-order moments, with six different elements, be-
comes

M2 = n′M′2 + n′′M′′2 + n′n′′(w)2. (14)

The tensor M3 of the third moments, with ten different ele-
ments, being M′3 = M′′3 = 0, is written as

M3 = 3n′n′′(M′2 − M′′2 ) � w + n′n′′(n′′ − n′)(w)3. (15)

And the fourth moments M4, with fifteen different elements,
can be expressed, by using Eq. (8), as follows

M4 = 3n′M′2 � M′2 + 3n′′M′′2 � M′′2
+6n′n′′(n′′M′2 + n′M′′2 ) � (w)2

+n′n′′(1 − 3n′n′′)(w)4. (16)

However, if the population cumulants are used (Eq. (9)), it is
possible to write the above relationships in a shorter form. This
is done by introducing the following new variables,

D =
√

n′n′′ w; q =
√

n′/n′′ − √
n′′/n′ (17)

(we can appoint the populations so that n′ ≥ n′′, then q is non-
negative) and the following second-rank tensors,

a2 = n′M′2 + n′′M′′2 ; C2 =
1√

q2 + 4
(M′2 − M′′2 ) − q(D)2 (18)

(all the above square roots are taken as positive values). With
the foregoing definitions, Eqs. (14)–(16) can be rewritten ex-
plicitly depending on the overall mixture cumulants in a shorter
form, as follows:

K2 = a2 + (D)2

K3 = 3C2 � D + 2q(D)3

K4 = 3C2 � C2 − 2(q2 + 1)(D)4.
(19)

From the total cumulants of the mixture the parameters of
the partial distributions have to be determined by inverting the
above non-linear system of equations. These unknowns are
the partial moments – six components for M′2 and six for
M′′2 –, the population fraction n′, and the three components of
the centroid differential velocity w. Sixteen unknowns in total.
Since we have a set of thirty-one scalar equations, involved in
Eq. (19), we must also find a set of fifteen constraint equations,
which can be used as a test in order to verify whether a given
sample is consistent with a two normal mixture.

In the following section we describe how the total cumu-
lants of the mixture are related. A set of equations that gen-
eralize Eq. (6) is obtained, which provide some characteristic
mixture constants, such as a vector d in the direction along both
sub-centroids, and two constants,A and B, that can be linearly
estimated from total cumulants, with useful information about
the geometry of the mixture.

Fig. 1. Directions W1,W2,W3 where the peculiar velocity u is pro-
jected.

4. Constraint equations

We study the general case where the difference between popu-
lation means, w, (and hence the vector D of Eq. (17)) is not
null. Let us assume the vector component D3 � 0 (in or-
der to minimize the error propagation this component may be
chosen to be maxi |Di|), and let us define a normalized vector
d = D/D3 in the direction containing both sub-centroids C1

and C2 (Fig. 1). Since every normal distribution is symmet-
ric with respect to its centroid, then the total velocity distribu-
tion will be symmetric in whatever direction within a plane Φ
orthogonal to the vector d, and in particular the one contain-
ing the global centroid Ct. Thus, in order to take profit of this
symmetry, it is convenient to work with a transformed vec-
tor U instead of the peculiar velocity u, whose components are
three non-orthogonal projections of the peculiar velocity u on
the directions W1 = (d3, 0,−d1)t and W2 = (0, d3,−d2)t, on
the plane Φ, and another independent direction, for example
W3 = (0, 0, d3)t.

The transformed peculiar velocity U can be expressed from
the following isomorphic transformation of the vector u,

U = H2 · u; H2 =


d3 0 −d1

0 d3 −d2

0 0 d3

 · (20)

Note that det(H2) = d3
3, and d3 = 1, but in case of permuting

indices it is helpful to maintain this notation. Also note that U,
as well as u, have null mean. In fact U3 = u3 is an invariant
component. From the definition of H2 the following equality is
deduced,∑

j

Hi jD j = D3δ3i; i, j ∈ {1, 2, 3} (21)

where δ is the Kronecker delta.
If the third and fourth moments of U are calculated in func-

tion of the central velocity moments µi jk and µi jkl, the following
equalities are obtained,

E[UαUβUγ] =
∑
i jk

HαiHβ jHγkµi jk;

α, β, γ, δ, i, j, k, l ∈ {1, 2, 3}
E[UαUβUγUδ] =

∑
i jk

HαiHβ jHγkHδlµi jkl. (22)
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And also the the third and fourth cumulants of the transformed
peculiar velocity U can be computed in function of the cor-
responding cumulants of u. With the indices α, β, γ, δ ∈ {1, 2}
and i, j, k, l ∈ {1, 2, 3}, the ten components of the third
U-cumulants are,

oαβγ ≡ ∑
i jk HαiHβ jHγkκi jk

pαβ ≡ ∑
i j HαiHβ jκi j3

sα ≡ 1
2

∑
i Hαiκi33

κ333

(23)

and the fifteen components of the fourth U-cumulants are,

Xαβγδ ≡ ∑
i jkl HαiHβ jHγkHδlκi jkl

Yαβγ ≡ ∑
i jk HαiHβ jHγkκi jk3

Zαβ ≡ ∑
i j HαiHβ jκi j33

Tα ≡ ∑
i Hαiκi333

κ3333.

(24)

Thus the U-cumulants can be grouped according to the above
two-dimensional tensors o3, p2, s, X4, Y3, Z2, and T, depending
on the total cumulants of the distribution. These tensor compo-
nents are explicitly written in the Appendices B and C.

Let us remark that all the above quantities are explicitly de-
pendent on the velocity component that remains invariant un-
der the transformation of Eq. (20). Hence they would have to
be noted, for example, with a super-index (3) indicating that
component, since the described procedure is also valid under
permutation of indices of the velocity components. However,
in order to simplify the notation, this super-index has been here
omitted, although it appears in the Appendices.

Hereafter the main properties and the steps in order to ob-
tain the cumulant constraints, the mixture constants, and the
population parameters are summarized.

By substitution in Eq. (23) of K3, from Eq. (19), and taking
into account Eq. (21), four independent vanishing linear com-
binations of the third U-moments are obtained:

oαβγ = 0; α, β, γ ∈ {1, 2}. (25)

These are the third cumulants of the vector components U1

and U2, that vanish as consequence of having defined the vec-
tors W1 and W2 on the planeΦ, with symmetrical properties of
the distribution. Similar equalities are satisfied for higher odd-
order cumulants. From the above equations (see Appendix B)
the values d1 and d2 can be computed. The solution of this sys-
tem of nonlinear equations provides us with the first character-
istic constant of the mixture, d, that is the orientation of both
sub-centroids. Now it is already possible to calculate the ele-
ments of the matrix H2, in Eq. (20), and the tensor elements of
Eqs. (23) and (24).

Let us remark that, while the method of moments for
an univariate normal mixture requires to solve a fundamental
nonic equation (Cohen 1967), originally derived by Pearson,
for a trivariate mixture only three-degree polynomials have to
be solved, and the moments method loses, or substantially re-
duces, the consideration of ill-conditioned problem.

For the elements of tensors p2 and s in Eq. (23), by substi-
tution of the third cumulants K3 from Eq. (19), and taking into
account Eq. (21), the following equivalences are obtained:

pαβ = D3
∑

i j HαiHβ jCi j

sα = D3
∑

i HαiCi3.
(26)

These relationships are used to compute the elements of C2

other than C33.
Similarly, for the elements of tensors X4, Y3, Z2, and T

in Eq. (24), by substitution of the fourth cumulants K4 from
Eq. (19), and taking into account Eq. (26), the following set of
constraint equations is obtained,

X4 = 3A p2 � p2
Y3 = 3A p2 � s
Z2 = 2A s � s + B p2
T = 3B s

(27)

where A = D−2
3 and B = C33D−1

3 . These fourteen scalar rela-
tionships are explicitly written in the Appendix D.

The set of relationships in Eq. (27) represents an overde-
terminate linear system, which can be solved by means of
weighted least squares in order to find optimal values for the
mixture constants A and B. Note that this step provides the
absolute values of C33 and D3.

The mixing proportions are evaluated from the parameter q,
so that the following two relationships are fulfilled,

κ333 = 3C33D3 + 2qD3
3

κ3333 = 3C2
33 − 2(q2 + 1)D4

3.
(28)

Hence, by elimination of q, a new constraint equation is hold.
The remaining five unknowns of the tensor C2 may be eval-

uated from Eq. (26), and finally, from Eqs. (17) and (18), the
population parameters n′, w, M′2, and M′′2 , can be determined.

5. Distribution symmetries

The constraint equations of the trivariate normal mixture can
be used in order to test underlying distribution symmetries by
working only from the total k-statistics of the sample. This is
a usual procedure for a normal population alone, where this
information can be deduced, for example, from the orientation
of the velocity ellipsoid. Now this idea is generalized for the
case of a two population mixture.

In the first section we have explained that it is useful to
characterize the geometry of the stellar velocity distribution in
order to assume specific symmetries that simplify the set of
distribution moments. We shall pay attention to the following
assumptions: (a) existence of a distribution symmetry plane;
(b) non differential movement in any specific direction, that is,
the same mean for a given velocity component; and (c) veloc-
ity distribution with axial symmetry. These particular situations
are explicitly analyzed below, where the index 1 will apply to
the radial velocity, the index 2 to the rotation velocity – which
is now taken as the invariant component in the transformation
given by Eq. (20) –, and the index 3 to the velocity perpendic-
ular to the galactic plane.
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a) Symmetry plane. Let us assume that the velocity compo-
nent V3 has a symmetrical distribution around their mean
for both population components, that is v′3 = v

′′
3 = 0. This

is actually satisfied for the velocity component perpendicu-
lar to the galactic plane of most disk stellar samples. Hence
there is a symmetry plane u3 = 0 in the space of the pecu-
liar velocities, so that for each population, as well as for the
total distribution, the probability density function has the
form f = f (u1, u2, u2

3). Thus all the partial and total central
moments and cumulants involving an odd-number of times
the index 3 are null on this plane. This is similarly satis-
fied by the elements of D, a2, and C2, defined in Eqs. (17)
and (18). In particular it implies that each population com-
ponent has an independent distribution of the variate u3.
Then, from Eq. (25), the following relationship is deduced,

D1

D2
=
κ133

κ233
· (29)

Moreover in Eqs. (26) and (27) there is a set of expressions
that does not explicitly depend on the elements of vector d,
since they can be computed directly from the mixture cu-
mulants, with a minimum error estimation, as follows,

1

C2
33

=
3

κ3333

1
C33
=

C11

κ1133
=

C22

κ2233
=

D1

κ133
=

D2

κ233
·

(30)

b) Non differential movement. A more general situation oc-
curs when the population components have the same mean
in one direction, for example v′1 = v

′′
1 . Older stellar popula-

tions usually satisfies this condition for the radial velocity
component (e.g., Chiba & Beers 2000). Notice that (a) is
a particular case of (b). Hence D1 = d1 = 0 and, by
Eq. (25), κ111 must vanish. Similarly to the previous case,
d1 = D1/D2 is computed from Eq. (29).
If the ratios

α2 =
κ122

2κ112
, α3 =

κ133

2κ113
(31)

are defined, the following relationships can be computed
directly from the total cumulants, without depending ex-
plicitly on d1,

1

C2
11

=
3

κ1111
=

3α2

κ1112
=

3α3

κ1113

1
C11
=

C22

κ1122 − 2
3α

2
2κ1111

=
C33

κ1133 − 2
3α

2
3κ1111

=
α2

C12
=

α3

C13
=

D2

κ112
=

D3

κ113
=

3α2κ112C22

κ1222

=
3α3κ113C33

κ1333
· (32)

The foregoing equations represents a particular case of
Eqs. (26) and (27) under the assumption of non differential
movement in the direction of the velocity component V1.

c) Axial symmetry. In stellar dynamics one of the more usual
assumptions is the axial symmetry hypothesis of mass and

velocity distributions. Then one axis of the velocity ellip-
soid points toward the axis of rotation of the galaxy, and an-
other axis remains in the direction of rotation (e.g. Gilmore
et al. 1989, p.132). Thus each population velocity ellipsoid
has no vertex deviation on two planes of the peculiar vari-
ates, that is u1u2 and u2u3. Hence the population compo-
nents satisfy κ′12 = κ

′′
12 = κ

′
23 = κ

′′
23 = 0. Therefore, for each

population component, but not for the total velocity distri-
bution, the only variates that are correlated are u1 and u3,
while u2 has an independent distribution from the others.
From Eqs. (17)–(19) it is easy to deduce that the difference
between population means is the only contribution to the
total non-diagonal second moments,

κ12 = D1D2; κ23 = D2D3. (33)

Two of the non-diagonal elements of the tensor C2 are
proportional to second cumulants, C12 = −qκ12 and
C23 = −qκ23. Then by defining the quantities

κ∗1122 = κ1122 + 2κ2
12

κ∗1223 = κ1223 + κ12κ23

κ∗2233 = κ2233 + 2κ2
23

(34)

the following relationships, involving the total cumulants,
can be obtained in a similar way as in previous cases,

1

C2
22

=
1
3

κ1111κ
4
23 − κ3333κ

4
12

κ∗21122κ
4
23 − κ∗22233κ

4
12

=

[
1

D2

κ112

κ∗1122

]2

=

[
1

D2

κ233

κ∗2233

]2

1
C22
=

C11

κ∗1122

=
C33

κ∗2233

=
C13

κ∗1223

=
D1

κ122
=

D3

κ223

D1

D3
=
κ12

κ23
=
κ122

κ223
=
κ1222

κ2223

κ12

κ122
=
κ23

κ223
=
κ112

κ∗1122

=
κ123

κ∗1223

=
κ233

κ∗2233

·

(35)

Notice that the relationships obtained for the different symme-
try hypotheses introduce a worthy simplification of the equa-
tions in Appendices B, C, and D, so that sometimes the in-
volved parameters can be evaluated nearly by hand.

Three combinations of above hypotheses are particularly
interesting: (a+b) for samples in the galactic plane with differ-
ential rotation alone, (a+c) for samples with axial and galac-
tic plane symmetries, and (a+b+c) for the complete set of hy-
potheses.

a+b) In this case it is easy to see that α3 = 0 in Eq. (31).
Hence the relationships in Eq. (32) are hold only if they
do not contain D3 and α3. The vanishing third and fourth
cumulants are, like in the case of symmetry plane, those
having an odd-number of times the index 3. In addition, the
following third moments are also null:

κ111 = κ133 = 0. (36)

Therefore, in general, there are four third cumulants and
nine fourth cumulants which are non-null.
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a+c) In order to estimate the ratio between differential velocity
components, Eq. (29) may also be used. The combination
of both hypotheses leads to the following subset of equa-
tions:

1

C2
22

=
1
3
κ3333

κ2
2233

=

[
1

D2

κ112

κ∗1122

]2

=

[
1

D2

κ233

κ2233

]2

1

C2
33

=
3

κ3333

1
C22
=

C11

κ∗1122

=
C33

κ1133
=

D1

κ122

1
C33
=

C11

κ1133
=

C22

κ2233
=

D2

κ233

κ12

κ122
=
κ112

κ∗1122

=
κ233

κ2233
·

(37)

Obviously, for the overall sample, the only non-vanishing
non-diagonal second moment is κ12 = D1D2, and the cu-
mulants with an odd-number of times the index 3 are also
zero.

a+b+c) This is a quite simple case, where all the non-diagonal
second moments are null, κ12 = κ13 = κ23 = 0. In addi-
tion to the six third moments of case (a+b), which vanish,
the moment κ122 is also null. Hence the only non-vanishing
third moments are κ112, κ222, and κ233. In general there are
only six non-null fourth cumulants: κ1111, κ2222, κ3333, κ1122,
κ1133, and κ2233.

When applying the method to real stellar samples, we shall test
whether the complete set of constraint equations can be reduced
to any of the foregoing symmetry cases.

6. Numerical algorithm

The method is converted into a numerical procedure (Alcobé
2001) paying special attention to the error analysis. In the ear-
lier work (Cubarsi 1992) a partial application of constraint
equations for axisymmetric stellar systems was carried out,
using interval arithmetic (Moore 1966). It leads however to
low precision results. Now the general set of cumulant con-
straints is taken into account, since actual velocity samples, in
particular the HIPPARCOS one, have more accurate data. In
each computational step, statistical propagation of errors and
weighted least squares estimation have been adopted in order
to get minimum variance estimates. In addition, the goodness
of the approximation is evaluated by means of a χ2 test, that
is commented at the end of the section. The main steps which
compose the complete numerical procedure are hereafter de-
scribed:

i) Computation of the sample moments and evaluation of the
k-statistics in order to estimate the mixture cumulants. The
standard errors are evaluated through higher-order sam-
pling cumulants. The algorithm allows to neglect those val-
ues which are smaller than a certain number of times their
standard error.

Since the asymmetry of the distribution around the mean
is provided by the third moments (by the odd-order central
moments in general) it is convenient to take the velocity
component that remains invariant under the transformation
of Eq. (20) as the one having more accurate non-vanishing
third moment. In general this is the rotation velocity.

ii) Calculation of the orientation vector d by using the equa-
tions in the Appendix B. The two first equations, for o111

and o222, are solved separately as one variable cubic equa-
tion. A first couple of values, d1 and d2, is found, which
are taken as initial values for a Newton-Raphson iterative
process in order to solve the complete system of four linear
equations with two unknowns by means of an iterative least
squares estimation.

iii) The elements of tensors p2, s, X4,Y3, Z2, and T of
Appendix C are computed, as well as the respective stan-
dard errors. The relationships between these quantities
are shown in Eq. (27) and Appendix D, where a linear
least squares system with 14 equations and 2 unknowns is
solved. The equations are weighted according to the inverse
of the error covariance matrix. The solutions forA andB, if
they are computed with a reasonable certainty, are assumed
to be constants of the mixture, otherwise the superposition
hypothesis should be rejected. The vector D and C33 are
also computed.

iv) The remaining elements of C2 are also computed from
Eq. (26). Its components are calculated with their definite
sign. From the χ2 test it is found that the formulas involv-
ing the third cumulants lead to better results than those in-
volving the fourth ones, since, in general, the higher order
moments, the higher sampling errors.

v) The population factor q is computed according to Eq. (28).
It may be evaluated from the third or fourth order cu-
mulants. Once again the third cumulants provide a better
χ2 estimation. Finally the population second moments, M′2
and M′′2 , and the centroid differential velocity w are com-
puted by using Eqs. (17) and (18).

The χ2 test is used in order to estimate the goodness of the
approximation of the total cumulants through the two-normal
mixture. The cumulants of the mixture up to fourth order, that
we can represent by a vector y, with R components, are fitted
from the corresponding mixture parameters, namely x, so that
a set of relationships y = g(x), according to Eq. (19), is satis-
fied. Thus, a number of R = 31 equations are involved, and an
amount of υ = 16 parameters have to be determined. If e de-
notes the error vector of y, a calibration of the approximation
can be done from the weighted mean of the squared errors,

χ2 =

31∑
i=1

1

e2
i

|yi − gi(x)|2 . (38)

In order to apply the test we assume that the total error has a
31-Gaussian probability distribution, so that the random vari-
ate expressed in Eq. (38) is expected to be a χ2 distribution
with n = R − υ = 15 degrees of freedom. Notice that if the er-
rors are given not by a Gaussian but by a Poisson distribution,
Eq. (38) obeys the χ2 distribution in the large limit n anyway.
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It is known that, if P(χ2; n) denotes its probability distribution,
the relevant quantity to make decisions about goodness of the
fit is the χ2 probability given by the integral

π(χ2; n) =
∫ ∞

χ2
P (ζ; n) dζ (39)

which gives the probability that a function which describes a
set of n data points would give a value of χ2 as large, or larger,
than the one we already have. Nevertheless, when studying ac-
tual samples, more than the values χ2 and π, what is more sig-
nificant is the increase or decrease of these quantities, since
they may become distorted due to over or under estimation of
observational errors, or to an undesired error distribution.

7. Stellar samples

Two catalogs are used in order to apply the algorithm to lo-
cal stellar samples, where only the velocity space is taken into
account. Hence the resulting population components, distribu-
tion symmetries, etc. will reflect strictly kinematic data. Since,
in general, the stars with known radial velocity produce kine-
matically biased samples (Binney et al. 1997), we shall com-
pare our kinematic-based segregation with those obtained from
non-kinematically biased samples. Nevertheless Skuljan et al.
(1999) show that their samples with radial velocities, similarly
to those of Figueras et al. (1997) and Asiain et al. (1999),
demonstrate the same basic features than Dehnen (1998), al-
though the latter distribution was obtained without radial ve-
locities. They also conclude that the kinematic bias does not
significantly affect the inner parts of the velocity ellipsoid. In
the next section we shall analyze in detail the possible kine-
matic bias of our main sample, by selecting nested subsamples
containing higher velocity stars.

The first catalog, Third Catalog of Nearby Stars (CNS3,
Gliese & Jahreiss 1991), is used to test our improved method
in order to compare the results with previous works. It is com-
posed of all known stars within a distance of 25 pc from the
Sun. It was the most statistically complete stellar sample avail-
able with known space velocity in the galactic disk (Jahreiss &
Gliese 1993), although it overestimates the high velocity stars
due to high proper motion sampling. It contains 1946 stars with
known velocity space. As subdwarfs are not considered to be-
long to the Galactic disk (Erickson 1975), six stars among them
which are so described have been also rejected. Anyway the ob-
tained results are not significantly different to those derived if
such stars are included, but as errors are slightly smaller if we
exclude these stars, the criteria has been maintained. The cata-
log is a natural extension of CNS2, used by Erickson (1975).

For the sake of working with a homogeneous and a nearly
complete sample the catalog is filtered by using the χ2 test to-
gether with the following condition. Let |V| be the module of
the star velocity, and let v0 be its mean and σ0 its standard
deviation for the overall sample. Then, in order to avoid stars
with an extreme kinematic behavior the selection of the work-
ing sample is made by taking the one having the minimum χ2

within the subsamples containing stars with |V| < v0 + kσ0,
for k ≥ 2.

The sample with the minimum fitting error is the cor-
responding to |V| < 183.5 km s−1 leading to an acceptable
Gaussian mixture. Let us remark that the first populations of
the subsamples selected by |V| < l, with l ≥ 145 km s−1, have
nearly the same moments, while second components have in-
creasing moments. This clearly indicates that the first popula-
tion has been included in all the subsamples, while the entering
stars are continuously merged to the second component. The
final sample is composed of 1916 stars, with moments and cu-
mulants listed in Table 1. For all the actual samples the veloc-
ities are expressed in the heliocentric galactic coordinate sys-
tem, where V1 is the radial velocity toward the galactic center,
V2 is the component in the direction of the galactic rotation,
and V3 is the component in the direction of the north galactic
pole.

The algorithm segregates two main normal populations
with kinematic parameters that may be associated with thin
disk (97%), noted as Pop-I, and with a very short and extreme
thick disk (57 stars), noted as Pop-II (Table 2). In km s−1, the
respective velocity dispersions are (σ′1, σ

′
2, σ

′
3) = (37 ± 1, 24 ±

2, 19± 1) and (σ′′1 , σ
′′
2 , σ

′′
3 ) = (80± 7, 52± 23, 52± 6). The dif-

ferential movement is (w1, w2, w3) = (2± 6, 65± 7,−1± 4). We
get a clearly non-null vertex deviation for the thin disk compo-
nent, µ′12 = 145± 33 (ε′ ∼ 9◦), while for the thick disk stars we
obtain µ′′12 = 895 ± 423 (ε′′ ∼ 13◦), which is non-null within a
2σ confidence level.

We get more accurate results than in Cubarsi (1990, 1992),
where the sample of Erickson (1975) was used. Now the vertex
deviation of both disk components is asserted. Dispersions are
consistent with those published by Sandage (1987), Wyse &
Gilmore (1995), and Bienaymé & Séchaud (1997) for similar
solar samples.

HIPPARCOS Catalog: This more recent catalog is com-
posed of a large number of stars with known velocity space.
The stellar sample that we are using has been obtained by
Figueras (2000), basically by crossing HIPPARCOS Catalog
(ESA 1997) with radial velocities coming from Hipparcos
Input Catalog HINCA (ESA 1992). We assume that, similarly
as in Figueras et al. (1997) and Asiain et al. (1999), it is not sig-
nificantly biased, as we shall see in the next section. In order
to work with a representative local sample, the overall sample
has been limited up to a distance of 300 pc, since up to this dis-
tance the computation of moments is very stable. This distance
corresponds to a sphere inside the local thin disk component
(e.g. Majewski 1993; Ojha et al. 1999; Chiba & Beers 2000),
so that the fractions of thin and thick disk might be represen-
tative of the solar neighborhood. The resulting sample is com-
posed of 13 678 stars. Similarly to the CNS3 sample, in order
to avoid some non-representative high-velocity stars we select
a subsample with minimum fitting error, and |V| < v0 + kσ0,
for k ≥ 2, which now corresponds to |V| < 210 km s−1, with
13 531 stars, leading a nearly perfect normal mixture. Also for
this catalog, the first segregated populations of the subsamples
selected by |V| < l, with l ≥ 145 km s−1, have nearly the same
moments, as it is shown in Table 5 of the following section,
while second populations have increasing moments, so that the
entering stars are continuously merged to it. The moments and
cumulants are displayed in Table 3.
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Table 1. Means, central moments and cumulants of CNS3 sample selected by |V| < 183.5 km s−1, with 1916 stars.

i Vi i jk µi jk

1 –11.54 ±.90

2 –21.80 .61 111 –907.88 ±5612.90

3 –7.88 .48 112 –10 236.67 2136.30

122 –3388.76 1700.87

i j µi j 222 –20 677.31 2700.22

11 1555.30 ±62.66 113 587.87 1709.11

12 173.38 29.54 123 –1211.44 1145.96

22 718.36 34.45 223 –1207.31 1372.04

13 –34.36 25.13 133 –445.41 1234.64

23 .38 20.10 233 –4553.26 1229.72

33 448.15 23.37 333 94.30 1664.05

i jkl µi jkl i jkl κi jkl

1111 9 942 668.88 ±994 352.61 1111 2 685 819.24 ±1 050 105.45

1112 689 879.27 271 076.40 1112 –119 099.00 288 384.95

1113 –575 872.15 241 054.70 1113 –415 542.15 251 415.99

1122 1 702 397.99 159 507.45 1122 525 020.21 188 081.59

1123 5234.46 99 104.15 1123 16 551.35 104 203.27

1133 1 211 402.85 117 414.88 1133 512 027.62 133 953.31

1222 363 132.64 164 386.42 1222 –10 515.27 171 002.45

1223 –64 814.78 88 799.25 1223 –40 264.04 90 993.72

1233 65 081.47 73 416.95 1233 –12 593.70 75 432.38

1333 –38 810.37 104 288.86 1333 7388.28 106 362.35

2222 2 790 451.91 348 360.32 2222 1 242 350.12 358 755.78

2223 49 954.68 148 323.41 2223 49 125.23 150 421.21

2233 774 217.12 109 263.78 2233 452 282.70 113 917.74

2333 –114 261.49 111 287.49 2333 –114 778.95 112 378.21

3333 1 247 270.98 192 230.53 3333 644 743.25 195 624.29

Table 2. Means, central moments and population fraction for CNS3 subsamples, selected by |V| < 183.5 km s−1.

Pop. µ11 µ22 µ33 µ12 µ13 µ23 v1 v2 v3 n

I 1393 520 375 145 –54 –8 –11.5 –19.7 –7.9 0.97

±73 87 31 33 31 23 4.0 0.6 3.1 0.02

II 6436 2650 2656 895 559 366 –13.5 –84.3 –6.5 0.03

±1144 2351 635 423 557 339 4.0 6.4 3.1 0.02

The algorithm segregates two main populations, with kine-
matic parameters that can be associated with the thin disk
(91%), noted as Pop-I, and thick disk (9%), noted as Pop-II
(Table 4). The respective velocity dispersions are (σ′1, σ

′
2, σ

′
3)=

(28±1, 16±2, 12±1) and (σ′′1 , σ
′′
2 , σ

′′
3 ) = (66±2, 40±9, 41±2).

The differential movement is (w1, w2, w3) = (3±2, 51±3, 1±4).
For this catalog we get a clearly non-null vertex deviation for
both populations, µ′12 = 93± 15 (ε′ ∼ 9◦), and µ′′12 = 314± 112
(ε′′ ∼ 7◦).

Therefore we find that our local HIPPARCOS subsample is
composed of two main Gaussian populations, according to thin

and thick disk, both with non-vanishing vertex deviation in the
galactic plane.

8. Features of HIPPARCOS sample

It is clear (Binney et al. 1997) that the solar velocity obtained
from the local standard of rest of solar samples is very sensible
to star selection, specially if these stars have high-proper mo-
tions, as in the case of stars with known radial velocities. The
mean velocity of the sample, in particular the rotation com-
ponent, significantly varies if the sample contains young disk
stars, old disk stars, or thick disk stars. In general the higher
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Table 3. Means, central moments and cumulants of HIPPARCOS sample selected by |V| < 210 km s−1, with 13 531 stars.

i Vi i jk µi jk

1 –10.86 ±.28

2 –18.26 .20 111 –1802.12 ±1883.77

3 –7.27 .15 112 –13470.04 865.70

122 –2250.54 765.66

i j µi j 222 –20688.21 1436.68

11 1092.11 ±19.55 113 –186.20 666.42

12 120.95 10.02 123 410.17 394.65

22 542.16 13.04 223 –338.04 577.69

13 –15.74 7.63 133 –627.99 454.94

23 11.42 6.62 233 –5734.24 478.84

33 286.83 7.31 333 –264.08 586.56

i jkl µi jkl i jkl κi jkl

1111 6 365 592.02 ±318 072.33 1111 2 787 456.21 ±326560.36

1112 393 778.09 116 788.62 1112 –2480.39 119 041.27

1122 1 372 999.52 79 503.93 1113 –97 731.01 98 025.01

1222 222 036.81 91 806.61 1122 751 645.34 83 365.96

2222 2 595 750.06 224 245.73 1123 18 763.83 39 071.61

1113 –149 298.17 96 877.13 1133 473 310.36 53 864.03

1123 27 423.66 38 324.77 1222 25 322.02 92 605.93

1223 –38 653.64 36 609.61 1223 –32 881.77 36 888.58

2223 14 936.17 71 576.74 1233 32 889.18 28 490.58

1133 787 054.47 52 120.37 1333 –2636.53 43 087.98

1233 67 220.37 28 240.38 2222 1 713 942.70 225 579.65

2233 592 265.05 51 267.97 2223 –3630.84 71 868.55

1333 –16 179.90 42 903.07 2233 436 498.24 51 843.92

2333 –7426.72 47 998.66 2333 –17 249.57 48 121.13

3333 805 015.19 66 534.71 3333 558 204.40 66 929.82

Table 4. Means, central moments and population fraction for HIPPARCOS subsamples, selected by |V| < 210 km s−1.

Pop µ11 µ22 µ33 µ12 µ13 µ23 v1 v2 v3 n

I 787 239 154 93 –2 4 –10.6 –13.9 –7.2 0.91

±34 73 16 15 12 11 1.3 0.3 1.7 0.01

II 4284 1577 1666 314 –177 66 –13.6 –64.5 –8.3 0.09

±280 712 144 112 97 78 1.3 2.7 1.7 0.01

velocity stars included in the global sample, the greater biased
estimation of the solar motion. However this not implies a bi-
ased velocity distribution of population components, since the
solar motion might be only deduced from a local stellar group,
which the sun belongs to, and probably not from the total thin
disk.

In order to study how the high velocity stars modifies the
velocity distribution, or the mixture parameters, we select sev-
eral subsamples containing the whole thin disk component, and
also an increasing and faster part of the thick disk. Following
a similar criterion than in the previous section, the thin disk
component (noted as Pop I in Table 4), which now is well fitted
by a normal distribution, can be approximately drawn from the

overall sample by taking into account the module of its mean
velocity, v, and its total standard deviation, σ, so that |V| =
v + 2σ. This value corresponds to 125 km s−1, and we select
subsamples from this value on. Of course all the subsamples
will contain an increasing amount of high velocity stars, per-
haps a tail of the thick disk, where the second component is not
exactly normally distributed. However in this range of veloci-
ties the method provides a quite good approximation of mixture
components.

Some segregations for values of |V| that indicate some kind
of discontinuity in the merging process are shown in Table 5.
In a future work we shall study in more detail how to de-
tect this kind of discontinuities. We can see that the thin disk
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Table 5. Components of HIPPARCOS sample selected by star velocity lesser than |V|.

|V| Pop µ11 µ22 µ33 µ12 µ13 µ23 v1 v2 v3 n

125 I 741 257 172 82 –11 6 –10.3 –13.6 –7.2 0.91

±20 28 8 8 7 5 1.3 0.2 1.5 0.01

II 2646 803 855 247 –39 47 –8.9 –48.7 –7.2 0.09

±140 259 60 45 49 28 1.3 1.6 1.5 0.01

145 I 794 272 179 90 –5 8 –10.6 –14.2 –7.2 0.93

±22 32 9 9 8 5 1.3 0.2 1.5 0.01

II 3430 951 1210 310 –121 8 –10.6 –58.3 –7.2 0.07

±182 373 90 59 67 5 1.3 1.9 1.5 0.01

165 I 790 267 166 90 –1 7 –10.7 –14.1 –7.3 0.91

±25 38 11 10 10 7 1.3 0.2 1.6 0.01

II 3695 1113 1372 297 –167 40 –10.6 –57.6 –6.8 0.09

±196 387 100 65 76 52 1.3 1.7 1.6 0.01

190 I 785 262 154 91 –3 7 –10.6 –14.0 –7.2 0.91

±29 49 14 12 11 9 0.3 1.3 1.6 0.01

II 3892 1274 1542 283 –126 30 –13.3 –58.1 –7.5 0.09

±226 466 123 81 84 61 1.3 2.1 1.6 0.01

component is well isolated in cases of samples selected higher
than 145 km s−1, so that the high velocity stars do not contam-
inate the characteristic thin disk parameters, while these stars
are added to a second population. Thus, the second component
of the subsample labeled as 125 km s−1 has dispersion param-
eters (σ′′1 , σ

′′
2 , σ

′′
3 ) = (51 ± 2, 29 ± 5, 29 ± 1), and differen-

tial centroid velocity w2 = 35 ± 2 km s−1, similar to those of
old disk populations, like in Sandage (1987), Wyse & Gilmore
(1995), or Bienaymé & Séchaud (1997). The second compo-
nent of samples from 145 km s−1 to 190 km s−1 have increasing
dispersions, although the lag in rotation between populations
remains constant at w2 ≈ 44 ± 3 km s−1. Finally the sample
of 210 km s−1, obtained in the previous section accordingly to
the minimum fitting error, has already merged all the thick disk
population, and has increased the rotational lag and the disper-
sions.

In order to compare the kinematic features of the forego-
ing stellar components with others of non-kinematically biased
samples we shall also analyze their asymmetric drift. Similarly
to Dehnen & Binney (1998), by using Strömberg’s quadratic
relation for the mean heliocentric rotational velocity, v2, and
the total dispersion, S 2, of each stellar component, we can fit
the linear relationship

−v2 =
S 2

∆
· (40)

The plot we obtain in Fig. 2 is completely consistent with two
differentiated stellar galactic components. The dashed line cor-
responds to the asymmetric drift relation within the thin disk.
We obtain a constant ∆ = 89 ± 15 km s−1 in total agreement
with the calculated by Dehnen & Binney (1998). Moreover
the thick disk, continuous line, may also be fitted leading to
∆ = 116 ± 22 km s−1. It also points to the origin of the
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Fig. 2. Dependence of the mean heliocentric rotational velocity v2

(km s−1) on the total dispersion S 2 (km2 s−2) for the stellar compo-
nents in HIPPARCOS subsamples. The dashed line corresponds to the
thin disk (∆ = 89±15 km s−1) and the continuous line to the thick disk
(∆ = 116 ± 22 km s−1).

coordinate axes, since we are representing heliocentric veloci-
ties. Between both population components, at v2 ≈ −58 km s−1,
we find the points representing the incomplete thick disk com-
ponent of the intermediate and partially mixed subsamples.
Hence both galactic components are clearly distinguishable.
Thus we can now confirm that the sample of 125 km s−1 still
has rotational properties similar to the thin disk component.

Therefore HIPPARCOS sample show a homogeneous and
consistent kinematic behavior concerning the velocity distribu-
tion of each mixture component. Similar trends are found in the
CNS3 sample, but with less accuracy.
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9. Discussion

Some of the tensor elements involved in Eqs. (23) and (24)
are roughly zero, since their standard errors are similar
or greater than their values. In general we are working
within a 2σ-confidence level. For example, in both sam-
ples the only non-vanishing non-diagonal second moment
is µ12. The third moments that may be assumed zero are
κ111, κ113, κ123, κ223, κ133, and κ333, although for the CNS3 sam-
ple the moment κ122 is very low. The vanishing four cumulants
are those having the index 3 an odd-number of times. On the
other hand the cumulants κ1112, κ1222, and κ1233 are non-null, but
much smaller than the other cumulants, and with a higher rela-
tive error. For the CNS3 sample the moment κ1233 is also null.
Hence the equations of the Appendix D may be simplified and
reduced to some particular cases of symmetry.

In general the samples from both catalogs are qualitatively
very close, and they have total central moments that are con-
sistent with the assumption (a) of a symmetry plane u3 = 0.
The hypothesis of case (b) is also fulfilled for both samples,
according to Eq. (36) of case (a+b). Thus the differential cen-
troid velocity can be considered null in the radial direction.
However the constraint equations of the axisymmetric hypoth-
esis (c) are not satisfied. The partial moments µ′12 and µ′′12 are
non-null, and the total moment µ12 can not be explained from
a superposition of two axisymmetric normal distributions with-
out vertex deviation. The set of non-null but small fourth cumu-
lants, that have been outlined above, are indicators that the sam-
ples are not far from the axisymmetry hypothesis, according to
case (a+b+c), but definitively the distribution has lost the axial
symmetry.

The segregation algorithm has led to population param-
eters that are completely consistent with the actual portrait
of the local kinematics. Although CNS3 subsample shows
slightly high moment values, HIPPARCOS subsample is in
a total agreement with population parameters obtained from
non-kinematically biased samples. Thus, the proportion of
9% thick disk population is similar to the obtained by au-
thors like Soubiran (1994), Ojha et al. (1996), or Chiba &
Beers (2000). Also thin and thick disk velocity dispersions,
(σ′1, σ

′
2, σ

′
3) = (28 ± 1, 16 ± 2, 12 ± 1) and (σ′′1 , σ

′′
2 , σ

′′
3 ) =

(66 ± 2, 40 ± 9, 41 ± 2), are similar to the values obtained, for
example, by Soubiran (1993, 1994), Beers & Sommer-Larsen
(1995), Ojha et al. (1996, 1999), Soubiran et al. (2003), as well
as the lag in rotation between thick and thin disk stars, 51 ±
3 km s−1. However we must point out that the thin disk com-
ponent, which is a complex mixture of stellar moving groups
(e.g. Figueras et al. 1997; Dehnen 1998; Chereul et al. 1998;
Skuljan et al. 1999) is globally well fitted by an ellipsoidal
distribution.

The non-null vertex deviation of the thin disk component,
µ′12 = 93 ± 15 (ε′ ∼ 9◦), is consistent with the obtained by
Dehnen & Binney (1998) and Muhlbauer & Dehnen (2003).
But we must also remark the similar non-null vertex deviation
of the thick disk population, µ′′12 = 314±112 (ε′′ ∼ 7◦), what is
suggesting a non-axisymmetric distribution also for this com-
ponent, according to Dehnen (1998).

Therefore the constraint equations provide a way for testing
the geometry of the mixture distribution only through evalua-
tion of the total cumulants, without computing the population
parameters of the stellar components. In addition those param-
eters can be estimated from the segregation algorithm that has
been deduced from the constraint equations, so that plausible
values and error bars have been obtained. The use of other
statistical techniques such as SEM (Stochastic, Expectation,
Maximization) (Celeux & Diebolt 1985; Soubiran et al. 1990;
Ojha et al. 1996), EM (Expectation, Maximization), other max-
imum likelihood-based methods (Robin et al. 1996; Ratnatunga
& Upgren 1997; Dehnen 1998), other related multivariate sam-
pling algorithms (Bougeard & Arenou 1990), and specially
the more recent wavelets-based algorithms (e.g. Figueras et al.
1997; Chereul et al. 1998; Skuljan et al. 1999), are nowadays
common in astronomy. They are very efficient in segregating
particular stellar groups with common properties. Generally a
global multivariate analysis from kinematic, photometric, spec-
troscopic, and all the available star attributes is carried out,
and a lot of clusters, generally with few stars each one, are
isolated. In some cases the background velocity distribution
is not relevant for their analysis, although sometimes spheri-
cal or bivariate Gaussian distributions are assumed (Soubiran
1993; Ojha et al. 1996, 1999). Some of these works discuss
kinematic features of HIPPARCOS Catalog, and are mainly de-
voted to the detection of stellar moving groups (e.g. Dehnen &
Binney 1998; Asiain et al. 1999). As in our work, some of them
conclude that the axisymmetric hypothesis is not completely
fulfilled, although, in order to assert it, they need sometimes
considerations about the mass distribution and the gravitational
potential. Thus, our work must be considered a qualitative ap-
proach to the study of the velocity distribution complementary
to the foregoing techniques. In the future this work may be con-
tinued by generalizing the method to n-component mixtures.
Also other symmetry cases, and samples far from the galactic
plane may be studied. In order to segregate normal populations
it seems feasible a recursive application of the algorithm, fo-
cusing in the selection of subsamples that minimize the fitting
error.

In conclusion the application of our mixture model and
symmetry analysis to the subsample drawn from HIPPARCOS
catalog gives a good approximation of the local kinematics,
starting from statistics involving only the velocity space. In
particular, the cumulants of the mixture provide meaningful in-
formation of the velocity distribution leading to the following
main results: (i) The solar neighborhood can be described from
two populations with normal velocity distribution, that are as-
sociated with thin and thick disk components. (ii) The cumu-
lant constraints are consistent with the hypotheses of symme-
try plane and non-differential motion in the radial direction.
(iii) The velocity distribution shows a deviation of the axisym-
metry hypothesis and both population velocity ellipsoids have
vertex deviation in the galactic plane.
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Appendix A
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µ2222
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µ3333
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Appendix B
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1 + 3κ133d2
1d3 − 3κ113d1d2

3 + κ111d3
3 = 0
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3 = 0
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Appendix C
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