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Prefaci

Amb la finalitat de consolidar 1I’Espai Europeu d’Educaci6é Superior, i d’acord amb les
directrius del procés de Bolonya, les assignatures dels nous plans d’estudis han estat
objecte d’una revisi6 a fons dels continguts. Assignatures que abans tenien una durada
de vuit mesos ara sén quadrimestrals. Aixo fa necessari dissenyar un temari molt opti-
mitzat, tot reforcant els conceptes, metodes basics i exemples que sén utils després en
altres assignatures de la carrera. Aquest és el proposit d’aquestes notes sobre equaci-
ons diferencials. El seu contingut suposa uns coneixements elementals d’algebra lineal i
analisi matematica, comuns a tots els graus d’enginyeries i ciencies. Després d’introduir
les definicions i els conceptes que juguen un paper fonamental en la teoria d’equacions
diferencials, es fa atencid en les equacions lineals, que sén la base de gairebé tots els
models que 1’alumne estudiara els primers anys. Altres tipus d’equacions, com ara les
que es poden resoldre mitjancant canvis de variable, es tracten als exercicis. En general,
s’han evitat les demostracions de proposicions i teoremes, excepte quan s ha considerat
que la demostraci6, senzilla, era il-lustrativa per als exercicis. En sistemes d’equacions,
s’ha optat per fer s de la matriu exponencial perque, a part de proporcionar un metode
senzill per obtenir la soluci6 general, convé, de cara a estudis posteriors, que I’estudiant
en tingui coneixenga. La justificacid de la solucié general dels sistemes homogenis a co-
eficients constants lligada al teorema de descomposicié primaria d’endomorfismes s’ha
traslladat a I’apendix. Serveix de repas del temari d’algebra a qui ja havia estudiat aquest
teorema, o de complement a qui encara no I’havia vist.

Draltra banda, en assignatures com electronica o fisica, és costum resoldre equacions di-
ferencials fent Us de la transformada de Laplace. El fet té la seva justificacid, ja que en les
assignatures de matematiques s’acostuma a suposar, per comoditat, la continuitat en el
domini de resoluci6 del problema de totes les funcions presents a 1’equaci6 diferencial.
En canvi, de vegades tenen molt d’interes algunes funcions o distribucions discontinues,
com ara la funci6 de Heaviside i la delta de Dirac, que solen apareixer com a pertorbacid
externa d’un sistema regit per una equacié diferencial lineal. Per aquest motiu, s’intro-
dueixen les definicions i propietats basiques d’aquesta transformacio, i s’apliquen als
problemes mencionats. No deixa de ser un exemple introductori a altres transformades
que I’alumne veura en cursos posteriors.
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Els exercicis que acompanyen cada tema contenen problemes, potser reformulats, que
han aparegut en examens al llarg dels anys. Alguna seccié d’aquestes notes s’inspira en
antics apunts de classe d’assignatures d’altres plans d’estudis. Cal agrair sincerament
I’existencia d’una llarga col-lecci6 d’aquests problemes al professorat del Departament
de Matematica Aplicada IV que ha impartit aquests temes.
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Equacions diferencials de
primer ordre

1.1. Introduccio

Definicié 1 Una equacio diferencial ordinaria és una relacié entre una funcio d’una
variable, y(t) (que anomenem variable dependent), la variable independent t, i una o
diverses derivades successives de la funcio,

F(t,y,y',...,y(”)) =0

Suposem que totes les variables son reals.

Si F no depen de ¢, diem que I’equaci6 diferencial és autonoma. Per a la variable inde-
pendent, tant fem servir f com x.

Quan hi ha diverses variables independents, t,...,1,, les equacions s’anomenen equaci-
ons en derivades parcials. Llavors, la funci6 y(r,...,t,) es pot derivar respecte de cada

0
una de les variables. Per exemple, s

9y
ot;” o0t

, etc. Les equacions en derivades parcials
s’estudien en cursos posteriors.

Vegem-ne alguns exemples:

Exemple 1 Un cas el proporciona la segona llei de Newton pel moviment d’un cos de
massa m, sota I’acci6 d’una forca F. Si aquesta for¢a depen de I’instant # considerat, de
la posici6 y(¢) i de la velocitat y'(¢) del cos en aquest instant, es compleix

my" = F(t,y,y') u

Exemple 2 L’estudi dels circuits electrics €s un altre exemple d’equacions diferencials.
Per exemple, el corrent i(¢) d’un circuit, pel qual la tensié v(¢) aplicada en cada instant

11
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t es reparteix entre la caiguda de tensié Ri(r) d’una resisténcia i la caiguda de tensi6
Li'(t) d’una autoinduccid, posades en série, satisfa I’equacié diferencial

Li'"+Ri=v ]

Exemple 3 Un altre cas son les equacions que caracteritzen una familia de corbes del
pla. Aixi, si considerem la familia de paraboles y = Cx?, derivant tenim que y' = 2Cx.
Eliminant el parametre C entre ambdues equacions, obtenim 1’equacié diferencial

que expressa una propietat comuna a totes les corbes de la familia: el pendent de la
tangent en un punt qualsevol és el doble del pendent de la recta que uneix el punt amb
I’origen. ]

En general, si g(x,y,C) = 0 representa una familia de corbes, eliminant C entre les equa-
cions g(x,y,C) =0 i L g(x,y(x),C) = 0, obtenim I'equaci6 diferencial F(x,y,y’) = 0
de la familia de corbes. Es a dir, canviem la informacié que proporciona C per la que

proporciona y'.

Definici6é 2 Anomenem ordre d’una equacio diferencial el major ordre de la derivada
que intervé en l’equacio.

Per tant, I’exemple 1 és d’una equacié de segon ordre, mentre que els exemples 2 i 3 s6n
d’equacions de primer ordre.

De moment, considerem tinicament equacions de primer ordre, que escrivim en la forma
estandard

Y =f(t.y) 1.1)

En un interval 7, una solucidé d’aquesta equacié és una funcié y = ¢ (¢) derivable que
satisfa

¢'(1)=flt.¢(1); Viel (1.2)

La variable dependent y pren valors en I’anomenat espai de fases.

1.1.1. Interpretacié geometrica

Podem interpretar una equaci6 diferencial y' = f(x,y) com una equacié que a cada punt
(x,y) en que f esta definida li associa una direccié de pendent f(x,y).

El grafic d’una solucié y = ¢ (x) s’anomena corba integral i els valors f(x,y) s’anome-
nen camp de velocitats o direccions.

D’una equacié y = f(x,y), n’obtindrem una familia uniparameétrica de solucions, y =
¢ (x,C), que rep el nom d’integral general o solucid general de I’equacié.
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També podem estar interessats a determinar una solucié particular de 1’equacié dife-
rencial que, per a x = xy, pren un valor donat y,. Geometricament, es diu que es busca la
soluci6 que passa pel punt (xo, yo). Aquesta condici6 determina el valor de C en la solucié
general, de manera que, si yo = ¢ (x0,Cy), la soluci6 desitjada és y = ¢ (x,Cp).

Exemple 4 La solucié general de I’equacié y = ¢* —y ve donada per y = %e" +Ce™, 1
la solucid particular que satisfa y(0) = 1 s’obté quan 1 = 1 +C, és a dir, per a C =
en resulta y = %e‘ + %e‘x

] .
21
= coshux. [

1.2. Condicions d’integrabilitat

Si coneixem el valor de la variable dependent y a #;, i admetem que aquesta variable
evoluciona de manera:

® determinista, és a dir, que hi ha un lligam entre els valors passats, present i futurs,
= finita, és a dir, que en tot moment €s quantificable,

= diferenciable, és a dir, que les seves variacions sén prou suaus,

llavors, per a un valor de 7 proper a t, podem fer una estimaci6 de y(¢) a partir de I’apro-
ximaci6 lineal

y(t) = y(to) = y'(t0)(t — 1o)
Una forma de poder seguir I’evolucié de la variable y és disposar de la informacié que
proporciona I’equacié
Y =ft.y({)) (1.3)

Aixi, sabent el valor inicial yo = y(ty), obtindrem els valors de la funcié y(¢) en el seu
entorn,

y(t) = y(to) + f(to,y0) (t — o)

Quan fem aquest procés de manera elemental, estem precisament integrant 1’equacié
diferencial 1.3,

1
y(0)=3(0) = [ fls.3(s))ds (14)
o
tot calculant les constants d’integracid a partir de les condicions inicials.

En resoldre una equacié de primer ordre, fem un procés que equival a una integracio,
on sorgeix una constant additiva. En general, per resoldre una equacié d’ordre n calen n
integracions, que hi fan apareéixer n constants.

Per a una equaci6 d’ordre n, les condicions inicials han de ser sempre de la forma ay =
y(to),ar =¥ (to),...,a,_1 = y"V(ty), totes avaluades en el mateix valor de la variable
independent.

13
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Ho tindriem malament si, per exemple, deixem caure una pedra a un pou i volem trobar
I’equacié del seu moviment a partir de 1’equacié y” = —10, amb unes condicions (no
inicials) y'(0) =01y (1) = 1.

L’existencia i la unicitat de la soluci6 del problema de valor inicial (PVI)

y=rfty); yt) =y (1.5)

requereixen unes condicions minimes. La que s’utilitza més sovint és la segiient:

. ... 0 .
Teorema 1 (d’existéncia i unicitat) Si f i of son continues en un domini €, el pro-

dy
blema de valor inicial y' = f(t,y), y(ty) = yo, per a (ty,yo) € Q, admet una inica solucié
y(t), que esta definida en un interval obert I C Q que conté el punt (to,yo)-

En general, si f € 6" en tots els seus arguments, la solucié y també ho és, tant en termes
de la variable independent, com de la constant d’integracio.

Un exemple en que no es compleixen aquestes condicions suficients és el segiient:

Exemple 5 El problema de valor inicial y’ = y*3, y(0) = 0, no té soluci6 tnica, ja que
almenys y; (t) = (¢/3), y2(t) = 0 s6n solucions del problema. [

També cal notar que les solucions poden tenir un abast limitat:

Exemple 6 La soluci6 de y/ = y*, amb y(0) =1, és y(r) = 1/(1 —1) en —o <1 < 1.
Pero y(#) no pot ser solucié en un interval més gran ja que no esta definida peraz = 1.m

1.3. Equacions d’integracio immediata

Determinades funcions, com ara e " i v/sin, no admeten una primitiva que sigui una
funcié elemental, és a dir, una combinacié de funcions polinomiques, racionals, trigo-
nometriques, exponencials, etc. Per tant, fins i tot en el cas que f(¢,y) sigui una funcié
unicament de ¢ o de y, no sempre podrem trobar funcions elementals que siguin soluci-

ons de I’equacid diferencial y = f(z,y).

En general, es considera que una equaci6 diferencial és integrable elementalment quan
és possible expressar la solucié mitjancant funcions elementals, o bé primitives d’aques-
tes, que no tenen per que ser necessariament funcions elementals.

Definicié 3 Diem que una equacié diferencial s’expressa en la seva forma diferencial

si [’escrivim com

M(t,y)dt+N(t,y)dy =0 (1.6)

Evidentment, la forma estandard d’aquesta equacié s’obtindria fent

fty)=—-M(t,y)/N(t.y)

al’equacié6 1.1.
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Definicié 4 S’anomenen equacions de variables separades les que, en forma diferencial,
s’escriuen com

M(t)dt+N(y)dy =0
Llavors, la integraci6 és immediata:

/M(t)dt:—/N(y)dy+C

També podem expressar-ho com

t "y
/ M(s)ds = —/ N(x)dx
fo Yo
dy -1
Exemple 7 Integreu di)t) = &

Solucio

Ho escrivim com
ydy = (t*—1)dt

Llavors,
yoos
§=§—I+C; y=(?—3t+3C)"3 -
d t
Exemple 8 Resoleu & -+
dat vy
Solucio

Ho escrivim com
dy 1
—=(—=+1]t
di <y2 " )

y2

Separant variables, obtenim

THy2 dy =tdt
. ¥ [N .
i, com que 1y =1- 11y integrant arribem a
f2
y—arctany = b} +C
En aquest cas, ja no és possible aillar y en funci6 de ¢. ]

15
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1.4. Equacio lineal
Definicié 5 Una equacid lineal de primer ordre és la que es pot escriure com
Y (@) +a(t)y(t) = f(r) (1.7)
, d . .
L’operador L = a7 +a(t), que transforma una funcié y en una funcié

Lly(1)] = y'(1) +a(t) (1) (1.8)
és lineal. Es facil comprovar que, si ¢; i ¢; sén dues constants arbitraries, llavors
Llciy1 + caya] = e1L[y1] + 2 L[y2) (1.9)

Suposem que a(t) i f(¢) s6n funcions continues en un determinat interval / C R. Con-
siderem que L és una aplicaci6 lineal de 1’espai vectorial €' (1) al € (I). Per tant, les
solucions de I’equaci6

Lpy] = f(t) (1.10)

es poden escriure com

Y=Y+ (1.11)

on y, €s una solucié particular de I’equacié 1.10, i y, €s una solucid, la més general
possible, del nucli de I’operador L, ker(L), és a dir, del conjunt de solucions que satisfan

L] =0 (1.12)

Aquesta darrera equaci6 s’anomena equacio homogénia associada a I’equacié 1.10, que
es designa, per contrast, com a equacio completa.

Recordem que ker(L) és un subespai vectorial de 1’espai vectorial en el qual esta definit
I’operador L.

Observem, també, que, en la solucié general, equacié 1.11, la solucié particular y, que
prenguem ¢€s indiferent, ja que la diferéncia de dues solucions particulars y, i y, de
I’equacid completa, equacié 1.10, verifica L[y, —y,] = f — f = 0. Per tant, y, —y, €
ker(L).

1.4.1. Equacio homogeénia

Resolem ara I’equacié homogenia
i +a(t)y, =0 (1.13)

Si y, # 0, podem escriure y, /y, = —a(t) i, integrant,

Infys| =~ / a(t)dt+K; |y| = o[
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on C = ¢X és una constant positiva. Aquesta darrera equaci6 equival a

i = icg—/a(z)dt

que podem resumir en

i = Ce—/a(t)dt, C ?é 0
Pero, en dividir per y,, hem perdut la solucié y, = 0, que anomenem solucié trivial,

que sempre €s solucié de 1’equacié lineal homogenia. Per tant, la solucié general de
I’equaci6 1.13 sera

= ce J (1.14)
per a C qualsevol.

El conjunt de solucions de la part homogenia de 1’equacié lineal de primer ordre forma
un espai vectorial de dimensio 1.

1.4.2. Equacio completa: meétode de variacio de les constants

Per integrar I’equacié completa, n’hi ha prou a determinar una solucié particular. Per
a aixo, utilitzem el metode anomenat de variacio de les constants, que permet integrar
I’equacié completa quan es coneix una solucié particular de I’equacié homogenia, per
exemple, fent C = 1 a I’equaci6 1.14,

(1) = & SO (1.15)
Aixi, proposem una solucié de la forma
yp=Ct)¢ (1) (1.16)
essent C(¢) la funci6 per determinar.
Substituint I’equaci6 1.16 a I’equacié 1.10, obtenim
Lly,)] = C' ()¢ (1) +C(1)¢'(1) +a(r)C(1)d (1) =
=C)p(1)+C@)[p'(1) +a()p(1)] = (1.17)
=C)¢p() = 1)
jaque ¢'(t) +a(t)p(t) = 0.

Per tant, tot integrant C'(t)¢ (¢) = f(), excepte una constant d’integraci6, que podem
suposar nul-la, obtenim

Ct)= / q{((tt))dt’

17
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i la solucié particular sera

yp=¢(t)/£((t))dt (1.18)

t

Finalment, tot sumant-hi la solucié general de I’homogenia, la soluci6é general de 1’e-
quacié completa és

_ 10 )
y=¢() <C+/¢(t)dt (1.19)
Exemple 9 Integreu I’equacio

'cost +ysint = 1 7T<t<7T

Solucio

L’escrivim com
'+ (tant) !
ant)y = ——
Y Y cost

Integrem primer 1’equacié homogenia, y, + (tant)y, = 0,
yp = Ce™ /@4 — Ccost

Ara busquem una soluci6 particular de I’equacié completa a partir de ’equacié 1.18, en
la forma y, (1) = C(t) cost,

. / dt it
= cos = sin
Ip cos?t

Aixi, la solucié general de I’equacié és

y =sint 4+ Ccost ]

1.5. Estudi qualitatiu

De vegades, interessa coneixer les propietats d’algunes solucions particulars d’una equa-
ci6 diferencial sense necessitat de resoldre-la explicitament. Ho veurem en el cas d’una
equacié autonoma,

Y =f) (1.20)

El camp de vectors, donat per f(y), permet identificar els valors y dins I’espai de fa-
ses pels quals la funcié y(¢) és creixent (quan f(y) > 0), decreixent (quan f(y) < 0) o
constant (quan f(y) = 0). Aixi, per exemple, si la solucié particular y(z) que compleix
la condici6 inicial y(t) = yo verifica f(yo) > 0, llavors podem afirmar que, a I’entorn de
fo, y(t) és creixent.
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El cas més important correspon a les solucions anomenades d’equilibri o constants. Si y,
és un zero de f, és a dir, f(yo) = 0, llavors la solucié particular que satisfa la condicié
inicial y(fy) = yo es manté sempre constant, y(t) = yo, en el seu domini, ja que en y,
I’equaci6 1.20 ens proporciona una variacié y'(fo) = f(yo) = 0 d’aquesta solucié. Diem
que y, és un punt d’equilibri de I’equacié 1.20.

Exemple 10 Per a I’equacié
y=ay, a>0

és clar que la solucié d’equilibri és y(z) = 0. D’altra banda, qualsevol solucié que passi
per un punt y, > 0 sera creixent, ja que f(yy) > 0. Qualsevol altra solucié que passi per
un punt y; < 0 sera decreixent, ja que f(y;) < 0. Aix0 es pot veure facilment si fem un
grafic y' en funci6 de y, com el dibuix (a) de la figura 1.1.

Les tendencies de les solucions a créixer o decréixer es poden representar com a vectors
en I’espai de fases.

Si limitem els valors de 1’espai de fases a y > 0, I’equacié diferencial anterior correspon
al model de creixement de poblacions donat per la llei de Malthus, o model de creixement
il-limitat. En aquest cas, la solucié d’equilibri y = 0 ens diu una obvietat: si la poblacid
inicial és nul-la, d’acord amb aquesta llei, no hi ha variacié de poblacié. Qualsevol po-
blacié inicial y, positiva déna lloc a un creixement indefinit de la poblacié. El cas d’un
valor y; < 0 no té sentit. =

(a) Yy (b)) ¥ Fig. 1.1

Grafics que representen
B _ _Jy y' en termes de y pera
f(y) =ay f(y) - ay(l Z) una equacié y’ = f(y).
Al'eix y estan ressaltats
els punts d'equilibri i el
camp de direccions

Yo N Yo L

- _ <
o

S

Exemple 11 L’equacié
r_ DAY
y —ay(l—z), a,L >0

té dues solucions d’equilibri que satisfan f(y) =0 a I’equaci6 1.20. Sén y(t) =01 y(t) =
L. Fixant-nos en el grafic (b) de la figura 1.1, veiem que qualsevol solucié que passi
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per y; < 0 decreixera indefinidament, ja que f(y;) < 0. Una solucié que passi per y, €
(0,L) creixera fins a arribar a y = L, i alla s’aturara, perqué haura arribat a un punt
d’equilibri. Una solucid que passi per y, > L decreixera fins a arribar a y = L, i alla també
s’aturara. Podem dir, doncs, que aquestes dues darreres solucions particulars tenen un
comportament asimptdtic definit: y(¢) — L quan ¢ — oo,

Si limitem els valors de I’espai de fases a y > 0, I’equaci6 diferencial anterior correspon
al model de creixement de poblacions donat per la llei logistica, o model de creixement
limitat. En aquest cas, qualsevol poblaci6 inicial no nul-la tendeix a una poblacié limit
L. ]

A I’exemple 11, figura 1.1 (b), hem trobat dos tipus de punts d’equilibri. El punt y =0
és un punt repulsor de les solucions particulars del seu voltant, mentre que el punty =L
és un punt atractor de les solucions del seu entorn. El primer s’anomena punt d’equi-
libri inestable 1 el segon, punt d’equilibri estable, perque solucions diferents acaben
tendint-hi. També es podrien trobar punts semiestables, quan sén atractors per un costat
irepulsors per I’altre.

Si observem el recorregut de les possibles solucions particulars a I’eix y, corresponent a
I’espai de fases (sense representar-hi per a res la variable independent 7), obtenim les or-
bites de I’equacié diferencial, que dénen els diferents comportaments —qualitativament
parlant— de totes les possibles solucions. Els punts d’equilibri sén, per definicid, orbites
de I’equaci6. A I’exemple 11, a més de les orbites puntuals {0} i {L}, en tenim tres més:
els intervals oberts (—eo,0), (0,L) i (L, 4o0).

1.6. Exercicis

1. Quina és I’equaci6 diferencial de la familia de corbes x* +y* = C?

2. Una equacid y' = f(x,y) és de tipus homogeni si Va # 0 es compleix f(a x,a y) =
f(x,y). Sén homogenies les equacions y + 1 = ¢/, Inx> =y +21n(2y)?

3. Una equaci6 de tipus homogeni es resol amb el canvi de variables y(x) = xu(x).

Trobeu la soluci6 del problema y' = —(%)?, y(0) = 1.

4. De quin tipus és I’equaci6 diferencial tal que la familia de corbes C = xifi-;z, CeR
n’és la solucié general?

5. De quina classe s6n les corbes tals que, en cada punt (x,y), la projeccié ortogonal
del segment de normal compres entre el punt de contacte a la corba i I’eix OX té
punt mitja (2x,0).

6. Trobeu I’expressi6 de les corbes tal que tot punt és punt mitja del segment de recta

tangent en aquest punt, compres entre els dos eixos.

7. Calculeu quines corbes satisfan que la projeccié sobre 1’eix OY del tros de normal
limitat pel punt de contacte amb la corba i I’eix OY té longitud %

8. Per a quina classe de corbes 1’area del triangle limitat per 1’eix OY, el radi vector i
la recta tangent a un punt de la corba és igual que 1’area del triangle limitat per 1’eix
OX, el radi vector i la recta normal.



Equacions diferencials de primer ordre %

9. Trobeu la corba que passa per (0,1) i en que la recta tangent en el punt (x,y) talla
I’eix OX en el punt (y,0).
10. Quina equacid diferencial verifica la corba per la qual I’area del triangle que formen
I’eix d’abcisses, la tangent a la corba i el radi vector del punt de contacte (x,y) és
constant i igual a a*?

11. Calculeu la corba que passa pel punt (1,1) tal que la tangent a cada punt (x,y) talla
I'eix OY a (0,x?).

12. Quin és linterval de definicié de la solucié del problema de valor inicial y' = xy?,
y(0) = 1.

13. Considerem I’equacié y' + % = 13y’. Trobeu on esta definida la soluci6 y(¢) tal que

y(1)=1.

14. Donada I’equacié diferencial y’ = f(x,y) d’una familia de corbes, la familia de corbes
que en cada punt sén ortogonals a les anteriors ve donada per y = —1/f(x,y). Calcu-
leu la familia de corbes que té per trajectories ortogonals les solucions de I’equacio
X2y — 2y = 2xy.

2
15. Trobeu la familia de corbes ortogonals a les hiperboles x_2 —y =1
a

16. Quina equaci6 satisfan les trajectories ortogonals a la familia x*> — y* = kx, k € R?

1
17. Trobeu 1’equacié que resulta de fer el canvi v = —— a l’equacié y'siny =
cosy

cosy(l —xcosy).

18. Trobeu la solucié del problema de valor inicial 1y’ + (2t + 1)y =te™%, y(1) = 0.

19. La temperatura d’un cos evoluciona temporalment segons la llei % = k(T —100).

Justifiqueu que (a) si k > 01 7(0) > 100, llavors T'(¢t) > 7'(0), V¢ > 0,1 (b) si k <01
T(0) < 100, llavors T(0) < T'(¢) < 100, Vz > 0.

1.7. Respostes

Y == (/)2
. Les dues ho son.
() = (1),
Homogenia.
. Hiperboles.

k
y= X
y=x*+C.

. Rectes.

I B N N T I

10. x—yd—y =—.

11. y(x) = 2x —x%
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12. (—V2,V/2).
13. Es definida per 0 < 1 < v/2.
14. x> +y* = 2ax.

2y
15. logy+3+3 =c.
2xy

16. yy = ———.

y x2 _|_y2
17. vV =v—ux.
18. y(t) = (> —1)e % /(2t).
19. —
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Equacions diferencials lineals
d’ordre superior

2.1. Equacions de segon ordre
Una equacié diferencial lineal de segon ordre es pot escriure com

d’y dy _
@4‘[’()6)5 +0(x)y=R(x) (2.1)

on P(x),Q(x) i R(x) sén funcions que només depenen de x. Observeu que ’equacié s’esta
escrivint en forma monica, és a dir, el coeficient de la derivada d’ordre maxim €s 1.

Fent servir la notaci6 de I’operador lineal, podem també escriure

d2

L=—
dx?

FPW S 400 L] =R() .2

Exemple 12 Les equacions y” —y +y = 0, x>y” — xy’ + 2y = x* s6n lineals de segon
ordre. La primera té coeficients constants i la segona té coeficients que soén funci6 de la
variable independent. ]

En general, volem resoldre el PVI constituit per ’equacié 2.1 amb unes condicions ini-
cials
!
¥(%0) = Yo, ¥ (x0) = y1

En aquest cas, I’existencia i la unicitat de la solucié s6n garantides pel segiient teorema.

Teorema 2 (d’existéncia i unicitat) Si P(x),0Q(x) i R(x) son continues en un interval
I C R, ix €1 aleshores existeix una tinica solucié y(x) del problema de valor inicial

V' +P(x)y +0(x)y=R(x);  y(x0) = Yo, ¥ (x0) =y

en un entorn obert de x, dins de 1.
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Com en les equacions de primer ordre, fem servir la denominacié d’equacié homogenia
per referir-nos a 1I’equaci6

Y +P(x)y +0(x)y=0 (2.3)
i d’equacié completa si ens referim a
Y'+P(x)y' + Q(x)y = R(x) (2.4)

amb R(x) no nul-la. La linealitat de ’operador L garanteix que la diferéncia de dues
solucions de 1’equacié completa €s solucié de I’equacié homogenia, és a dir, pertany
al subespai vectorial kerL. Aixi mateix, per trobar la solucié general y de I’equacié
completa només cal coneixer una soluci6 particular y, de I’equacié completa i la solucid
general y, de I’equacié homogenia:

Y=YptYn

2.1.1. Solucié de I'equacio homogénia

El calcul de la solucié general de I’equacié homogenia es redueix a trobar una base del
ker L. Vegem el teorema segiient, que també farem servir en equacions d’ordre superior.

Teorema 3 (Principi de superposicio) Si yi,ys, ...,y son solucions d’una equacio line-
al homogénia, llavors y = c1y1 + cays + - . . + iy també n’és solucio, Ve, ¢y, . ..,cp €R.

Aquest resultat ens déna un metode per construir solucions, ja que amb dues solucions
podem obtenir-ne infinites. Fixem-nos en dos casos particulars:

= Siy; és solucié d’una equacié lineal homogenia, aleshores y = ky, també ho és Vk € R.

= En particular, fent k = 0, la soluci0 trivial y = 0 sempre €s soluci6 d’una equacié lineal
homogenia.

Exemple 13 Considerem I’equacié y” +y = 0. Es clar que la funcié y = 1 n’és solucid.
D’altra banda, la funcié y = ¢* n’és també solucié. Per tant, les funcions de la forma
y(x) = ¢; + c2¢* en s6n també solucid. [

Exemple 14 Busquem ara solucions no trivials de I’equacié x*y" + 2xy’ — 2y = 0.

Solucio

n—1

Podem resoldre aquesta equaci6 assajant solucions de la forma y = x". Aix{i, y/ = nx""!,
y" =n(n—1)x""2. Si ho introduim a I’equaci6, queda

nn—1)x"+2n" —2xX"=[n(n—1)+2n—-2]x"=0

Llavors, perque la igualtat per a valors x # 0 sigui valida, només cal que n*> +n—2 = 0.
Per tant, les solucions s’obtenen de n = 1, —2, i sén x,x 2. En general, y = c;x + c,x 2
son solucié de I’equacio. ]

Quan estudiem sistemes d’equacions, veurem que, per a un operador diferencial lineal
L d’ordre n, es compleix dimker L = n. Es a dir, la soluci6 general d’una equacid lineal
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homogenia d’ordre n s’obté a partir de n solucions linealment independents. Per tant, a
I’exemple anterior ja hauriem obtingut la soluci6 general de 1’equacio.

2.2. Wronskia

Generalitzant el que haviem dit a les equacions de primer ordre, si I’operador diferencial
L és d’ordre n, considerem que és una aplicacid lineal de 1’espai vectorial € (1) a €(1),
per aun cert interval / C R. Naturalment, els conceptes algebraics de dependéncia i inde-
pendencia lineal de vectors també s’apliquen a les funcions pertanyents a aquests espais
vectorials. No obstant aix0, veurem un metode especific per estudiar la dependéncia o la
independeéncia lineal de les funcions.

Definicié 6 Siguin fi(x), f2(x),...,f.(x), n funcions que suposem derivables almenys
fins a ordre n — 1 en un cert interval 1. El seu wronskia es defineix com el determinant

fl f2 fn
oL
W(fl?fZ»"'7fn): .1” .2/, f: (25)
fl(n-fl) fz(igfl) . f(nfl)

En darrer terme, el wronskia W(fi, f>,..., f,) és una funci6 de la variable x en I’interval
I; per aix0, de vegades també escriurem W (x).

En algebra, haviem vist que, si el wronskia d’un conjunt de funcions W (f, fa,..., f,) és
no nul per a algun x € /, llavors les funcions sén linealment independents. El reciproc no
és sempre cert, com veurem en el darrer dels exemples segiients.

Exemple 15 Calculem el wronskia d’algunes families de funcions:

= W (sinx,cosx) = SILY COSX ‘: —sin’x—cos?x = —1
cosx —sinx
x x2 xX
" W3 ) =1 2x 3x2 =24
0 2 o6x
sin’x 1 —cos2x

- W(sinzx,l—COSZx) - 2sinxcosx  2sin2x

= 2sin’xsin2x — 2sinxcosx(1 — cos2x) =
= sin2x(2sin’x — 1 4 cos’x —sin’x) = 0
Recordem que es verifica sin®x = 1 — 1 cos2x.

= Les funcions fi(x) = x* i f»(x) = |x|> sén linealment independents en tot R. Es facil
veure que, per ax < 0, W(fi,f2) = W(x3,—x*) = 0, ja que les seves columnes s6n pro-
porcionals. Igualment, per ax > 0, W(fi, f2) = W (x*,x*) = 0. Per tant, que el wronskia

sigui nul no sempre equival a que les funcions siguin linealment dependents. [

El reciproc €s cert, per exemple, si les funcions fi, f>,..., f, son analitiques, €s a dir, si
admeten un desplegament de Taylor en tot punt, com passa amb les funcions dels tres
primers exemples.
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2.3. Equacions homogeénies

El nostre objectiu €s ara obtenir la solucié general de I’equacié lineal homogenia. Ho
farem a partir de combinacions lineals de solucions linealment independents.

Lema 1 Siguin y;(x),y,(x) dues solucions de I’equacié homogénia 2.3. Llavors, el seu
wronskia, o bé no s’anul-la mai, o bé és idénticament nul.

Demostracio. El wronskia de y; i y, és W(x) = y;¥, — y,y}. Derivant obtenim
W' (x) = y1y5 +¥155 — yay1 =Yyt =y — yayy
Tenint en compte que y; iy, sé6n solucions de la mateixa equacié diferencial,
WA P()Y +Q(x)y1 = 0: ¥y + P(x)yy + Q(x)y, =0
multipliquem la primera equaci6 per y,, la segona per y, i restem,

(s —y2y)) +P(x)(y1ys —y2y1) =0
Esa dir,

dw
——+PX)W=0
dx +P()

Per tant, el wronskia és de la forma
W(x)=Ce IPO=  CecR

Es clar, doncs, que W (x) només s’anul-la quan C = 0, ja que I’exponencial és sempre
positiva.

Lema 2 Dues solucions no nul-les y,(x),y(x) son linealment dependents en I si, i no-
més si, el seu wronskia és identicament nul.

Demostracio.

(Condicio suficient.) Suposem que y; (x),y>(x) sén linealment dependents en /. Llavors,
2(x) = cy1(x),¥5(x) = ¢y (x); ¢ € R. Per tant, el wronskia és W (x) = y;(x)y5(x) —
Y2y (%) = yi(x) ey (x) = ey (x) ¥y (x) = Oentot 1.

(Condicio necessaria.) Suposem ara W (x) = y;(x)y5(x) — y2(x)y;(x) = 0 en I. Obser-
vem que, si per a un punt x, € I fos y; (xy) =y} (x9) = 0, hauriem de concloure que y; (x)
és la soluci6 trivial, ja que la solucié del PVI és tnica. El mateix es pot dir per a y,. Hem
d’excloure, doncs, aquesta situacid. Per tant, si y; (xo) = 0, llavors ha de ser y,(xo) = 0. 1,
reciprocament, en els punts x tals que y,(x) # 0, llavors y; (x) # 0. Per tant, situem-nos en

qualsevol x tal que y (x)y (x) 0. Si dividim y; (x)y} () — > (¥)¥} () = 0 per y, ()y2(x),

tenim 2 — %) — o ¢oop 20 — il nieorant, en resulta la proporcionalitat vol-
»x)  yix) dx dx

guda, y,(x) = cy;(x), amb ¢ constant. A més, es compleix y,(x) = ¢y (x). D’altra banda,

si hi ha un punt xo tal que y; (xo) = y2(x9) = 0, tindrem ¥} (xy) = ¢y} (x0), i ja hem vist

que aquestes derivades no poden ser nul-les. Per tant, també obtenim proporcionalitat,
Yh(x0)

y(x) = ¥ (o) ! (x).
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Ara ja estem en condicions d’enunciar el resultat segiient. Ho fem generalitzant a ordres
superiors.

Teorema 4 Si y;(x),y,(x),...,y,(x) son n solucions linealment independents en un in-
terval I de I’equacio lineal homogenia d’ordre n,

a, (x)y(”) +a, (x)y(”_l) +Fa(x)y +ax)y=0, xel

llavors
y = cyi(x) +eya(x) + -+ cuyn(x)

n’és la solucio general en I.

Demostracié. Vegem la demostracio en el cas de segon ordre. Sigui y(x) una solucié
qualsevol de I’equacid lineal homogenia equaci6 2.3. Volem veure que existeixen ¢y, ¢, €
R tals que

y(x) = c1yi(x) + ey (x)

Sabem que una solucié queda totalment determinada quan se sap el valor de la solucié i
la seva derivada en un mateix punt. Per tant, hem de trobar els valors c; i ¢; que en un
punt x, € I verifiquen

c1y1(xo) +c2y2(x0) = y(xo)
1y (%o0) + 25 (x0) = ¥ (x0)

Perque aquest sistema tingui soluci6 unica, cal que el wronskia

W (x0) :‘ yi(xo)  y2(x0) ‘

Yi(x0)  ¥5(xo)

sigui diferent de zero. Pero, degut als lemes anteriors, aquest determinant €s no nul per a
solucions linealment independents en un interval 7, i, a més, €s valid per a qualsevol punt
Xo € I. Aixi queda, doncs, demostrat el resultat en el cas de segon ordre. La generalitzacié
a ordres superiors és immediata.

Exemple 16 Comproveu que les funcions de la forma y = ¢ sinx+¢; cosx sén la solucié
general de I’equaci y” +y = 0. Calculeu la solucié que compleix y(0) = y'(0) = 1.

Solucio

Vegem primer que y = sinx i y = cosx satisfan I’equacid. En efecte, si y = sinx, llavors
Yy =cosx, Y = —sinx iy’ +y = 0. Aix{ mateix, si y = cosx, llavors y) = —sinx, y' =
—cosx 1 també verifica ’equacié. En general, les combinacions de la forma y(x) =
¢y sinx + ¢, cosx s6n també solucid de 1’equacio.

Ara, per comprovar que totes les solucions sén d’aquesta forma, només cal veure que
W (sinx,cosx) # 0. Aixd estava vist a I’exemple 15, essent W (sinx,cosx) = —1.

Si volem que la solucié compleixi les condicions inicials, imposem

¥(0) =¢;sin0+c¢ycos0 =1
¥ (0) =c¢;co80—c,sin0 =1
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Llavors ¢; = 1,¢;, = 1, i la solucié que busquem €s y(x) = sinx + cosx. n

Una altra aplicacié interessant del wronskia €s trobar 1’equacié diferencial lineal i ho-
mogenia de grau minim que satisfa una familia determinada de funcions linealment in-
dependents. Ho veiem tot continuant 1’exemple anterior.

Exemple 17 Trobeu I’equaci6 lineal i homogenia d’ordre minim que té per solucions
sinx, cosx.

Solucio

Ja hem vist que W (sinx,cosx) # 0. Per tant, aquestes s6n dues solucions linealment in-
dependents, a tot R, d’una equacié de segon ordre. Qualsevol altra soluci6 y(x) que sigui
soluci6 de I’equacié buscada ha de ser linealment dependent de les solucions anteriors.
Per tant, ha de verificar

sinx  cosx  y(x)
W (sinx,cosx,y(x)) =| cosx —sinx Y (x) =0
—sinx —cosx y'(x)

Ara només hem de calcular-ne el determinant, per exemple, per adjunts de la tercera
columna,

sinx COSX

_ Iy —
cosx —sinx y=-y+0y-y=0

” sinx cosx
—sinx —cosx

, cosx —sinx
—sinx —cosx

L’equaci6 d’ordre minim és, doncs, y” +y = 0. n

2.4. Equacions homogenies a coeficients constants

En general, no és facil trobar solucions particulars d’una equacié diferencial, encara que
sigui lineal i homogenia, perd quan 1’equacié té coeficients constants, veurem que és
molt senzill. Primer ho resoldrem per a segon ordre. Suposem 1’equaci6

Y'(x) 4+ py' (x) +gy(x) =0
amb p,qg € R.

Podem escriure I’equacié en la forma de 1’operador diferencial

2

d d
L= e +pa +q; Lly(x)]=0 (2.6)

Provem ara solucions de la forma y = ™, on m és una incognita per determinar. Com
que y = me™,y" = m*>e"™, tenim
Lle™] = (m*+pm+q)e™ =0

mx

Per tant, les funcions de la forma ¢
arrel del polinomi caracteristic

son solucions de I’equacié 2.6 sempre que m sigui

P(m) =m’*+ pm-+q 2.7)
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L’equacié P(m) = 0 s’anomena equacid caracteristica associada a I’equacié diferencial.

En la resoluci6 d’aquesta equacid, convé distingir diversos casos.

(i) Cas p* —4q > 0. L’equacié caracteristica admet dues solucions reals diferents m, #
my. A més, es compleix W (e™*,e™*) = 0. Per tant, y; = ¢™* i y, = ¢"* s6n dues
solucions independents de 1’equacié diferencial. Aixi doncs, la solucié general és

y(x) =cre™ + ™ e, €R

(ii) Cas p*> = 4¢q. Només hi ha una arrel real doble, m, de I’equacié caracteristica. Una
solucié €s y; = €™, per0d per trobar la solucié general necessitem una altra solu-
ci6 linealment independent. Tot i que es pot trobar pel metode de variacié de les
constants a partir de I’anterior, ho farem amb el raonament segiient:

Com que L[e™] = P(m) ™, derivant respecte de m obtenim

a mx\] __ a mx] __ / mx
S L] = Llm—e™] = [P'(m) +mP(m)]e

Com que m és arrel doble de P(m), també és arrel de P'(m). Per tant, tindrem
Lixe™] =0
Llavors, la solucié general sera
y=(c1+cx)e™; c,c€R

(iii) Cas p? < 4q. L’equaci6 caracteristica no té solucions reals. Per tant, tindrem arrels
complexes conjugades a +if3, i e(**)* seran solucions de I’equaci6 2.6, perd en
el camp complex. Ara bé, per obtenir dues solucions reals independents només cal
treballar amb una de les solucions complexes. Tenint en compte la férmula d’Euler,

¢ =cos6 +isin@
podem escriure
y = @Y = ¢%(cos Bx 4 isin Bx) (2.8)

Com que L[e(®f)] = 0, s’han d’anullar per separat les parts real i imaginaria.
Aixi,

Lle®cosfBx] =0; L[e™sinfx] =0 (2.9)

Clarament aquestes solucions sén linealment independents, ja que el seu wronskia
val

W (e™ cos Bx,e™ sin fx) = Be**
que é&s diferent de zero perque 3 # 0. Llavors, la solucié general sera

y(x) =cre*cos fx+cre®sinffx; ¢, €R
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Exemple 18 Trobeu la solucié general de I’equacié y” —y" — 2y = 0.

Solucio

L’equacid caracteristica €s m?>—m—2 =0, amb arrels m; = —1, m, = 2.

La solucié general de I’equacié diferencial €s, doncs,
y(x) =cie ™+ e¥ ]
Exemple 19 Trobeu la solucié general de I’equaci6 y” + 2y’ +y = 0.

Solucio

L’equaci6 caracteristica m? +2m +1 = 0 té arrel m = —1 doble. Llavors, la soluci6
general sera

y(x) = (c1+ex)e™ .
Exemple 20 Resoleu I’equacié y” 42y +2y = 0.

Solucio

L’equaci6 caracteristica és m? +2m -+ 2 = 0, amb arrels complexes

my = —141i, my = —1 —i. Per tant, la soluci6 general és

y=rcie*cosx+c,e "sinx ]

2.5. Equacions d’ordre superior

Generalitzem els resultats anteriors a ordre n. Considerem 1’equaci6 lineal homogenia a
coeficients constants

Y 4a, Y bay +agy =0 (2.10)
amb constants ay,ay,...,a, 1 € R. Lequaci6 caracteristica associada és
m'+a, m" 4 +amtag=0

que pot tenir arrels reals i complexes amb diferents multiplicitats. Vegem quina €és la
contribucié de cada una d’elles a la soluci6 general.

= Per a cada arrel real m amb multiplicitat k, hi ha k solucions linealment independents
de la forma

Aleshores, la solucié general és
(c1+cpx+- -+ e™

Si I’arrel és simple, només considerem el terme ¢ e™.
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= Per a cada parella d’arrels complexes conjugades a + i3, amb multiplicitat k, tenim 2k
solucions linealment independents de la forma

e™ cos fBx, e* sin Bx, xe® cos Bx,xe™ sin Bx, ..., X e™ cos Bx,x* ! e* sin Bx

Llavors, cada parella d’arrels complexes conjugades contribueix a la solucié general
amb

(c1+ x4+ ) e™cos Bx+ (it + Crpax + - -+ ey 1) e sin fx
Si la parella d’arrels complexes és simple, només tenim dos termes,
(c1cos Bx+ cysin fBx)e™
Observacio. Als apendixs A.2 1 D.2 s’obtenen les solucions d’aquestes equacions tot fent
us de I’operador derivada, a partir del teorema de descomposicié primaria d’endomorfis-

mes. Es un metode alternatiu que pot seguir 1’alumne que hagi estudiat un curs complet
d’algebra lineal.

Exemple 21 Resoleu y©® —3y?) 43y —y=0.
Solucio
L’equacio caracteristica és

m —3m* +3m—1=(m—1)’=0
L’arrel real m = 1 és triple. Llavors, la solucié general és

y=(c+cx+cx?)e’ m

Exemple 22 Resoleu ’equacié y® 4 4y + 8y + 8y +4y = 0.
Solucio

L’equaci6 caracteristica és m* + 4m® + 8m* + 8m +4 = (m> +2m+2)? = 0. Les arrels
complexes m = —1 £ i sén dobles. Per tant, la solucié general és

y=(c1+cx) e *cosx+ (c3+ cax) e sinx [
Exemple 23 Resoleu I’equaci6 y* +4y®) +5y2) 44y +4y = 0.
Solucio

L’equacié caracteristica associada €s, m* +4m® + 5m* + 4m +4 = 0, que t€ les arrels
m = —2 doble i m = £i simples. Per tant, la soluci6 general €s

y = (c; +c2x) e > +c3c08x + ¢y sinx n

Exemple 24 Resoleu ’equacié y©®) = 0.
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Solucio

L’ equaci caracteristica associada és m> = 0, que té una tinica arrel m = 0 de multiplicitat
5. La soluci6 general és

y = ¢ + Cox + c3x% + cax® + csx?t n

2.6. Equacions lineals no homogeénies

Hem vist que, per resoldre 1’equacié completa, cal congixer una soluci6 particular, jun-
tament amb la solucié general de I’equacié homogenia. Vegem com obtenir una solucié
particular de ’equacié completa. Ho farem per al cas d’una equacié d’ordre 2, equa-
ci6 2.1, que es generalitza facilment a ordres superiors.

Considerem dos metodes:

= Metode de variacié de les constants: Es un metode general que serveix tant per a
equacions amb coeficients constants com no constants.

= Metode dels coeficients indeterminats: Es un metode que ens estalvia la integracio,
perd que només es sol aplicar a equacions amb coeficients constants i per a uns casos
especials del terme no homogeni de I’equaci6.

2.6.1. Metode de variacio de les constants

Es la generalitzacié del metode que haviem utilitzat per a equacions lineals de primer
ordre i €s valid per a equacions diferencials amb coeficients constants o variables. Ho
resoldrem per a una equacio lineal de segon ordre, escrita en forma monica,

Y+ P(x)y +Q(x)y = f(x) (2.11)
amb una funci6 arbitraria f(x) del terme independent.

Per trobar una soluci6 particular y, de I’equaci6 2.11, cal, pero, saber la soluci6 general

yi = c1y1(x) +caya(x)

de la part homogenia de I’equacid, on ¢y, ¢, sén constants i y; (x),y,(x) sén dues soluci-
ons particulars linealment independents de I’equacié homogenia.

El metode consisteix a substituir les constants ¢y, ¢, per funcions desconegudes a deter-
minar, ¢ (x),c,(x), de manera que y, sigui de la forma

Yp = c1(0)y1(x) +c2(x)y2(x) 2.12)
i sigui solucié de I’equaci6 2.11.

El problema és ara trobar aquestes funcions incognites ¢; (x) i ¢, (x). Pero, com que hem
passat de tenir una funcié desconeguda y, a tenir-ne dues, necessitarem una equacié que
les relacioni. Derivem I’equaci6 2.12 i obtenim
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Y, = (x)y1 1 (x)y] 45 (x)y2 4 2 (x)y2

Ara tornem a derivar i, a fi d’evitar que apareguin les derivades segones de ¢ (x) i ¢ (x),
imposem el lligam

¢ (X)y1 +c5(x)y, =0 (2.13)
Aquesta és, doncs, I’equaci6 que les relaciona. Aleshores, ens queda
Yp = 1@+ ca(x)y
i derivant,
Yp = i)Y+ 1 (¥ + 6 (0)y; +ea(x)y;
Ara, imposem que 1’equaci6 2.12 sigui solucié de I’equaci6 2.11,

¢y (X)) +er(x)y] + 4 (x)y5 + ea(x)ys + P(x)cr (x)y) +
+P(x)c2(x)y5 + Q(x)e1 (x)y1 + Q(x)ca(x)y2 = f(x)

i, reordenant els termes, obtenim

2.14)

c1(X) 1 + Py, + Q)yi] + 2 (x) Vs + Px)ys + Q(x)ya] + ¢ (x)y + ¢4 (x)ys = f ()

Com que y;,Y, sén dues solucions de 1’equacié homogenia, els dos primers termes ante-
riors es fan zero,

Y +PX)y +0x)y =0, ¥+ P(x)y,+0(x)y, =0
itan sols ens queda
c1 (¥ + 3 (x)yy = f(x) (2.15)

Les equacions 2.13 i 2.15 constitueixen un sistema lineal de dues equacions amb les
incognites ¢/ (x) i ¢, (x),

(2.16)

El determinant associat al sistema és el wronskia W (y;,y,), que €s no nul, perque y; i y,
son dues solucions linealment independents,

i
w :‘ / /
i »n

40 2.17)

La resoluci6 d’aquest sistema (e.g. per la regla de Cramer) ens déna les derivades de les
funcions incognita, que després integrarem,

cl(x):/—%dx; cz(x):/)%dx

No cal sumar una constant d’integracid, perque només ens interessa una solucié particu-
lar.
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La solucié particular que hem trobat €s, doncs,
Yo =n yzfd +y /ylf 2.18)

ila solucié general de I’equaci6 2.11 és

(/dx+cl) + v (/dercz) (2.19)

amb ¢, 1 ¢, constants.

Exemple 25 Resoleu I’equacié diferencial

v +4y = cos2x —
Ccos2x

Solucio
Resolem primer 1’equacié homogenia
Y +4y=0

amb equaci6 caracterfstica associada m? +4 = 0 i arrels m = +2i. Aleshores, la solucié
general de I’equacié homogenia és

Vi = €1 C0S2x + ¢y 8in2x
amb ¢, 1 ¢, constants.
Ara proposem una soluci6 particular de 1’equacié completa que sigui de la forma
y=ci(x)cos2x+ cy(x) sin2x
El metode de variacié de les constants ens porta a resoldre el sistema
ch(x)cos2x+ch(x)sin2x =0

1 (2.20)

¢} (x)(—2sin2x) + ¢ (x) 2cos 2x = cos 2x — oo

Com el wronskia €s no nul,

‘ cos2x sin2x

—2sin2x  2cos2x

el sistema tindra solucié unica. Aplicant, per exemple, la regla de Cramer, trobem les
dues incognites ¢} i ¢,

0 sin2x

2cos2x | 2 0s2x

= ! (—sin2x0052x+2m2x)

SzZX
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cos2x 0

1 1
L(x) = = = —(cos’2x—1) = —_sin*2
c(x) 2| —2sin2x cos2x — (cos*2x—1) 251n .

Ccos2x

Integrant i recordant les férmules trigonometriques de I’angle doble, calculem les funci-
ons desconegudes c; i ¢;,

1 1 in2 1 1
x) = 5/ (sin4x+ s;r;;;) dx = Rcos4xf Zln|c052x|

1
2/<+cos4x> dx = 71+R51n4x

Llavors, la soluci6 particular és

1 1
V= (16 cosdx — —1n|cost|) cos2x+ <—— + Esm4x> sin2x

ila soluci6 general de 1’equacié diferencial completa vé donada per

1 1 1
y= <c1 + Ecos4x— Zln|c052x|> cos2x+ (cz - 2 + T s1n4x> sin2x

amb c¢;,c, € R. [

2.6.2. Equacio d’ordre n

Tot generalitzant el cas anterior, ens proposem calcular una solucid particular d’una equa-
ci6 d’ordre n,

Yt @y e ay +agy = f(x)
on ay,ay,...,a, 1 son coeficients constants o variables. Suposem que
Yn = C1Y1 (x) + C2y2('x) +-F Cnyn(-x)

és la solucié general de la part homogenia de 1’equacid, amb cy,c5,...,c, constants i
y1(x), y2(x),...,y,(x) solucions linealment independents.

Pel metode de variaci6 de les constants, proposem una solucié particular del tipus
Yp = c1(X)y1(x) +c2(x)y2(x) + -+ + € (x)ya(x)

Recordem que les derivades de les funcions incognites ¢;(x),cy(x),...,c,(x) sén les so-
lucions del sistema n X n

Cllyl + Cl2y2 + e + leyn =0

vy + Y + o+ Oy, =0

. . 2.21)
e T+ ) = f()
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Com que el determinant associat al sistema és el wronskia de y;(x),y,(x),...,y.(x) i,

per tant, no nul, el sistema té solucié tnica. Ara només cal seguir el procediment ja vist

per a equacions de segon ordre, i s’integra cada una de les ¢ (x) per tal d’obtenir les n

funcions ¢ (x),cz(x),...,cq(x).

2.6.3. Metode dels coeficients indeterminats

Aquest metode generic s’utilitza per calcular solucions particulars de ’equacié 2.11

quan f(x) és una exponencial, un polinomi, un sinus o un cosinus, i, en general, també

quan és un producte d’aquestes funcions, és a dir,
fx)=(ao+ax+---+ax")e*sinBx+ (bg+ax+---+b,x")e*cosfx (2.22)

Consisteix a substituir una solucié de la mateixa forma que f(x) a 1’equacié diferencial

1, després, ajustar els coeficients per tal que I’equacio es compleixi. Ho veurem amb uns
exemples. El metode també es coneix amb el nom de metode de la conjectura prudent.

Exemple 26 Calculeu una solucié particular de
Y +Y +y=cos2x
Solucio
Proposem una soluci6 de la forma
y =Acos2x+ Bsin2x
ja que totes les seves derivades s6n també funcions trigonometriques de I’angle 2x. El
problema consisteix, doncs, a determinar els valors de A 1 B que satisfan I’equaci6 dife-
rencial proposada. Aixi,
y = —2Asin2x+2Bcos2x, ' = —4Acos2x—4Bsin2x

Substituint a ’equacié diferencial, obtenim

(—4Acos2x —4Bsin2x) + (—2Asin2x + 2B cos 2x) + (A cos 2x + Bsin 2x) = cos 2x

és a dir,
(—4A+2B+A)cos2x+ (—4B —2A + B) sin2x = cos2x
Per tant,
—4A+2B+A=1, —4B—-2A+B=0
. . . 3 2 L .
La solucié d’aquest sistema és A = e B = IER Per tant, la solucié particular que
trobem és
1 .
y:—ﬁ(30052x—251n2x) n
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Exemple 27 Trobeu una soluci6 particular de I’equacié
y// +yl + y= x2
Solucio

Proposem una solucié generica, que €és un polinomi del mateix grau que la part no ho-
mogenia,

y=A+Bx+Cx*

amb derivades
Yy =B+2Cx, y'=2C

Substituim a I’equacid diferencial i agrupem per graus,
Cx* + (B+2C)x+ (A+B+2C) =x*

Ara igualem els termes corresponents a les mateixes potencies de la x,

C=1, B+2C=0, A+B+2C=0
Per tant, C = 1,B = —2,A = 0. Una solucio6 particular és, doncs,

y= X2 —2x u
Exemple 28 Calculeu la solucié general de
V' =3y +2y=(1+x)e*

Solucio

Primer busquem una soluci6 particular. Semblantment a I’exemple anterior, provem una
solucié del tipus

y=(A+Bx)e*
Les seves derivades sén
y = (3A+B+3Bx)e™, y'=(9A+6B+9Bx)e™
Llavors, substituint a I’equaci6 diferencial, obtenim
[(9A + 6B+ 9Bx) —3(3A + B+ 3Bx) +2(A + Bx)]e** + (2A + 3B + 2Bx)e™ = (1 +x)e™
d’on
2A+3B=1,2B=1

Pertant, B= -, A

1 . .
s Una soluci6 particular és

_ _l_"_f e3x
Y=\"172

N | —
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Ara calculem la solucié general de 1’equacié homogenia. L'equacié caracteristica és
m*—3m+2=0, que té per solucions m = 1,2. Per tant, la solucié general de 1’homo-
genia és

V= 1€ +cre”

Finalment, la solucié general de I’equaci6 completa €s

1
y=cie" +ce” + <_Z + )—2€> e e, eR

Observem que la soluci6 particular que hem obtingut no €s de la mateixa familia d’ex-
ponencials que les obtingudes per a I’equacié homogenia. ]

Exemple 29 Calculeu una solucié particular de 1’equaci6
V' =2y +y=e¢"
Solucio
Si proposem una funci6 de la forma
y=Ae"

i substituim, obtenim 0 = e*, que clarament no té solucié. El problema amb que ens
trobem €s que la funcié que proposem €s ja solucié de I’equacié homogenia.

Si abans haguéssim resolt I’equacié homogenia, hauriem vist que I’equacid caracteristi-
cam?—2m+ 1= 0 té per solucié 1’arrel m = 1, de multiplicitat 2. Per tant, la solucié que
proposem, i també totes les de la forma y = (A + Bx) €*, sén solucions de I’homogenia,
associades a ’arrel m = 1.

En aquests casos, la solucié que cal proposar €s
y=Ax"e"

és a dir, multiplicar Ae* per x*, amb k igual a la multiplicitat de 1’arrel corresponent de
I’equaci6 caracteristica.

Aixi,

y =2Axe" +Ax’e", y' =2Ae" +4Axe" +AxX e

Substituint,
[(2A +4Ax +Ax?) — 2(2Ax +Ax?) + Ax*le = ¢*

Ara, simplificant i igualant termes corresponents a iguals potencies de la x, obtenim
2A=1, 4A—-4A=0, A-2A+A=0

Per tant, A = 3. Una soluci6 particular és 3x*¢* i la soluci6 general és

1
y:(c1+czx—|—§x2)ex, ¢, €ER =
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Podem expressar aquest criteri de forma més general: si el terme no homogeni de 1’e-
quaci6 €s de la forma que apareix a 1’equacié 2.22, i I’equacid caracteristica té una arrel
a +if3 de multiplicitat k, llavors cal proposar una solucié particular com

y=x"[(Ag+Ax+---+AX")e* sinBx+ (By+Bix+---+B,x")e“ cos fx] (2.23)

2.6.4. Principi de superposicio

Degut a la linealitat dels operadors diferencials que estem estudiant, es pot aplicar el prin-
cipi de superposicio per calcular solucions particulars d’equacions diferencials lineals no
homogenies, tot fent el calcul de solucions particulars terme a terme.

Teorema 5 Si y,(x) verifica

Vi +P(x)y, +0x)y1 = fi(x)

i y2(x) satisfa
Y +P(x)y; +Q(x)y2 = fo(x)

aleshores, y(x) = y{(x) + y2(x) és solucid de

Y+ P)Y +Q(x)y = fi(x) + f2(x)
Vegem-ne un exemple.
Exemple 30 Determineu una soluci6 particular de 1’equacié

Y +y +y=cos2x+x’
Solucio

El principi de superposicié ens permet obtenir una solucié de la forma
Yp=Y1+Wn
on y; és una solucié particular de
Y +Y +y=cos2x

iy, hoés de

y// +y/ +y — x2
En els exemples 26 i 27 haviem resol aquestes equacions per separat i haviem obtingut
1 .
V= —E(3cos2x— 2sin2x), y, =x" —2x
Per tant,

1
yp:7§(30052x—25in2x)+x272x n

41



% Equacions diferencials i transformada de Laplace

42

2.7. Exercicis

1.

Sabent que xe* cosx €s una soluci6 de
Y = 5y" 12y —16y" + 12y —4y =0,

trobeu-ne un sistema fonamental de solucions.

2. Trobeu la solucié general de I’equacié y” +2y” — 5y — 6y = 0.

3. Mitjangant el canvi z = (In|y|)’, calculeu en quina equacié es transforma 1’equacié

10.
11.

12.

13.

14.

diferencial y" +ay +by =0, on a,b € R.

. Trobeu en quina equacio es transforma 1’equacié

V' =fx)y=0

mitjangant el canvi z =y'/y.

. Donada I’equaci6 y” + f(t)y' 4+ g(t)y = 0, amb f(¢) + g(¢) + 1 = 0, trobeu-ne una

solucid.

. Calculeu en quina equacié es transforma y” — 2y + (1 + )y = xe*, amb el canvi

Y =xv.

. Calculeu I’ordre minim de I’equacié diferencial lineal homogenia amb coeficients

constants que admet com a soluci6 particular la funcié 12¢> + 9¢3sin(z) —te'™.

. Siguin fi, f>: [-1,1] — R tals que

Al = {x3, six € [—1,0] Al = {0, six e [—1,0]

0, altrament x3, altrament

Considerem I’equacié y” + a(x)y’ + b(x)y = 0, amb a(x),b(x) funcions continues.
Raoneu si {fi, f>} pot ser-ne un sistema fonamental de solucions.

. Si fem el canvi de variable s = tant dins ’equaci6 y” — 2tant y' + (1 +tan?¢)%y = 0,

quina equacié diferencial obtenim en la nova variable s?
Trobeu la soluci6 general de 1’equaci6 diferencial y” +y = cost +1.

Calculeu quina €s 1’equacié lineal homogenia amb coeficients constants de menor
ordre que admet com a solucid xsinx.

Considereu 1’equacié lineal homogenia y” — %y’ + [%y = 0. Sabent que la funcié
v1(t) =t n’és solucid, trobeu la solucié que verifica que y(1) =0iy'(1) = —1.

Sabent que

3
ty//_y/+£y:0

admet solucions de la forma ¥, k € R, trobeu la solucié general de 1’equaci6.

Si te* i e™' s6n solucions de 1’equaci6 diferencial amb coeficientes constants y” +
@y’ + a1y + apy = 0, quant val ag?
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2.8. Respostes

A W N

10.

11.

12.

13.
14.

® N2 w»

. {e*,e*cosx, e sinx, xe* cosx, xe' sinx}.
. y=Ciexp2t+Cyexp(—t) + Csexp(—31).

.+ 4az+b=0.

7+72 = f(x).
y(t) = €' és solucid.
Vidv=¢'.

13.

. {f1,/>} no pot ser un sistema fonamental de solucions perqué W (fi(x), f>(x))=0, per

atotx e [—1,1].

.Y +y=0.

1
{v]y@) = ECOSt—F 1tsint +asint +bcost, a,b € R}.

ylV +2y// +y — 0.
y(t)=1t—1.
y(t) =at* +bt>.

610:4.
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Sistemes d’‘equacions
diferencials lineals

3.1. Introduccio

Definicié 7 Un sistema d’equacions diferencials lineals de primer ordre és un conjunt
d’equacions en la forma

3.1
x,() = a,(t)x(t) +a;(1)x(t) + we o a (1), () + ba(1)
0, de manera abreujada, en forma matricial,
X' =A(0)R+b(1) (3.2)

on A(t) és la matriu de coeficients del sistema donat per 'equacié 3.1, i Z(t) és un vector
de termes independents. El sistema sera homogeni si b(t) = 0.

3.1.1. Propietats generals

Com al capitol anterior, podem fer servir la notacié d’operador diferencial per escriure
I’equaci6 3.2,
d

L[F = (E —A(t)) i (3.3)

Llavors, el sistema homogeni associat a I’equaci6 3.2 ve donat per
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mentre que el sistema complet és
L[X = b(1)

Gracies a la linealitat de I’operador L, I’estructura de les solucions prové de la gene-
ralitzacié immediata de la que es tenia per a equacions diferencials escalars. Aixi, per
exemple,

= les solucions del sistema homogeni sén les funcions que pertanyen al ker L

= ]a soluci6 trivial és sempre soluci6 del sistema homogeni

= ]a diferencia de solucions particulars del sistema complet és soluci6 del sistema ho-
mogeni

= ]a solucié general del sistema complet s’obté sumant una solucié particular qualsevol
a la soluci6 general del sistema homogeni

= es compleix el principi de superposicid, tant per a les solucions del sistema homogeni,
com per a les del complet

Teorema 6 (d’existéncia i unicitat de les solucions) Si A(z) i B(t) sOn continues en un
interval I C R, llavors el problema de valor inicial

X =AW0)T+Db(r), (1)) =% (3.4)
té una unica solucio en un obert contingut en I.

En destaquem les propietats i definicions segiients:

= si els coeficients de A(7) s6n continus Vz € R, les solucions també ho s6n
= la solucié X(¢) és un camp vectorial de classe €' dins Iespai de fases R"

® per a una solucié X(¢), el conjunt de valors (7,X(¢)) € (I,R") és una corba integral,
grafic de la soluci6 del sistema

3.2. Relacio entre un sistema i una equacio

Vegem quina relacié hi ha entre un sistema de n equacions diferencials de primer ordre
iuna dnica equaci6 diferencial d’ordre n.

Considerem 1’equacié
Y b, ()Y a0y +ao(t)y = f(t) (3.5)

que escrivim amb unes noves variables. Primer definim x; =y, i després definim recur-
rentment les derivades successives de y:

Xy =x
Xy =x3
(3.6)
X =x,
X, =—ay(t)x; —a)(t)xy— - —a, 1 (t)x, + f()
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Llavors, comparant amb 1’equacié 3.1, tenim

0 1 0o - 0 0
0 0 1 0 0
A= : S Db = (3.7)
0 0 0 1 0
—ap(t) —ai(t) —ax(t) - —a,(2) 1)

El pas d’equacié a sistema sempre €s possible i, per tant, es pot considerar que les equa-
cions d’ordre n constitueixen un cas particular dels sistemes d’equacions diferencials.

Exemple 31 L’equaci6 diferencial

Y +a 1)y +ao(t)y = f(r)

s’escriu en forma de sistema, definint x; =y, com
X\ 0 1 A 0
X —ay —a; X2 f u

3.3. Sistemes homogenis

Teorema 7 Les solucions del sistema homogeni
LIR()] = 0 (3.8)
formen un espai vectorial de dimensio n.

L’esbds de la demostracid és el segiient. Suposem que {#),...,é,} és una base de R". En
ella, qualsevol condici6 inicial s’expressa com

Considerem ara les solucions (que existeixen i s6n Gniques) ¢; dels n problemes de valor
inicial

Llavors,

n
)?(t) = zxi(]ﬁi(t)
i=1
és una soluci6 que verifica la condici6 inicial
/ —
zxid)i(to) =Xo
i=1

i, per tant, és tnica. Aixi, {@,(¢),...,P,(r)} és una base de solucions del kerL.
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3.3.1. Dependéncia i independéncia lineal de funcions

Proposiciéo 1 Considerem un conjunt de funcions vectorials (no parlem encara de so-
lucions d’una equacié diferencial) {%,(t),...,X,(t)} definides per a t € I, amb valors a
R". Formem la matriu quadrada X (t) = [%(t),...,%,(t)].

Si detX(t) # 0 per a algun t € I, llavors les funcions son linealment independents a
Pinterval I.

O bé, si les funcions son linealment dependents a I, llavors detX (1) =0, Vt € I.

Ja hem dit abans que, per a funcions que no siguin analitiques, el reciproc no és en
general cert.

3.3.2. Matriu fonamental de solucions

Definicié 8 Si {X(z),...,%,(t)} son n solucions de I’equacié 3.8 linealment indepen-
dents a Uinterval I, llavors la matriu

X(6) = [F (1), (1)) (39)
s ’anomena matriu fonamental de solucions del sistema homogeni.
Per tant, una matriu fonamental de solucions del sistema ¥ = A(r)X satisfa
X'(t)=A(t)X (1)

Vegem algunes propietats de la matriu fonamental de solucions amb relacié al PVI de
I’equacié 3.4.

= Tota solucié de I’equaci6 3.4 s’obté a partir d’una combinaci6 lineal de les columnes
de X (). Si ho expressem matricialment, tenim

X(r) =X(r)¢ (3.10)
El vector constant ¢ € R” es calcula a partir d’una condicid inicial
)?0 = X (f())g

= Com que les columnes de X (#) sén linealment independents, la matriu és invertible i,
per tant,

detX(¢) #0,Vr el (3.11)

El determinant de la matriu fonamental de solucions €s el wronskia de les solucions.

= La soluci6 del PVI es pot escriure substituint

al’equaci6 3.10:

X(t) =X ()X (1o)X (3.12)
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= En particular, la solucid trivial ¥(z) = 6,Vt € I és I'tnica solucid del sistema homogeni
amb condici inicial ¥(¢y) = 0.

= En general, si X () és una matriu fonamental de solucions i M és una matriu regular,
llavors X (#)M també és una matriu fonamental de solucions.

= La matriu fonamental obtinguda com a

verifica
q)(lo) =1

i s’anomena matriu fonamental principal.
La segona de les propietats anteriors ens proporciona el reciproc de la proposici6 1:

Proposicié 2 Les columnes d’una matriu de solucions X (t) son linealment independents
si i només si detX (r) # 0.

Exemple 32 Si X, = (1,7)7,%, = (1*,0)” s6n solucions de X' = A(f)X, calculeu-ne A(z).
Solucio

Derivant, obtenim X} = (0,1)7,%/ = (2¢,0)7. Per tant, es complira

SEDEUINY

Sit#0,ésadir,peratr <0operat > 0,lamatriu de solucions

(1 4)

és invertible (€s una matriu fonamental de solucions). Llavors,

A(t)_<(1) %)t)(l t2>l_<0 2t> —1< 0 —t2>_—1(—2t2 2t2>
t 0 10 P\ -t 1 I 0 -t )m
Vegem un sistema senzill de resoldre.
Exemple 33 Calculeu la soluci6 de
(1) = ( 0oy )z(z)
tal que X(ty) = (a,b)T.
Solucio

En aquest cas, podem escriure i resoldre les dues equacions per separat

Xp=x1, Xy =2ix,
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d’on
xi(t) =ae™, xy(1)=be

(i) -(% ) ()

Observem que la matriu fonamental del sistema és principal:
e 0 0\ e 0
( 0 ¢ > ( 0 ¢l ) - ( 0 e ) [

3.4. Matriu exponencial

Per tant,

Haviem vist que les funcions exponencials generaven les solucions de les equacions
diferencials lineals (excepte en un factor polinomic, per a arrels mdltiples), incloent-hi
també les solucions associades a arrels complexes de I’equaci6 caracteristica.

Aix0 es pot generalitzar si utilitzem una serie de matrius que pren com a patrd la serie
de la funcié exponencial d’una variable real, ¢’ = 1414 312 + -+ + 21" 4 -

Es pot demostrar que, com en la serie escalar, la serie de matrius és uniformement con-
vergent, la qual cosa permet sumar series d’aquest tipus, fer productes entre elles i, fins
i tot, derivades i integrals, tot mantenint-ne la convergencia.

Definici6 9 Si A és una matriu n X n, la matriu exponencial es defineix com la serie
infinita de matrius

A=y iAk (3.13)

Per tant, e* € M.

Propietat 1 Fem un resum de les propietats més importants:
Bl =]

® Si AB = BA, llavors ¢* €f = A8 = ¢B !
mlet=e"=1don () =e?

= dete! #£ 0, VA

® SiA=PBP!, aleshores ¢* = Pe® P!

Exemple 34 Vegem-ne uns casos particulars:

1. Si A és un escalar, e = e*]

2. SiA =diag(ay,...,a,), lavors e* = diag(e™,...,e")

3. SiA=diag(Ai,...,A,) és una matriu diagonal per blocs, llavors e* = diag(e’!, . .., e*)

4. SiA"=0,llavors e* = +A+ 1A+ + (nfl)!A”‘l m




Sistemes d’equacions diferencials lineals %

Proposicié 3 Considerem A € #,,,, una matriu constant i una variable t € R. Aleshores,

d
S —aet (3.14)

Ara podem passar de treballar amb series de matrius a fer-ho amb series de vectors. Per
exemple, per a qualsevol vector ¥ que no depengui de ¢,

d At =\ __ t—=
E(e V) =Ae"v (3.15)

I, també, considerant series de vectors, tenim la propietat important segiient:

Propietat 2 Considerem A € M#,,(R) i una variable real t. Donats un escalar A i un
vector constant v, es compleix

Ay =M WAy (3.16)

Aquesta propietat es dedueix immediatament del primer dels exemples i del fet que les
matrius A i (A — Al) commuten. Si ara la combinem amb el darrer dels exemples, n’ obte-
nim una propietat que sera molt 1til a I’hora de resoldre sistemes d’equacions diferencial
lineals.

Propietat 3 Si existeix un nombre natural n tal que (A — AI)"V = 0, llavors

n—1

2
eAtV:elt ([+[(AAI)+%(A11)2+"‘+ ’(All)nl)\_)' (317)

(1)

En particular, tenim

Proposicié 4 SiV és vector propi de A amb valor propi A, llavors V també és vector propi
de e* amb valor propi e*.

Es dedueix de la proposici6 anterior, amb ¢ = 1.

3.5. Sistema homogeni a coeficients constants

Estudiem el cas en que la matriu del sistema homogeni
X'=A% (3.18)

té coeficients constants, A € #,,.,(R).
Pels resultats que hem vist a la secci6 anterior, podem afirmar el segiient:

= ’equaci6 3.14 garanteix que la matriu ¢/’ és una matriu de solucions de I’equacié 3.18.

= Com que dete?’ # 0, les columnes de matriu de solucions sén linealment independents
Vt € R. A més, la matriu exponencial val la identitat quan ¢ = 0. Per tant, ¢’ és una
matriu fonamental principal de solucions.

® Si X(r) és una matriu fonamental de solucions de I’equaci6 3.18, existeix una matriu
regular i constant C tal que e = X (1) C.

Fixades unes condicions inicials en t = #y, tindrem e = X (t,) C, d’on C = X "' (¢,) e*.
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Podem, doncs, concloure,

Teorema 8 Tota matriu fonamental de solucions X (t) del sistema homogeni, equa-
cio 3.18, és de la forma

X(1) =0 X (1)

3.5.1. Solucio del sistema

Ara només queda saber com escriure la matriu fonamental e/’ sense haver de recérrer a
la serie infinita que la defineix. Per a aix0 només cal trobar n vectors linealment indepen-
dents v € R" que proporcionin les n solucions linealment independents de I’equaci6 3.18,
en la forma ¢"'¥. Aquests vectors els proporciona el teorema de descomposici6é prima-
ria d’endomorfismes (apéndix D), que el podem recordar tot enunciant-lo pel polinomi
minim associat a la matriu A:

Si pa(A) = (=1)"pi" -+ pi¥, amb 35 n;gr(p;) = n, és la descomposicié factorial del
polinomi caracteristic de la matriu A € .#,,.,,, i ma(A) = pi"* --- pi’* ho és del polinomi
minim; aleshores, I’espai vectorial R” es descompon en suma directa dels subespais
invariants segiients (per I’aplicacié que té per matriu A)

kerp}! (4) @ - @ ker pl" (4)

amb dimker p™ = dimker p" = n; gr(p;).

Les bases d’aquests subespais invariants sén precisament els vectors que proporcionen
la solucié general del sistema homogeni d’equacions diferencials. Vegem detalladament
com s6n aquestes solucions en termes de les arrels del polinomi caracteristic.

3.5.2. Arrels reals simples

Sigui A; una arrel real simple de p,(A), és a dir, un valor propi de A. Si ¥ n’és el vector
propi, es complira

(A—=2;1)7=0

aleshores, tenint en compte 1’equacié 3.17, tindrem una solucié del sistema, equaci6
3.18, en la forma

X(t) = MV =My (3.19)

Exemple 35 Resoleu el PVI

Solucio

Primer busquem els valors propis la matriu,

—5—-24 1

det(A—M):‘ PR

‘:)\2+7A+6:(A+1)(A+6)
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Per tant, les arrels del polinomi caracteristic son A; = —1, A, = —6. Ara en busquem els
vectors propis. Per a A; = —1, hem de resoldre

-4 1 x\_ (0
4 -1 y /) \0
, o1
d’on y = 4x. Per tant, un vector propi sera 4 |

Ara, per a A, = —06, resolem
1 1 x\_ (0
4 4 y ]\ 0
s . N —1
d’on x = —y. Per tant, un vector propi sera 1)

La solucié general d’aquest sistema homogeni és, doncs,

I A | o -1\ el —e ¥ c
x(t) =ce < 4 +cre 1 - 4ot e*ﬁt ¢

Ara només queda calcular les constants, a fi de satisfer la condici6 inicial.

(1 1)(2)-(2)

. . 3 2 .
Resolent aquest sistema, n’obtenim ¢; = §’C2 = —3 Per tant, la soluci6 del PVI és

3.5.3. Arrels complexes simples

Si A; = a=%if3 sén arrels complexes simples del polinomi caracteristic amb vectors propis
respectius d + ib, aleshores, les dues solucions reals sén les parts real i imaginaria de

X(t) = &% = e *T P G+ ib) = e (cos Bt + isin 1) (@ + ib)

Es a dir,
%1 (t) = e*(cos Bt @ — sin B b)

o (3.20)
X% (t) = e (sin ftd+ cos Bt b)
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3.5.4. Arrels multiples
Multiplicitats algebraica i geometrica iguals

Si A; és una arrel real de ps(A) de multiplicitat m, i existeixen m vectors propis line-
alment independents, V,...,V,, associats a aquest valor propi, llavors les m solucions
independents de 1’equacié 3.18 s’obtenen de la mateixa manera que a I’equacié 3.19,
una per a cada vector propi:

)_c',-(t):eA'\_)}:eA/’\_/}; i:1,...,m
Si I’arrel €s complexa, es fa el mateix amb les solucions de 1’equaci6 3.20.
Multiplicitats algebraica i geomeétrica diferents

Sigui A; una arrel real de p,(A) de multiplicitat n;, i suposem que existeixen menys de
n; vectors propis linealment independents. Llavors, per les propietats descrites a I’apen-
dix D.1, en particular, per la propietat que caracteritza el polinomi minim, sabem que
dimker(A — A;1)™ = n;, on m; és la poténcia del factor d’aquesta arrel en el polino-
mi minim m, (A). Llavors, existeixen n; vectors linealment independents v, . .. ,\7’,,!. que
compleixen

(A—KJI)"I’V,ZG, l:1,,7’lj

Per tant, d’acord amb I’equaci6 3.17, les n; solucions independents seran de la forma
segiient: Si, v € ker(A — A;1)™,

[2 tml-fl
SN =2 . _ o .
¥(t) =M =M <w0+tw1 + 5 Wy + +7(mj_ ol Wm,-1) 3.2D)
amb
Wi =(A—-XD; k=0,....,m;—1

Si I'arrel és complexa, cal donar separadament una solucié per la part real i la part
imaginaria de I’equacié 3.21, com s’ha fet a I’equaci6 3.20.

Existeix una relacié de recurréncia entre els vectors wy anteriors, que €s ttil a I’hora de
simplificar els calculs:

Proposiciéo 5 Considerem la solucid de ’equacié 3.21 associada a un vector Vv = wy €
ker(A — A;I)™. Llavors, els vectors segiients de la série verifiquen

W= (A— A )y €ker(A— A1) % k=1,....m;—1 (3.22)

Observacio. Una altra manera de procedir és formar una primera familia de solucions
amb el maxim nombre de vectors linealment independents del ker(A — A;1). Després,
buscar vectors del ker(A — A;1)* que siguin linealment independents dels anteriors, i
aix{ fins a completar els n; vectors requerits, tots del ker(A — A ;1)"™.

Siel ker(A — A;I) té dimensi6 1, es pot aplicar la llei de recurréncia de I’equacié 3.22 de
la forma segiient. Si v, € ker(A — A1), un vector v, € ker(A — A,1)? el trobarem resolent
el sistema
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(A=A, =¥, (3.23)

i aix{ successivament. Ara bé, si ker(A — A,1) té dimensié més gran que 1, per exemple
esta generat per dos vectors linealment independents i,w;, 1’equacié anterior podria
tenir soluci6 només per a un dels dos vectors, o fins i tot ens podriem trobar amb un
sistema incompatible. Proveu-ho, per exemple, amb

1 0 1 1 0
A= 01 1 |; 0 |, I | €€ker(A-1)
0 0 1 0 0

Efectivament, amb I’equaci6 3.23 i un qualsevol dels dos vectors anteriors no és possible
trobar un vector del ker(A —1)?.

Exemple 36 Resoleu el PVI
(7 1)
R W R

Busquem els valors propis la matriu A del sistema.

Solucio

77— 1

det(A—)LI):‘ 4 3_2

‘:12—10/1+25:(A—5)2

Per tant, I’arrel del polinomi caracteristic €s A =5, doble. Ara busquem un vector propi

per a aquest valor.
2 1 x\_ (0
—4 =2 y /) \0

) o 1 L .
d’on y = —2x. Per tant, un vector propi és v, = 5 ) De moment, una soluci6 parti-

£(0) :eS’< o )

Evidentment, dimker(A —57') = 1. Com que la matriu del sistema no diagonalitza, hem de
trobar 1’altra soluci6 particular a partir d’un vector linealment independent de 1’anterior,
que sigui del ker(A — 5I)?. Aquest vector, ¥,, d’acord amb 1’equaci6 3.23, el trobarem

resolent (A — 51V, = V.
(4 2)0)-(=)
0
1

d’ony=1—2x. Fent x = 0, tenim v, = ( ) Aixi, I’altra soluci6 particular és

x*z(z):es’[(?)“(—é ﬂ

cular del sistema homogeni és
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Finalment, la solucié general del sistema homogeni és X(¢) = ¢, (¢) + 2% (¢), que, en
forma de matriu fonamental de solucions, s’escriu com

wo-c( 315 (2)

Ara només queda calcular-ne les constants per tal de satisfer la condicid inicial.

wo-( 5 1)(2)-(3)

Resolent aquest sistema, obtenim ¢; = 2,¢c, = —1. Per tant, la soluci6 del PVI és
1 t 2 2—t
= __ 5t _ 5t
Hr)=e (—2 1—2¢><—1)—e (—5+2r> -

3.6. Sistemes no homogenis

Com en el cas d’equacions no homogenies d’ordre n, veurem el metode de variacié
de les constants per a sistemes d’equacions lineals. Aquest procediment permet trobar
una solucié particular del sistema complet a partir de la solucié general del sistema
homogeni, encara que la matriu del sistema no tingui coeficients constants.

Suposem que X (¢) és una matriu fonamental de solucions de I’equaci6 3.18, i assajem
una solucié de I’equaci6 3.2 en la forma

(1) =X(t)e@) (3.24)

Substituint aquesta solucié proposada en 1’equacié 3.2, veurem com ha de ser la funcié
vectorial ¢(1),

X'(1)E(t) + X (1)8"(t) = A(t)X (£)(t) + b(r)
Pero com que la matriu fonamental de solucions del sistema homogeni compleix
X'(0)e(r) = A(D)X (1)e(r)
ens queda

Resolent aquest sistema per a ¢’(¢) i integrant, obtenim la soluci6 particular buscada. En
efecte, com que detX (r) # 0, podem invertir el sistema,

&) =X b)) = / X1 (0)B(r) di

Per tant, una solucié particular és
%,(1) = X (1) / X ()bt dt (3.25)

Es pot considerar nul-la la constant d’integracio.
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Finalment, escrivim la solucié general del sistema complet tot afegint-hi la solucié gene-
ral del sistema homogeni,

1) = X (1) ( / Xl(t)?;(t)dt+6>; ZER" (3.26)

Exemple 37 Trobeu la solucié general del sistema
o[ =5 1 \., o 6
X = ( ) X+e 1

El sistema homogeni ja havia estat estudiat en I’exemple 35. La matriu fonamental de

solucions era
e! _e—ﬁt
X fd
(t) ( 4e—t e—Gt >

1

Solucio

La seva inversa €s

1

! !

X '(t)= 5° 5
_ﬂe6t le6t
5 5

Per tant, la soluci6 particular X, (1) = X (¢)¢(z) satisfara

1 y 1 ¢
5 I I’ 2t 3t
co=xwsn=| 5, 7 (%)= ( %)
61 6t —e —Se
——e e
5 5
Ara integrem cada component,
1 3t
- . Je¥dt z€
/X*‘(t)b(t)dt = . = 3
=56 dt —§€8t
I ja podem escriure la soluci6 particular,
1 3t 23
2 =x0) [x ' Ob@eyar=( & ¢ SO B
)= R 5. | ¢ 17
g 24
Finalment, la solucié general del sistema complet és
23
L1 af -1 24
2 _ t 6t 2t
X(t)=ce (4>+cze ( 1 )+e 7
24
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Observem que també hauriem pogut aplicar el metode dels coeficients indeterminats

. . a
amb una soluci6 particular de la forma e* al > . ]
2

En el metode dels coeficients indeterminats per a sistemes d’equacions, la solucié que es
conjectura segueix basicament els mateixos criteris que per a equacions escalars, especi-
alment quan el tipus de solucié proposada no pot ser una soluci6 del sistema homogeni.
En cas contrari, cal tenir en compte que la independéncia de la solucié proposada res-
pecte de les solucions de 1’equacié homogenia recau més en el caracter vectorial de les
constants que en el tipus de funcions que es proposen. Per exemple, el sistema

(1 0\., (0
“=(o 2)me (V)

admet ¢’ ( (1) ) ie¥ ( (1) > com a solucions de la part homogenia. Podem proposar

una solucid particular, que no sigui solucié del sistema homogeni, del tipus ¢’

i obtenir, pel metode dels coeficients indeterminats, a = —1. Com que _q ) noés
. . . . . ; 0 . .
vector propi associat al valor propi 1, la solucié particular e 1) tot i contenir

I’exponencial ¢', no satisfa 1’equacié homogenia, siné que satisfa la completa.
A part dels metodes vistos, hi ha maneres alternatives de resoldre equacions i sistemes

d’equacions diferencials lineals, com ara, aplicar la transformada de Laplace.

3.7. Exercicis

1. Suposem que
e’ cost

Xi(t) =
1(¢) 2¢' sint

és una soluci6 del sistema ¥ = AX, on A € .#.,..(R). Trobeu la matriu A.

0o 1 -1
2. Es considera el sistema X = AX, amb A = 1 2 —3 |]. Calculeu una matriu
1 2 -3

fonamental de solucions X (r) que verifiqui detX (0) = 1.

3. Sigui X(¢) la soluci6 del problema ¥ = ( _]1 _11 )J?, X(0) = (2,0). Calculeu el

vector X(1).

4. Quina és la matriu A € . (R) associada al sistema X = AX que té per solucions
X, (t) =Vcost i X,(t) = wsint, amb Vi w linealment independents?



10.

11.

12.

13.

14.

15.

16.

17.

18.
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1 0 » [ 0
[ .
. Sie* 0 |+ —1 + ) 0 és soluci6 del sistema X = AX, trobeu
1 0 1

dues solucions linealment independents més.

. El sistema x = A(7)X té per matriu fonamental de solucions, en un interval determinat,

2
X() = ( ; tzt—i—l >.Tr0beu la matriu A(z).

1 -3

. Sigui A = ( 3 ) Calculeu .

0

. Sabent que X(t) = ¢' K 1 ) +1 ( é )} és soluci6 de ¥ = AX, calculeu A.

2 2 2

t t
. Sabent que X(1) = (1 +2t+ —2t+ —,t+ 2) e' és solucid d’un sistema lineal ho-

2 2
mogeni a coeficients constants, trobeu una solucié de la forma ve', amb V constant.

o . . . EN . .
Sigui A una matriu n X n, constant. Considerem el sistema X = ;Ax. Aplicant el canvi

t = ¢€°, en quin sistema es transforma?

Quant val la soluci6 del PVI ¥ = ( 2 ; )x‘ %(0)=(2,-3),enr =17
1 0 0
Per a quins valors de a i 3 resulta que V(1) = | O acost+ fBsint sint és

0 [Bcost—asint cost
matriu fonamental d’un sistema a coeficients constants?

1 1 2 2
Trobeu la solucié del problemax= | 0 2 0 |¥ ambx(0)=| 1
0 0 1 1
1 I 5 ‘
Sigui [ 3 | +e¥| —1 | +re®| 7 una soluci6 del sistema lineal ¥ = A¥.
4 2 4

Calculeu A, sabent que és constant.

Sigui el sistema lineal amb coeficients constants X' = AX. Queé ha de satisfer M perque
e M sigui una matriu fonamental?

Sigui la solucié x(¢) del problema de valor inicial

2 0 -1\, cost - 0
x:<1 0>x+<sint>; x(o):<1)
Calculeu X(7).

Sigui A € M;.o(R). Suposeu que ¢* ( (1) ) = K (1) ) i (

matriu e4.

— O

)] Trobeu la
. R 5 L\ . 12
Calculeu la soluci6 del problema X = AX amb ¥(0) = A= 1)
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3.8. Respostes

1.

)

1 t —t

et =|1—e" 24t—e’ —2—t+2e"

l—e? 1+t—e' —1—t+2e!

LX) =(1—e 3 14e?).

. No existeix.

ecos(3) —esin(3
7 A . (3) ()
esin(3)  ecos(3)
1 2
was()2)
9. (¢',¢,¢e").
10. Amb el canvi 7 = ¢', es transforma en X(s) = A¥(s).

11.
12.
13.

14.

15.

16.

17.

18.

(2 +e,—de* +e').
a#0.
x(t) = (e +2te' +e*,e%,¢e).

19/4 —37/20 1/5
17/4 —23/20 —1/5
-1 —1/5 2/5

"M és una matriu fonamental si i només si M és invertible.

f(n)—( I )
2t O
et = < tiz’ el )

x(t) = (e +2te',e").
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Transformada de Laplace

4.1. Introduccio

La transformacié de Laplace és un metode alternatiu per a la resolucié de problemes
de valor inicial d’equacions diferencials lineals a coeficients constants. Es especialment
util quan, per a un sistema regit per aquestes equacions, es vol relacionar la resposta del
sistema a un estimul extern amb la seva propia resposta natural (associada a la part ho-
mogenia de I’equacid). En particular, quan es té determinat el comportament del sistema
respecte d’un impuls inicial, es pot avaluar la resposta davant de qualsevol altre estimul
aplicat (donat pel terme no homogeni de I’equacid) mitjangant la integral de convolucio.

Aixi mateix, la transformada de Laplace també permet calcular de manera molt eficient,
més que emprant els metodes habituals ja estudiats, la resposta d’un sistema davant de
determinades excitacions discontinues. Per exemple, problemes d’impulsos i variacions
de quantitat de moviment en mecanica o problemes d’interruptors en circuits electrics.
Altres aplicacions més avancades de la transformacié de Laplace es troben exemplifi-
cades en xarxes de circuits connectats entre si 0 amb induccions mdtues, on la resposta
d’un d’ells actua com a estimul extern d’un altre.

Laplace (1749-1827) va ser el primer a fer us de la transformada integral —que ara porta el
seu nom-— en els seus treballs sobre mecanica celeste. Va ser, pero, Heaviside (1850-1925)
qui posteriorment la va desenvolupar.

La transformada de Laplace no té una interpretaci6 fisica immediata, com ¢€s el cas de la
transformada de Fourier, que es pot relacionar, per exemple, amb 1’espectre o el patrd de
difraccié de fenomens de naturalesa ondulatoria.

Es una transformacio lineal que permet transformar una equacié diferencial,

n

d d
ndti}+...+a1d—);+aoy:f(t)

a
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juntament amb unes condicions inicials adequades, per exemple, y(0) =y'(0) = --- =
y=1(0) = 0, en una equacio algebraica de la forma

(@us"+ - +ars+ag)Y(s) = F(s)
Aixi, doncs, s’ha de fer una transformacio i, posteriorment, la inversié de la transforma-
cié.

La transformada de Laplace també es pot aplicar a un sistema de diverses equacions
diferencials lineals simultanies per tal de transformar-lo en un sistema lineal de diverses
equacions algebraiques simultanies. En altres casos, el metode es pot utilitzar per re-
soldre una equacié diferencial lineal amb coeficients no constants a fi de transformar-la
en una d’ordre menor, eventualment de resolucié més facil. Quan s’aplica a equacions
diferencials en derivades parcials, les converteix en equacions diferencials ordinaries.

A continuacid, veurem les definicions i propietats basiques que permetran resoldre els
problemes més elementals que s’han comentat.

4.2. Transformacio de Laplace
Comencem definint formalment la transformada de Laplace.

Definicié 10 Sigui f una funcio real definida per a 0 <t < oo. La transformada de
Laplace de f(t), que designarem per £ {f(t)} o per F(s), és la funcié de la variable
real s

F(s)= 2 {f(1)} = /:e-ﬂf(t)dz @.1)

on

/ T ) dr = tim [ e f()di
0

A= [

En realitat, per ser rigorosos, el 1imit inferior de la integral s’hauria d’avaluar en 0%, és
a dir, en un valor positiu |4|, quan & — 0, perd a la practica i en endavant I’escriurem
simplement com a 0.

Exemple 38 Obteniu la transformada de Laplace de la funcié f(r) = 1.

Solucio

A partir de I’equacio 4.1,
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Exemple 39 Calculeu la transformada de Laplace de la funcié f(r) = e*.
Solucio
De I’equaci6 4.1,

A e(afs)A -1

ZLA{e"}=1lim | e "edt =lim —— =
A—eo [0 A—yoo a—s

Exemple 40 Obteniu la transformada de Laplace de la funcié f(z) = coswt, g(t) =
sin wt.

Solucio

De I’equacié 4.1 es té
ZA{coswt} = / e " cos wt dt i Z{sinwt} = / e sin wt dt
0 0

Observem, a més, que

IS A
ZA{coswt}+iZ {sinwt} = / e e dt = Aim el g =
0 —eJo
) e(iw—s)A -1
=lim —— =
Azee LW — S
1 s+iw
—=————-, 5>0
_ ) s—iw 2+ w?
no definit , s<0
En igualar les parts reals i imaginaries d’aquesta equacio, es té
Z{coswt} = —> Z{sinwt} = —— >0
coswtf = ——, sinwt}=———; s
2+ w? 2+ w?

L’equacié 4.1 associa cada funcié f(¢) amb una nova funcié F(s). Tal com suggereix la
notacié .Z {f(¢)}, la transformada de Laplace és un operador que actua sobre funcions.
A més, es tracta d’un operador lineal.

Propietat 4 (linealitat) .2 {af(t) +bg(t)} =aZ{f(t)} +bL {g(1)}.
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Fig. 4.1
Grafica d’'una funcié
continua per seccions

Demostracio. Per definicio,
Z{af () +bg0)} = [ e (ar(e) + be(e)) dr =

:a/ e (t)dter/ e g(t)dt =
0 0

=aZ{f()} +b 2L {g(1)}

4.2.1. Funcions admissibles

Una dificultat que cal tenir en compte de la definicié 4.1 és que la integral podria no
existir per a algun valor de s. Aix0 succeeix, per exemple, en el cas de f(t) = ¢ . Per
tal de garantir que la transformada de Laplace de f(r) existeixi almenys en un interval
s > s, s’exigeixen a f(¢) les condicions segiients:

a) La funci6 f(¢) és continua per seccions. Aix0 significa que f(¢) té, com a molt, un
nombre finit de discontinuitats en tot interval 0 < ¢ <1, i tant el limit per I’esquerra
com per la dreta de f existeixen en tots els punts de discontinuitat. Dit d’una altra
manera, f () té tan sols un nombre finit de discontinuitats de salt en tot interval finit.
A la figura 4.1 es representa la grafica d’una tipica funcidé continua per seccions, o
continua a trossos.

b) La funcié f(¢) és d’ordre exponencial, és a dir, existeixen constants M i y tals que
lf()] < Me", 0<t<eo

f)

P N

hi f

= [

S 4+~ — —
[N S

Lema 3 Sigui f(t) una funcié continua per seccions i d’ordre exponencial. Llavors, la
seva transformada de Laplace existeix per a tot s suficientment gran. En particular, si
f(t) és continua per seccions i |f(t)| < Me", llavors F (s) existeix per a s > y.

Les funcions que compleixen aix0 s’anomenen funcions admissibles. La demostracié
del lema 3 es fara amb 1’ajuda del segiient lema del calcul integral, que s’anuncia a
continuacié perd no es demostra.
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Lema 4 Sigui g(t) una funcié continua per seccions. Llavors, la integral impropia
Jo g(r)drt existeix si [; |g(t)|dt existeix. Per demostrar que aquesta liltima integral exis-
teix, només cal provar que hi ha una constant K tal que

[ ls1ar<x

per a tot A.

Demostracid. Ja que f(t) és continua per seccions, llavors la integral [;' e~ f(t) dt exis-
teix per a tot A. Per tal de demostrar que la integral té un limit per a tot s suficientment
gran, observem que

A A
/ le™ f(£)| dt < M/ e edt =

0 0
M M

_ (r=s)A _
_yfs(e 1)<S*Y

per a s > y. Llavors, basant-nos en el lema 4, es té que la transformada de Laplace de
S (1) existeix per as > y. Aixi doncs, a partir d’ara suposarem que | f(r)| < Me"" is>7.

4.3. Aplicacio a les equacions diferencials

La utilitat real de la transformada de Laplace per resoldre equacions diferencials recau en
el fet que la transformada de Laplace de f’(¢) esta molt relacionada amb la transformada
de f(t). Aquest és el contingut del lema segiient.

Propietat 5 (derivacio) Sigui F(s) =2 {f(¢)}. Llavors,
ZA{f ()} =sZ{f(t)} = f(0) = sF(s) — £(0) 4.2)

Demostracié. Només cal escriure la formula per a la transformada de Laplace de f'(z) i
integrar per parts. Aixi, es té

2450y =Jim [ s 0=

A

A
. + lims/ e f(t)dt =
0

A—eo

= lim e (1)

A—roo

A—reo

=—f(0)+ lims/er""f(t)dt =
— 5F(s) - £(0)

El pas segiient és trobar una relaci6 entre la transformada de Laplace de f”(¢) i la de
f'(t), cosa que no és més que una conseqiiencia del lema 5.
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Corol'lari 1 Sigui F(s) = 2 {f(t)}. Llavors,

LS (1)} = 5F(s) = 5£(0) — f'(0) (4.3)
Demostracio. Aplicant dues vegades el lema 5, trobem que
L")} =sZL{f 1)} =1 (0) =

=s(sF(s) = f(0)) = f'(0) =
=5’F(s) —sf(0) - f'(0)

4.3.1. Equacio diferencial lineal

Arribat aquest punt, ja tenim els elements necessaris per resoldre un problema de valor
inicial

d? d
aZE b Ay =100 YO =0 YO)=) (44)

tot resolent una equacié algebraica. Siguin Y (s) i F(s) les transformades de Laplace de
y(t) i f(z), respectivament. Aplicant 1’operador de transformacié a ambdds costats de
I’equaci6 diferencial, s’obté
ZL{ay" (1) +by' (1) +cy(1)} = F(s)
Tenint en compte la linealitat de 1’operador de transformacid, s’obté
LA{ay"(1) +bY' (1) +cy() } = aL {Y" (1)} +bL{Y (1) } + 2L {y(1)}
i, d’acord amb el lema 5 i el corol-lari 1, es t€ que
Ly =sY(s) =y . L)} =5Y(s) = sy~
Per tant,
a(s*Y (s) —syo—yy) +b(sY (s) — yo) +c¥ (s) = F(s)
Aquesta equacio algebraica implica que

Y(S) _ F(S) (as+b)y0 ay6
as’+bs+c as*+bs+c  as?+bs+c

4.5)

L’equaci6 4.5 descriu la transformada de Laplace de la solucié y(¢) del problema de
valors inicials 4.4. Per tal d’avaluar y(t), és necessari consultar les taules d’antitransfor-
mades de Laplace. Ara bé, aixi com Y (s) s’expressa explicitament en termes de y(), €s
adir, Y(s) = [; e “y(r)dt, també seria possible donar una férmula explicita per a y(r).
No obstant aix0, aquesta férmula, que s’escriu simbolicament com y(7) = £~ '{Y (s)},
implica una integracio respecte d’una variable complexa, cosa que va més enlla del tema
que es tracta en aquests apunts. Per aix0, en lloc d’aplicar la férmula, a la seccié segiient
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es deduiran algunes propietats funcionals de I’operador transformada de Laplace. Les
propietats permetran invertir, per simple inspeccié, moltes transformades de Laplace, és
a dir, permetran reconeixer de quines funcions sén transformades. Es comu referir-s’hi
com a transformada inversa o antitransformada.
Exemple 41 Resoleu el problema de valor inicial

Y=3+2y=e"  y0)=1 (0)=0

Solucio

Sigui Y (s) = Z{y(¢)}. Aplicant la transformada de Laplace a ambdés membres de I’e-
quacid diferencial, s’ obté

sY(s)—s—3(sY(s) — 1) +2Y(s) =

s+1
és a dir,
Y(s)(s*—3s+2) = ! +(s—3)
s+1
Aix0 implica que
1
s—3
Yis)= s2j§sl—|—2 s2—3s+2
1 s—3

T -)6=2+1) T 5=D)(s-2)

Per trobar y(), es desenvolupa en fraccions simples cada un dels termes del segon mem-
bre, i s’obté

1 A B C

(s—1D)(s=2)(s+1) s—l+s—2+s+l

Aix0 implica que

A(s—=2)(s+1)+B(s—1)(s+1)+C(s—1)(s—2) =1

1 1 1
Enfers=1,s’obté A = —E; fent s =2, s’obté B = 3 iambs=—1,s’obté C = 3 Per
tant,

1 1 1 +1 1 +1 1
(s—=1D)(s—=2)(s+1) 2s—1 3s5s-2 6s+1

De manera similar,
s—3 D E
(s—1)(s—2) s—1 s5-2
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id’aqui
D(s—2)+E(s—1)=s5-3
Ara, fent s = 1, s’obté D = 2, mentre que, amb s = 2, s’obté E = —1. Per tant,

Y(s) 1 1 +1 1 +1 1 n 2 1

§) = —— — - _ —
2s—1 3s—2 6s5s+1 s—1 s-—2
3 1 2 1 1 1

— - _|__
2s—1 3s—2 6s+1

El primer terme €s la transformada de Laplace de %e’. De manera similar, el segon terme

i el tercer son les transformades de — %ez’ i ée" , respectivament. Consegiientment,

2 1 3 2 1
e o B R U R

Observacio. En realitat, hi ha infinites funcions amb idéntica transformada de Laplace .
Per exemple, la transformada de Laplace de les funcions

le—ZeM+le, siot#£-1,1,2
(1) = * ,
0o , si t=-1,1,2
és també Y (s), ja que z(r) difereix de y(¢) tan sols en tres punts.' No obstant aixd, només
hi ha una funci6 continua y(r) que té per transformada de Laplace una funcié donada
Y (s), i és en aquest sentit que s’escriu y(t) = . {Y (s)}.
4.3.2. Sistemes d’equacions

La transformada de Laplace també és util per a resoldre sistemes d’equacions diferenci-
als lineals a coeficients constants. Vegem-ho amb un exemple.

Exemple 42 Resoleu el problema de valor inicial no homogeni
X (1) =3x(t) = 3x2(2) + 2
x(0)=1, x(0)=-1 (4.6)
xX5(t) = —6x,(r) —t

Solucio

Fem X, (s) = .2 {x1(1)},Xa(s) = £ {x2(r) }. Aplicant la transformada de Laplace a amb-
dés membres de les dues equacions diferencials, s’obté

1 Si f(r) = g(r), excepte en un nombre finit de punts, llavors [* f(r)dt = [ g(t)dr.
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sX;(s) —x1(0) = 3X,(s) — 3X,(s5) + 2

§

4.7
sXa(s) —x2(0) = —6X,(s) — &
Substituint les condicions inicials i simplificant, es té
(s —3)Xi(s) +3X,(s) = % +1= %
(4.8)

2

6Xi(s) +5Xo(s) = — 5 — 1 = -4

Ara cal de resoldre el sistema d’equacions, és a dir, aillar X (s), X, (s), i buscar les trans-
formades inverses.

Per exemple, multipliquem la primera equacié per s i la segona per -3, i sumem. Aix0
déna

3s2+3

(s =35 —18)X;(s) =2+s+ 2

d’on

3 +55243

X6 = Z55 360

Desenvolupant en fraccions simples, queda

1 /133 28 3 18
X = — _ P
19)= o8 <S—6 s+3 s s2>

Antitransformant, se n’obté la primera solucid,

1

x(t) = —— (133" — 28 +3 — 18¢)
108

De manera semblant, per calcular la segona solucié podriem tornar enrere, eliminar X,

i trobar la transformada X,. Ara bé, en aquest cas, €s més rapid usar la segona de les

equacions diferencials, on no apareix el terme en x,(t), i integrar directament,

x(t) = /(—6x1 (t)—r1)dt
Per tant, substituint-hi la primera solucid, tindrem

1

b b
18

(133¢% —28e™ + 3)dt = 108 (133¢% 4-56e " + 18t) +¢

x(t) =
Ara, apliquem la segona condici6 inicial per calcular la constant d’integracié c,

1 3
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La segona soluci6 és, doncs,

1
xo(t) = — 155 (133¢% 4566 + 18 —81)

4.4. Calcul de transformades

En aquesta secci6, s’obtindran algunes propietats importants de les transformades de La-
place. Utilitzant aquestes propietats, sera possible calcular la transformada de la majoria
de les funcions sense haver de realitzar integracions pesades. A més, es podran invertir
moltes transformades per simple inspeccid.

Propietat 6 (multiplicacié per ) Si 2 {f(¢t)} = F(s), llavors

2 {-1f(1)) = S F(s) “9)

Demostracio. Per definicid, F(s) = [, f(¢)dt. En derivar ambdds costats de 1’equaci6
respecte de s, s’obté

d d [~ _, _
aF(S):gf e f(l)d[—

0

= /: % (e7) f()dt = /: —te " f(t)dt =

=Z{-1f(1)}

La propietat 6 estableix que la transformada de Laplace de la funcié —zf(¢) és la de-
rivada de la transformada de Laplace de f(z). Aixi doncs, si es coneix la transformada
F(s) de f(t), llavors ja no és necessari realitzar una integracié pesada per trobar la trans-
formada de 71 (7).

Exemple 43 Obteniu la transformada de Laplace de z¢'.
Solucio

1
La transformada de ¢’ és 1 Per tant, per la propietat 6, la transformada de Laplace

de te' és

o d
LAk = dss—1 (s—1)? L

Exemple 44 Calculeu la transformada de Laplace de #".
Solucio
Utilitzant n vegades consecutives la propietat 6, s’obté

dr Ld" 1l
Sz =1

ds" s Sn+1 ]

Z{r} = (-1y
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La utilitat principal de la propietat 6 és invertir transformades, com es mostra en els
exemples segiients.

—1
Exemple 45 Quina funcié té per transformada de Laplace G4 ?
§—
Solucio
Primerament, observem que
1 d 1 1
— = — 1 = g 4
(s—4)? dss—4 ' s—4 {e"})
Per tant, per la propietat 6 es té que
1
‘ip—l —t At
{ <s—4>2} ‘ o
Exemple 46 Quina funci6 té€ per transformada de Laplace % ?
(2+4)
Solucio
Observem que
4s d 2 2
— =— i —— =2 {sin2t
(P47 dso+4 | 92+4 {sin2r}
Per tant, per la propietat 6 es té que
4
7! {7s2} = —tsin2t
(s24+4) L]
. g 1
Exemple 47 Quina funcié té per transformada de Laplace = a) ?
s —4)
Solucio
Podem reconeixer facilment que
1 a1 1
(s—4)3 ds?2s—4
Per tant, aplicant la propietat 6 dues vegades, trobem que
1 1
— f _t2 4t
(s=4)] {2 ‘ } m
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Propietat 7 (multiplicacié per ¢*) Si F(s) = £ {f(t)}, llavors

LA{e“f(t)} =F(s—a)

Demostracio. Per definicio,
,f{e"”f(t)}:/ e*‘“e"”f(t)dt:/ I f (1) dt =
0 0

_ / eV (1) di = F(s— )
0

(4.10)

La propietat 7 estableix que la transformada de Laplace de ¢ f(¢), avaluada en el punt
s, 6s igual a la transformada de f(r) en el punt (s — a). D’aquesta manera, si es coneix
la transformada F(s) de f(¢), llavors no és necessari calcular la integral per trobar la

transformada de Laplace de e f(¢); només cal substituir s per s — a en F(s).

Exemple 48 Determineu la transformada de Laplace de la funci6 e* cost.

Solucio

La transformada de cost €s s/ (s*> + 1). Per tant, per obtenir la transformada de Laplace

de €% cost, només cal substituir s per s — 2, és a dir,

s—2
f{eﬂcosl} = m

La utilitat real de la propietat 7 es veu clarament en invertir les transformades de Laplace,

tal com ho mostren els exemples segiients.

Exemple 49 Quina funcié g(¢) té la transformada de Laplace segiient?

s+3
Gls) = 254 (s+3)?
Solucio
Observem que
s
F(S) = m ZX{COSSI}

i que G(s) s’obté de F(s) quan substituim s per s + 3. Per tant, per la propietat 7,

s+3
— = Z{ecos5t
GTapgas =~ L e st}
. .z z 1
Exemple 50 Quina funci6 té per transformada de Laplace —————=?

s24+25+3°
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Solucio

Una manera de resoldre el problema és desenvolupar 1/ (s> + 2s+3) en fraccions sim-
ples. Perd una manera molt millor de resoldre’l s completant s> + 25+ 3 en quadrats
perfectes, de manera que

1 1 1

s2—|—2s—|—3:s2+2s+1—|—(3—1) (s+1)2+2

També tenim que

1 I .
m zaf{ﬁsm\/it}

Per tant, per la propietat 7, tenim que

1 1 1
= =< ——e 'sinV2t
$24+25+3  (s+1)2+2 {\/Ee Sm\/_}

9

s
Exemple 51 Quina funcid té per transf da de Laplace —————
xemp Quina funci6 té per transformada de Laplace P53

Solucio
Observem que

s B s+1 7 1
s2425+3  (s+1)2+2  (s+1)2+2

La funci6 s/(s*> +2) és la transformada de Laplace de cos V/2t. Per tant, per la propietat
Testé

s+1 B
m :.,?{e ICOS\/EI}

s 1
— =%l 2t — —e 'sinV2t
2513 {e cos V2 ﬁe sm\/—}

Com hem vist anteriorment, la transformada de Laplace és un operador lineal, €s a dir,
L{ei1fit) +eafa(t)} =c1Fi(s)+c2F(s). Llavors, si es coneixen les transformades F (s)
i F5(s), no és necessari realitzar cap integracio per tal de trobar la transformada de Lapla-
ce d’una combinacié lineal de fi(7) i f»(). Per exemple, dues funcions que es presenten
molt sovint en 1’estudi d’equacions diferencials sén el cosinus i el sinus hiperbolics.
Aquestes funcions es defineixen per les equacions

e 1o e — ot
coshar = — sinhat = —
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Per tant, segons la linealitat de la transformada de Laplace, resulta que

f{coshat} = %g{em}_'_ %g{eﬂzt} _
O S U D
" 2\s—a st+a) s2—a2
. 1 1 B
Z{sinhat} = Eiﬂ{eaz}_ig{e wy
1 1 _a
C2\s—a sta) $£-a

4.5. Propietats addicionals

En aquesta seccid, veurem algunes propietats més de la transformada de Laplace que
resulten ttils a ’hora de resoldre alguns problemes.

Propietat 8 (integracié) Sigui £ {f(t)} = F(s); llavors,

ﬁ{/otf(u)du}F(s) (4.11)

N

Demostracié. Fent g(t) = [, f(u)du es 6 g'(t) = f(t), g(0) = 0 i, per tant, utilitzant la
propietat de derivaci6 de la transformada de Laplace, es té

F(s) = 2{g (1)) =52 {s(0)} =s${ / tf(M)du}

t
Propietat 9 (divisié per r) Si @ és admissible, per a la qual cosa és suficient que
1
existeixi el lin(} Q llavors
1
t v
f{@} :/ Fu)du 4.12)
. ~ f() B - . s
Demostracio. Fent g(t) = - f(t) =1tg(t) i utilitzant la propietat 6, s’obté
- A
/ F(u)du = lim (u)du =
s A—eo [
. A d
:/}gri s —EG(u)du =

= lim (G(5) ~ G(4)) = G(s) = & { @}

A—oo
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Observacié. Aqui s’ha utilitzat el fet, que té interes per si mateix, que si una funcié f(z)
és admissible, la seva transformada de Laplace satisfa

lmF(s) =0 (4.13)

s—ro0

que és conseqiiencia immediata de la fitacié |F(s)| < ——, que hem vist anteriorment
s—Y

en el lema 3.

Propietat 10 (canvi d’escala) Sigui a > 0; llavors,

1
Z{fla)y=F (f) (4.14)
Demostracio. Fent at = u, tenim

Z{f(ar)} = / e flat)de =

[ -1 )

Propietat 11 (funcions periodiques) Si f(r+T) = f(¢), llavors

L) = 17% /0 Ty (4.15)

esT

Demostracio. Veiem que

L)} = /0 e () di = /0 "o (e e + /T e f () dr

i, fent t = T 4 u en I’dltima integral, tenim
()_/ 7stf dl+/ T+u T+u)d
T oo
:/ e_”f(t)dtJre_ST/ e f(u)du=
0 0

_ / "o () dt e TE(s)

d’on sobté

F) =2 {f0) = [ e s

La taula 4.1 mostra les propietats anteriors de la transformada de Laplace.
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Taula 4.1

Propietats de la 1 . Linealitat g {af(t) + bg(t)} = af {f(t)} + b.,? {g(t)}
transformacio de Laplace
2. Derivaci6 LA ()} =sZ{f)}— f(0)=sF(s)— f(0)
L)} =5"F(s) =5 f(0) =+ = f*71(0)
3. Multiplicaci6 per ¢ LAtf()} =— %F (s)
4. Multiplicaci6 per e ZLA{e"ft)} =F(s—a)
! F
5. Integracié Z {/0 fu) du} = g
6.  Divisi6 per K { %t) } — / " F(u) du
o 1 s
7. Canvi d’escala ZL{f(at)} = ;F (;)
8. Funcions periddiques fe+T)=f(r)

LU0} = ey [ S0

4.6. Exercicis

Te N s+1
(s—2)2  $2425+5°

2. Siuna funci6 f(z) té transformada de Laplace F (s), amb [" f(¢)dt =11 [t f(t)dt =
F'(s)
?

1. Calculeu I’antitransformada de Laplace de F(s) =

a < 400, quant val el lim
5—0
3. Usant la transformada de Laplace, calculeu la integral [t cos s e~ ™dr.

2
Quina funcié té per transformada de Laplace ———=?
§s2—2s—3

5. Quina és la transformada de Laplace de re” f(at)?
6. Calculeu la transformada de Laplace de e* f (ar).

7. Sigui f, amb f" admissible. Demostreu:
LAte"f(t)} = —F'(s—a)

ZLA{etf(ar)} = —%F’ (f)

2{ G} =2r (2) -0
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8. Sabent que .Z {f(3t)} = —, calculeu .Z { f(5t)}.

1+s2°

9. Si f(z) és soluci6 del problema f” — f = tcos(t), amb condicions inicials f(0) =01
f'(0) =0, trobeu F(s).

10. Si una funcié admissible f(¢), amb derivada admissible, té transformada de Laplace
F(s) i els limits segiients existeixen, demostreu:

lim,_osF'(s) = lim, .. —1f(¢)
limy_,o sF (s) = lim, .. f(2)
limy_.. sF (s) = lim, o f(2)

4.7. Respostes

1. f(t)=7(t—2)e* *u(t —2) +e " cos(2t).

o7 (51)
7. —
3 1
8. L{f(5t)(t)}(s) = 51+ (3s/5)?
1
9. F(s) = CEEnE
10. —
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Equacions amb terme no homogeni
discontinu

5.1. Introduccio

En moltes aplicacions, el segon membre de 1’equacié diferencial ay” + by +cy = f(¢) té
una o més discontinuitats de salt. Per exemple, una particula pot trobar-se en moviment
sota la influeéncia d’una forga fi(z) i, de cop, en un temps #;, patir els efectes d’una forca
addicional f>(¢). En aquest capitol, es descriu com tractar aquest tipus de problemes
mitjancant la transformada de Laplace. Per comencar, obtindrem les transformades de
Laplace d’algunes funcions discontinues senzilles.

5.2. Funcio de Heaviside

L’exemple més senzill d’una funcié amb una sola discontinuitat de salt €s la funcié

(1) 0, 0<tr<c 5.1)
(1) = .
1, t>c

Aquesta funcié H,(t), 1a grafica de la qual es mostra a la figura 5.1, es coneix amb el nom
de funcio esglao o funcio de Heaviside. De vegades, també apareix sota les notacions
H(t —c) o u(t — ¢) —aquesta darrera, derivada del mot angleés up per descriure un salt
ascendent. La seva transformada de Laplace és

f{HC(t)}:/Ome*s’Hc(t)dt:/je*”dt:

A —cs —sA
. . e —e
=lim [ ¢"dt=lim —— =
A—oo [ A—roo S
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Fig. 5.1
Grafica de H.(r)

Fig. 5.2
f(t)ig(t)=He(t)f(t—c)

82

Considerem ara una funcié f definida a I’interval 0 <t < o, i sigui g la funcié que s’obté
de f en traslladar la grafica de f c unitats cap a la dreta, tal com mostra la figura 5.2. Dit
amb més precisid, g(r) =0pera0 <t <c,ig(t)= f(t—c) perat > c. Una expressio
analitica adequada per a g(¢) és

g(t) = He(1)f(r —c)

El factor H,(r) fa g igual a zero per a 0 <t < ¢ i, en canviar I’argument 7 de f pert—c, f
es desplaca c unitats cap a la dreta. Com que g(¢) s’obté a partir de f de manera senzilla,
caldria esperar que la seva transformada de Laplace es pogués obtenir de manera senzilla
a partir de la transformada de f(¢). A continuacid, es demostra que, efectivament, aixo
succeeix.

Propietat 12 Sigui F(s) = £ {f(t)}. Llavors,

LAH(1)f(t —c)} = e “F(s) (5.2)

Demostracio. Per definicio,

Z{H0f -0} = [ () (i — ) di =

= /cme’s’f(tfc)dt

Per resoldre la integral, convé fer el canvi & = — c. Llavors,

[ enrt—cpar= [ e &) =
c 0

e [CerE)ae -

=e “F(s)
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Per tant, Z {H.(1)f(t—¢c)} = e “ZL{f(1)}.

e—S
9

Exemple 52 Quina funci6 t¢ per transformada de Laplace —
s

Solucio

Sabem que 1/s és la transformada de la funci6 ¢, de manera que, per la propietat 12,
resulta

e
=206 1)
La figura 5.3 mostra la grafica de H, (t)(t — 1). L]

A Fig. 5.3
Grafica de H, (t)(t — 1)

> [

—4s

Exemple 53 Quina funcié té per transformada de Laplace 203 ?
Solucio
Observem que

1 1 1

s2—25—3  s2—2s+1—-4 (s—1)2-22

Com que 1/(s* —2%) = . {1sinh2s}, de la propietat 7 podem concloure que

1 1, .
m = .,2”{56’ smh2t}

i, segons la propietat 12, tenim que

6—45 1 s
m —${§H4(f)€ s1nh2(t—4)}

Exemple 54 Sigui f(7) la funci6 que val# pera0 <t < 1,ique val O perat > 1. Trobeu
la transformada de Laplace de f sense fer cap integraci6.
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Solucio

Observem primerament que f(¢) es pot escriure de la forma

f(t)=t(Ho(t) —Hy (1)) =t —tH; (1)

Per tant, segons la propietat 6,

L{f)} =L} -2 {H (1)} =

5.2.1. Problema de valor inicial amb funcions de Heaviside

Vegem un exemple on el terme no homogeni és una funcié continua per seccions.

Exemple 55 Resoldeu el problema de valor inicial

Isi 0<r<1,0si 1<t<2
d*y _dy . . /
ﬁ—?aa—i—Zy:f(t): 2si 2<r<3,0si 3<r<4 y0)=0, »(0)=0
3si 4<t<5,0s81 5<t<oo

Solucio

Siguin Y (s) = Z{y(t)} i F(s) = Z{f(¢)}. Quan s’aplica la transformada de Laplace
als dos costats de I’equaci6 diferencial, s’obté que (s*> — 3s+2)Y (s) = F(s), de manera
que
F F
v FO P
$2=3s+2  (s—1)(s—2)

Una manera de calcular F(s) és escriure f(¢) de la forma
f(t) =Hy(t) —H\ (1) +2H,(t) —2H;(t) + 3H,(t) — 3Hs(1)

Per tant, basant-nos en la linealitat de la transformada de Laplace, s’obté

1 e 672s g73s 6745 6755

F(S):E_ s 2 s -2 s 3 s -3 s

Un altre métode per calcular F(s) és avaluar la integral

o 1 3 5
/ e f(1) di = / e di 42 / e di 43 / e di =
0 0 2 4

1—e 6725 _ 6735 6743' _ 6755

= +2 +3
N N N
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Com a conseqiieéncia, obtenim

l—e " +2e 2 —2e 343 3>
s(s—1)(s=2)

Y(s)=

. e 1
El pas segiient és desenvolupar Fr =

3y en fraccions simples, €s a dir, de manera que

s’escrigui de la forma

1 A B C

s(s—1)(s=2) 7;+s—1 Jrs—2

Aix0 implica

A(s—1)(s—2)+Bs(s—2)+Cs(s—1) =1
Fent s = 0, trobem que A = %; fent s = 1, trobem que B = —1, i fent s = 2, s’obté que
C= % Aixi doncs,

1 11111

s(s—1)(s—2) 2s s—1 +2s—2 N

1 1
:g{§—€t+§€2t}

Per tant, a partir de la propietat 12,

LT 1 _ |
= |z - — —H N (28 B (23 )]
(1) {2 ¢+ e ] (1) {2 e +
+2H,(t) l —el™ 4 162(172) — 2H; (1) l_e(t—B) + lez(t%) n
2 > 3 A 5 5
+3H,(t) l—e(’74> + lez(”“) —3Hs (1) l_e(rfS) + lez(ps)
4 > 3 8 5 S

Observacio. Pot verificar-se facilment que la funcié

l o e(r—n) 4 lez(t—n)

2 2
i les seves derivades s’anul-len en 7 = n. Per aixd, tant y(¢) com y'(¢) sén funcions conti-

nues, tot i que f(z) és discontinuaent = 1,2,3,415.

De forma més general, com que la integral d’una funcié de Heaviside és continua, tant la
soluci6 y(¢) del problema de valor inicial

d’y  dy
“atrray=f0,  yw)=y,  Y(6) =)

com la seva derivada y'(¢) s6n sempre funcions continues en el temps, si f(¢) és continua
a trossos. u
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Fig. 5.4
Grafica d'una funcié
d'impuls f(r)

5.3. Delta de Dirac

En moltes aplicacions fisiques i d’enginyeria, apareix sovint el problema de valor inicial

d
—+p=+q=f(1), y0)=yo. Y(0)=y, (5.3)

on f () no es coneix explicitament. Aquests problemes es presenten generalment quan es
treballa amb fenomens de naturalesa impulsiva. En aquests casos, I’tinica informacié que
es té de f (1) és que és igual a zero, excepte en un interval de temps molt curt 7y <7 <ty,
i que la integral sobre aquest interval és un determinat nombre I, # 0. Si I no és molt
petit, llavors f(z) sera molt gran a I’interval 7, < < ;. Aquestes funcions es coneixen
amb el nom de funcions d’impuls (parlant amb rigor matematic, ens hi hauriem de referir
com a funcionals o distribucions). A la figura 5.4, es mostra la grafica d’un impuls f(z)
tipic.

f(t)

/

> [

I 1

A principis de la decada dels anys trenta, Dirac, guanyador d’un premi Nobel per treballs
relacionats amb la mecanica quantica, va elaborar un metode forca controvertit per tal de
treballar amb funcions d’impuls. El seu metode es basava en el raonament segiient: sigui
t; cada cop més proper a to. Llavors, la funcié f(r)/I, tendeix a la funcié que és O per a
t #£tyiaceperat =t;. A més, la seva integral sobre qualsevol interval que contingui £,
val 1. Aquesta funci6 es coneix amb el nom de funcio delta de Dirac, tot i que no és una
funcié en el sentit habitual —ja Dirac la va qualificar de funcié “impropia”— i es denota
per &(t —1y), o per &,,(¢). No obstant aixd, pot operar-se formalment amb & (t — #y) com
si es tractés d’una funcié més.

Formalment, es pot definir (¢ —#y) d’una manera for¢a generica, imposant que, per a
una funcié qualsevol g(t), es verifiqui

b
/bg(t)5(t—t0)dt= glto), asis (5.4)

0, altrament

En particular, prenent g(z) = 1, obtenim la propietat segiient, que correspon a la definici6
donada originalment per a una funcié d’impuls,

6(t—19) =0, si t#t
P8t —t0)dt=1, si a<ty<b



Equacions amb terme no homogeni discontinu %

Es interessant posar de manifest la relacié que hi ha entre la delta de Dirac i la funci6 de
Heaviside.

Propietat 13 (derivada de la funcié esglad) Per a tot ¢ > 0, es verifica

/0t6(u—c)du:HC(t) (5.5)

Aquest resultat és una conseqiiencia immediata de la definicié. De vegades, aquesta re-
laci6 s’escriu, per analogia amb les funcions ordinaries, com

6(t—c)= 4

SH0) (5.6)

que vol significar que “la derivada de la funcié esglad és un impuls”. Ara bé; com s’ha
d’entendre la relacié anterior si, de fet, la funcié esglaé H,.(¢) no té derivada a t = ¢?
La manera correcta d’interpretar aquesta relacié seria pensar que les derivades d’una
seqiiencia de funcions diferenciables, que en el limit tendeixen a H.(¢), constitueixen
una seqiiéncia apropiada per definir 6 (7 — ¢).

5.3.1. Terme no homogeni impulsiu

Ara podem veure que tota solucid y(#) de 1’equaci6 diferencial

2
Z%er%Jrqy:IMtfc) (5.7
és una funci6 continua en el temps. Si integrem ’equacid, tenint en compte 1’expressié
5.5, resulta que y'(¢) és discontinua a la manera de H,(¢). Com que la seva integral és una
funcié continua, llavors y(¢) sera una funcié continua. Dit amb un exemple: si y(¢) és la
soluci6 de I’equacié del moviment d’una particula que rep un impuls en el temps f = c,
aquesta particula no realitza el “canvi de lloc instantani”, sin6 que segueix una trajectoria
continua. La seva velocitat, en canvi, es veu sobtadament modificada.

Per resoldre el problema de valor inicial que mostra I’equacié 5.3 pel metode de la trans-
formada de Laplace, només cal saber quina €s la transformada de Laplace de &(r — to).
Aix0 ho podem obtenir directament de I’equaci6 5.4

f{&(t—to)}:/we‘“S(t—to)dt:e‘”O, fo >0
0

Exemple 56 Trobeu la soluci6 del problema de valor inicial

d’y dy
— 4= 4+ 4y=26(t—1 45t—2; O:L "0)=1
o5 Ay (t—1)+46(t—2) ¥(0) ¥ (0)

Solucio

Sigui Y (s) = .2 {y(¢)}. Quan apliquem la transformada de Laplace als dos costats de
I’equacié diferencial, obtenim

2V (s) —s—1—4(sY(s) = 1) +4Y(s) =2e* +4e >
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0, el que €s el mateix,
(" —4s+4)Y(s) =5 —3+2e " +4e *
Per tant, tenim

s—3 N 2e~" N 472
(s=2)*  (s—2)* (s—2)?

Y(s) =

Observem ara que 1/(s —2)* = £ {re*}. Llavors,

2¢* be=% _ — 1)t —2)020-2)
(S72)2+(572)2 ZL{2H,(1)(t—1) +4H, (1) (1 —2) }

Per tal d’invertir el primer terme de Y (s), observem que

s—3 s—2 1 2 21
(5—22 (s—2)? (s—27 =Z{c"} - 2L {re"}

Aix{ doncs,
y(t) = (1 —=1)e* +2H,(t)(t — 1)V 4 4H, (1) (t — 2)e*' Y

Observacio. Resulta il-lustratiu resoldre aquest problema per la via llarga, és a dir, trobar
¥(1), per separat, en cadascun dels intervals 0 <t < 1,1 <7 <2i2 <t <eo.Per0<r <1,
tenim que y(¢) satisfa el problema de valor inicial

d’y  dy

— 2 4= 44y =0; 0)=1, y(0)=1

T Ay ¥(0) ¥(0)
L’ equacié caracteristica d’aquesta equacié diferencial és 2 —4r+4 = 0, que té per arrels
ri = r, = 2. Per tant, qualsevol soluci6 y(r) ha de ser de la forma y(r) = (a; + aat)e*.
Les constants a; i a, es determinen a partir de les condicions inicials

1=y(0) =aq i 1=y(0)=2a; +a,

Pertant,a; = 1,a, =—1iy(t)=(1—t)e* pera0 <t <1.Aray(1)=0iy (1) = —¢*.
ATinstant 7 = 1, la derivada de y(¢) s’incrementa sobtadament en 2 unitats. Per tant, per
al <r<2,estéquey(r) satisfa el problema de valor inicial

d’y  dy

—Z 4=+ 4 :O, 1 :0, ll :2—2
Ty y(1) y(1) e
Com que les condicions inicials vénen donades a t = 1, la soluci6 s’escriura de la for-
ma y(t) = (by + by(t — 1))e*'~". Les constants b; i by es determinen a partir de les
condicions inicials

O:y(l):b1 i 2—82:yl(1):2b1+b2

Aixidoncs, by =0,b, =2—¢€*iy(t) = (2—e?)(t—1)e**~Y, on 1 <t < 2. Ara tenim que
y(2)=(2—€*)e*iy(2) =3(2—¢?)e*. Alinstant r = 2, la derivada de y(¢) s’incrementa
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sobtadament en 4 unitats. Consegiientment, per a 2 <t < oo, tenim que y(z) satisfa el
problema de valor inicial

d? d
DD hy0 @=eC-a) Y@ =413

Per tant, y(¢) = (cl +oeft— 2))62("2). Les constants ¢, i ¢, es determinen a partir de les
equacions

e2—e*)=c i 4+436*(2—¢*) =2¢,+c,
Aixi, tenim que

cr=e*(2—é%), =443 (2% —2e*(2—¢*) =4+ *(2—€%)

y(t)=[2—e)+ (4+e(2—e))(t—2)] ), 1>2 .

Observacio. Seria interessant verificar que, efectivament, aquesta expressio coincideix
amb la que s’ha obtingut anteriorment mitjancant el metode de la transformada de La-
place. A diferencia del que succeia a I’exemple 55, on el resultat era una funcié continua
amb derivada continua, ara es pot comprovar que la solucié obtinguda a ’exemple 56
també és continua, pero, en canvi, la seva derivada no ho és. Es veu facilment que la
funci6 (¢t —n)e*"™ és nul-la a t = n, perd no ho és la seva derivada.

La taula 5.1 mostra les transformades de Laplace de les funcions més usuals.

Taula 5.1
f(t) F(s) f(t) F(S) Tr:nsformades de
Laplace de les funcions
1. 1 1 (s>0)| o. sinhat ZLaz (s> q) Mescomunes
s 57—
n! n!
2. t" TS (s>0) 10. e m (s>a)
1 S2 o [52
. o 11.
3 e pP— (s>a) tcos ft CEY.BE (s >0)
s . 2Bs
4.  cosft m (s>0) | 12. tsin fBt G +ﬁﬁ2>2 (s>0)
. B 1
5. Slnﬁt m (S>0) 13. H(t) E (S>0)
r s—a _ B e
6. e“cosft G_arip (s>a)| 14. H.(t)=H(t—c) . (s>0)
7. e sinft = a[)jz s (s>a)| 15. 6(1) 1
8. coshar ﬁ (s>a)| 16. 6,(t)=6(t—a) e (a>0)
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5.4. Integral de convolucio
Considerem el problema de valor inicial

d’y dy
e +qy=f(1);

i ¥(0)=0, »(0)=0 (5.8)

Sigui Y (s) = Z{y(t)}iF(s) =Z{f(r)}. Apliquem la transformada de Laplace als dos
costats de 1’equacid i n’obtenim

(s+ps+q)Y(s) = F(s)

que implica

F(s)
Y(s) =3
T+ ps+q
Fixem-nos ara només en la part
H)= 5 59)
§)=———"-— .
s +ps+gq
Si la seva transformada inversa es denota per
h(t)=<""{H(s)} (5.10)

aquesta funci6 pot ser interpretada com la solucié de I’equacié homogenia, amb f(r) =
0, amb unes condicions inicials no homogenies #(0) = 0, #/(0) = 1. Aquesta soluci6
s’entén habitualment com la resposta natural del sistema, ja que és el resultat d’una
minima pertorbacié de les condicions d’equilibri del sistema, sense estimuls externs.

Similarment, la funci6 h(t) també es pot interpretar com la solucié de 1’equacié dife-
rencial on la part no homogenia s’ha substituit per un impuls a 1’origen, f(t) = 6(¢),
i que satisfa les condicions inicials homogenies £(0) = 0, #'(0) = 0. Recordem que
Z{6(t)} = 1. Per aquest motiu, /(¢) també s’anomena resposta impulsional.

Ara interpretarem la soluci particular y(z) de I’equaci6é completa. Mitjancant les res-
pectives transformades, podem posar y(¢) en funci6 de h(t) i f(¢),

L)}y =20} Z{h(t)} = F(s)H(s)

H(s) es denomina funcid de transferéncia. Resulta natural preguntar-se si existeix un
relaci6 senzilla i directa entre aquestes funcions. Logicament, seria més facil si y() fos
el producte de f(¢) i h(r), perd dbviament aixd no succeeix. Tanmateix, existeix una
manera de combinar dues funcions f i g per tal de formar una nova funcié f * g, que és
semblant a la multiplicaci6 i compleix que

L{(f*e))} = Z{f (1)} Z{e(1)}

Aquesta combinaci6 de f i g apareix amb freqiiencia en moltes aplicacions i es coneix
per convolucié de f amb g.
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Definicié 11 La convolucié (f*g)(t) de f amb g es defineix per mitja de I’equacié
(f*xg)(t /ft—u (5.11)
Per exemple, si f(r) = sin2t i g(r) = ¢, llavors

(Feg)(t) = /0 sin2(t — w)e* du

Observacio. Els limits entre 0 i ¢ de la integral de convolucié van associats al fet que
aquestes funcions estan definides per a r € [0,0). Si el seu domini fos (—ee, o), llavors la
integral de convoluci6 tindria limits entre —eo i oo,

5.4.1. Propietats
L’operador de convoluci6 satisfa les propietats segiients.

Propietat 14 L’operador convolucié compleix la llei commutativa de la multiplicacio,
és adir, (f+g)(t) = (g*f)(1).

Demostracio. Per definicid, tenim que

(f2)(t /ft—u

Fent el canvi t — u = { en la integral, obtenim que

(r0)0) =~ [ 1Q)gle~ )t =

—/gtf 0)df = (g*f)()

Es igualment facil comprovar les propietats segiients:

Propietat 15 L’operador convolucio compleix la llei distributiva de la multiplicacio, és
a dir;

fr(g+h)=frg+feh

Propietat 16 L’operador convolucio compleix la llei associativa de la multiplicacio, és

adir, (fxg)xh= fx*(g*h).
Propietat 17 La convolucio de qualsevol funcio f amb la funcio zero és igual a zero.

D’altra banda, I’operador convolucié es distingeix de 1’operador multiplicacié perque
fx1% fif*f+# f2 Defet, la convolucié d’una funcié f amb ella mateixa pot fins i tot
ser negativa.

Exemple 57 Calculeu la convolucié de f(z) =t> amb g(t) = 1.
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Solucio
A partir de la propietat 14, tenim que

t

() =(gen0 = [ Tdu=" .

Exemple 58 Calculeu la convoluci6 de f(7) = coss amb ella mateixa i demostreu que
no sempre €s positiva.

Solucio
Per definici6 tenim que

(f*f)(t) = [ycos(t—u)cosudu =

!
= / (costcos®u+sintsinucosu) du =
0

"1+ cos2u . T
:cost/ fdlﬁ—smt/ sinucosudu =
0 0

; t n sin 2t sin’s  tcost+sinzcos?s +sin’z
=cost | = = =
2 4 2 2
_ tcost+sint(cos’t +sin’t)  tcost+sint
N 2 N 2

Aquesta funci6 és clarament negativa per a
I
(2n+l)ﬂ_t§(2n+l)n+§; n=0,1,2... n

A continuaci6, es demostra que la transformada de Laplace de f * g és el producte de la
transformada de Laplace de f i la transformada de Laplace de g.

Teorema 9

L{(fx8)0)} =2Z{f()} ZL{s(1)} (5.12)

Demostracié. Per definici, tenim que

oo t
20 = [ | [ 10— wetwau] ar
Aquesta integral iterativa és igual a la integral doble

//R e f(t —u)g(u)dudt

on R és la regi6 triangular descrita a la figura 5.5.
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u Fig. 55
\ Area sota la funcié u = ¢

> [

Integrant primer respecte de 7, en comptes de u, s’ obté

ZL{(f*g)1)} = /Owg(u) [/uwe”f(t—u)dt} du
En fer t —u = &, trobem que

[ eopte—wai= [ e pE)a
u 0

Per tant, es compleix que

2190} = [ s [/ ) e”e-@f@)dg] =

= [ | stwe du} [ | ef‘ff@)da] -
— 2{f(1)} Z{s(0)}

Exemple 59 Trobeu la transformada de Laplace inversa de la funcié

a
s2 (s> +a?)
Solucio
Observem que
Loy i o~ #{sinar}
— — i = sina
52 52+ a?

Per tant, pel teorema 9, sabem que

a ! .
371 {m} :‘/0 (t—u)smaudu:

_at— sinat

a? ]
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Exemple 60 Trobeu la transformada de Laplace inversa de la funcié

1
s(s?+2s+2)

Solucio

Observem que

1 1 1
-=2{1 i =
s {1} ' S2+25+2  (s+1)2+1

=% {e "sint}
Per tant, pel teorema 9,

1 1
K :/ “sinudu =
{S(S2+2S+2)} ()e simudu

(1—e"(cost +sint))

N[ —

]
Observacio. Ara podem donar resposta al problema que es plantejava a 1’equacié 5.8.

Sigui A(t) la solucié de ’equacié y” + py' + gy = 0, que satisfa les condicions inicials
h(0) =01/ (0) = 1. Llavors,

Y0 = S0 h0) = [0~ ) ) (5.13)

és la solucié particular de I’equacié y” + py’ + gy = f(t), que satisfa les condicions
inicials y(0) = y'(0) = 0. Freqiientment, 1’equacié 5.13 és forca més facil d’utilitzar
que el metode de variacié de parametres. La generalitzacié a unes condicions inicials
qualssevol és ben senzilla a partir de ’equaci6 4.5.

5.5. Exercicis
1. Calculeu per a quin valor de a la solucié del problema
Y+y=ad(t—1);y0) =1

verifica y(0) = y(1).

2. Quina és la solucio del problema de valor inicial y"+y=H(t —1); y(0) = y'(0) = 0?

3
3. Trobeu la transformada de Laplace de la solucié de I’equacié y' — / y(t)dt =
0
H(t)+6(t—1), que satisfa y(0) = 1.

1 1
4. Quina és la funci6 que té per transformada de Laplace ¢ * = + ¢ > ?
52 s2+4
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10.

11.

12.

13.

14.

15.

. Calculeu el valor de / sin(
0

Equacions amb terme no homogeni discontinu %

a—Xx

) cos( % )dx.

. Calculeu la transformada de Laplace de la funcié H(t —a) [, f(7)d~.

. Sigui f: [0,00) — R la funci6 continua tal que la seva transformada de Laplace és

-8

(s+3)°

L{f(1)}(s) =

Proveu que f és €', perd no ¢>.

. Calculeu I’antitransformada de Laplace de la funcié

=l !

s1—eT

. Calculeu la soluci6 del problema de valor inicial

Y =y=26(t—1);y(0)=0,)(0)=0

Considerem la funcié y(r), amb transformada Y (s), tal que

oo

Y'=28(t—n),y0)=1

n=1

Digueu si sén certes les igualtats

y(t) =2 H(t—n)

¥(1) =6t —n)x1

Quant val Y (s)?

Demostreu que L{e' " H(t — 1)(t) }(s) = e~* /(s — 1).

Sigui fi(t) = e Y. 4. Trobeu el valor de Si(@).

Si f,(¢) = ¢", n natural, quant val (f,, * f,,)(¢)?

Si f(#) és soluci6 del problema f” — f =tcos(¢) amb condicions inicials f(0) =0 i
f'(0) =0, trobeu F(s).

Donat N € N, calculeu la soluci6 y(¢) del problema

Y'+mly=mnY (~1)'6(t—n); y(0)=»'(0)=0

n=0
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5.6. Respostes

1.
2.

3.

1—e .

y(1) = H(t—1)(1 — cos(t — 1)).

1 N K
e
s—1  s2—1

—S

1
4. Hr—1)(r—1)+ EH(I —2)sin(2(r —2)).
5. % sin (g)
e*ds
6. F(s).
—F ()
7. f ésde classe €, perd la segona derivada és discontinua a r = 1.

10.

11.

12.

13.

. ft) =Y H(t—kT).

k>0

. y(t) =2H(r — 1)sinh(r — 1).

. ; 1 ¢
Les igualtats son certes. Y (s) = — — T
se—

14. F(5) = ———

15.



Apéndixs

En aquests apendixs, s’hi exposa material complementari d’algebra lineal, que permet
fonamentar i aprofundir alguns dels resultats de la teoria d’equacions diferencials. Se
suposa que el lector té els coneixements basics d’espais vectorials, inclosos el polinomi
caracteristic i la diagonalitzacié d’un endomorfisme, bé sigui sobre R o sobre C.

Apéndixs %
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Apéndix A

A.1. Polinomis de matrius

Els endomorfismes d’un espai vectorial £ es poden compondre entre ells i continuen
essent endomorfismes de E. Recordem que, fixant una base, la composicié d’endomor-
fismes correspon a la multiplicacié de matrius. Un cas particular d’aquesta composicié
és el segilient.

Definicié 1 Considerem f : E — E endomorfisme, i el polinomi
p(t) =aut"+---+ait+ap € R[t]
El polinomi p(t) avaluat en f és I’endomorfisme de E:

p(f) =anf" 4+ +af+aol

k

on f*(V) = fo - of (¥).

Les propietats segiients es poden comprovar de forma immediata.
Propietat 1 Si f : E — E és endomorfisme, i p,q € R[t], aleshores

= (p+q)(f) =p(f)+4q(f)
= (pq)(f) = (g p)(f)=p(f)ogq(f) =q(f)op(f)

= Si f té matriu A en una base {é,...,e,}, llavors p(f) té matriu
p(A) =a,A"+ -+ aA+ayl

Exemple 1 Siguin A = ( 2 !

1 —1 ) i p(t) =1>—2t+4. Calculeu p(A).
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Solucio

Només cal substituir # per A en p(z),

e (5 1) (2
p(A)=A 2A+41_(1 2) 2(1

A.2. Operador derivada

(o 1)=(3 %)

Sabem que I’espai .# = ¢~ (R) de les funcions de R — R infinitament diferenciables
constitueix un espai vectorial de dimensi6 infinita. Si y(x) € .%, podem considerar I’en-

domorfisme donat per I’operador derivada

D: % — %,

Dy(x) =y'(x)

Obviament, D és un operador lineal, igual que les derivades successives D"y =y . Ho

notem D° = I.

Es pot aplicar el que s’ha dit a I’apartat anterior i considerar un polinomi p(t) = a,t" +

---4at +ay € R[t] avaluat en I’operador D:

p(D)=a,D"+---+a;D+apl

que també €s un endomorfisme de 7.

D’aquesta manera, una equacié diferencial lineal homogenia a coeficients constants

any(n> +an—1y(nil) e +a1y/ +Cl()y =0

es pot representar com

p(D)y=0

i el problema de resoldre I’equaci6 diferencial €s equivalent a calcular ker p(D).

Si a € R, és immediat comprovar les propietats segiients de 1’operador D:

(D—a)e® =0

p(D)e™ = p(a)e™
Siue.Z7,D(e™u) =e™(D+a)u
D"(e*u) = e*(D+ a)"u
p(D)(e®u) = e*p(D+ a)u

(Dt —tD)u=u









Apeéndix B

B.1. Polinomi anul-lador

De la mateixa manera que les arrels donen informacié sobre un polinomi, fixat un endo-
morfisme f en un espai vectorial de dimensio finita, mirant quins polinomis compleixen
p(f) = 0 podem obtenir informacié sobre f.

Teorema 1 Sigui p(t) un polinomi de R|t] i f un endomorfisme. Si p(f) = 0, llavors tots
els valors propis de f estan entre els zeros de p(t).

Ara ens preguntem si, donat un endomorfisme f, hi ha algun polinomi tal que p(f) = 0.
Com que les matrius n X n i els endomorfismes d’un espai de dimensié n formen un
espai vectorial de dimensi6 n?, els n> 4 1 endomorfismes {I.f, .., f"z} han de ser
linealment dependents, i una relacid entre ells donara un polinomi que verifiqui p(f) =0
de grau n? o menys.

Ara bé, per la relaci6 entre valors propis de f i zeros de p, resulta que hi ha un polinomi
de grau molt més baix que també anul-la f.

Teorema 2 (de Cayley-Hamilton) Si p(t) és el polinomi caracteristic associat a un en-
domorfisme f, llavors es compleix p;(f) = 0.

Exemple 2 Sigui f : R? — R? ’endomorfisme que, en la base candnica, té per matriu

A= ( ? _} ) . Comproveu el teorema de Cayley-Hamilton i calculeu A~!.

Solucio

El polinomi caracteristic és p,(t) = t* — 3t + 3. Llavors,

) (3 -3 2 1 30\ (00
e (3 5 )-3(F )0 9)-(00)
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Dr’altra banda, coneixer un polinomi que s’anul-li en la matriu permet calcular la seva
inversa. Com que A2 —3A+431=0, podem aillar / i treure factor comi A,

—%A(A—3I) =1

Com que la inversa és unica,

A :7%(/4*31) -

W = W] =
W W —

Propietat 2 Sigui p(t) un polinomi de R[t] i f un endomorfisme que diagonalitza. Una
matriu associada a f es pot escriure com A = CDC™', amb D = diag(A4,...,A,). Lla-
vors, p(f) també diagonalitzai p(A) = C p(D)C~!, amb p(D) = diag(p(A1),...,p(A,)).

B.2. Polinomi minim

El polinomi caracteristic no té per que ser el més simple que anul-li un endomorfisme.

Definici6 2 El polinomi minim d’un endomorfisme f és el polinomi my(t) de grau més
petit tal que m;(f) = 0.

El polinomi minim existeix i és tnic, llevat de producte per escalar.

Exemple 3 SiguiI’endomorfisme f : R* — R* que, expressat en la base candnica, té per
matriu

2.0 O
D=0 2 0
0 0 -1
Calculeu el polimomi minim.
Solucio
El polinomi caracteristic €s p;() = —(r —2)*(r + 1). Podem comprovar facilment que

p(t) = (t —2)(t+ 1) verifica p(f) = 0. Sabem que tot p(¢) tal que p(f) = 0 ha de tenir
com a zeros els valors propis —1,2; per tant, (r —2)(¢ 4 1) és el polinomi minim de f.m

Proposicié 1 Si un endomorfisme f : E — E diagonalitza i té valors propis Aq,. .., A,
amb independencia de la seva multiplicitat, el seu polinomi minim és mg(t) = (t —

Ap)-ee (0= Q).

Una altra propietat dels polinomis que anul-len a endomorfismes és la segiient:

Teorema 3 Sigui f : E — E un endomorfisme. Si existeix un polinomi p(t) que anul-la
f i té tots els seus zeros simples, aleshores f diagonalitza (pot tenir zeros complexos i
diagonalitzar en C).

Observacié. Qualsevol vector V € E és anul-lat pel polinomi caracteristic py(f) i pel
polinomi minim m(f). D’aqui que puguem considerar E = ker p;(f) = kerm(f).









Apéndix C

C.1. Subespais invariants
Recordem el significat de suma directa de subespais vectorials.

Teorema 4 Suposem que U iV son subespais vectorials de E, amb bases respectives
By = {1yl I By = {V,...,V,}, disjuntes. Llavors, E =U @V si i només si B =
By U By és base de E.

Aquest resultat i els segiients s6n igualment valids per un nombre més gran de subespais.

Definicié 3 Sigui f:E — E, E=U®V, i suposem que es compleix f(U) CU i f(V) C
V, és adir, f deixa invariants aquests subespais. Notem fy, fy les respectives restriccions
de f a cada subespai. Llavors, es diu que f és la suma directa fy & fv, i que U i V formen
una descomposicio en suma directa f-invariant de E.

En espais vectorials de dimensio finita, si fy té per matriu associada Ay, en una base %,
ila matriu de fy és Ay, llavors la matriu A associada a f és diagonal per blocs,

A Ay O
0 Ay
is’expressa A = Ay @ Ay. Recordem que es compleix det(A) = det(Ay) det(Ay ).

En aquesta situaci6, pel polinomi minim es compleix la propietat segiient:

Propietat 3 Suposem que un endomorfisme té associada una matriu diagonal per blocs,
Al,A,, ..., Ay Llavors, el polinomi minim és el minim comii multiple dels polinomis mi-
nims de cada bloc A;,1 <i<k.

Més en general, per a qualsevol endomorfisme, incls si la dimensié de I’espai vectorial
no é&s finita, tenim els resultats segiients.
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Proposicié 2 Si f : E — E és endomorfisme, i p,q1,q, € R[t], aleshores:

® El subespai ker p(f) és un subespai invariant per f

® Sip=qiq, lavorskerq(f) Ckerp(f)ikerg,(f) C kerp(f)
= Si p = qi1q2, amb q,,q, primers entre ells, aleshores ker p(f) = kerq; (f) ®kerq,(f)

C.2. Endomorfisme que diagonalitza

Si un endomorfisme f : E — E diagonalitza (sobre R o C) i té valors propis diferents
Als. .., A, amb dim E = n, llavors se satisfan els resultats segiients:

= El seu polinomi caracteristic és

pr)=(=1)"@t—=A)" - (t—=A)™, m+-+m=n

La multiplicitat algebraica i geometrica dels valors propis coincideixen

n; =dimker(f —A0), 1 <i<k

El seu polinomi minim és m(¢t) = (t —Ay) -+ (t — Ay)

E =Xkerp;(f) =kerm(f) es descompon en suma directa de subespais invariants,

E =ker(f—AI)®---®ker(f — Au)

L’endomorfisme f és una suma directa i la seva matriu associada, en la base dels
vectors propis, €s diagonal per blocs (diagonals),

diag(Aq, M., Ap) @ - - - D diag(Ag, ., Ar)

C.3. Valors propis complexos

Quan els valors propis d’un endomorfisme f sén complexos i, per tant, f no diagonalitza
en R, també és possible trobar una descomposicié de I’espai vectorial E en suma directa
de subespais invariants. Suposem el cas de valors propis simples.

Si A és un valor propi (real o complex) de f, llavors el factor de primer grau p(¢) =1 — A
proporciona el vector propi del ker p(f). Pero, si el valor propi és complex, A = a+if3,
amb vector propi d + ib, i només volem considerar factors primers de polinomis reals,
llavors hem d’aplegar els factors lineals en A i el seu conjugat A = a — if3, que té per
vector propi d — ib.

Aixi, el factor quadratic

q(t) = [t — (a+ip)]lt— (a—iB)] = (t—a)* +



proporcionara, en el cas de valors propis complexos, dos vectors reals abe kerg(f), ja
que

q(f)(@+ib) =0

es compleix separadament per a les parts real i imaginaria.

Evidentment, d i b han de ser linealment independents, perque, si no, el valor propi seria
necessariament real.

En aquest cas, en considerar un factor primer real de grau dos, hem trobat un subespai

invariant de dimensié dos, generat pels vectors reals d i b, tot i que 1’endomorfisme no
diagonalitza en R.

Exemple 4 Seguint amb el cas anterior, vegem quina forma pren la matriu associada a f
en la base Z = {a,b}.

Solucio
Per hipotesi, es verifica
f@@+ib) = (a+ip)(@+ib) = (ad— Bb) +i(Bd+ ab)

Per tant, tenint en compte la linealitat de f, igualant separadament les parts real i imagi-
naria dels dos extrems de la igualtat, obtenim

— -

f(d@)=ad—Bb; f(b)=Pd+ab

D’aquesta forma, en la base 4, la matriu A associada a f resulta

—(30) -

Exemple 5 Vegem en quina base la segiient matriu A, associada a un endomorfisme de
R? en la base canonica, diagonalitza per blocs en R.

1 2
A= -1 2 1
1 -3

Solucio

Primer busquem els valors propis de la matriu,
1-A 2 2
detA—Al)=| =1 2—-2 1 |=[A-1*+2](3B-1)
1 -3 2-A

Les arrels del polinomi caracteristic sén A = 3,14 2i,1 —2i.
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Calculem el vector propi per a A = 3.

-2 2 2 X 0
-1 -1 1 y |=1(0
1 -3 -1 z 0
1
d’on x =z, y = 0. Per tant, un vector propi és V= | 0
1
Busquem ara el vector propi associata A = 1+ 2i.
—2i 2 2 X 0
-1 1-2i 1 y |=1|0
1 -3 1-2 z 0

Després d’alguns calculs, s’obté x = — (1 +1i)z, y = —iz.
—1—i
Per tant, un vector propi és w = —i
1

Separant les parts real i imaginaria, w = d + ib, tenim

-1 (1
i= . b= -1
1 0

Aixi, d’acord amb el que s’ha vist a I’exemple 4, en la base B = {V, Zi,B}, I’endomorfis-
me s’expressa amb la matriu

3 0 0

M=1| 0 1 2

0 -2 1
amb un bloc 1 x 1, M| = ( 3 ), corresponent al subespai invariant generat pel vector
(1,0, l)T, iunbloc2 x2, M, = _é 1) corresponent al subespai invariant generat

pels vectors (—1,0,1)7,(—1,—1,0)".

La matriu C de canvi de base, de la base Z a la canonica, és la que té els elements de la
base Z per columnes, €s a dir,

I -1 -1
c=(0 0 -1
1 1 0

que sempre €s invertible.

Finalment, la relaci6 entre les matrius A i M és precisament la que correspon al canvi
de base entre les matrius respectives. Per tant, M també es podria haver calculat com
M=C'AC. [









Rpéndix D

D.1. Descomposicio primaria

Vegem ara un resultat més general, aplicable a valors propis multiples en el cas en que la
matriu no diagonalitza. Comencem per les propietats segiients:

Propietat 4 Sigui p € R[t] un factor indivisible de primer o de segon grau, i f un endo-
morfisme.

(i) Llavors, ker p(f) C ker p>(f). En efecte, si v € kerp(f), p(f)(¥) =0, i tornant a

—

aplicar p(f), p*(f)(¥) = 0.
(ii) En particular, si v € ker p*(f), llavors es compleix p(f) o p(f)(¥) = 0. Per tant,
p(f)(V) € kerp(f).

(iii) En general, siV € ker p"(f) per a algun nombre natural n > 1, llavors p"*(f) (V) €
ker p*(f), amb k < n.

De forma general, tenim la proposici6 segiient:

Proposicié 3 Sigui f: E — E un endomorfisme i p € R[t]. Si my < my son dos nombres
naturals, aleshores ker p™ (f) C ker p"™(f).

A més, si kerp™ (f) = kerp™(f), aleshores ker p™ (f) = ker p*(f) per a tot natural
k Z ny.

La propietat segiient caracteritza el polinomi minim. Tinguem en compte que els resultats
segiients s’apliquen a espais vectorials de dimensi6 finita.

Proposiciéo 4 Si f: E — E és un endomorfisme d’un espai vectorial E de dimensio n i la
descomposicid factorial del polinomi caracteristic py(t) en R[t] és

pr(t) = (=1)"pY" - pi, Zn gr(pi)
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aleshores, el polinomi minim és

1y,

my(t) = pi" - p;

amb 1 <m; <n;peratoti=1,...,k. En particular, m; és el menor valor que compleix
dimker p™ = n; gr(p;).

Per tant, sempre podem comptar que dimker p" = n,; gr(p;), encara que de vegades tro-
barem els generadors del ker p” a partir del ker p™ amb m; < n;.

Exemple 6 A 1’exemple 3, un endomorfisme f : R® — R3 tenia per matriu, en la base
canonica,

2. 0 O
D=| 0 2 0
0 0 -1
(o . 2 0 N . )
que és diagonal. El primer bloc 2 x 2, D; = 0 2 ) esta associat al factor (¢t —2)
de ps(t). Com que dimker(D, —2I) = 2, el polinomi minim d’aquest bloc és (r —2), i

el polinomi minim de f és m;(t) = (r —2)(t +1). L]

Teorema 5 (de descomposicio primaria) Sigui f : E — E un endomorfisme d’un espai
vectorial E de dimensio n. Si

mp(t) =py" - pts py() = (=1)"pit -y

amb Y*_ n;gr(p;) = n sén les descomposicions factorials dels polinomis minim i carac-
teristic, respectivament, aleshores I'espai vectorial E = kerp;(f) = kerm(f) es des-
compon en suma directa dels subespais f-invariants segiients,

E = Kerpl! (f) @ ker pi* (f)

E =kerpy'(f) & @kerpi(f)
amb dimensio dimker p™ = dimker p" = n; gr(p;).
Exemple 7 A ’exemple d’abans, R* = ker(D —2I) @ ker(D+1). ]

Exemple 8 Apliquem el teorema de descomposicid primaria a la matriu

-5 -5 6
A= 4 7 -4
-8 —4 9

associada a un endomorfisme de R®. Determineu els subespais invariants per A; doneu-
ne una base; trobeu la forma diagonal per blocs, M, de I’endomorfisme en aquesta base,
i calculeu la matriu invertible C que satisfa M = C~'AC.



Solucio

Primer busquem els valors propis la matriu,
—-5—-4A =5 6
det(A—AI) = 4 T—%2 -4 =A-5*(1-2)
-8 -4 9-A

Les arrels del polinomi caracteristic sén A =5, doble, i A = 1, simple.

Busquem els vectors propis per a A = 5.

-10 -5 6 X 0

4 2 —4 y |=10

-8 —4 4 z 0
1
d’on y = —2x, z = 0. Per tant, un vector propi és V| = -2
0

Com que rang(A — 5I) = 2, dimker(A — 5I) = 1, i la matriu no diagonalitza. Aixi, el
subespai invariant no és ker(A — 5I), sin6 ker(A — 5I)?, i el bloc corresponent ha de ser
2x2.

D’acord amb la propietat 4, el vector propi ¥, ja pertany al ker(A — 5I)%. Hem de trobar,
doncs, un vector del ker(A — 57)? linealment independent de 1’ anterior.

Aquest vector, ¥, € ker(A —5I)?, el trobarem resolent (A — 51)v, = ¥}, V| € ker(A —5I),

—-10 -5 6 x 1

4 2 —4 y | =] -2

-8 —4 4 Z 0
0
d’ony=1-—2x,z=1.Fentx =0, tenim V, = 1
1

Aixi, ker(A — 51)* = (¥,,), i les imatges d’aquests vectors per A sén

(A—SI)VZ :\_;1 :>A\_/’2 :\_)’14-5\_/’2

Ara busquem un vector propi per a A = 1. Es immediat veure que
1

V3= 0 | hoés. Per tant, la seva imatge per A €s
1
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En resum, la descomposicié de R? en subespais invariants queda com
R? = ker(A — 5I)* ©ker(A —1)

En la base & = {V,%,,V3}, la matriu associada a I’endomorfisme s’expressa per tres
columnes (5,0,0)7,(1,5,0)7,(0,0,1)7, és a dir,

510
M= 0 5 0
0 0 1
5 1 .
amb un bloc 2 x 2, M, = 0 5 ,1unblocl><1,M2:(1).

La matriu C de canvi de base, de la base Z a la canonica, és la que té els elements de la
base & per columnes, és a dir,

C=| -

SN =
—_— O
—_O =

Recordem que sempre €s invertible.

Finalment, la relaci6 entre les matrius A i M és precisament la que correspon al canvi de
base entre les respectives matrius. Per tant, M també€ es pot calcular com

M=C'AC |

D.2. Polinomi en l'operador derivada

Una aplicaci6é immediata del teorema de descomposicié primaria d’endomorfismes per-
met calcular la base de solucions d’una equacié diferencial lineal i homogenia a coefici-
ents constants, escrita com un endomorfisme donat per un polinomi avaluat en I’operador
derivada D de I’apendix A.2.

Considerem el polinomi de grau n, p(¢) ="+ --+a;t +ay € R[], 1I’equacié diferencial
lineal homogenia a coeficients constants donada per

p(D)y=0

Hem dit abans que la solucié de I’equaci6 és precisament ker p(D). Vegem quines n
funcions linealment independents el generen.

= Si A és una arrel real simple de p(t), com que D(e*) = A, llavors
ker(D—A) = (&™)

que és un subespai invariant per D de ker p(D).



= Si A és una arrel real de multiplicitat m de p(t), es pot comprovar que
tfeM cker(D—A)"; k=0,....m—1
Aquestes funcions sén linealment independents.
De fet, es compleix
dimker(D—A)"' =k+1; k=0,....m—1

i, per tant,

ker(D—2) C ker(D—2A)*> C --- C ker(D— A)"
Llavors,

ker(D —A)" = (e te,...,t" ') C ker p(D)

® Si A = a+if és una arrel complexa de p(¢), amb multiplicitat m, llavors p(D) anul-la
per separat les parts real i imaginaria de t*e*, k = 0,...,m — 1 . Per tant, les funcions
t*e“ cosBt, te™sinft; k=0,....m—1

pertanyen a ker p(D) i s6n solucions independents de I’equacié diferencial tractada.
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