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Asymptotic cones were first used by Gromov in his paper [6], where he con-
structed limit spaces of nilpotent groups in order to prove that groups with
polynomial growth are virtually nilpotent. Gromov does not use the term as-
ymptotic cone, which was introduced later by Van den Dries and Wilkie in [12],
when they gave a nonstandard interpretation of Gromov’s results. Ultrafilters
appear in [12] for the first time in this context. Later Gromov gave an extensive
treatment of asymptotic cones in [7]. From this paper several authors have used
asymptotic cones to obtain interesting results, for instance, in identifying quasi-
isometry classes of 3-manifolds ([8]) or relating asymptotic cones with Dehn
functions of finitely presented groups (see [2] and [11], whose results are stated
in section 2).

The purpose of this paper is to develop some of the results stated in [7], in
particular those describing the asymptotic cone of the Baumslag—Solitar groups
and of Sol. According to [2], these spaces are not simply connected, since their
Dehn functions are exponential, so our primary goal is to study their fundamen-
tal groups. It will be proved that these fundamental groups are uncountable
and nonfree (section 9), by constructing subgroups isomorphic to the funda-
mental group of the Hawaiian earring. These subgroups are constructed by
finding subspaces in the asymptotic cones which are homotopically equivalent
to the Hawaiian earring, and which induce injections in the fundamental group
level (section 8). Crucial to prove these facts is the computation of the cov-
ering dimension of these asymptotic cones (section 7), which is done using a
more general theorem on dimensions of spaces which admit certain maps into
well-known spaces (section 6).

The author would like to express his most sincere gratitude to Professor
Stephen M. Gersten for his guidance and encouragement in the development of
this project.



1 Asymptotic Cones

The definition of asymptotic cone relies greatly on the concept of ultrafilter. In
[12], Van den Dries and Wilkie extended Gromov’s definition to general finitely
generated groups, and it is here where ultrafilters were introduced to insure the
existence of the limits involved. The reader should regard the ultrafilter as a
technical tool to construct the spaces, and let his own intuition prevail over the
technicalities of the definition.

Definition 1 An ultrafilter in the set of natural numbers N is a family F C 2N
satisfying the following properties:

(1) 0¢F,

(2) if A€ F and A C B then B € F,

(3) if A,B € F then ANB € F, and

(4) if AUB =N, with AN B = (), then either A€ F or B € F.

The only examples of ultrafilters that can be described are the principal
ultrafilters, i.e., the set of subsets of N containing a fixed element ng. To
prove that nonprincipal ultrafilters exist one must use Zorn’s Lemma (see [12]).
Nonprincipal ultrafilters contain all cofinite subsets of N. The definition of ul-
trafilter leads to the definition of ultralimit, which, for nonprincipal ultrafilters,
generalizes the usual notion of limit of a sequence.

Definition 2 We say that the limit of the sequence (x,) with respect to the
ultrafilter F is © € R, or that x is the F-limit of (z,,), denoted

li}nxn =z,

when, for all € > 0, the set
{neN|z, € (zr—¢c,xz+¢e)}
is an element of F.

Ultralimits are the tool used in the definition of asymptotic cone to en-
sure the existence of limits which otherwise could be undefined. With a short
compactness argument we can prove that the ultralimit of a bounded sequence
always exists.

Let (X,d) be a metric space. We want to construct a space that can be
thought of as the space that would be seen by an observer that is infinitely far.
To obtain this effect we will take sequences of points in X and define the distance
between two sequences (z,,) and (y,) by the limit of Ld(z,,y,). To avoid the



nonexistence problem for this limit we will use (nonprincipal) ultrafilters. Let
F be a nonprincipal ultrafilter. Fix a basepoint x¢o € X, and consider the space
LBS (linearly bounded sequences) of sequences x = (z,,) of points in X, for
which there exists a constant K € [0, 00) such that

d(.’ﬂo, xn) S Kn.

Define now a pseudo-distance d in LBS as follows: given two sequences x = (z,)
and y = (yn), satisfying

d(zo,xn) < Kun and d(zo,yn) < Kyn,
define

d(xnayn).

d =i
(x,y) im ——

Note that the sequence of real numbers %d(mn,yn) is bounded by K, + K, so
the ultralimit always exists. Now to make LBS a metric space, we identify two
sequences at distance zero: define the equivalence relation

x=y < d(x,y) =0.
The distance between equivalence classes will still be denoted by d.

Definition 3 The asymptotic cone Conr X of X with respect to the ultrafilter
F is defined as the metric space (LBS/=,d).

Examples:

1. If X is a bounded metric space, i.e., it has finite diameter —for instance
when X is compact— then the asymptotic cone is a single point.

2. When X = Z" with the word metric associated to the usual generators,
then Conz Z" is R™ with the L' metric.

3. If X is the Cayley graph of a finitely presented nilpotent group, then
Cong X is R"™ but with a nonriemannian Carnot metric.

4. If X is a §-hyperbolic geodesic metric space, then the asymptotic cone is
an R-tree; see [7] and [2].

For more details and properties of asymptotic cones see [12] and [7].



2 Fundamental Groups

It was first asked in [12] whether it is possible to find a metric space whose
asymptotic cone is not simply connected. Several results have advanced in this
direction, at least for the Cayley graphs of finitely presented groups.

Theorem 4 (Gromov [7], Drutu [2]) If the asymptotic cone of a finitely pre-
sented group is simply connected for every nonprincipal ultrafilter, then the group
has a polynomial Dehn function. a

A partial converse of this result has been given by Papasoglu:

Theorem 5 (Papasoglu [11]) If a finitely presented group has a quadratic
Dehn function, then the asymptotic cone is simply connected for every nonprin-
cipal ultrafilter. O

In view of the result by Gromov and Drutu, any finitely presented group
whose Dehn function is higher than polynomial will have a nonsimply con-
nected fundamental group. The purpose of this paper is to study some of these
asymptotic cones, in particular, those of the Baumslag—Solitar groups and of the
3-manifold Sol. We will prove that these asymptotic cones have uncountable,
nonfree fundamental groups. In order to prove these results, we will first prove
that these asymptotic cones have covering dimension 1 (section 7), and use this
fact to prove that they contain as a subgroup an uncountable nonfree group,
namely, the fundamental group of the Hawaiian earring (section 8).

3 Maps with Metrically Parallel Fibers

Not every continuous map between metric spaces induces a map in their as-
ymptotic cones. The fact that in the definition of asymptotic cone only linearly
bounded sequences are used, induces the following restriction: only maps for
which there exist constants A and B such that

d(f(x), f(2")) < Ad(z,2") + B

are guaranteed to induce well-defined maps in the asymptotic cones. In partic-
ular, Lipschitz maps and distance-decreasing maps (i.e: Lipschitz with constant
1) induce maps in the corresponding asymptotic cones. Quasi-isometries induce
bi-Lipschitz homeomorphisms between asymptotic cones.

Even when the maps between metric spaces induce maps in the asymptotic
cones, there is no relation between the fibers of the map and the fibers of the
induced map in the asymptotic cones. An example can be seen with the map
log between the metric spaces [1,00) and [0, 00), which is bijective and distance



decreasing, but since

1
lim 8"
n—oo N

=0,

the induced map in the asymptotic cones collapses the whole space in one point.
To avoid this situations we introduce the concept of metrically parallel fibers,
which will make sure that for the induced map in the asymptotic cones, its fibers
are the asymptotic cones of the fibers of the original map.

Definition 6 Let
f: X —Y

be a map between metric spaces. We say that f has metrically parallel fibers
when, given x € X and y € f(X) CY, there exists ' € f~(y) satisfying

d(z,2') =d(f(z), f(z")) = d(f(2),y).
Examples:
1. Isometries are maps with metrically parallel fibers.
2. The map
H> — R

that sends a point z € H? (with the upper half plane model) to Im z €
R has metrically parallel fibers, since two horospheres are at constant
distance.

Proposition 7 Let
f:Conr X — ConzrY

be a map induced by a map [ with metrically parallel fibers. Lety = (y,) €
ConzY andletx = (z,,) € Conz X with £f(x) =y. Then there exists a sequence
(z})), also representing x, with f(z!) = yn.

Proof We just need to choose z!, € f~!(y,) according to the definition of
metrically parallel fibers, that is, satisfying

d(wp, iL';L) =d(f(zn),Yn)-

Since f(x) =y, we have

=0,
F n F n



50 (z,,) represents x. We need to check that (z,) is linearly bounded:

so the constant for (z)) can be taken as the sum of the constants for (z,),

(f(zn)) and (yn)- O

Corollary 8 If f has metrically parallel fibers and induces a map f in the
asymptotic cones, then:

(1) If yo €Y is the basepoint, and yo = (yo) € Conz Y, then
£~ (yo) = Conz £~ (o).
(2) The fibers of £ are also metrically parallel.

Proof Assertion (1) is clear since every point x with f(x) = yo admits a rep-
resentative (z,) with f(z,) = yo. For (2), take x = (z,) € Conr X and
¥ = (yn) € Conz Y. Then there exist z/,, for all n, with

f(w;z) = Yn and d(zp, w;z) =d(f(zn),Yn)-

!

It is easy to see that (],

Finally,

) is linearly bounded, and then it defines a point x'.

A, at) _ o (), )
n F n

= d(f(x),y)

n o 1:
d(x,x)—h}n

4 Ultrametric Spaces
We will use ultrametric spaces as the fibers for our maps in section 6.

Definition 9 A metric space X is said to be ultrametric if it satisfies the ul-
trametric inequality: for every three points z,y,z € X, we have

d(z, z) < max{d(z,y),d(y, z)}.

The ultrametric inequality is a stronger version of the triangle inequality,
which has enormous consequences on the topology of the space. The proof of
the following proposition is completely elementary:



Proposition 10 Let X be an ultrametric space. Then:

(1) Every triangle is isosceles, i.e., for every three points x,y,z € X, two of
the three distances d(z,y), d(y, z), and d(x, z) are equal.

(2) Ify € B(x,7), then B(y,r") C B(x,r) for all ' <r.
(8) If y ¢ B(z,7), then B(y,r') N B(z,r) =0 for all ' < r.
(4) Every open ball is closed, and every closed ball is open.

(5) Every point has a neighborhood basis that consists of sets which are open
and closed. a

The next result will provide us with many examples of ultrametric spaces,
in particular the ones we will be interested in:

Proposition 11 Let (X,d) be a metric space. Construct the new metric d' =
log(1+d). Then, the asymptotic cone of (X,d') is an ultrametric space, for any
nonprincipal ultrafilter.

Proof Let x = (z,), y = (y») and z = (z,,) be three points in Conz(X,d"). We
need to prove that

d'(x,2) < max{d'(x,y),d'(y,z)}.

Since there is nothing to prove if all three distances are equal, assume that
d'(x,y) < d'(y,z). We want to see then that d'(x,z) = d'(y, z).

We can also assume that d'(y,z) is not zero, because if it is, then the in-
equality is trivial. So for all n in some set in F, we have that d(y,, z,) is not
zero. It is enough to prove now that

lim —d(:cn, 2n)

=1.
F d(Yn, 2n)

From the triangle inequality we have

|[d(Yn, 2n) — d(Tn,yn)| < d(@n, 2n) < d(@n, yn) + d(Yn, 2n),
or

d(xn,yn) < d(zn, zn) <1 d(Zn, Yn)

1-— .
d(ynazn) - d(ynvzn) - d(yn7 Zn)

So we only need to prove that



Call a = d'(x,y) and b = d'(y,z). We assumed that a < b, so

lim log(l + d(xn,yn)) < lim IOg(]- + d(yna zn)) ]
F n F n

Fix some § > 0 such that § < a, d < b and § < I’_T“ We have that there exists
a set U € F such that for all n € U, we have

<a+i,

_§< log(l + jll(xny yn))

and

1 1 nsy ~n
b5 < 08 +‘i(y ) gy,

and rewriting the inequalities,

el 9= _ 1 < d(zy,yy) < @t 1,
and

b= 1 < d(yn, 2,) < O 1.

So, now, we have

because since § < I’_T“, we have a +d < b— 4. O

Metrics of the form log(1 + d) are called log-metrics.

The main example to which this result applies is the horosphere of a hy-
perbolic space: the metric induced on a horosphere by the hyperbolic metric
is a log-metric. Given two points in H", we always have a totally geodesic
hyperbolic plane that contains them, so we only need to study H2. And two
horospheres are always isometric, so we can assume that the two points are in
the horosphere {z € C| Imz = 1} in the upper-half plane model for H2. Let
2 + i and 2' + i be these points. Then the distance in H? between them is

)
log<1+ [ 2$| (|x—x'|+\/|x—x’|2+4>>,



and, since

log (1+ % (z+ Va2 +4))
z—r00 2log(1+x)

=1,

we see that the asymptotic cone of the horosphere with the metric induced by
the hyperbolic metric is isometric to the asymptotic cone of the same horosphere
but with the metric

d'(x +i,2' +1i) = 2log(l + |z — 2'|)

which is a log-metric.

So inside Con H? we have ultrametric subspaces. We will see that this
subspaces are the fibers of a map into R, and these fibers will be metrically
parallel, so we will be able to apply the main result in section 6.

5 Dimension

The dimension theory that will be used in this paper will be the covering di-
mension, which, due to a Theorem of Morita, for normal topological spaces
(hence for metric spaces) coincides with the large inductive dimension. Recall
the definition of covering dimension:

Definition 12 Let X be a set and let A be a family of subsets of X. We say
that A has order n if n+1 is the largest number of sets in A that have nonempty
intersection. If no such number exists, we say that the order of A is co. The
order of A is denoted by ord A.

Definition 13 To every normal topological space X one assigns its covering
dimension, denoted dim X, subject to the following conditions:

(1) dim X < n if every open cover U of X has a refinement V with ordV < n,
(2) dmX =n if dmX <n and dim X >n — 1, and
(3) dim X = oo if dim X > n for alln = -1,0,1,2,....

For more details in the properties of covering dimension, see [3] and [10].
In particular, we will use the following characterization of covering dimension
based on sequences of open coverings. Recall that if I/ is a covering of a metric
space X, its mesh is defined as

mesh/ = sup{diamU |U € U}.

Theorem 14 A metric space X has covering dimension at most n if and only
if there exists a sequence of open coverings Uy, k = 1,2, ..., such that:



(1) Ury1 is a refinement of Uy, for all k,
(2) ordUy, < n for all k, and
(3) limy o, meshify, = 0. O

A proof of this result can be found in [10].
The dimension of an ultrametric space (see section 4) is well known, and not
too difficult to deduce from the previous characterization:

Proposition 15 If X is an ultrametric space, then dim X = 0. O

Our goal is to find the dimension of some asymptotic cones by finding suitable
maps into known spaces with particular fibers. It is not true that for a general
map the dimension of the source space is equal to the dimension of the target
space plus the dimension of the fibers. A classical result states that this is true
if the map is closed, but this is not the situation on our case. We will strengthen
the hypotheses to accomodate it to our purposes: we will require that the map
has metrically parallel (see section 3), ultrametric fibers. The theorem is stated
and proved in the next section.

6 The Dimension Theorem

The purpose of this section is to prove the main dimension theorem of this paper.
This theorem will allow us to compute the dimension of some asymptotic cones.

Theorem 16 Let
f: X —Y

be a continuous map between metric spaces whose fibers are ultrametric and
metrically parallel. Then dim X < dimY.

Proof If dimY = oo there is nothing to prove, so assume that dimY = n. By
the characterization of covering dimension by sequences of coverings (see section
5) we have a sequence Uy, for k € N of coverings of Y satisfying:

1. Upy1 is a refinement, of Uy,
2. ordUy < n, and
3. limk_mo meshZ/{k =0.

We want to see that X has a sequence of coverings satisfying the same
properties (see Figure). Call r, = meshi{; and assume (taking a subsequence
of the sequence of coverings if necessary) that ry41 < iri. Let U2 be the open
sets in Uy, with « in some index set I;,. Choose y¢ € U, and let F¢ = f~1(yg).

10



We know F}* is an ultrametric space, so choose a covering of F* whose elements
are open balls of radius 5r, pairwise disjoint. Let B,‘jﬁ be these balls, with
a new index in a set Ji'. We have that B,‘jﬁ is an open ball of radius 57, in an
ultrametric space, so every two points in B,‘:B are at distance less than 5rj, and
every point in B,C:ﬁ can be thought of as the center of the ball. Observe that
B,C:ﬁ is an open set in Fj.

Let Vk"‘ﬁ be the 2r;-open neighborhood of B,‘:B in X, i.e., the set of points
of X for which there exists a point in B,‘jﬁ at distance less than 2rj. Clearly
V2 is an open set of X. Take now W = V2% n f=1(U). Define

Wi ={W" ael,pe (] Jp}
acly

We claim that the W, are the coverings of X satisfying all the properties.

Vel Ve
4 N
)
Wi BY* B W )
e e meeE e Ye+ |Ue
f ™
lJ
NN }
G EEREEE EEE T S Y%+ U
B](:ﬂ 1l
WP
lJ
_‘/ka/IBII
X Y

Figure: The cover W.

To see that WV is an open covering of X, choose 2 € X. Then f(z) € US
for some a € Iy, and, since meshiUfy, = ry, then d(f(z),yy) < 7. The fibers of

11



f are metrically parallel, so there exists 2’ € F* with d(z,2") = d(f(z),yy) <
T, < 2rp, and there exists § € J2 with 2’ € B,‘:B. It is clear now that z € W,?B,
for these choices of a and S.

We will see now that mesh Wy, < 9r,. Take a W,? B e W, and take z,y €

W 5. By the construction, there exist two points ', y' € Bz‘ﬁ such that
d(z,z') < 2rp, and  d(y,y') < 2rp.

Since d(z',y") < 5ry, we obtain d(z,y) < 9ry, as desired.
To see that ord Wy < ordUj, we need the following fact: if we have two

different sets W,?ﬁ and W,?B, based on the same U, then W,?’B N W,?B, =0. If
T € W,?B N W,?ﬁ , then there exist two points y € B,‘jﬁ and y' € B,‘:ﬁ with

d(z,y) < 2rg and d(z,y") < 2rg,

so d(y,y') < 47, < 51y, and then B?ﬁ = BZ‘B, and W,?ﬁ = Wkaﬁ/. Now, if we
have

wetn L WP £,
then
UShn. Ut £,

with o; # o if i # j. Then, since ordUy < n, we have m < n + 1 and
ord W, < n.

It only remains to be seen that Wy is a refinement of Wj,. So choose
W,ffl € Wiy1. Then W7, C f~1(UR,,). Since Uy is a refinement of Uy,

there exists U with U, C U, and then W,?fl C f7HU). Imagine that
there exist §', " € J2* with
W2lawd® #£0 and WP AW £0.

Let

"

dewlnwd?  and 2" e W nw
We have then
d(z',2") < meshWyy1 < 9rgyq <1y,

and there exist y' € BY? and y" € B®?" such that

d(z',y") < 2ry, and d(z",y") < 2ry.

12



Then,
dly',y") <d(y',z") +d(2',2") + d(z",y") < 2ry +rp + 21, = 5rp,,

and B,‘z‘,ﬁl = BZ‘/B”. So W,?fl can only be included in one of the sets of Wy, and
Wi+1 is then a refinement of Wj. This concludes the proof of dim X < dimY'.

O

7 Applications

7.1 Hyperbolic spaces

The map that collapses H” into a geodesic along its horospheres has metri-
cally parallel fibers. Since all the fibers in the asymptotic cone are ultrametric,
this map satisfies all the conditions of the theorem, and the dimension of the
asymptotic cone of H" is 1.

7.2 Baumslag—Solitar Groups

More interesting is the case of the asymptotic cone of the Cayley graph of a
Baumslag-Solitar group BS), , given by the presentation

<a,blabPa™t = b1 >,

with |p| # |¢|. For a description of the Cayley graph of the Baumslag—Solitar
groups, see [4]. This Cayley graph admits a map into a (directed) tree T'
of constant valence p + ¢, and the map has metrically parallel fibers. Also,
these fibers are horospheres in a hyperbolic plane, because the preimage of
a geodesic in the tree is a hyperbolic plane. So again this map induces a
map in the asymptotic cones which satisfies the conditions of the theorem, so
dim Con BS,, ;, < dim ConT'. To see that Con 1" has dimension 1, we only need
to see that T embeds isometrically into H2, so its asymptotic cone embeds into
Con H2, which has dimension 1.

7.3 Sol

The 3-manifold Sol can be thought of as the manifold obtained when we equip
R? with the Riemannian metric

ds® = e**da® + e”**dy® + dz*.

It is well-known that Sol admits two perpendicular foliations by hyperbolic
planes. In the coordinates above, one foliation is given by the xzz-planes and the
other one by the yz-planes. If we map Sol into a hyperbolic plane by projecting
all the planes of the zz foliation into one of them along the y direction, then

13



the fibers are the horospheres of the hyperbolic planes of the other foliation,
and the map obtained induces a map in the asymptotic cones that satisfies all
the conditions of the theorem in the previous section. Thus, dim Con Sol <
dim Con H? = 1.

8 The Hawaiian Earring as a Subspace

The Hawaiian earring has been an interesting object of study due to its sur-
prising properties. The Hawaiian earring is a union of countably many circles
whose radii tend to zero, and which are all tangent at a common point. The fact
that the radii tend to zero makes the topology of the Hawaiian earring different
from the one in an infinite wedge of spheres, since an open set containing the
common point must contain all but finitely many of the circles. This fact also
makes the fundamental group of the Hawaiian earring much more complicated
than just the free product of infinitely many copies of Z, since one can construct
many more loops which are continuous in the Hawaiian earring, in particular,
loops that induce nontrivial loops in infinitely many circles. For details in the
fundamental group of the Hawaiian earring, see [9] and [1]. The only result we
will use is the following:

Proposition 17 The fundamental group of the Hawaiian earring is uncount-
able and nonfree. O

The proof of this result can be found in [1].

Our goal is to prove that the fundamental groups of the asymptotic cones
of the Baumslag—Solitar groups and of Sol are also uncountable and nonfree,
by finding suitable subspaces with the same topological properties that those of
the Hawaiian earring, and proving that these subspaces induce injections on the
fundamental group level. In order to prove these results, we will first prove that
the Hawaiian earring is a classifying space for spaces with covering dimension
one, i.e., that if the Hawaiian earring is found as a subspace of a larger space,
then the fundamental group of this space will contain the fundamental group of
the Hawaiian earring as a subgroup.

The motivation for this theorem is the theorems that characterize dimension
by extensions of maps to spheres. An example is the following theorem, which
is Theorem 3.2.10 in [3]:

Theorem 18 A normal topological space satisfies the inequality dim X <n > 0
if and only if for every closed subspace A of X and every continuous map

f:A— 8"
there exists a continuous extension
F:X— 85"
to the whole space X . O

14



Our goal is to prove a similar theorem extending a map from a closed sub-
space into the Hawaiian earring, to the space X, when X is one-dimensional.
Let E be the Hawaiian earring, with basepoint O, and let C), be the circles in
the Hawaiian earring, all tangent to each other at O, with (), having radius
1/n.

Theorem 19 Let X be a normal topological space with dim X < 1. Then for
every closed subspace A and every continuous map

f:A— FE
there exists a continuous extension
F:X —FE.

Proof Let E be the filled Hawaiian earring, that is, a one-point union of infi-
nitely many disks whose radii tend to zero. The topology of E is the topology
induced on E as a subspace of D? (see Figure 1).

Let C,, be the n-th disk in F, whose boundary is C,, the n-th circle of the
Hawaiian earring. We have then that E is a deformation retract of the disk D?
(see also Figure 1) Let j be the inclusion of E in D2, and let r be the retraction.
Let also i be the inclusion from A into X and % the inclusion of the Hawaiian
earring F into E:

X D?
¥

The map joko f is a map from A to D?, which by Tietze’s extension theorem
can be extended to a map ¢ from X to D2. Compose ¢ with r to obtain a map ¢
from X to E. Since poi = joko f, we have that 1oi = ropoi = rojokof = kof.
So we have a map ¢ from X to E which extends the composition of f with k
to X. We will modify the map v to a map from X to E which will satisfy our
requirements.

Let Y, = ¢~ (Cp), and let B, = ¢»~1(C,). Then Y, is a metric space of
dimension at most one, being a subspace of X, and B,, is a closed set in Yj,.
The map v sends B,, to C,,. Then we can use the theorem on characterizations
of dimension by maps to spheres to find a map F,, from Y,, to C,,, such that
restricted to By, gives ¥. Let F be the map defined as the union of all the F,,

15



ie., if z € X isin Y, then F(z) = F,(xz). The map F goes from X to the
Hawaiian earring F, and it is well defined because Y, NY,, = ¢~1(0). If we
restrict F' to the union of all the B,,, we obtain v, and clearly A is included in
the union of all the B,,. So the map F' is an extension of our original map f.
The proof that F' is continuous is straightforward and it is left to the reader.C

Corollary 20 Let
i:A— X

be the inclusion of a subspace A in a metric space X of covering dimension 1. If
A is homotopically equivalent to the Hawaiian earring E, then the fundamental
group of X admits w1 (E) as a subgroup. In particular, 71 (X) is uncountable
and nonfree.

Proof Let
fiA—FE

be the homotopy equivalence. By the previous theorem, the map f can be
extended to

F:X — E.

Then, since F o i = f, we have that the induced maps in the fundamental
groups also satisfy F, o4, = f4. Since f is a homotopy equivalence, then f, is
an isomorphism, and then the map i, is injective. O

9 Construction of Subspaces

We will construct subspaces of certain asymptotic cones which are homtopi-
cally equivalent to the Hawaiian earring. Since the asymptotic cones will be
1-dimensional, this will imply that the fundamental group of these asymptotic
cones will contain the fundamental group of the Hawaiian earring as a subgroup,
and hence they will be uncountable and nonfree.

9.1 Baumslag—Solitar Groups

For simplicity we will construct the subspace in the asymptotic cone of BSj ».
The cases for the other Baumslag—Solitar groups are analogous.

To construct this subspace consider two hyperbolic planes included in the 2-
complex associated to the presentation of BSS; 2. Let Y be the union of these two
hyperbolic planes. The intersection of these hyperbolic planes is the complement
of a horoball. Let H be the common horosphere which bounds the two horoballs
in both hyperbolic planes (see figure 3). Take the basepoint x¢ in H. Take pairs
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of points x,,y, € H such that d(zo,z,) = d(zo,y,) = n. Join z,, and y, by
geodesics 7, and v/,, each one in a different sheet. The sequences of points (z,)
and (y,,) define points x; and y; in Conz Y which are in Conz H and such that
d(xo,x1) = d(x0,y1) = 1. The geodesics 7, and ,, define two geodesics joining
x and y, each one each one contained in the asymptotic cone of a different sheet.
We obtain in this way a loop A; in Conz Y.

Construct a similar loop in ConzY but now choose the points x, and y,
with d(xg,z,) = d(zo,z,) = n/2, to obtain a loop A, passing through two
points X, yo that satisfy d(xg,x2) = d(xo,y=2) = 1/2. Repeating this process
we can obtain loops Ay, for all k, such that Ay passes through two points xy and
vk with d(x9,x%) = d(x0,yx) = 1/k. These loops accumulate to the basepoint
Xp; thus their union is close to the Hawaiian earring. To make it homotopically
equivalent to the Hawaiian earring, we only have to take a segment joining all
the loops in one of the sheets, which is induced by segments in the vertical
geodesic in H? starting at the basepoint. Let A be the space consisting of the
union of all the loops A, and of this segment (see Figures 2 and 3). It is clear
that the space A is homotopically equivalent to the Hawaiian earring. Thus, by
the last corollary of the previous section, we can conclude the following result:

Corollary 21 The fundamental group of the asymptotic cone of BS) , is un-
countable and nonfree. O

It is important to remark that the geodesics v, and 4/, in Y form a loop
enclosing an area that grows exponentially in n. These loops are the geometric
version of the loops constructed by Gersten in [5] to prove that the Baumslag—
Solitar groups have an exponential Dehn function. This fact confirms the idea
already stated in Drutu’s result (see section 2) that loops that are homotopically
trivial in the asymptotic cone correspond to loops that can be filled polynomially
in the original space, since here loops that cannot be filled polinomially give
loops in the asymptotic cone that are not trivial in the fundamental group. It
is somewhat expected that loops with length linear in n that require fillings
which are exponential in n will not be able to be filled in the asymptotic cone,
since the restriction to linearly bounded sequences makes the exponential disks
nonconvergent in the asymptotic cone.

9.2 Sol

We want to construct a subspace of Congz Sol which is homeomorphic to A. So
we will need to construct the circles Ay in Cong Sol, and each one will be a
limit of circles in Sol.

Let a € R. Consider the four planesx = a, z = —a,y = aand y = —a in Sol.
We want to join the four points (a,a,0), (a,—a,0), (—a,a,0) and (—a,—a,0)
with geodesics contained in the four planes above (see Figure 4).

So for every a € R we have a loop «, that is the concatenation of these four
geodesics. To obtain the loop Ay in Cong Sol, we take the sequence of loops
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(en/r)nen. This sequence of loops defines Ay in the asymptotic cone of Sol.
We only need to join again all A; with a segment to obtain a subspace which is
homeomorphic to A. We obtain again the desired result:

Corollary 22 The fundamental group of the asymptotic cone of Sol is uncount-
able and not free. O

Note that the loops a.~ have length linear in n because the horospheres are
exponentially distorted, and the area required to fill them is exponential. So we
find another example of a space with exponential Dehn function and nonsimply
connected asymptotic cone, and the loops that require exponential filling induce
nontrivial loops in the asymptotic cone.
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Figure 1: The retraction of D? into E.

Figure 2: The subspace A.



b

Figure 3: The subspace A inside Conr Y.
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-a,-a,0
(-a-a.0) (-a,a,0)

(a,-a,0) (a,a,0)

Figure 4: The loop a,.
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