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Introduccid

La transformaci6 de Laplace és un métode alternatiu per a la resolucié de problemes de
valor inicial d’equacions diferencials lineals a coeficients constants. Es especialment ttil
quan, pel sistema regit per aquestes equacions, es vol relacionar la resposta a un estimul
extern amb la seva propia resposta natural (associada a la part homogénia de I'equacio).
En particular, quan es té determinat el comportament del sistema envers un ¢mpuls inicial,
es pot avaluar la resposta davant de qualsevol altre estimul aplicat (donat pel terme no
homogeni de I'equacio) mitjangant la integral de convolucio.

Aixi mateix, la transformada de Laplace també permet calcular de manera molt efi-
cient, més que emprant els métodes habituals ja estudiats, la resposta d'un sistema da-
vant de certes excitacions discontinues. Per exemple, problemes d’impulsos i variacions
de quantitat de moviment en mecanica, o problemes d’interruptors en circuits eléctrics.

Altres aplicacions més avancades de la transformacié de Laplace es troben exemplifi-
cades en xarxes de circuits connectats entre si, o amb induccions mitues, on la resposta
d’un d’ells actua com a estimul extern d’'un altre. O també en sistemes on hi ha dues
variables independents, per exemple en una linia de transmissié on la resposta depén del
temps i de la posicio sobre la linia. Aquest seria el cas de xarxes eléctriques de gran lon-
gitud, on hi pot haver pérdues d’energia al llarg de la linia, o on algunes caracteristiques
del sistema, com ara resisténcies o autoinduccions, no es poden suposar localitzades. En
aquestes situacions el problema es resol mitjancant equacions diferencials en derivades
parcials.

Originalment, Laplace (1749-1827) va ser el primer en fer as de la transformada integral
—que ara porta el seu nom— en els seus treballs sobre mecanica celest. Va ser, pero,
Heaviside (1850-1925) qui posteriorment realitza el seu desenvolupament.

La transformada de Laplace no té una interpretacio fisica immediata, com és el cas de
la transformada de Fourier, que es pot relacionar, per exemple, amb I’espectre o el patro
de difracci6 de fenomens de naturalesa ondulatoria, siné que cal d’ajustar-se al seu propi
ambit formal.

Es una transformacio lineal que permet transformar una equacio diferencial,

n
an% +..+ al% + agy = f(t)
juntament amb unes condicions inicials adequades, per exemple, y(0) = ¢'(0) = ... =
y™=1(0) = 0, en una equaci6 algebraica de la forma

(aps" 4+ ...+ a15+ ag) Y(s) = F(s)

Aixi, la seva utilitzacié pot comparar-se a I'is de logaritmes, que permet, per exemple,
reduir el problema de calcular el producte de dos nombres al problema més senzill de
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sumar dos logaritmes. Tant en un cas com en l’altre, s’ha d’efectuar préviament una
transformacio i posteriorment la inversio de la transformacié.

La transformada de Laplace també es pot aplicar a un sistema de varies equacions
diferencials lineals simultanies per a transformar-lo en un sistema lineal de varies equacions
algebraiques simultanies. En altres casos, el métode es pot utilitzar per a resoldre una
equacio diferencial lineal amb coeficients no constants per a transformar-la en una de
menor ordre, eventualment de més facil resolucié. I, quan s’aplica a equacions diferencials
en derivades parcials, les converteix en equacions diferencials ordinaries.

A continuaci6é veurem les definicions i propietats basiques que permetran resoldre els
problemes més elementals que s’han comentat.



La transformaci6 de Laplace

Comencem definint formalment la transformada de Laplace.

Definicié 1 Sigui f una funcio real definida per a 0 < t < oo, la transformada de Laplace
de f(t), que designarem per L {f(t)} o per F(s), és la funcid de la variable real s

F(s) = 2 {f()} = / T di )

on

oo A
/ e *'f(t)dt = lim e ST f(t)dt
0

A—00 0

En realitat, per a ser rigorosos, el limit inferior de la integral s’hauria d’avaluar en 0,
és a dir, en un valor positiu |h|, quan h — 0, pero en la practica i en el que segueix, ho
escriurem simplement com a 0.

Exemple 1 Obtenir la transformada de Laplace de la funcic f(t) = 1.
Solucié. A partir de I'equacio (1)
A 1—e4

ZA{ft)} = lim e T f(t)dt = lim ————

A—00 0 A—00 S

1
- -, 5>0
= s
{oo , <0

v
Exemple 2 Obtenir la transformada de Laplace de la funcié f(t) = e®.
Solucié. De I'equacié (1)
A (a—s)A __ 1
ZLA{e™} = lim e e dt = lim
A=o0 [ A— o0 oa— S
1
, S>>«
= s—«
{ oCc s<
v

Exemple 3 Obtenir la transformada de Laplace de la funcio f(t) = coswt, g(t) = sinwt.
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4 Equacions diferencials

Solucié. De I'equaci6 (1) es té
L {coswt} = / e * coswt dt i Z{sinwt} = / e *'sinwt dt
0 0

Observem, a més, que

00 A
L {coswt} +i.Z {sinwt} = / e Ste @t dt = lim eliw=s)t 1y
0 A—o00 0
) 6('ioufs)A -1
= lim -
A—o0 w — S
1 5+ 1w
— = , s>0
_ s —iw 8%+ w?
no definit , s <0
En igualar les parts reals i imaginaries d’aquesta equacié es té
s w
ZLA{coswt} = —— , ZL{sinwt}=——- , s>0
fcoswt) = L L {sinwt) = 5

v

L’equacio (1) associa a cada funcié f(¢) amb una nova funcio F(s). Tal i com suggereix

la notacio .Z {f(t)}, la transformada de Laplace és un operador que actua sobre funcions.
A més, es tracta d’'un operador lineal:

Propietat 1 (Linealitat) Z {af(t) +bg(t)} = aZ {f(t)} + L {g(t)}.

Demostracio. Per definicio,
L{af®)+09)} = [ e (ar )+ bott) e
0

— a/oo e f(t) dt+b/oo e”g(t)dt
= aZ{f()} + 0L {g(t)}

O

Observacio. Una dificultat a tenir en compte de la Definicié 1 és que la integral

podria no existir per a algun valor de s. Aixo succeeix per exemple en el cas de f(t) = et’.

Per a garantir que la transformada de Laplace de f(t) existeixi almenys en un interval
s > 89, s’exigeixen a f(t) les segiients condicions:

a) La funcio f(t) és continua per seccions. Aixo significa que f(t) té com a molt
un numero finit de discontinuitats en tot interval 0 < t < tg4, i tant el limit per
I'esquerra com per la dreta de f existeixen en tots els punts de discontinuitat. Dit
d’altra manera, f(¢) té tan sols un nimero finit de discontinuitats “de salt” en tot
interval finit. En la Figura 1 es representa la grafica d'una tipica funci6é continua
per seccions, o continua a trossos.

b) La funci6 f(¢) és d’ordre exponencial, és a dir que existeixen constants M i~y tals
que
f(t)] < Me™, 0<t<oo
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Figura 1: Grafica d’'una funci6 continua per seccions.

Lema 1 Sigui f(t) una funcid continua per seccions i d’ordre exponencial, llavors la seva
transformada de Laplace existeix per a tot s suficientment gran. En particular, si f(t) és
continua per seccions i | f(t)| < MeY, llavors F(s) existeiz per a s > 7.

Les funcions que compleixen aix0 s’anomenen “funcions admissibles”. La demostracio del
Lema 1 es fara amb ’ajuda del segiient lema del calcul integral, que s’anuncia a continuacié
pero no es demostra.

Lema 2 Sigui g(t) una funcié continua per seccions. Llavors la integral impropia [ g(t) dt
existeix st fo lg(t)| dt existeiz. Per a demostrar que aquesta ultima integral existeir,
només cal provar que hi ha una constant K tal que

/OA|g<t>|dth

per a tot A.

Demostracié (Lema 1). Ja que f(t) és continua per seccions, llavors la integral
fUA e *'f(t)dt existeix per a tot A. Per tal de demostrar que la integral té un limit
per a tot s suficientment gran, observem que

A A
/ e f(t) dt < M/ e Stert dt
0 0
M M
— (6(’7*5)14 _ 1) <
v = 5=

per a s > . Llavors, basant-nos en el Lema 2, es té que la transformada de Laplace de

f(t) existeix per a s > . Aixi doncs, a partir d’ara suposarem que |f(t)| < Me" i s > 7.
O

La utilitat real de la transformada de Laplace per a resoldre equacions diferencials
recau en el fet que la transformada de Laplace de f'(¢) estd molt relacionada amb la
transformada de f(t). Aquest és el contingut del segiient lema.

Lema 3 (Derivacio) Sigui F(s) = Z {f(t)}. Llavors
LA (D)} = sZ{f(t)} = f(0) = sF(s) — f(0) (2)



6 Equacions diferencials

Demostracié. Només cal escriure la formula per a la transformada de Laplace de f'(t),
i integrar per parts. Aixi es té

A

ZA{f't)} = lim e ST f(t) dt

A—oc 0

A A
= lim e *f(t) + lim s/ e " f(t)dt
—00 0

A—o0 0
A
- —f(0)+4£r)r;os/0 e tf (1) dt
= sF(s) - f(0)

O
El segiient pas es trobar una relacié entre la transformada de Laplace de f”(¢) i la de
f'(t), cosa que no és més que una conseqiiéncia del Lema 3.

Corol-lari 1 Sigui F(s) = Z{f(t)}. Llavors

ZAf"(t)} = sF(s) — sf(0) = f'(0) (3)
Demostracié. Aplicant dues vegades el Lema 3 trobem que
2{f"0r = sZ{f)} - f1(0)

= s(sF(S) — f(())) — f'(0)
= $2F(s) — sf(0) — f'(0)

O
Arribat aquest punt, ja tenim els elements necessaris per a passar a resoldre un pro-
blema de valor inicial

2 d
ad_tg + bd_g; +ey=f@1t), yO) =w, ¥ (0)=uy (4)

a partir de resoldre una equacio algebraica. Siguin Y'(s) i F(s) les transformades de
Laplace de y(t) i f(t) respectivament. Aplicant I'operador de transformacié a ambdods
costats de I’equacio6 diferencial s’obté

Z {ay"(t) +by' () + cy(t)} = F(s)
Tenint en compte la linealitat de 'operador de transformaci6 s’obté
ZA{ay"(t) +by' () + ey(t)} = a2 {y" ()} + 0L {y' ()} + L {y(D)}
i d’acord amb el Lema 3 i el Corol-lari 1, es té que
Ly =sY(s)—w . ZL{y'()}=5Y(s) = sp0— v

Per tant,
a (s°Y(s) — syo — yp) + b(sY (s) — yo) + Y (s) = F(s)
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Aquesta equacid algebraica implica que

(as + b)yo ay F(s)

Yi(s) =
(5) as?+bs+c as?+bs+c  as?+bs+ec

(5)

L’equacio (5) descriu la transformada de Laplace de la solucio y(t¢) del problema de
valors inicials (4). Per a avaluar y(t) és necessari consultar les taules d’antitransformades
de Laplace. Ara bé, aixi com Y (s) s’expressa explicitament en termes de y(t), és a dir
Y(s) = [7 e *y(t) dt, també seria possible donar una formula explicita per a y(t). No ob-
stant aixo, aquesta formula, que s’escriu simbolicament com y(t) = .2~ {Y(s)}, implica
una integraci6 respecte d'una variable complexa, cosa que va més enlla del tema tractat
en aquests apunts. Per aixo, en lloc d’aplicar la formula, es deduiran en la segiient seccio
algunes propietats funcionals de 'operador transformada de Laplace. Les propietats per-
metran invertir per simple inspeccié moltes transformades de Laplace, és a dir, permetran
reconeéixer de quines funcions son transformades.

Exemple 4 Resoldre el problema de valor inicial
y' =3y +2y=¢"  y(0)=1,  y(0)=0

Solucié. Sigui Y (s) = .Z {y(t)}. Aplicant la transformada de Laplace a ambdds membres
de 'equacio6 diferencial s’obté

1
sY (s) — s —3(sY(s) = 1) +2Y(s) = 3
5 J—
i aixo implica que
1 5—3
Yy —

(5) (8—3)(82—3S+2)+S2—38+2

1 5—3

G-D(-2(-3)  (-1s-2)

Per a trobar y(¢), es desenvolupa en fraccions simples cada un dels termes del segon
membre, i s’obté

1 A N B N C
(s—1)(s—2)(s—3) s—1 s—-2 5-3

Aixo implica que
A(s —=2)(s=3)+ B(s—1)(s—3)+C(s—1)(s—2) =1
En fer s =1 s’obté A = %, fent s = 2 s’'obté B = —1,iamb s = 3 s’obté C' = % Per tant,

1 11 R
(s—1)(s—2)(s—3) 2s—1 s—2 25-—3

De manera similar,
s—3 D E
= +
(s=1)(s=2) s—1 s—2

i d’aqui
D(s—2)+E(s—1)=s—3
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Ara, fent s = 1 s’obté D = 2, mentre que amb s = 2 s’'obté F = —1. Per tant,

11 111 9 1
Vis) = = _ 1 B
() 55— 1 s5-2 9537 5-1 5_2
5 1 2 1 1

55—1_5—2+§5—3
El primer terme és la transformada de Laplace de get. De manera similar, el segon i el
1.3t

tercer terme son les transformades de —2¢e? i se”’, respectivament. Conseqiientment,

Y 1 Y 1
Y(s) =% {Eet — 2e* + §e3t} — y(t) = Eet —2e* + §e3t

v
Observacio. En realitat existeix una infinitat de funcions amb idéntica transformada
de Laplace . Per exemple, la transformada de Laplace de les funcions

5 1
Ot 9.2t L 3t
o(t) = 5¢ 2e”t + e s t#£1,2,3
0 si t=1,2,3

és també Y (s), ja que z(t) difereix de y(¢) tan sols en tres punts?. No obstant, només hi
ha una funcié continua y(t) que té per transformada de Laplace una funcié donada Y'(s),
i és en aquest sentit que s’escriu y(t) = .2 {YV(s)}.

Propietats basiques

En aquesta secci6 s’obtindran algunes propietats importants de les transformades de
Laplace. Utilitzant aquestes propietats sera possible calcular la transformada de la majo-
ria de les funcions sense haver de realitzar integracions pesades. A més, es podran invertir
moltes transformades per simple inspeccio.

Propietat 2 (Multiplicacioé per t) Si Z{f(t)} = F(s), llavors

2/} = S5 ()

Demostracid. Per definicio, F(s) = [;° f(t) dt. En derivar ambdos costats de 'equacio
respecte de s, s’obté

d d —st

Ly = L[y a
_ / e ()dt:/ﬂ te U f(t) dt
= L{-tf(0)

O

La Propietat 2 estableix que la transformada de Laplace de la funci6 —tf(t) és la

derivada de la transformada de Laplace de f(¢). Aixi doncs, si es coneix la transformada

F(s) de f(t), llavors ja no és necessari realitzar una integraciéo pesada per a trobar la
transformada de tf(¢).

2Si f(t) = g(t), excepte en un nimero finit de punts, llavors fab ft)dt = f;g(t) dt
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Exemple 5 Obtenir la transformada de Laplace de te'.

Solucié. La transformada de e’ és . Per tant, per la Propietat 2, la transformada de

S J—
Laplace de te! és
d 1 1
Lte!l = —— =
{re} dss—1 (s—1)2

v

Exemple 6 Obtenir la transformada de Laplace de t™.

Solucié. Utilitzant n vegades consecutives la Propietat 2 s’obté

d” d” 1 n!
[} = () 1) = () =

v

La utilitat principal de la Propietat 2 és invertir transformades, com es mostra en els
segiients exemples.

Exemple 7 Quina funcio té per transformada de Laplace ( Sk ¢
S J—
Solucié. Primerament observem que
1 d 1 1
_ E— : =& 2t

(s—2)2 dss—2 ' s —2 {e}

Per tant, per la Propietat 2 es té que
1
{ = 2)2} ’
v
—4
Exemple 8 Quina funcio té per transformada de Laplace ﬁg
5% +

Solucié. Observem que

4s d 2 2

I —— i = % {sin 2t
(s2 + 4)2 ds s2 +4 ! s24+4 {sin 2t}
Per tant, per la Propietat 2 es té que
4
Z! {—7’92} = —tsin 2t
(s244)
v
¢

Exemple 9 Quina funcio té per transformada de Laplace

1
(s —4)°
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Solucié. Podem reconéixer facilment que

1 1 1

(s—4)3  ds?2s—4

Per tant, aplicant la Propietat 2 dues vegades trobem que

1 _ 1o
(s—4>3‘g{2”}

Propietat 3 (Multiplicacié per e*) Si F(s) = .Z{f(t)}, llavors
L™ f(t)} = F(s— a) (7)

Demostracio. Per definicid

L™ f(t)} = /OO e St f(t) dt = /OO eI E (L) dt

0 0
_ / (= (1) dt = F(s — o)
0

O

La Propietat 3 estableix que la transformada de Laplace de e f(¢) avaluada en el punt

s és igual a la transformada de f(t) en el punt (s — «). D’aquesta manera, si es coneix

la transformada F'(s) de f(t), llavors no és necessari calcular la integral per a trobar la
transformada de Laplace de e® f(t), només cal substituir s per s — o en F(s).

Exemple 10 Determinar la transformada de Laplace de la funcid e* sint.
Solucié. La transformada de sint és 1/ (s*> + 1). Per tant, per a obtenir la transformada
de Laplace de €* sint, només cal substituir s per s — 3, és a dir
1
Z{etsintt = —————
{ J (s —3)2+1
v

La utilitat real de la Propietat 3 es veu clarament en invertir les transformades de
Laplace, tal i com ho mostren els segiients exemples.

Exemple 11 Quina funcid g(t) té la segiient transformada de Laplace ?

s—17
Gls) = — >~
)= 57 =7
Solucié. Observem que
s
F(S) = m = Z{COSE)t}
i que G(s) s’obté de F'(s) quan substituim s per s — 7. Per tant, per la Propietat 3,
s—1T7
————— = £ {e" cos it
oo LA cosit)
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1
Exemple 12 Quina funcio té per transformada de Laplace ——— 7
s2—4s+9
Solucié. Una manera de resoldre el problema és desenvolupar 1/ (s? — 4s + 9) en fraccions
simples. Perd una manera molt millor de resoldre’l és completant s> — 45 + 9 en quadrats
perfectes, de manera que

1 1 1

2—45+9 s2—4ds+4+(9—4) (s—22+5

També tenim que

1 1 .
o —.Z{ﬁsm\/gt}

Per tant, per la Propietat 3 tenim que

1 | 1
= =23 —=e"sin Vit
2 —45+9 (s—22+45 {\/56 Sm‘[}

?

s
Exemple 13 Quina funcid té per transformada de Laplace ———
s?2—4s+9

Solucié. Observem que

s _ 5—2 n 2
s2—4s+9  (s—2)2+45 (s—2)2+5

La funci6 s/(s? + 5) és la transformada de Laplace de cos V/5t. Per tant, per la Propietat
3 es té que

52 zf{e2tcosx/gt}

(s —2)2+5

% =% {e2t cos V5t + ie% sin \/gt}
s2—4s+9 V5

v

Com hem vist anteriorment, la transformada de Laplace és un operador lineal, és a

dir, Z {c1 f1(t) + cafa(t)} = 1 Fi(s) + caFy(s). Llavors, si es coneixen les transformades

Fi(s) 1 Fy(s) no és necessari realitzar cap integracio per tal de trobar la transformada

de Laplace d'una combinacié lineal de fi(t) i fa(t). Per exemple, dues funcions que es

presenten amb molta freqiiéncia en I'estudi d’equacions diferencials son el cosinus i el sinus
hiperbolics. Aquestes funcions es defineixen per les equacions

eat + efozt eat _ efozt

coshat = —— . sinhat =
2 2

Per tant, segons la linealitat de la transformada de Laplace, resulta que

Z {coshat} = %g {et) + %g feo)

_I( 1 U\ _ s
- 2\s—a  s+a) s2—a?
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Z {sinhat} = %j {eot) — %g {e )

IRV 1\ a
 2\s—a s+a) s2—a2

Altres propietats

En aquesta secci6 veurem algunes propietats més de la transformada de Laplace que
resulten ttils a 'hora de resoldre alguns problemes.

Propietat 4 (Integracio) Sigui £ {f(t)} = F(s), llavors
f{/o f(u)du}:@ (8)

Demostracié. Fent g(t) = fotf(u) du es té g'(t) = f(t), g(0) = 0, i per tant, utilitzant
la propietat de derivaci6 de la transformada de Laplace , es té

Py = 2 {00} = 52 (o0} = 52 { [ 1wy an

O
Propietat 5 (Divisi6é per t) Si @ és admissible, per la qual cosa només és necessari
que existeiri el lim;_, @, llavors
t oo
z{@} :/ Flu) du (9)
Demostracié. Fent g(t) = @, f(t) = tg(t) i utilitzant la Propietat 2 s’obté que
00 A
/ F(u)du = lim F(u) du
s A— o0 s
4 d
= s
_ _ L @)
= 1}1_{{)10 (G(s) — G(A)) =G(s) =% {T
O

Observacio. Aqui s’ha utilitzat el fet, que té interés per si mateix, que si una funcio
f(t) és admissible, la seva transformada de Laplace satisfa

lim F(s) =0 (10)
§—>00
que és conseqiiéncia immediata de 'acotacio |F(s)| < %, vista anteriorment en el

Lema 1.
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Propietat 6 (Canvi d’escala) Sigui a > 0, llavors

2 {fan)=F (9)

a

Demostracio. Fent at = u tenim

2y = | " e (at) di
= /OOO“W);:%F(E)

L
»

Propietat 7 (Funcions periodiques) Si f(t +T) = f(t), llavors

T
/ e " f(t)dt
0

1—e T

ZLA{f)} =

Demostracio. Veiem que

00 T oo
Diﬂ — —st dt = —st d —st d
Goy= [ erma= [ enrmas [Cetrma
i fent £ =T 4 u en I'tltima integral tenim
T e
)2 — —st d —s(T+u) T d
(s) /Oe () t+/0 e £(T 4 u) du
T 00
= / eStf(t)dt—i-eST/ e " f(u)du
0

0

= /T e St f(t)dt + e *TF(s)
0

/OT e S f(t) dt

1 —esT

d’on sobté

F(s) =2 {f(t)} =

La Taula 1 mostra les anteriors propietats de la transformada de Laplace .

(11)

(12)
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Equacions diferencials

Taula 1: Propietats de la transformacié de Laplace

1. Linealitat

ZA{af(t) +bg(t)} = aZ {f(1)} + 6L {g(1)}

2. Derivacid

LA )} =sZL{f(t)} = f(0) = sF(s) - f(0)

LD} = ()~ 0) — o 0D (0)
3. Multiplicaci6 per t ZLA{tf(t)} = —%F(s)

4.  Multiplicaci6 per e

LA{e*f(t)} = F(s — a)

5. Integracio

Z{/Otf(u)du}:Fis)

6. Divisio per t

z{@} :/SOOF(u)du

7. Canvi d’escala

2 {fan)=F (%)

8. Funcions periodiques

f+T) = f(1)

LU = 1o | IO
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Equacions diferencials de terme no homogeni discontinu

En moltes aplicacions el segon membre de la equacio diferencial ay” + by' + cy = f(t) té
una o més discontinuitats de salt. Per exemple, una particula pot trobar-se en moviment
sota la influéncia d’una forga fi(¢) i, de cop, en un temps ¢, patir els efectes d’una forga
addicional fy(¢). En la seccié actual es descriura com tractar aquest tipus de problemes
mitjancant la transformada de Laplace. Per comencar, obtindrem les transformades de
Laplace d’algunes funcions discontinues senzilles.

L’exemple més senzill d’'una funci6 amb una sola discontinuitat de salt és la funcid

0 , 0<t<ec
Hc(t):{l t>c

Aquesta funcio H.(t), de la qual es motra la grafica en la Figura 2, es coneix amb el
nom de funcio esglad o funcio de Heaviside. De vegades també apareix sota les notacions
H(t — ¢) o u(t — ¢), aquesta darrera derivada del mot anglés “up” per descriure un salt
ascendent. La seva transformada de Laplace és

(13)

LM} = /0 S (1) di = / ety

A —cs 67514
= lim et dt = lim
A—oo c A—00 S
e—cs
= , s§>0
S
1
f - 1
| c

Figura 2: Grafica de H.(t)

Considerem ara una funci6 f definida en l'interval 0 < ¢ < oo, i sigui g la funcié que
s’obté de f en traslladar la grafica de f ¢ unitats cap a la dreta, tal i com mostra la Figura
3. Dit amb meés precisio, g(t) = 0 per 0 <t < ¢,ig(t) = f(t—c) per t > ¢. Una expressio
analitica adequada per a g(t) és

g(t) = He(t) f(t = ¢)

El factor H.(t) fa g igual a zero per a 0 <t < ¢, i en canviar 'argument ¢ de f per ¢t — ¢,
f es desplaca ¢ unitats cap a la dreta. Ja que g(¢) s’obté a partir de f de manera senzilla,
caldria esperar que la seva transformada de Laplace es pogués obtenir de manera senzilla
a partir de la transformada de f(¢). A continuaci6 es demostrara que, efectivament, aixo
succeeix.
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-t : -1

Figura 3: f(t) i g(t) = H.(t) f(t — ¢).

Propietat 8 Sigui F(s) =.Z{f(t)}. Llavors
LA{H)f(t —c)} = e “F(s) (14)

Demostracio. Per definicio,
LAH ) f(t—c)} = / e "H,(t)f(t — c)dt
0
= / e_Stf(t—c) dt

c

Per a resoldre la integral convé fer el canvi £ =t — c.

Llavors
[ etu—aa = [Tereosg
c 0
— —cs > —s& d
e [ eseae
= e “F(s)
Per tant, Z{H.(t)f(t —c)} = e L {f(t)}. O

—S

€
Exemple 14 Quina funcid té per transformada de Laplace —- ¢
s

Solucié. Sabem que 1/s? ¢és la transformada de la funcio ¢, de manera que per la Propietat
8 resulta

—S

— = 20 - 1)}
La Figura 4 mostra la grafica de Hy(t)(t — 1). v
—3s
Exemple 15 Quina funcio té per transformada de Laplace PR y— ¢
Solucié. Observem que
1 1 1

32—23—3:32—28—|-1—4:(3—1)2—22
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-1

1
Figura 4: Grafica de Hy(t)(t —1).

Ja que 1/(s* — 2?) = £ {4 sinh 2t}, de la Propietat 3 podem concloure que
1 I,.
m = g {56 SthQt}
i segons la Propietat 8 tenim que

—3s 1
32—6273—3 =Y {ng(t)et_:; sinh 2(t - 3)}

v

Exemple 16 Sigui f(t) la funcié que val t per a 0 < t < 1, i que val 0 per a t > 1.
Trobeu la transformada de Laplace de f sense realitzar cap integracio.

Solucié. Observem primerament que f(t) pot escriure’s de la forma
f(t) = t(Ho(t) — Hi(t)) =t — tH:(2)
Per tant, segons la Propietat 2,

L)}y = 2ty - Z{tH(1)}

1 d e s 1 e”5  e7f

s ds s 52 s 52
v
Exemple 17 Resoldre el problema de valor inicial
Py dy 1 si 0<t<1, 0 si 1<t<?2

1 si 4<t<), 0 si H5<t< @

Solucié. Siguin Y(s) = . Z{y(t)} i F(s) = . Z{f(t)}. Quan s’aplica la transformada de
Laplace als dos costats de I'equacio diferencial s’obté que (s> — 3s + 2)Y (s) = F(s), de
manera que

F(s) __ F(s)
s2—-35+2 (s—1)(s—2)

Y(s) =
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Una manera de calcular F(s) és escriure f(t¢) de la forma
f(t) = Ho(t) — Hi(t) + Ha(t) — Hs(t) + Ha(t) — Hs(1)

Per tant, basant-nos en la linealitat de la transformada de Laplace s’obté que

S S S S S S

Un altre métode per a calcular F'(s) és avaluar la integral

oo 1 3 5
/ e St f(t)dt = /e_Stdt—i-/ e—“dt+/ e st dt
0 0 2 4

1—¢ 6725 o 6735 6745 o 6755
= + +
S S S

Com a conseqiiéncia obtenim que

1—e 5+ 6725 o 6735 + 6745 o 6755

Vis) = S 1)(s—2)

. . 1 . . , .
El segiient pas és desenvolupar GGy o fraccions simples, és a dir, de manera que

s’escrigui de la forma
1 A B C

s(s—=1)(s —2) s+s—1+s—2

Aixo implica
A(s—1)(s—2)+Bs(s—2)+Cs(s—1)=1

)

Fent s = 0 trobem que A = 3, fent s = 1 trobem que B = —1, i fent s = 2 s’obté que
C= % Aixi doncs,
11 1 1 1
s(s—1)(s—2) 25 s—1 2s5-—2
1 1
= 3{5 —6t+ 56%}
Per tant, a partir de la Propietat 8,
1 1 1 1
y(t) = [5 —e' + 56”} — Hy(t) [5 — el 4 562(t_1):|

+H2(t) {_ _ e(t—2) + _62(t2)} _ H3(t) [1 N e(1#3) + leg(tg):|
+H,(t) { [

Observacio. Pot verificar-se facilment que la funcio

L em o Loen

2
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i les seves derivades s’anul-len en ¢ = n. Per aixo, tant y(¢) com y'(¢) sén funcions continues
en el temps, tot i ser f(¢) discontinua en t = 1,2,3,41 5.

De forma més general, com la integral d'una funci6 de Heaviside és continua, tant la
soluci6 y(t) del problema de valor inicial

d’y | dy

. + —_— —|— e t , t — , ! t — !

oz T tay = f(t) y(to) = Yo y'(to) = yo
com la seva derivada y'(t) son sempre funcions continues en el temps, si f(¢) és continua
a trossos. v

Delta de Dirac

En moltes aplicacions fisiques i d’enginyeria apareix sovint el problema de valor inicial

2
L gy = 10, vO) = /0) = (15)
on f(t) no es coneix explicitament. Aquests problemes es presenten generalment quan es
treballa amb fenomens de naturalesa impulsiva. En aquests casos, I'tinica informacié que
es té de f(t) és que és igual a zero, excepte en un interval de temps molt curt ¢y < ¢ < 1,
i que la integral sobre aquest interval és un cert nimero Iy # 0. Si Iy no és molt petit,
llavors f(t) sera molt gran en Uinterval ¢y < t < ¢;. Aquestes funcions es coneixen amb el
nom de funcions d’impuls. En la Figura 5 es mostra la grafica d’un impuls f(¢) tipic.

f(t)

A

-1

) ty

Figura 5: Grafica d’una funcio d’impuls f(¢).

A principis de la década de 1930, Dirac, guanyador d’un premi Nobel per treballs
relacionats amb la mecanica quantica, va elaborar un métode forca controvertit per a
treballar amb funcions d’impuls. El seu métode es basa en el segiient raonament: Sigui
t; cada cop més proper a ty. Llavors la funcio f(t)/I, tendeix a la funci6 que és 0 per a
t#tygiaooperat=rty. A més,laseva integral sobre qualsevol interval que contignui tq
val 1. Aquesta funci6 es coneix amb el nom de funcié delta de Dirac, tot i que no és una
funcié en el sentit habitual —ja Dirac la va qualificar de funcié “impropia”—, i es denota
per §(t — o), 0 per 04 (t). No obstant, pot operar-se formalment amb §(¢ — ¢y) com si es
tractés d’una funcié més.
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Formalment es pot definir (¢ — t;) d’'una manera forga genérica, imposant que per a
una funci6 qualsevol g(t), es verifiqui

[ ot -ty d - { glo) , 8t (16)

,  altrament

En particular, prenent ¢(¢) = 1 obtenim la segiient propietat que correspon a la
definici6 donada originalment per a una funcié d’impuls,

6(t—t0)=0 si t#to
[P6(t—te)dt=1 si a<ty<b

Es interessant posar de manifest la relacié que hi ha entre la delta de Dirac i la funcio de
Heaviside.

Propietat 9 (Derivada de la funcié esglad) Per a tot ¢ > 0 es verifica

/Ot 5(u— ¢) du = H,(t) (17)

Aquest resultat és una conseqiiéncia immediata de la definici6. De vegades aquesta
relacio s’escriu, per analogia amb les funcions ordinaries, com

§(t—c) = —H.(t) (18)

volent significar que “la derivada de la funcié esglad és un impuls”. Ara bé, com s’ha

d’entendre la relacié anterior, si, de fet, la funcié esgladé H.(t) no té derivada a t = ¢?

La manera correcta d’interpretar aquesta relaci6 seria pensar que les derivades d’una se-

qiiéncia de funcions diferenciables, que en el limit tendeixen a H.(t), constitueixen una
seqiiéncia apropiada per a definir §(t — ¢).

Observacié. Ara podem veure que tota solucio y(t) de 'equacié diferencial

2

%ﬂLp%—l—qy:I-é(t—c) (19)
és una funci6 continua en el temps. Si integrem l'equacio, tenint en compte I'expressio 17,
resulta que y/(t) és discontinua a la manera de H.(t). Com la seva integral és una funcio
continua, llavors y(¢) sera una funcié continua. Dit amb un exemple, si y(t) és la solucio
de I'equacié del moviment d’una particula que rep un impuls en el temps ¢ = ¢, aquesta
particula no realitza el “canvi de lloc instantani”, sin6 que segueix una trajectoria continua.

Per a resoldre el problema de valor inicial que mostra I'equacié (15) pel métode de la

transformada de Laplace, només cal saber quina és la transformada de Laplace de 6(t—tg).
Aix06 ho podem obtenir directament de 'equacio (16)

L5t —1)} = / e ot —to) dt = e *, to >0
0
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Exemple 18 Trobar la solucio del problema de valor inicial

d*y  dy
B9 gy = ~1 —9 —1 00) = 1
Tz Aty 30(t—1)+4(t—2), y(0) =1, y'(0)

Solucié. Sigui Y(s) = Z{y(t)}. Quan apliquem la transformada de Laplace als dos
costats de I’equacio diferencial, obtenim que

2V (5) — s —1—4(sY(s) — 1) +4Y(s) =3¢ * + e *
o el que és el mateix,
(s —4s+4)Y(s)=s—3+3e *+e

Per tant tenim que
s—3 n 3e™? n e
(s—=2)* (s—=2)* (s-2)

Observem ara que 1/(s — 2)? = £ {te*}. Llavors,

Y(s) =

s—3 %

= — 1)e2(t-1) N _ 9)e2(t-2)
CED RO L {3H,(t)(t — 1) + Hy(t)(t — 2) }

Per tal d’invertir el primer terme de Y (s) observem que

s—3 5—2 1 2t 2t
(s—2)2 (3_2)2_(8_2)2:‘3{6 =2 {te”}

Aixi doncs,

y(t) = (1 —t)e” + 3H () (t — 1)e*™ Y + Hy(t)(t — 2)*=?)

Resulta il-lustratiu resoldre aquest problema per la via llarga, és a dir, trobar y(¢), per
separat, en cadascun dels intervals 0 <7< 1,1 <t <2i2<t<oo. Per 0 <t <1 tenim
que y(t) satisfa el problema de valor inicial

d’y  dy
— —4— +4y =0, 0)=1, "0)=1
T ATy y(0) y'(0)
L’equaci6 caracteristica d’aquesta equacié diferencial és r2 — 4r +4 = 0, que té per arrels
ri = ro = 2. Per tant, qualsevol solucié y(t) ha de ser de la forma y(t) = (a; + aot)e*.
Les constants a; i as es determinen a partir de les condicions inicials

1=y(0)=a i 1=49'(0) = 2a; + ay

Per tant, a1 =1, a5 = —1iy(t) = (1 —t)e* pera0 <t < 1. Aray(l)=01iy'(1) = —e*
En l'instant ¢ = 1 la derivada de y(¢) s’incrementa sobtadament en 3 unitats. Per tant,
peral <t < 2es té que y(t) satisfa el problema de valor inicial

d’y  dy

oA tdy=0 y()=0  y(1)=3-¢
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Ja que les condicions inicials ens vénen donades en ¢ = 1, la soluci6 s’escriura de la forma
y(t) = (b1 +ba(t —1)) eV, Les constants b; i by es determinen a partir de les condicions
inicials
I=y(l)=b i 3—e=9(1)=2b +b

Aixi doncs, by = 0, by =3 —e2iy(t) = (3—e?)(t—1)e2") on 1 < ¢ < 2. Ara tenim que
y(2) = (3—e€?)e? i y/(2) = 3(3—e?)e?. En l'instant ¢ = 2, la derivada de y(¢) s’incrementa
sobtadament en 1 unitat. Conseqiientment, per a 2 < t < oo tenim que y(t) satisfa el
problema de valor inicial

d*y dy 2 2 2 2
E—Zla—i—ély:ﬂ y(2) =e*(3 —€) y'(2) =1+3e’(3—¢)

Per tant, y(t) = (c1 4 ca(t — 2))e*"2). Les constants ¢; i ¢; es determinen a partir de les

equacions
23 —e?) = i 1+3e*(3 —¢e*) =2¢; + ¢

Aixi tenim que

c, = (3 — e?), co=1+3e*3—¢e*) —2(3—€?) =1+e*(3—¢?)

y(t) = [? (B —e?) + (2B —e?))(t—2)] 22 | t>2
v

Seria interessant verificar que, efectivament, aquesta expressio coincideix amb la que
s’ha obtingut anteriorment mitjancant el métode de la transformada de Laplace. A dife-
réncia del que succeia en I’Exemple 17, on el resultat era una funci6 continua amb derivada
continua, ara es pot comprovar que la solucié obtinguda en I’Exemple 18 també és con-
tinua, pero, en canvi, la seva derivada no ho és. Es veu facilment que la funcio (t—n)eZ(t’")
és nul-la en t = n, perd no ho és la seva derivada.

Integral de convolucié

Considerem el problema de valor inicial

d? d ,
Ay =f0, y(0)=0.  y(0)=0 (20)

Sigui Y(s) = Z{y(t)} i F(s) = Z{f(t)}. Apliquem la transformada de Laplace als dos
costats de ’equacio i obtenim

(s> +ps+q)Y(s) = F(s)

que implica

F(s)
Y(s) = 5
s +ps—+gq
Fixem-nos ara només en la part
1

H(s) = (21)

s>+ ps+q
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Si la seva transformada inversa es denota per

h(t) =2 " {H(s)} (22)

aquesta funcié pot ser interpretada com la soluci6 de I'equacié homogeénia, amb f(t) =0,
amb unes condicions inicials no homogeénies h(0) = 0, h’(0) = 1. Aquesta solucié s’entén
habitualment com la resposta natural del sistema, doncs és el resultat d’'una minima
pertorbacié de les condicions d’equilibri del sistema, sense estimuls externs.

Similarment, la funcié h(t) també es pot interpretar com la la solucié de I'equacio
diferencial on la part no homogeénia s’ha substituit per un impuls a 'origen, f(t) = 6(¢),
i que satisfa les condicions inicials homogénies h(0) = 0, A'(0) = 0. Recordem que
Z{6(t)} = 1. Per aquest motiu h(t) també s’anomena resposta impulsional.

Ara interpretarem la solucio particular y(t) de l'equacié completa. Mitjancant les
respectives transformades, podem posar y(t) en funcio de h(t) i f(t),

Ly} =2{f)}- Z{nt)} = F(s) - H(s)

A H(s) se la denomina funcid de transferéncia. Resulta natural preguntar-se si existeix
un relacio senzilla i directa entre aquestes funcions. Logicament seria més facil si y(¢)
fos el producte de f(t) i h(t), pero dbviament aixo no succeeix. No obstant, existeix una
manera de combinar dues funcions f i ¢ per tal de formar una nova funcié f * g que és
semblant a la multiplicaci6 i compleix que

L9} =2Z{f(1)} - ZL{9()}

Aquesta combinaci6 de f i g apareix amb freqiiéncia en moltes aplicacions i es coneix per
convolucio de f amb g.

Definicié 2 La convolucio (f = g)(t) de f amb g es defineix per mitja de l'equacid

(f * 0)(t /ﬁft—u (23)

Observacio. Els limits entre 0 i ¢ de la integral de convolucié van associats al fet que
aquestes funcions estan definides per a t € [0,0c). Si el seu domini fos (—o0, o), llavors
la integral de convolucié tindria limits entre —oc i oc.

Per exemple, si f(t) =sin2t i g(t) = €', llavors

t
(f + g)(1) = / Sin 2(t — u)e™ du
0
L’operador de convoluci6 satisfa les propietats segiients.

Propietat 1 L’operador convolucio compleiz la llei commutativa de la multiplicacio, és
a dir, (f*g)(t) = (9= f)(t).

Demostracio. Per definicié tenim que

(f * 0)(t /ﬁft—u
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Fent el canvi ¢t — u = ( en la integral obtenim que
0
(fxg)(t) = — [ F(Qglt—¢)d¢
t
t

_ /g(t—()f(()dCE(g*f)(t)

0

Es igualment facil comprovar les segiients propietats:

Propietat 2 L’operador convolucio compleix la llei distributiva de la multiplicacio, és a
dir,
frlg+h)=Ffxg+ fxh

Propietat 3 L’operador convolucio compleix la llei associativa de la multiplicacio, és a
dir, (f xg)*h=fx(g*h).

Propietat 4 La convolucid de qualsevol funcio f amb la funcid zero €s igual a zero.

D’altra banda, 'operador convoluci6 es distingeix de I'operador multiplicacié en que
fx1#fifx*f+# f2 De fet, la convolucié d'una funcié f amb ella mateixa pot inclis
ser negativa.

Exemple 19 Calcular la convolucid de f(t) = t* amb g(t) = 1.

Solucié. A partir de la Propietat 1 tenim que

3

(f*g)(t)=(g*7f)(1t):/0 1-u2du:%
v

Exemple 20 Calcular la convolucid de f(t) = cost amb ella mateiza i demostrar que no
sempre €s positiva.

Solucié. Per definicio tenim que
t
(f=f)t) = / cos(t — u) cos u du
0
t
= / (cost cos® u + sint sin u cos u) du
0

t t
1+ cos?2 . .
= cost/ 7udu+smt/ sin u cosu du
0 0

2
_ Cost<£+sin2t> +sin3t
2 4 2
_ tcost+sintcos?t +sin®¢
B 2
_ tcost+sin t(cos?t + sin? t)
2

tcost +sint
5 )
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Aquesta funci6 és clarament negativa per a
2n+1)r <t< (2n+1)7r+g; n=0,1,2...
v

A continuacio es demostrara que la transformada de Laplace de f * g és el producte
de la transformada de Laplace de f i la transformada de Laplace de g.

Teorema 1
Z{(f=9))} =2{f@)}-Z{g9()} (24)
Demostracio. Per definicié tenim que
[e¢) t
2{( a0y = [ | [ - wgwan] a
0 0
Aquesta integral iterativa és igual a la integral doble

//R e T f(t —u)g(u) dudt

on R és la regi6 triangular descrita en la Figura 6. Integrant primer respecte ¢, enlloc de

U
A

N\

-1

Figura 6: Area sota la funcié u = .

u, s’obté
2wy = [ ot | [Tetsa-wa] a

En fer t — u = £ trobem que

[ etra—wya= [T e pgae
0

u

Per tant, es compleix que

200} = [ at) | [T eretsie i) o

0

_ [ [ e du] [ [ e ds]

= Z{f)} - ZL{gt)}
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Exemple 21 Trobar la transformada de Laplace inversa de la funcio

a
s2(s? + a?)
Solucié. Observem que
1 . a .
? = Z{t} 1 m = X{SIH at}

Per tant, pel Teorema 1 sabem que

t
= / (t — u) sinau du
0

at — sin at
= T
v
Exemple 22 Trobar la transformada de Laplace inversa de la funcio
1
s(s? +2s+2)
Solucié. Observem que
1 1 1
-=2{1 i = = % {e 'sint
S {n ' $2+2s+2 (s+1)241 {e sm}
Per tant, pel Teorema 1
1 1 '
£~ = ““sinud
{5(524—25—1—2)} /Oe sinu du
1
= —(1—e(cost+sint
2( e~'(cost +sint))
v

Observacio. Ara podem donar resposta al problema que es plantejava en I'equacié
20. Sigui h(t) la solucio de I'equacio y" + py' + qy = 0, que satisfa les condicions inicials

h(0) =01 A'(0) = 1. Llavors

y(t) = f(t) * h(t) =

/Ot f(t —u)h(u)du (25)

és la solucio particular de I'equaci6 y” + py’ + qy = f(t), que satisfa les condicions inicials
y(0) = ¢'(0) = 0. Freqiientment, Iequacié (25) és forga més facil d’utilitzar que el métode
de variaci6 de parametres. La generalitzaci6 a unes condicions inicials qualsevols és ben

senzilla a partir de 'equaci6 5.

La Taula 2 mostra les transformades de Laplace de les funcions més usuals.



La transformada de Laplace

27

Taula 2: Transformades de Laplace

f(t) F(s) f(t) F(s)
! é & e (s _noi>n+1
m sﬁl 9. tcos Bt (;22;5222
ot - i - 10. tsin 5t E 2_522)2
cos it ﬁ 11. H(t) %
sin 1 ngf#ﬁ? 12, H,(t) = H(t - c) 6:5
e cos Bt ﬁ 13. 5(1) 1
e sin Bt B 14, 6,(t) =6(t — a) e 09




