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0 Introduction

Positive braids are those where all overcrossings are from left to right. By
convention, the i crossing number is always zero. The crossing matrix of b
is an n X n-matrix that codifies all the crossing numbers into a matrix. The
purpose of this paper is to show the relation between this simple invariant
and the canonical form of positive braids (as explained in [1] and [5]), with
special emphasis on positive braids whose crossing numbers are < 1. For
example, it is possible to test whether a factorization b = a, - - - a, of such a
braid b is canonical because the crossing matrices of the factors must have
a maximality property (Proposition 5.2). It is known [1, Thm. 2.6] that a
positive braid of canonical length one is determined by its crossing matrix.
We extend that result to positive braids of canonical length < 2 and show
that for canonical length > 3 this is no longer true (Proposition 4.6 and
Theorem 5.4). We give a characterization of all those matrices which are
crossing matrices of a braid of length < 2. This answers the question posed
in [1, p. 496]. As an example, if every strand of a positive braid crosses over
every other strand exactly once, this braid is the fundamental braid squared
or the full twist braid (Example 5.5).

Another interesting result, in view of Garside’s Lemma (Theorem 4 in
[3]), is that the semi-group of pure positive braids is not finitely generated
(Theorem 6.4).

Finally we characterize all matrices that are crossing matrices (Corollary
3.2). The characterization of the crossing matrices of positive braids remains
an open problem.



A word about our notation; because braids, permutations and matrices
all occur together we have decided to adhere to the following convention:
permutations are always small Greek letters, braids are always small Latin
letters (except that the notation o™ denotes the braid induced by the per-
mutation «), and matrices are always capital Latin letters. This has forced
us to give up the notation A for the fundamental braid, which is used both
in [1] and [3] (Thurston uses € in [5]), and instead we write d. The fun-
damental permutation i — n + 1 — 4 is denoted § and §* = d. We try to
use related letters for related permutations, braids and matrices. Since we
have mentioned one element of the braid group B,, and one of the symmetric
group X, we call their identity elements d° and §°, respectively.

1 Definitions

Let n be a fixed integer > 3. We will be concerned mainly with the braid
group B,, (with elements a, b, . . .) and the symmetric group ¥,, (with elements
a,f3,...). There is an obvious epimorphism p : B, — ¥, and a section
of p denoted by o +— ot with image in the subsemigroup B of positive
braids. For a permutation «, the braid o™ is the simplest positive braid in
p~ () [1, p.484]. In order to insure that p(ab) = p(a)p(b), for a,b € B,, 2,
must act on the right; consequently we write ¢z for the image of the integer
i € [1,n] under the permutation 7. Many times expressions like 77 ~! appear
as subindices or exponents and so we use the notation Z for the inverse of
x, where x is either in B,, or ¥,. If G is a group with identity element e
and < is a partial order on G which is invariant under right translations,
then the set G = {g € G|g > e} is a subsemigroup of G. Conversely,
if G* is a subsemigroup of G the definition < y if yx~' € G defines an
order preserved by right translation and whose positive elements are precisely
G™T. For example, the integers have an order defined by the subsemigroup
of non-negative integers, and B,, has an order defined by B. Both these
groups are lattices under this orders, [5, Corollary 9.3.7].More generally, we
consider orders < on groups GG which are not necessarilty right invariant.
We still write G for the elements > e and, if © < y, [z,y] denotes the set
{z|x < z < y}. For instance, we may define an ordering in %,, by a < g if
a™ < 1 in B,,. see [5, Propositions 9.1.8 and 9.1.9]. The resulting order is a
lattice and, if § is given by 70 = n+1—1i, then ¢ is the largest permutation and
we can identify 3, with ¥ = [6°,6!]. If d = 67, the section a — o is order



preserving by definition, and its image is precisely [d°, d'], see [1, Theorem
2.6]. Let M(n) = M be the abelian group of n x n-integral matrices with
zero diagonal (with elements A, B,...). We omit reference to n unless the
context demands it. Given a matrix M € M, its ij entry (or spot) will be
denoted M;;. There is an action of X, on M that makes this abelian group
a Yp-module: if M € M and m € X, then N = M7" satisfies N;; = M;z jz.
The module M has a partial order: A < B if and only if 4;; < B;; for all
ij. In accordance to our conventions M™ is the subsemigroup of all positive
(> O) matrices in M. The homomorphism p induces an action of B,, on M,
namely, M® = MP®) for b e B,, M € M.

We denote by S(n) = S the submodule of all symmetric matrices of M.
For M € M, M"Y is the upper triangle of M, that is, (M"Y);; = M;; if i < j
and (M1);; = 0 otherwise. By At we mean the transpose of A.

Finally, let D be the upper triangular matrix with D;; = 1 whenever
1< 7.

Definition 1.1 The order reversal matrix of a permutation « is the ma-
tric R = Ra € [O, D] given by R;; =1 if and only if i < j and ia > ja.

The map a — Ra is a derivation when R is viewed as the characteristic
function of subsets of [1,n] x [1,n]. See [5, 9.1.3] or formula (4) below. We
say that a map F' : B, — M is a derivation if, for a,b € B, F(ab) =
F(a) + F(b)®. Also notice that D = R and that D — R = Rad for all a.
We use the notation S7 for the symmetric matrix Rm + Rbr. In particular,
S8 = D+ DY is called E.

Definition 1.2 The crossing matrix of a braid is the derivation C' : B,, —
M, characterized by the fact that C(a™) = Ra, for all « € %,,.

Naturally, we must show that such a derivation exists. One way of seeing
this is the following: let F be a free group of rank n and fix a = {a4, ..., a,},
a basis of F. We consider the group M C Aut F' of automorphisms of the
form a; — w;a;w; Yfor w; € F, 1 < i < n. These automorphisms are
called basis-conjugating in [4], and a set of generators are the z;; which map
a; to ajaiaj_l and all other a; to a. We only need to know that all the
relators in the presentation of M found in [4] are commutators in the z;;.
Therefore, the abelianization of M is free abelian in the z;;, 7 # j, and
that group can be identified with M. In addition, ¥, can be considered
as a subgroup of Aut F' by letting 7 € ¥, permute the elements of a in
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the obvious way. With that convention, 7;;7T = %z jr. Consequently, the
abelianization of M as a ¥,-group can be identified with the 3,-module M.
It is well-known (see, e.g. [2, Theorem 5.1, p. 25]) that the braid group
embeds in Aut F. This embedding is defined as follows: let 7; € ¥,, be the
transposition of 7 and 7 + 1. The 7;, 1 <7 < n — 1 are generators of X,
and the 7;" are a set of generators of B,, (See [2, Theorem 1.5, p.8]). The
embedding B, — Aut F is given by 7;" — z;,,17; and its image lies in
the semidirect product M x ¥, C Aut F. Consequently the composition of
this embedding with the projection M x ¥, - Misamap P: B, - M
satisfying P(ab) = P(a)7P(b)w, where m = p(a). The composition of P and
the abelianization map M — M is precisely C'. From here it is trivial to
deduce that C has the desired properties.

Both C : B, =+ M and R : ¥,, — M are order preserving. As a result,
C([d° d?]) C [0, F], and © < p if and only if Rm < Rp; indeed, this is the
definition of the order in %, (see [5, 9.1.7]). Both X, and B,, are lattices
under the order; for example, (aV )T = a™ Vv T for all o, 8 € %, and
TV Tiy1 = T;Tip1T; in B,,. Similarly, ; V 7, = 77y if |0 — j| > 2.

Definition 1.3 A matriz A in M is said to be Tv (v = 0,1) if whenever
1<i<j<k<mn, then Aj; = Aj, = v implies Ay, = v.

Observe that these two properties of A depend only on its upper triangle
AY. In general, T1 is used only for matrices in [O, E] but T0 is used for
more general matrices.

The image R(X,) of ¥, under the map R : ¥,, — M is precisely the set of
all matrices in [O, D] which are both T0 and T1. This result, and Definition
1.3, are due to Thurston [5, Lemma 9.1.6].

Definition 1.4 The set T is the collection of all matrices in M of the form
A=T+ Ra, where T € § and o € %,,.

For A € T the decomposition T+ Ra is determined by A because it is
easy to check that the formula

Z'_>Z+ZA11_ZAkz (1)
i k

defines a permutation « on [1,n], and that A = T + Ra for some T' € S. For
more details see §2.



Notation 1.5 If X C M, then X is the intersection X N M, and X, is
the set of matrices of X which are TO.

Thus we have sets such as 7y (the set of matrices in 7 which are T0),
Sy (the positive, TO, symmetric matrices in M), or [O, D], (the set of TO
matrices O < M < D), etc.

Note that if T+ Ra € T, then necessarily T € S+.

When necessary for clarity, we write C(b) = Tb + R, p(b) = [.

We define two commutative, associative operations in [O, E], and two
important constructions. The operations, union and intersection, are indeed
union and intersection if one considers a matrix in [O, E] as the characteristic
function of a subset of {1,...,n} x {1,...,n}. The two constructions, for
matrices A € T, are A’ and AW, The first of these has a simple definition if
A€ S Ay =1if and only if Aj; # 0, and Aj; = 0 otherwise. The second
construction, defined only on 7 N[O, E], adds to A ones on the spots where
the condition T1 fails.

Definition 1.6 1. If A and B are in [O, E|, then the intersection ANB
of A and B is defined by (AN B);; = A;;B;;, and the union AU B is
A+ B —ANnB. Two matrices in [O, E] are disjoint if ANB = O. The
notation A ® B indicates the sum of disjoint matrices.

2. If T € S*, T" is defined by Tj; = 1 if and only if Ti; # 0, and Tj; = 0 if
T;; = 0. In the general case, when A € T, A=T + Ra, A’ is defined
by A = (T"'N Sad) & Ra.

3. If A€ TN[O,E)], define AV as follows: if for some j € [i + 1,k — 1]

we have A;j = Aji, =1, then AZ(,? =1, otherwise AZ(,? = Ai.

The property TO is preserved under unions and T1 is preserved under
intersections. If A € T N[O, E], then TN Ra = O and so A = T & Ra.
Basically, A" is obtained by replacing, in A, non-zero entries with 1, except
when Tj; # 0 and Ray; = 1, in which case A}, = 0, Aj; = 1. Notice that
A € [O,E] is Tv if and only if A" is Tr. Tt is important to notice that, if
A =T+ Ra, A’ is not, in general, equal to 7" + Ra.

2 Order Reversal Matrices.

We give here some basic properties of the order reversal matrices. First, it
is clearly necessary that Rm be TO and T1 (See [5, 9.1.6]). Conversely, if a
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matrix A € [O, D] is TO and T1, then Formula (1) defines a permutation «
for which R = A. To give the reader an idea of the proof of this assertion,
let & = 04 be the function [1,n] — Z defined by (1). If A € [O, D] the image
of @ clearly lies in [1,n]. We show that if i < k and A;; = 1 then if > k6.
Property TO alone gives that 7 + Z;?:i Aij >k — Z?:i Aji, because, for each
J between 7 and k, at least one of A;; or A;; must be one. Then T1 alone
implies that >>7 ., Aj; — ;;11 Aji 2 Yk Ak — ;;11 A, because, e.g.,
for each j € [k + 1,n] with A;; = 1 we have the corresponding A4;; = 1
by T1. The two inequalities put together give the desired result. A similar
calculation gives that if A;, = 0, then 6 < k6. In particular, # is one-to-one,
and therefore, a permutation whose reversal matrix is A.
Let 7; € X, be the transposition of s and i 4+ 1,1 <7 <n—1.

Definition 2.1 The initial set I(7) of a permutation m is the set of indices
i € [1,n — 1] for which 7= = 7;tp*, where p is some element in 3,. The
final set F(r) of 7 is the initial set of T~ 1.

Equivalently, I(7) is the set of indices i for which Rm; ;11 = 1 (See [1,
Prop. 2.4]).

Definition 2.2 A pairij, i < j is called a final spot for « if |ir — jr| = 1.

For any permutation = € ¥,,, and for each k£ € [1,n — 1], there is a final
spot with im =k, jm =k +1,if Rmy; =0orim = k+1, jom =k, if Rmj; = 1.
We will call these spots trivial or non-trivial final spots of 7, respectively.
Then the final set of 7 is the set of indices k& for which ij is a non-trivial final
spot with k& = jr.

Definition 2.3 Suppose that A € TN[O,E], A=T® Ra, and that C < D;

1. If C < A, 7 is a maximal (resp. minimal) permutation in [C, A]
if Rm € [C, A] and if C < Rp < A implies p < 7 (resp. p > 7).

2. We say that B € [O, D] is an intermediate matrix of A if T% <
B < A. If B= Rm, we say that 7 is an intermediate permutation
of A.

3. An intermediate permutation © of A is maximal (resp. minimal) if
it is mazimal (resp. minimal) in [TY, A].



We collect some basic properties of final spots in the following
Lemma 2.4 Ifrm € ¥,

1. A spot ij of Rm is final if and only if the matriz U defined by U;; =
1 — Rm;j, and Uy = Rmy, otherwise, is the order reversal matriz of
Rnt, where T is the transposition of 1w and jr.

2. For A€ T+, a permutation m with Rr < A is mazimal if and only if
Ai; = 0 for all trivial final spots of .

To prove a result on minimal permutations we need a result for A =
O + R6 = D (cf. Definition 1.6):

Lemma 2.5 If B € [0, D]y then BY) € [0, D).

PROOF:

Assume throughout that ¢« < j < k; say B;; = Bj;, = 1 and By, = 0, as
above. Assume that for some intermediate [, i < | < k (necessarily # j),
By = By, = 0; we will show that either Bi(ll) or Bl(,i) equals 1. This will
complete the proof.

Case 1. @ < [ < j: Since B is TO and B;; = 1, necessarily B;; = 1, but
Bj, =1 so Bl(,i) = 1.

Case 2. 7 <l < k: This time By =1, but B;; = 1 and hence Bi(ll) =1.

O

Corollary 2.6 If B € [O, D], there exists a minimal 7 in [B, D).

PROOF:

Define by induction B(®) = B and B(*+) = (B®)(), By Lemma 2.5, we
have an increasing chain of T0O matrices O < B < BM < ... < D and, by
construction, B®) = BGD if and only if B®) is T1. Since the chain must
stabilize, B®) is both T0 and T1 for some s and so B®) = Rx, for some .
Clearly R7 is minimal. O

Definition 2.7 The matriz Rm obtained in Corollary 2.6 is called sup B.



When B = RaU Rf then sup B = R(a V () in the sense of Thurston [5].

Remark 2.8 The involution A — D — A is a “complementation” in [O, D]
exchanging unions with intersections, and TO matrices with T1 matrices.
Thus, it is possible to view Corollary 2.6 as a result on the AlYl = D — (D —
A)(s) claiming that, given a T1 matriz O > A > D, then A > Al > AR >

- > O is a decreasing sequence of T1 matrices which stabilizes precisely
when AP is a TO matriz. This matriz is called inf A and inf Ra N RB =
R(a A B). As a curiosity, we mention that, if t; and t; are two standard
generators of By, then t;Vt; coincides with the braid t; xt; defined in [1, § 2].

We close with the following observations:

Lemma 2.9 Assume that A € [O, D] and that ™ € X,,.
1. If A < Rm then A™ is lower triangular.

2. If AN Rm = O, then A™ is upper triangular.
3. If A is a T1 matriz, then A™ is a T1 matriz.

PROOF:

To prove (1) we observe that, if i < j and Rm;; = 1, then the ij entry of
A is sent by 7 to A;; jr which is in the lower triangle because i > jr. If
Ai; < Rm;j, all non-trivial entries of A end up in the lower triangle of A™.
The proof of (2) is equally simple.

For (3) it will be convenient to put p = 7 and show that B = A? is T1.
Let 4,k be integers in [1,n]. If i < j < k, then B;; = Bj; = 1 implies that
Aipip = Ajprp = 1. Since A € [O, D] then necessarily ip < jp < kp and so
1= Aip,kp = Bik- O

3 Crossing Matrices.

In Definition 2.1, 7; € X, is the transposition (i,i + 1). Let t; = 7;7; the
standard presentation for the group B, (see [2, Thm 1.5]) is
<t1,...,tn_1 St Vi =1t Vi, 2,]6[1,71—1])

The matrix C(¢;), therefore, has a 1 in spot 4,7 + 1 and zeros elsewhere.
Using the fact that C' is a derivation, it is easy to conclude that C(¢; ') has
—1 in the 7 + 1,7 spot, and zero elsewhere.
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Lemma 3.1 If A= C(b) then A;; equals the number of times the i*" strand
of b crosses from left to right over the j* strand minus the number of times
that the i strand crosses from right to left over the j strand.

PROOF:

This is clear if b = ¢, ¢ = £1. We proceed by induction on the word
length of b as a word in the generators. If C'(b) satisfies the equality of the
lemma, then, if 8 = p(b), C(bt5) = C(b) + C(t5) is obtained from C(b) by
adding a 1 to the i3, (i + 1) spot (if e = 1) or a —1 to the (i + 1), i3 spot
(if e = —1). This means that C(bt§) satisfies the lemma. O

A consequence of this Lemma is that, if b is a positive braid, its crossing
matrix lies in [O, E] precisely when each strand crosses over another strand
at most once.

The group of pure (colored) braids is P, = ker p and it has a presentation
with generators a;; = wijt?wigl, where w; ;11 = e and w;; = tj_q ...t if
1<7,7F#i+1.

See [2, Lemma 4.2]. According to our conventions P, =P, N B,. From
Figure 11 in [2, p. 21] we conclude that C(a;;) is a symmetric matrix with 1
in the 75 and j7 spots, and zero elsewhere.

Corollary 3.2 For all n > 3 we have,
1. C(P,) =S8, and
2. C(B,)=T.

PROOF:

We begin by remarking that C'|P,, is a homomorphism P, — S. Since
the C'(a;;) generate S, it follows that C maps P, onto S. If T'+ R lies in T
then, since T € S, there exists a pure braid a such that C(a) = T. Therefore
C(ap™) =T+ Rj. O

A much more complicated task is to find C(B;) and C(P}}).

Remark 3.3 If b is a positive braid b =1;, ...t; , we define its reverse revb
as revb = t; ...t;,. See [3, page 236]. The set {b;;} C P, given by b =
w;it? revwj, is also a set of generators of P,. However, it is not true that
the bi; are semi-group generators of P,\. See Theorem 6.4 below.



Definition 3.4 A matriz A € T+ is called realizable if A = C(a) for some
a € B

It is clear that C'(B.}) C 7T," because if strands 7 and k cross in a positive
braid a, then the j strand, for i < j < k, must exit the triangle formed by
strands ¢ and k£ and the top of the braid. Example 6.5 below shows that
this inclusion is strict. For our next observation we remind the reader (cf.
Definition 1.6) that if A € 7,7, then A’ € 7;".

Lemma 3.5 For A € 7,7, if A’ is a realizable matriz, so is A.

PROOF:
Suppose that A" = C(a'), that B = A — A', and that ij is a non-trivial

spot of A', i < j. Factor @’ = btyc, where b,c € B, p(b) = B, k = i.
Now replace t; by tZB“ 1 Do this for every 17; the result is a braid a with

Cla) =A. O

Notice that we do not claim the converse. This Lemma shows that the
realization problem must be solved first in 75" N[O, E].

Definition 3.6 If A € T+ and R3 < A, define S\ A to be the matriz (A —
Rp)P.

With this definition, if a = f*¢ and A = C(a), then S\ A = C(c).
Lemma 3.7 If A€ T and R3 < A, then f\A € T™.

We postpone the proof until after Corollary 4.2.

4 Matrices in [O, E|.
Throughout this section A =T + Ra > 0; if also A < E, then A =T & Ra.

Lemma 4.1 Suppose that a € B, has crossing matric A = T & Ra < E
and that f € ¥,,. If C(af™) < E then

TN SaB =0, (2)

and

C(aBt) = (T ® San SaBs) & Rap. (3)
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PROOF:
Write C(aft) = U @ Raf3. We compare the ij entries of T, Ra, U and
Raf distinguishing three cases:

Case 1. The strands do not cross in a. Then Raf;; = 1 if and only if they
cross in B, and the other three matrices are zero at 7.

Case 2. The strands cross once in a. Then T;; = 0, Ro;; = 1, and precisely
one of Raf;; or U;; equals 1 (depending on whether or not they cross

in 7).

Case 3. The strands cross twice in a. Then they cannot cross in A7, so
T;'j = Uij =1 and ROzij = Raﬁi]’ = 0.

By inspection, T;; and Saf;; agree only when they are both zero. This
proves (2). Once more, inspection shows that T'= 0, U = 1 occurs precisely
when Ra =1 and Raf3 = 0 or, equivalently, Ra36 = 1. This proves (3). O

It is geometrically obvious, and it follows from Lemma 2.9, that C'(a™57)
is always < E. Consequently an important special case of (3) is

Cla™B%) = Ra® (RB)* = (San SaBd) ® Rap. (4)

This formula shows that the map R : ¥, — M/S is a derivation. An
induction gives,

Corollary 4.2 If a = af - ~a; has crossing matric A = Ta ® Ra < F,
(a=p(a) =a;---ap) then

p—1
Ta = @(Sal ceeap N Say - - @10).

=1

We now give the promised proof of 3.7:

Proor ofF LEMMA 3.7:

By the properties of A’ mentioned after Definition 1.6, it clearly suffices to
prove the case A < E. Assume then that A =T @& Ra. Then SN Sad <T
and we can write A = (T'— SN Sad) @ (SN Sad) @ Ra) and, by Lemma
4.1, RB @ (RBa)? = (SBN Sad) @ Ra. This shows that B\A = (T — SBN
Sad)? & RBa. O
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For general A € T we have,

B\(T + Ra) = (T — SB N Sas)’ + Rpa. (5)

A consequence of this and Corollary 4.2 is the formula
a,\ - \a\A = 0;

this formula is true even if A does not lie in [O, E].

By Definition 2.3, a permutation 7 is intermediate to A if Rz lies in
[TY, A]. We want to study braids of the form 8Ty*. For that we need the
following

Lemma 4.3 If A =T+Ra € ToN[O, E| admits an intermediate permutation
7, then (i) T must be a T1 matriz and (i1) T\A = R7a.

PROOF:

Assume that for some ¢ < j < k we have T;; = Tj;, = 1 but that T;;, = 0.
Since Rm = TY @ R7 N Ra is T1, it follows that R, = Royr, = 1 so by
the TO property for Ra either Ra;; or Raj, must be 1. Say Roa;; = 1;
then A;; = T,; + Ra;; = 2, contradicting A < E. This proves (i). By (5)
T\A=(A—Rn)" = ((T-TY)®RrdNRa)™ = U+ Ria for some U € S, and
the third of these matrices is upper triangular by Lemma 2.9 2. It follows
that U = O. O

Recall from Definition 2.1 the concepts of initial and final set.

Proposition 4.4 Assume that A € To N[O, E] and that Rm € [O, Al.

1. If 7w is maximal in [O, A], then

I(7a) C F(m). (6)

2. If m is an intermediate permutation, then w is maximal in A if and only
if (6) holds.
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PROOF:

If J C [1,n — 1] we denote its complement by .J'.

To prove the first statement we show F'(w) C I'(7«). If i ¢ F(m), let
j=1im, k= (i+1)7. Then j < k and jk is a trivial final spot of Rx. If
Rr is maximal then A;, = 0 for otherwise Rm < Rnr; < A contradicting
maximality by Lemma 2.4. Let B =7\A =T & R7a for some T € S. Then
Biit1 = Ajp = 0so that R(7a); ;41 =0 and ¢ ¢ I(Ta).

For the second statement, if jk is a trivial final spot of Rx then jr ¢ I(7«)
by (6) so that Raj, = A, x = 0 and Rm must be maximal by Lemma 2.4. O

The following definition can be found in [1, §2].

Definition 4.5 A braid b € B/ has a canonical decomposition b =
of -~ df, fori=1,...,p—1, the a; € Xy, and I(a;y1) C F(os). The
integer p is the canonical length of b.

Compare with formula (6). Say ¢ < p is the largest integer with oy = 6
(¢=0ifall a; # 9). Then [1,n—1] = 1(0) = I(eg) C F(cy—1). Consequently
[1, Lemma 2.7] oy—1 = 0 and, by induction, a; = -+ = a, = J; in that case
b€ l[d? dP].

Assume that B is intermediate in A = T @ Ra € T N[O, E]. Under the
hypothesis that T is T1, B — T is T1 if and only if the conditions B;; =
Bjr, = 1, Bj;, = 0 imply that precisely one of T;; and T}, must be 0. If we
alter the requirements on 7', we obtain a slightly different condition which
we call, for the purposes of the next lemma, Condition Al:

The matrix B is A1 if (i) B is an intermediate matrix of A and (ii) for
all © < j <k, Bjj = Bj;, = 1 and By, = 0 implies that both T;; = T, = 0.

We do not require that 7" be T1 in this definition, but this is in fact
automatic in most of the applications in view of Lemma 4.3.

Lemma 4.6 Assume that A=T & Ra € ToN [0, E] admits an intermediate
matriz B which is A1. Then sup B < A.

PROOF:

We will show that under the hypothesis, B is A1. By induction it will
follow that all B®) are A1, and in particular sup B is an intermediate matrix.
The condition on B means that if B;; = B, = 1, By, = 0, then necessarily
Ra;; = Rojp = 1 and, since Ro is T1, Roy, = 1 = Ay; this spot can be
adjoined to B to obtain B < A. To check that B™") is A1, assume that the
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ij and jk spots of B() are non-trivial and that Bi(,l) = 0. Clearly, we may

assume that at least one of 75 and jk is a trivial spot of B, for otherwise
T;j = T, = 0 by hypothesis because B < BW implies that B;; = 0.

Case 1. Assume, for example, that B;; = 1 and T}, = Bj; = 0. Then, for
some intermediate j <! < k, Bj; = By, = 1. If B;; = 0 the hypothesis
on B implies that T;; = Tj = 0, and we are done. If B;; = 1, then this

and By, = 1 imply BZ.(,P = 1, contradicting our assumption.

Case 2. 1f both B;; = By, = 0, then clearly the same is true of the matrix
T.

O

As a consequence we have,

Proposition 4.7 A matriz A € To N[O, E| is the crossing matriz of a pos-
itive braid of canonical length < 2 if, and only if, A admits intermediate
permutations w. If m and p are any two such intermediate permutations,
then so is wV p. Consequently there is a unique mazimal intermediate per-

mutation j and A determines the braid p* (o)t of canonical length < 2,
and the map C : [d°,d?*] — Ty N[O, E] is one-to-one.

PROOF:

The first statement follows immediately from Lemma 4.3 and Proposition
4.4. For the rest of this Proposition, we must show that B = Rm U Rp is A1l.
Assume, therefore, that, for ¢ < j < k, B;; = Bj; = 1 and that B;;, = 0. By
Lemma 4.3, T is a T1 matrix; therefore at least one of the spots 5 or jk of
T must be trivial. Say T;; = 0; then either Rm or Rp must be non-trivial
at the 7j spot. Assume Rm;; = 1. If T, = 1 = Rmjy, then Rmy, = By, =1
contradicting our assumption. Therefore T}, = 0 as well.

By Lemma 4.6, it follows that sup B < A; thus 7 V p is an intermediate
permutation. There are only finitely many intermediate permutations ,;
consequently, there is a maximal such permutation ¢ = \/,7,. By Lemma

4.3, p\A = R(fie) and A = C(pu* (pa)™). O

Another corollary of Formula (4) is
Corollary 4.8 If o, € 3, the following are equivalent:

1. a<p,
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2. Ra @ (Rap)® = RS, and
3. at(ap)t =pt.

PROOF:

If « < B then o\RS = T & Rap by formaula (5). On the other hand
(RS — Ra)® is upper triangular by Lemma 2.9 2. Thus T'= O. This proves
2.

If 2 holds C(a™(aB)") = Ra @ (Rap)* = RS = C(BT). All braids
involved are of canonical length < 2. Therefore they are equal, and 3 is
proved.

Clearly 3 implies C'(a™) < C(87), that is, « < 5. O

5 Canonical Decompositions and Crossing Ma-
trices.

We want to generalize partially Proposition 4.4 2. We start with the following

Lemma 5.1 Assume that b = ST~" is the canonical decomposition of b, that
a is a positive braid with p(a) = «, and that C(ab) < E. Then I(v) C F(ap)
and the matriz Raf is maximal in Saf + Rafy.

PROOF:

By canonicity, if k¥ € I(v), then k¥ € F(f). In matrix terms, this says
that, if i’ = (k+ 1)3 and j' = k3, then RfBy; = 1. Now, if ia = ', ja = j',
then strands i and j cross precisely once in af*, so Raf;; = 1. For second
statement, from Proposition 4.4 and formula (4), R/ is maximal in M =
SafNSafyd® Rapfy. Since M < N = Saf+ Rafy and M and N have the
same trivial spots in the upper triangle, the maximality of Raf in N follows
from Lemma 2.4 2. O

The following partial generalization of Proposition 4.4 follows from Lemma
5.1 by induction:

Proposition 5.2 Suppose that a has canonical decomposition o - -- a; and

that it has crossing matrix < E. Then, for 1 < i < p—1, Rag---q; is
mazximal in Saq -+ + Rag - g q.
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In general, the matrix Say---a; + Ray ---a;41 ¢ [O, E] but it is easily
computed. However, the hypothesis that the crossing matrix be in [O, E] is
crucial here as the example a = 3 shows; 71" 71" 7" is the canonical factoriza-

tion of a but R7 = O is not maximal in S7¢ + R7} = R7y.

Proposition 5.3 Suppose that A < E is realizable. Let a = Bty be the
canonical decomposition of a braid of canonical length 2 and b = ©tr, r €
B, another braid, not necessarily in canonical form, with C(a) = C(b) = A.

Then ™ < f3.

PROOF:

Before the proof, we make the general remark that if R3; = 0and A4; =1,
then strands 7 and [ of @ must cross in v and consequently A;; must be trivial
since 7 and [ cannot cross and recross in 4. Also, the equality of the crossing
matrices implies that ¢ and [ must cross in b only once. For the proof we
argue by contradiction. Assume that there exists a pair (i,1), with ¢ < [, for
which Rm; = 1 and RfB; = 0 and, among all such pairs, choose one for which
[3—1/ is minimal. First notice that necessarily Rv;s,5 = 1 and consequently,
I8 — 1P # 1, or equivalently, that strands ¢ and [ cannot be adjacent at the
end of 8T because, in that case, i3 would be in I(+) but not in F() and this
contradicts the canonicity of the factorization a = St~*. Therefore there
exists at least one index ;7 with 8 < j58 < .

Second, we observe that j ¢ [i,!] because this would imply that RfS;; =
RpB; = 0 and, since either Rm;; or Rm;; must be 1, then one of the pairs
(1,7) or (j,1) contradicts the minimality assumption on (i,1). Assume, for
instance, that j < 7, the case 7 > [ being completely symmetric. From all j
satisfying these properties (j < i, i3 < j8 < If3), choose one for which j3 is
largest, or equivalently, one for which the j strand is closest to the [ strand
at the end of f7. By our general remark, strands ¢ and [ may not cross in
r and the j strand must cross the 4 strand in 7#+r. If j crosses ¢ before 1
crosses [, then j must also cross [, for otherwise j must recross 7 in 7", and
that is impossible in a permutation braid. If j crosses 7 after ¢ crosses [, then
J must also cross [ since ¢ and [ never recross. FEither way, j crosses [ in b
and so 7 must also cross [ in a, and it must do so in v*. The conclusion is
that [ — j8 > 1 because if this difference is 1, in the same way as before,
we obtain a contradiction to the canonicity of the factorization a = S*.
Consequently, there exists a k such that if < j8 < kB < 1B, kB = jp5 + 1,
and, by the maximality condition imposed on 7, necessarily | < k.
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Figure 1: Proposition 5.3

In the braid #*r strands j and k& must both cross 7 and [ and, as before,
they must do so in r because, if they crossed in 7", the minimality of the
pair (7,1) would be violated. Also, strands j and & must never cross because,
if they did, this would again violate the canonicity of the factorization of a.
But the only way in which j and k£ cross both ¢ and [ in r, without crossing
each other, is if one

of j and k crosses both ¢ and [ twice (see figure 1) and this is impossible
because in STvT, j crosses | once and k crosses i only once, namely, in 7.
This contradiction completes the proof. O

Theorem 5.4 If A < E is realizable by a braid of canonical length 2, then
it cannot be realized by any braid of canonical length > 3. In particular the
braid a is in [d°, d?] if and only if C(a) < E and C(a) admits an intermediate
order reversal matriz in [Ta¥%,C(a)].

PROOF:

By Proposition 4.7, it suffices to show: if A admits an intermediate 7,
then no braid of canonical length > 3 realizes it. We reason by contradic-
tion; choose a counter-example A = C(af -+ - of) = C(B1~*), with minimal
p > 3. Then Proposition 5.3 shows that a; < S, and so, by Corollary
4.8, of (mpB)" = p*. Thus a\A = Claz ---a;f) = C((@f)*y*) real-
izes a braid of canonical length < 2. By the minimality of p, it follows
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that o3 ---aff = (@)™ and so that p —1 < 2. If p < 2 we are done;
if p = 3, then C(aga;) = C((@;8)™y") and Proposition 4.6 imply that
agai = (a1 8)TyT. Consequently af ayai = StyT. This is a contradiction.

O

Example 5.5 Uniqueness fails for braids of canonical length > 3.

If @ = t3t2 and b = 3¢, then a and b have canonical length three (for
instance, a = (11)"(1172) T ), and C(a) = C(b) € [0, E]. Thus, the injec-
tivity of C' does not extend beyond canonical length two. It is also important
to remark that, while C'([d°, d?]) C [O, E], there are braids of large canon-
ical length whose crossing matrices lie in [O, E]. For example, the braid
t?---t2_, has canonical length n + 1 and its crossing matrix consists of ones
in the spots 72,2+ 1 and 2+ 1,4, 2 = 1,...,n — 1 and zeros everywhere else.
On the other hand observe that the equation C'(z) = E in B, has a unique
solution, namely, z = d?, because E is realizable by x = d? and by Theorem
5.4, no other positive braid can realize F.

6 Pure Braids.

The kernel of the homomorphism p : B, — ¥, is P,, . It is important to
remark here that B is a semi-group whose presentation (as a semi-group)
is identical to the presentation of B,, (as a group). This fact is known as
the Garside Lemma (see [3] and [5, 9.2.5]); however, it is not true that the
semi-group P, admits the presentation of P, given in [2, Lemma 4.2, p.
20]; clearly, the generators a;; do not lie in P;z". Even if we modify these
generators to the b;; defined in §3, which do lie in P}, the resulting set is
not a semi-group generating set. For example, the braid ¢,t3t; = b1261362_31.
We have already established that, if b € P, then C'(b) € Sf. Naturally, if
A€ 8§ N[O, E]is also T1, then A = St for some m € ¥, and A is realized
only by b = 77", because 777" is the canonical factorization of b. See
Proposition 4.6.

Lemma 6.1 Any matriz in Sg is of the form U_, Say, for finitely many
o; € X,
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PROOF:
We use the following simple construction. Suppose that U € [O, D]y, and
that 1 <7 < n. Then Z;U is the matrix V defined by

1. thZOifh<i;
2. ‘/m = Uika and
3. if ¢ < j <k, then Vj;, =1 if and only if Uj;, =1 and U;; = 0.

It is easy to show that Z;U < U and that Z;U is both T0O and T1 and thus,
of the form Rq;. Clearly, then, U = J Ray;, and U + Ut = USa;. O

Lemma 6.2 Unions of one or two matrices of the form Sm are realizable.

PROOF:
We have already shown that St = C(7*7*). Unions of the form SaUSf

are also realizable because SaUSS = C(a™(af)*(5)"), by Corollary 4.2. O
Lemmas 6.1 and 6.2 lead us to conjecture that C'(P;}) = Sy

Lemma 6.3 Forn=3, C(P;)=S8(3){ and C(By) =T (3){.

PROOF:

For n = 3 there are eight symmetric matrices in [O, E], and only one of
them, which we will call A, is not T0 and it is defined by 4,3 = A3; = 1, and
otherwise A;; = 0. Of the remaining seven, six are of the form S, 7 € X3,
and the seventh is S7; U STy, which is realizable by Lemma 6.2. By Lemma
3.5, all symmetric positive and TO 3 x 3 matrices are realizable. For the
second assertion notice that, for n = 3, the only matrices of T(3){ N[O, E]
not in (8(3)g + R(X3)) N[O, E] are the A+ Rr;, i = 1,2, which are realized
by t,t2 and t5t2, respectively. Again Lemma 3.5 proves the assertion. O

Theorem 6.4 Forn > 3, the semi-group P is not finitely generated.

PROOF:

We first treat the case n = 3.

Observe first that S(3)¢ is not a finitely generated (additive) semi-group,
for if T, ..., T is a finite set of matrices in S(3)§ and N is the maximum of
the Tf’3, then the symmetric matrix 7" with T = T53 = 1 and T3 = 2N + 1
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is not a linear positive combination of the 7% Indeed, if T = Y n,7", then
S n;Tiy = 2N + 1 implies that 3" n; > 3. Since, for each i either T}, or Ty, is
non trivial, it follows that one of the sums ¥ n; T}, or 3 n;Ts, is > 2. Thus,
no finite set of 77 can generate S(3) .

To see that P35 is not finitely generated, note that C' : Py — S(3); is a
semi-group epimorphism and therefore, that a finite set of generators of P3
would give a finite set of generators of S(3)g.

Finally, to prove the general case, note that for n > 3 we have a natural
embedding B C B obtained by viewing BJ as the subsemi-group of B
generated by ¢; and t5. This embedding preserves pure braids. By Garside’s
Lemma any product by, ...,b, of braids in B; which lies in B must have
each factor b; in B . Thus, any set of generators of P, N B;” must include a
set of generators for the positive braids in P3. O

Unfortunately, we have been unable to generalize Lemma 6.3 for n > 4.
We conjecture that C(P;}) = S, but the assertion that C'(B;}) = 7, is false
already when n = 4.

Example 6.5 The following matrices lie in T," but are not realizable:

0110 00100

000 1 00110

G = , K=|10011
1001

0100 00000

00100

If a matrix A is realizable, then there exists at least one i € [1,n — 1] with
Rr; < A and 7,\A € Ty. To see this, assume that A = C(b), b € B,'. Then
b = t;c for some i and some positive braid ¢. Thus 7;\A = C(c) and so, in
particular, it is T0. This fails in the case of G and K.

If A =T+ Ra is realizable, T is not necessarily T0. For example, change
spots 13 and 31 to zeros in either G or K above. The results are realizable
(by ts3t2t; € By and t3tot?t; € Bs, respectively) but their corresponding
symmetric matrices are not T0.
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