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Two Examples of Resurgence

C. Olivé, D. Sauzin, and T. M. Seara

ABSTRACT. This paper gives an account of two articles which illustrate the
use of Resurgence theory for estimating the difference between two complex
invariant manifolds associated with the area-preserving Hénon map for the
first one, and with a Hamiltonian system which stems from the rapidly forced
pendulum for the second one.

1. Introduction

1.1. Motivation. It is usual that exponentially small phenomena appear in
the study of near-integrable Hamiltonian systems with a weakly hyperbolic singular
point. One of our goals is to estimate asymptotically the splitting of the separatrices
associated with such a point, which is exponentially small with respect to the
perturbation parameter, by using Resurgence theory.

A common approach in separatrix splitting problems is to look for good aprox-
imations of the stable and unstable invariant manifolds. But in the cases we are
interested in, which are singular in the sense that the hyperbolicity disappears
when the perturbation parameter goes to zero (the fixed point is said to be weakly
hyperbolic), these manifolds have different approximations in different regions of
the complex plane. Using “matching techniques”, one can obtain a so-called inner
equation, which retains the dominant part of the invariant manifolds and of their
splitting.

The papers [GS01] and [OSS03] are devoted to the resurgent study of the
inner equations (1.6) and (1.7) below, obtained in two different settings: an area-
preserving map and a Hamiltonian system. Here, we shall try to give an account of
these two papers and to explain in a systematic way how Resurgence theory can be a
used to estimate the exponentially small difference between special solutions of these
inner equations. The passage from results for the inner equations (1.6) and (1.7)
to the initial problems of singular separatrix splitting which have motivated them
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(equations (1.1) and (1.3) below) would require further work which has not yet
been done completely.

Although this paper is centred on two special equations, we want to present
here a scheme that can be made suitable for the study of separatrix splitting in any
functional equation: differential equations, difference equations, etc.

1.2. The two examples. We shall present the two examples quickly and
then outline the approach followed in the papers [GS01] and [OSS03], to which
the reader is referred for the details.

— The first example is the one-parameter family

(11) }_E:(a:>'_>(a:+5y+52m(1—x)>’ >0,

Y y+ex(l—x)

of quadratic area-preserving maps of C2. The origin is a weakly hyperbolic fixed
point of F. and the discrete-time dynamical system defined by the iteration of F.
has stable and unstable invariant curves W2 and W_>, which are respectively
attracted and repelled by the origin. They can be naturally parametrised by
(% (), y=(t)) verifying

rE(t) ) < zE(t + h) >
1.2 . - ,
2 (00 yE(t+ )
where h = In X and A = A(e) is the eigenvalue larger than one at the origin, and
with asymptotic conditions

Jlim (o (1), 5% (1) = 0.

Near the origin, both curves look like the separatrix of the Hamitonian system
generated by
1 1 1
h _t2_ 1.2 1.3
(@,y) = 59" — 527 + 327,
which plays the role of first approximation for the map F. (this separatrix is given
by zo(t) = m, yo(t) = %2(¢)), but numerical experiments show that W
and W/ intersect transversally. The angle of intersection is necessarily exponen-
tially small with respect to e, according to the general results of [FS90], and
an asymptotic formula was proposed in [Gel91] without a complete proof (see
also [Che98]).

— The second example is a family of Hamiltonian systems with one and a half
degrees of freedom, namely the rapidly forced pendulum generated by

2
(1.3) H,.(q,p,t) = % — 1+ cosq+ p(cosq — 1) sin(t/e),

where € > 0 and p are two parameters of which the first is assumed to be small but
not necessarily the second.

The origin is a hyperbolic fixed point of the unperturbed pendulum, with co-
inciding stable and unstable curves (the separatrix is given by qo(t) = 4 arctan e,
po(t) = %(t)). It gives rise to a weakly hyperbolic 2we-periodic orbit for H,, .
whose stable and unstable manifolds do not coincide any longer: the separatrix has
“split” and the phenomenon is again exponentially small with respect to . This
problem was already investigated by several authors ([DS92], [Gel97], [Tre94]).
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Following Poincaré [Poin93], we can use the Lagrangian character of the two-
dimensional stable and unstable manifolds and write them as graphs of differentials
(see for example [Sau95] or [LMS03]): they admit equations p = 9,5%(q,t), where
S~ (resp. ST) is 2me-periodic in ¢ and analytic for ¢ > 0 small enough (resp. for
g < 2m large enough) and satisfies the Hamilton-Jacobi equation

(1.4) atS+Hu,€(q>aqsv t) =0,
with asymptotic conditions

lim 8,5~ (q,t, u,e) =0 (resp. lim 9,5 (q,t,pu,e) = 0).
¢—0 q—2m

1.3. Derivation of the inner equation. Roughly speaking, the stable and
unstable manifolds of (1.1) or (1.3) (described by solutions of (1.2) or (1.4)) are
well approximated by the separatrix of the unperturbed problem in the real domain
(outer domain), but to compute the exponentially small splitting we need to control
these manifolds in some complex region (inner domain), where the separatrix has
singularities ([Gel97], [Che98], [DS92], [DR98]). Approximations for these man-
ifolds in the inner domain can be obtained as special solutions of the so-called inner
equation, which is obtained as an approximation of the original equation in rescaled
variables, and which does not depend on the singular parameter ¢ ([OS99]).

— In the first case, we use the change of coordinates u = e?x — €2 /2, v = &3y, which

turns F. into
w, u+v—u+et/4
v v—u?+et/4

and, for small positive values of €, we can consider F. as a small perturbation of a
particular case of the Hénon map

(15) Fo( 0 ) (aru )

The origin is a parabolic fixed point for the map F, which “inherits” from F.
invariant curves which can be naturally parametrised by the complex variable
z = T and written as (u®(2),v%(z)). These parametrisations must satisfy the
equation F(u(z),v(z)) = (u(z+1),v(2+1)), which can be reduced to a second-order
difference equation for wu:

(1.6) u(z + 1) — 2u(2) + u(z — 1) = —u?(2).

Indeed, from any solution of (1.6), one obtains the parametrisation of an invariant
curve of F by restoring the second component v(z) = u(z) —u(z—1). Equation (1.6)
is the inner equation of the problem. The two special curves we are interested
in correspond to the asymptotic condition Z(Erinoo ui(z) = 0. The initial splitting

problem gives rise to the question of estimating the difference u*(z) — u™(z) for
complex values of z of large negative imaginary part.

—For the second example, the method of complex matching, as described in [0S99],
leads us to use the variables 7 = t/e, z = _“*’E”/2

¢ = €S. The Hamilton-Jacobi equation becomes

where u = logtan(g/4), and

2
cosh?(ez 4 im/2)

cosh?(ez 4 im/2)
82

0-¢ + (0.4)* — & (1—psinT) =0
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and can be considered as a perturbation of the inner equation
1
(1.7) Orh — §z2(az¢>)2 +2272(1 — psinT) = 0.

This equation, where the unknown function ¢ depends on z € C and 7 € R/277Z
(1 is a complex parameter), must be viewed as the Hamilton-Jacobi equation

0-¢ +H(z,0:0,7) =0

associated with the Hamiltonian function H(z,p,7) = —£22p? + 227%(1 — psin7).

Observe that this first-order PDE comes with a periodicity requirement for the

variable 7. The asymptotic condition lirf PF (z,7) = 0 will select two particular
Z—r=00

solutions whose difference will be estimated for complex values of z of large negative
imaginary part.

1.4. The rest of the present paper is devoted to the description of the results
obtained for equation (1.6) in [GS01] and for equation (1.7) in [OSS03] and may
serve as a guide for reading these articles, as well as a general method to deal with
analogous problems.

The first step in the resurgent method is to look for formal solutions of the equa-
tion which verify the desired asymptotic condition. As we shall see (Section 2.1),
in both examples the formal solution is essentially unique but divergent, and this
divergence falls in the scope of Resurgence theory ([Eca81], [Eca92a], [Eca92b],
[CNP93a], [CNP93b]). The idea is to analyse this divergence by means of formal
Borel transform (i.e. formal inverse Laplace transform—see Section 2.2).

On the one hand, the study in the Borel plane will allow us to recover the
different analytic solutions of the equation we are interested in, by applying Laplace
transform in various directions (this is the Borel-Laplace summation process—see
Section 3.3). On the other hand, it is in the Borel plane that precise information can
be extracted, through the so-called alien calculus (Sections 3.1, 3.2 and 4), which
yields for instance the desired estimation of the difference between the analytic
solutions of (1.6) or (1.7).

2. Borel transforms of the formal solutions

2.1. The formal solutions iy(z) and ¢o(z,7). We shall denote by C[[z~']]
the space of all power series in =" with complex coefficients and by C[z][[z~"]] the
space of sums of polynomials in z and power series in 27! (i.e. formal Laurent series
with finitely many positive powers of z).

For the second example, we shall also need the space P = C[[e!™,e ]| of
trigonometric polynomials of 7, and P[[z!]] will denote the space of formal series
in 2=! whose coefficients are trigonometric polynomials (these coefficients will also
depend on the parameter u). The space P[z][[z7!]] consists of formal Laurent series
in z, with finitely many positive powers of z, all of whose coefficients also depend
on 7 as trigonometric polynomials. Thus the corresponding formal series may be
expanded in two ways:

(2.1) P(z1) =D ealn)z " =Y dH(2)e,
n>no kEZ

where ng is some integer.
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LeEmMA 2.1. All nonzero formal solutions of the difference equation (1.6) are
of the form io(z + a), where a € C and
15 _, 663
2° Taw”
is the unique nonzero even solution. The coefficients of Gy are rationals of alter-
nating sign.

For each p € C, the solutions in P[z][[z7"]] of the Hamilton-Jacobi equa-
tion (1.7) are of the form

a+ ¢~)g(z,7') or a-+ (Zgo(—Z,T),

(2'2) ’110(2’) = —62’_2 + —6 + .-

where a € C and
~ 1
(2.3) bo(z,7) =4z ' — (2ucosT)z ? — (4pusinT + guz)z*3 +0(z™%)

is determined as the unique solution in z='P[[z7']] with leading term 4z7".

This lemma is elementary; recursion formulae can be provided to determine
the coefficients of the formal solutions inductively. As for most of the statements
below, details are to be found in [GS01] and [OSS03].

2.2. Analyticity of the Borel transforms io(¢) and ¢o(z, 7). The formal
Borel transform is the linear operator B defined by
~ . _ . Cnfl
@(z) = Zanz = B(@)(() =¢() = Zanm-

n>1 n>0

The coefficients a,, can be complex numbers or functions, i.e. B sends 27 1C[[z}]]
into C[[¢]], and z~'P[[z71]] into P[[(]]. Observe that, starting from (2.1), one gets

B(@p)((, ) =o(¢ 1) = Z @[k] (C)eik‘r

neEZ

with the notation ¢l¥l = B(¢[*). Here we must assume ng > 1 in (2.1), but when
necessary, the definition of B is extended to polynomials by use of the Dirac mass
at 0 and its derivatives: z/ > 60) if j > 0—see [Eca81] or [CNP93a].

When applied to a power series ¢(z) with nonzero radius of convergence, B
yields a convergent power series ¢(¢) which defines an entire function with at most
exponential growth of order 1. We shall be dealing with formal series whose Borel
transform converges near the origin but has finite radius of convergence. Such a
series ¢(z) is thus divergent (and “Gevrey-1”, i.e. its coefficients a, are bounded
by an expression of the form CK™n!); the singularities of its Borel transform ()
can be considered as “responsible” for the divergence, and it is important to study
them.

To study the formal Borel transforms iy and ngSo of the formal solutions g
and ¢y, we write equations which they satisfy and which are obtained by applying B
to equations (1.6) and (1.7). It is easily checked that B(20,9) = —0:((p), B(p(z +
¢)) = e ¢ and B(p1p) = B(p) * B(1)), where the convolution law is defined by

R ¢ R
(2.4) @*$)(Q) = /0 HCIDC — G d.

The above formula must be understood at a formal level or, if ¢ and 1/3 have positive
radius of convergence, as defining an analytic germ at the origin, but in that case ¢
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must be taken sufficiently close to the origin. In view of this, equation (1.6) is
converted by B into

(25) a(Qi(Q) = ~a(Q),  a(Q) = 4sinb® 5,

and equation (1.7) into
~ 1 N L\ *2
(2.6) 0rd— < (qs + cagqs) +2¢(1 — psinT) = 0.

THEOREM 2.2. The series 1o((), resp. <Z)0(C,T), has positive radius of conver-
gence with respect to ¢ and defines an analytic germ whose analytic continuation
can be followed along any path which starts from the origin and avoids the set 2wiZ,
resp. the set i7.

The resulting holomorphic functions tio(C) and ¢o(C,7) have at most ezponen-
tial growth of order 1 with respect to ( along any non-vertical half-line issuing from
the origin.

Let us outline very briefly the technical work devoted to the proof of this result
in [GSO01] and [OSS03]. The idea is to devise an iterative scheme to solve (2.5)
or (2.6) progessively, in which the desired property is easily checked at each step; all
the work then consists in proving the convergence of the process, so as to express g
or (Z)O as a uniform limit of analytic germs with this property.

In the first example, the origin of the singularities on 27iZ is the division
by a(¢) when trying to solve equation (2.5). In the second example, we can write
the equation that the new unknown function y defined by q§ =4 + px satisfies:

(€= 0% + g (1 +€0-0)" + 2 simr = 0.
Using Fourier expansions with respect to 7, we see that the inversion of the operator
¢ — 0, involves division by ¢ — ik for each Fourier number k, and thus produces
singularities on i7Z.

From the analytical viewpoint, the arguments for the convergence are quite
different from [GS01] to [OSS03], because a method of majorant series is used,
which depends a lot on the precise form of the equation. There is also a geometric
part, similar in both papers, devoted to the analytic continuation of convolution
products.

Let R denote the Riemann surface consisting of all homotopy classes of paths
issuing from the origin and lying in C\ 2miZ, except for their origin (suppressing the
factor 27 from this definition when the second example is considered). The main
sheet R(® of R will be the holomorphic star for g or QASO; it can be identified with
the cut plane C\ £2mi[l,4+00). The convergence of the aforementioned iterative
scheme is directly obtained in R(?) with an ad hoc method of majorant series, using
the fact that formula (2.4) holds true in R(®) without any change when dealing with
functions ¢ and 1/3 that are themselves analytic in R(%).

The “contiguous half-sheets” are obtained as homotopy classes of paths issuing
from the origin, lying in C\ 2747 and crossing the imaginary axis at most once; we
denote by R their union (the left part of Figure 1 shows an example of a path Ye
defining a point ¢ € R()). Supposing that ¢ and 1 extend analytically to R(}),
one can check that the same is true for their convolution product thanks to the
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%
| %/ %

FIGURE 1. The paths v, and I'¢ define the same point ¢ € RM Cc R.

formula

~

(@*zﬁ)(o:/ HCIDC - ) da, e RW,

L¢

where the “symmetrically contractile” path I'¢ is drawn on the right part of Figure 1.
This formula yields also bounds of the convolution in terms of bounds of the factors,
as far as one stays in R(). The convergence of the iterative scheme can thus be
guaranteed in R(Y) by an appropriate adaptation of the majorant method.

But other ideas are needed to reach all the other sheets of the Riemann sur-
face R: “resurgence relations” are used for this—we shall return to that point in
Section 4.

3. First alien derivatives and splitting for the inner equations

As already mentioned, we need to investigate the behaviour of the Borel trans-
forms near their singular points (the points 27wim or im, m € Z) in order to un-
derstand the divergence of @g and ¢o. We shall begin with the singularity which
corresponds to m = 1 (of course the singularity corresponding to m = —1 can be
deduced by symmetry, since 4y and (Z)O are real-analytic) and introduce in this case
some of the concepts defined by Ecalle.

3.1. Majors of singularities. We can define analytic germs by the formulae

(3.1) 0(¢) = ao(2mi+¢), (G T) = doli +¢,7),
for ¢ ¢ iR of small enough modulus, by requiring that the principal determination
of 6y or ¢ be used, i.e. that “2mwi + (” denote the point of R defined by the straight

\%
segment [0, 27 + (] in the first case for instance. Germs like ¥ and 1) are called
“majors” because they are meant to determine a “singularity” at ( = 0; a singularity
is nothing but a class of majors modulo regular germs.!

LWe do not give all the details here, but one has to specify a direction arg ( = p on the Rie-
mann surface of the logarithm (6p = 7/2 in our case) and to impose to majors to be holomorphic
in sectors of the form {r e 0 <r<rg,bp—2r—w<0 < b+ w} for some ro,w > 0—see
[0SS03, Section 2.4.1].
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Our majors will turn out to belong to a space of germs on the Riemann surface
of the logarithm which assume a special form (“simply ramified majors”):

no
v (—1)"nlA, 1, .
S N S I ]
#(Q) 2220 grie + g PO logC+7(Q),
where ng € N, Ay,...,A,, € C, and ¢,7 € C{(}. (We shall have no = 5 in the
case of ¥, while ng = 1 and the various ingredients of the formula depend also on 7

for ’Q\Z/J) The singularity ¢ = sing(¢) represented by such a major is thus determined
by a finite number of complex numbers A,, and a regular germ ¢. But much more
general singularities, represented by more general majors, are conceivable, and need
in fact to be included in the theory of resurgent functions. For simply ramified
singularities, we shall use the notation

o _1)n! 1
p="An0"M +%p, 6 =sing (( ) ) . g =sing (—@(o log c) ,
n=0

2mi¢ntl 2mi

and extend the formal Borel-Laplace isomorphism by considering
no
b= Z Anz"+ B
n=0

as the formal counterpart of the singularity ¢. In the case of more general sin-
gularities, the formal Borel-Laplace isomorphism may lead to formal objects more
general than power series (e.g. transseries of z).

A minor ¢ is associated to any singularity ¢ by computing the monodromy
around the origin of a representant ¢ of ¢:

P(0) = ¢(¢) — p(Ce™™™)

(obviously, the result does not depend on the choice of the major cf)) The simply
ramified case thus corresponds to minors ¢ that are regular at the origin.

Let us sum up the objects we have at our disposal starting from @ or q~50. We
may consider 4y = Bty and (Z)O = Bdyo as the minors of some simply ramified singu-

v ~
bip and ¢, = ¢py. Following the analytic continuation

larities at the origin, %y =
v
of the minors, we encounter a first singularity at 27i or 4, encoded in © or . This

is the definition of the first alien derivatives:
Aoqilig = U = sing(tio(27i + (), Ay = 1) = sing (J)O(i + c)) .

The operators As,; and A;, whose definition we have just sketched out, are a
particular case of the alien derivations A, defined by Ecalle for all w € C (or even
for all w on the Riemann surface of the logarithm in the most general case). The op-
erator A, measures the singularity at w of the analytic continuation of the minors,
but in the general case its definition must take into account the possible multival-
uedness of the minors: one has to consider a well-balanced average of the various
determinations obtained by following ]0,w[ and avoiding the possible intermediary
singular points.

In our case, only the operators Agqim or Ay, (M € Z*) act non-trivially on U

v ~
or ¢, and the singular behaviour of the analytic continuation of dg (resp. ¢p) is
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encoded by all the successive alien derivatives A, ...A,, Uy, where r > 1 and

Wiy .., wy € 2miZ (resp. A, .. -Awl(;)(); Wiy .., wyp €1Z).

The space of resurgent functions consists of the singularities for which the
action of all the successive alien derivations A, ...A,, is well defined; this amounts
to a condition of discreteness of the set of singular points obtained when following

v
the analytic continuation of their minors. Theorem 2.2 claims that %o and ¢, are
such singularities, but observe that the part of the proof explained in Section 2.2
(analyticity of the minors @ and @y in R™M)) allows us to consider only the first

alien derivatives ¥ and z};, since we do not know enough on v and 1/3 at that stage
to be sure that further alien derivatives are defined (the definition of Aorilorilo
for instance involves the analytic continuation of iy along paths which cross iR**
twice).

All this formalism is adapted to nonlinear contexts—and this essential feature
may serve as its main justification—because one can define a convolution law on the
space of singularities under which the subspace of resurgent functions is stable and
for which the alien derivations satisfy the Leibniz rule (thus they deserve their name
of derivation). This law is a suitable extension of the convolution of minors (2.4),
so that 23 % b = b(p % ¢)) for instance, and more generally it corresponds by Borel-
Laplace to the multiplication of formal series.

The differentiation with respect to z corresponds to the operator

0: sing(&’(()) > sing(—C‘Z’(C)),

which is the “natural derivation”. One can check that [A,, 0] = —wA,,.

It is in fact convenient to pull-back everything in the formal model whenever
possible. We continue to call “resurgent functions” the formal series whose formal
Borel transform are resurgent functions in the above sense, and “alien derivations”
the operators which act in the formal model (still denoted by A,). With that

d

convention, we may say that [Aw, d%] = —wA,, or that 7 commutes with the

“dotted alien derivations” Aw = e “?A,. But, as a rule, the interpretation and
the justification of resurgent formulae is best seen in the convolutive model. We
refer particularly to Sections 2.4 and 3.1.3 of [OSS03] for more details.

3.2. First resurgent relations. Let us illustrate the efficiency of the formal-
v
ism outlined in the previous section by the computation of ¥ = Asy;tlg and ¢ =

Aﬂ;)o. These two singularities are easily seen to satisfy linear equations derived
from (2.5) and (2.6) by rephrasing these equations as

v v v 1 AN _ .
a(Qiin = —(fi)?, 9rdy — 50 x (96) ™ + 2602 (1 — psin) = 0.

The multiplication of a singularity by a regular germ like «a(() is defined by con-
sidering the product of a with any representant of the singularity; in the second
equation we have used the notation 6(="=1 = ?(¢"/n!) for n € N. Since A, is a
derivation whose commutators with the operators involved in these equations are
known (for instance Asy; commutes with the multiplication by «(¢) because « is
2mi-periodic), applying the operator A, with w = 27i or i, we find

(3.2) a(Q)0 = 2t * v, 371;1 + bo * 31}1 = Z'z)o * JJ’
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where 50 = —ié(z) * (8(?)0) (the right-hand side in (3.2b) stems from [0, A;]; of
course A; annihilates all singularities whose minors have no singularity at i, in
particular every 6", n € 7).

— Let us first consider the case of equation (3.2a) satisfied by ¥ = Ayqttp. This
equation is obviously satisfied by 97 too: in the formal model, this amounts simply
to saying that the linearized equation ¥(z + 1) — 20(z) + 0(z — 1) = —2do(2)v(2) is

dig

satisfied by 2.

LEMMA 3.1. The set of solutions of equation (3.2a) in the space of singulari-
ties consists of all linear combinations (with constant coefficients) of two particular
solutions U1, = Oy and Uy which are simply ramified singularities and whose coeffi-
cients can be determined inductively. The second fundamental solution is uniquely
determined by the condition that its leading term be 81—45(4).

The formal counterparts of U1, Vs are of the form

o0 o0
. b d 1, 17 17
gooang N~ bk o~ e 1, AT, 1T 2
0=t = ; o 2= 1222 2%~ &1 Taawo” oz T OC )

This lemma is not stated in that form in [GS01] which indicates rather the
space of solutions of the formal counterpart of the equation in C[z][[z!]]. But the
above lemma (which can be proved essentially by the same arguments, transposed
in the convolutive model) is stronger, because it shows that any singularity © solv-
ing (3.2a) is necessarily simply ramified (we need not assume a priori it to be the
Borel transform of an element of C[z][[z7!]]), and this allows us to shorten all the
chain of reasoning, as noticed in [OSS03]. The point we wish to make here is that
some technical verifications like Section 4.1 in [GS01] can be dispensed with by
the use of the formalism of majors and singularities.

The consequence for the first singularity of Gg is immediate:

COROLLARY 3.2. There exist complex numbers A and © such that
(33) AQﬂ-i’aO - A’ljl + @’52
In other words, the principal determination of tg is of the form

. ) O [4d o 2di dy 1 . .
34 2 = — — —h(Q)1
B o+ 0 = oo (Tt 4 T+ ) 5O o8+ 7(0)
for ¢ ¢ iRT of small enough modulus, where h = Ay +Ob, € C{¢} and 7 is some
other reqular germ.

One can check that A € R and © € iR; the second constant is the most
important since it governs the singular behaviour at 27i. A simple argument is given
in [GS01, Section 2] to prove that Sm © < 0 (the idea is to reach a contradiction
when assuming © = 0 by observing that this would imply the boundedness of g
near 27i).

— As for equation (3.2b), we can view it as a linear PDE in the formal model, easy
to solve by the method of characteristics applied to the operator 8, + Dy(z,7)0,,

where Dy = —iz28zq~50(z,r) corresponds to lv)o. We refer the reader to [OSS03,
Section 2.1.4] for

LeMMA 3.3. The equation
(3.5) 0:Y + Dy(z,7)8.Y =0
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admits a unique formal solution of the form
Y=z-7+8, Sez Pz 1)

The coefficients of the formal series S can be determined inductively, and

S(z,7) = (—i;ﬁ + psinT)z™t — dp(cos 7)™ + O(27?).

Now, from (3.2b), one can check that e’izi/;(z, T) = AiJ)o solves equation (3.5)

(or directly from (1.7) using the fact that A; commutes with 0;), and thus must
be a “function” of z — 7 + S(Z,T); in fact, the requirement of periodicity with
respect to 7 and the nature of the dependence of e~**4(z,7) upon z forces it to be
proportional to e~ ¥+ =S,

The previous reasoning somewhat lacks rigour because it takes for granted that

’JJ = Ai(;o is the Borel transform of a member of P[z][[z7!]] (i.e. that it is a simply
ramified singularity). But there is no difficulty in making it rigorous by transposing
it in the convolutive model, as shown in [OSS03, Section 2.4.3]. We thus state

COROLLARY 3.4. For each p € C, there exists B € C such that

(3.6) Aido = Beimi5,
In other words, the principal determination of (Z)O is of the form
N B eir 1 . R
(3.7) $o(i +¢) = 5— + 5=¥(¢,7)log ¢ + 7((, 7),
2mi¢ 2w

for ¢ ¢ iRT of small enough modulus, where 1/3 and 7 are reqular with respect to (,
and v is determined as

(3.8) o) =per 3

n!
n>1

S*"(C,T).

One can check that 8 depends on the parameter p as an odd entire function of
the form —2mip + O(p?) for small |u).

3.3. Splitting associated with the inner equations. We now show how
to recover analytic solutions of (1.6) and (1.4) from our formal solutions, and how
to use the description of the first singularity in the Borel plane to study the corre-
sponding splitting. Theorem 2.2 admits the following

COROLLARY 3.5. The formulae

+o0 +o0
£, -2 d + — —2¢ 4 d
u=(z) /0 e *ao(Q)dC,  ¢7(z,7) /0 e " do(C,7)d¢

define analylic functions u*, u™ or ¢, ¢~ , which solve equations (1.6) or (1.7) and
satisfy the asymptotic conditions

1i + _ 1i + _
Re zinioo u (Z) 0’ Re zinioo ¢ (Z’ T) 0

(uniformly in T € R/277Z in the case of ¢F).

Observe that exponential bounds of the type |@(C)|, |¢o(C,7)| < ¢1 e2/¢l (whose
existence is claimed in Theorem 2.2) are necessary to define the Laplace trans-
forms u™ or ¢*. These functions are analytic in the half-planes {£ Rez > c»}. But,
by Cauchy Theorem, we can move the half-line of integration: the use of arg( = 6
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N
0 N
S
N
% @0
c\z\\ § Re(ze) > ¢y
N
\ _9
N
¢ S © oz
Ficure 2. Laplace transforms in directions arg( = 6 be-

tween —Z and % yield a domain D of validity of the asymptotic
expansion for uT or ¢+.

with =% +w < 0 < § —w (for some small positive @), or with §+w < 6 < 37’7—77;,
yields analytic continuation in a domain DT or D~, obtained as the union of the
corresponding half-planes {Re(z e?’) > ca}—see Figure 2 for D*; the domain D~
can be deduced from DT by symmetry with respect to the imaginary axis. These
domains are sectorial neighbourhoods of infinity, of aperture 27 — 2w, bissected
by R*, in which asymptotic expansions hold:

ut(2) ~ ig(2), ¢F(z,7) ~ (50(2,7), |z] = o0, z € D*.

These are standard facts of the theory of the Borel-Laplace transform; the diver-
gence of G or ¢o is manifested by the existence of singularities in the Borel plane
for Gg or (Z)O, and by ambiguities of resummation: two different sums are attributed
to each divergent series.

We are now ready to see that the “splitting” functions, i.e. the differences
between the two different sums, admit exponentially small asymptotics which can
be derived from our study of the first singularities in the Borel plane.

THEOREM 3.6. We have
ut —u ~ e T Agryilo, ¢t — ¢ ~e ¥ Ay,
in the part of DY N'D~ contained in the half-plane {Sm z < 0}. In other words, we
have in this domain the asymptotic expansions

¥ (uT —u7) ~ O(d_oz* + d_12% + do) + h(2) = Aty (2) + Oba(2)

and }
e (9 —¢7) ~ BT +(z,7) = BT,
where A, © and 8 are defined by Corollaries 3.2 and 3.4.

Of course DT ND~ has two connected components (each one being a sectorial
neighbourhood of infinity, of aperture 7 — 2w, bissected by iR*), and a similar
result holds in the component which is contained in the upper half-plane (but it
involves the alien derivative at —2mi or —i instead of 2i or 7).

Let us explain briefly the proof of this theorem in the case of ¢t — ¢~ (the
other one is similar), and with z € iR~ of large modulus. The splitting function

can be written
8

6t (zm) — b (2,7) = / e do(¢,7) dC,

i(r—8) 00
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FIGURE 3. Deformation of contour for the study of ¢+ — ¢~

with any 6 € ]0, 3 [ By Cauchy Theorem, the path of integration can be deformed
as indicated on Figure 3, into a path vy which crosses the positive imaginary axis
between the first two singularities and a path I'y o for which Sm ¢ > a with a € 1, 2[.
Correspondingly, we can decompose the integral into the contribution of the first
singularity and an exponentially smaller term:

¢t —¢7 = [ ¢o(¢,7) e dC+R(z,7),  R(z,7)=O0(e ™).
Yo
By virtue of equation (3.7) in Corollary 3.4, the first integral can be written as
7= oo
e [ b e )
0
which admits the announced asymptotic expansion.

4. Formal integral and Bridge equation

We shall now try to describe the whole resurgent structure of @, and ¢y, i.e.
the relations satisfied by all the singularities encountered when following the ana-
lytic continuation of their Borel transforms on the Riemann surface R. There will
appear new “resurgent relations”, similar to equations (3.3) or (3.6), involving new
constants, similar to A and O, or 5. This important phenomenon is at the origin
of the name “resurgence” and will be encoded into a single equation, the so-called
Bridge equation.

Again, the exposition will be sketchy, but we shall indicate how the proof of
all the resurgent relations is intertwined with the part of the proof of Theorem 2.2
which was lacking at the end of Section 2.2.

In order to proceed, we must extend the notion of formal solution and embed g
or ¢o into a one-parameter formal object which will be called the formal integral
of equation (1.6) or (1.7). In the first example, this new formal object will be

i(z,c) = Z iy (2),
n>0

where the formal solution g already studied is supplemented with new formal series
@y € C[2][[z71]], n > 1. In the second example, it will be

b(z,7,¢) = Z (2, 7),

n>0

with new formal series ¢,, € P[z][[z "]}, n > 1.



14 C. OLIVE, D. SAUZIN, AND T. M. SEARA

Plugging these expressions into the inner equations, we obtain a system of
linear difference equations or linear partial differential equations to be satisfied by
the components of the formal integral. Indeed, using the notation

P:u(z)—u(z+1) —2u(z) + u(z — 1)

and expanding equation (1.6) with respect to ¢, we find the system

(4.1) Piiy + 2iipti;, = 0,
n—1

(4.2) Piiy, + 2iigity = Y Gglip_g, 10> 2,
k=1

while expanding (1.7) we find
(4.3) (8, + Dyd.)p1 = 0O

. _ 1 .=
(4.4) (0; + Dod.)dn = gz‘zkzzjl@(pkaz%,k, n>2.

Equation (4.1) is nothing but the formal counterpart of (3.2a); in view of
Lemma 3.1, we can thus choose the solution @; = 847, so as to have 4;(z) =
2zt + 0(2%). As for equation (4.3), Lemma 3.3 provides us with the solution
(51 =z—-—7+4+ S*

PROPOSITION 4.1. There is a unique sequence of nonzero even series (Gy)n>2
in C[2][[z71]] such that the coefficient of 2* vanishes in each of them and equa-
tion (4.2) is fulfilled for each n.

For each i € C, there is a unique sequence (¢n)n>2 in P[2][[z Y]] such that the
constant term (the coefficient of e'*™ 27 when k = j = 0) vanishes in each of them
and equation (4.4) is fulfilled for each n.

We can thus define the formal integrals of equations (1.6) and (1.7)

(2,0 = 3 iin(z),  Blamie) = . dalz, ),

n>0 n>0

using the above formal series together with @, = 840, b1 =z—7+8 from Lem-
mas 3.1 and 3.3, and the formal solutions Gy and ¢¢ from Lemma 2.1.

The proof is elementary, but involves some technical verifications. In the case
of i, tools of the theory of second-order linear difference equations are used, which
are analogous to well-known facts in the theory of differential equations (a discrete
Wronskian for instance). And the idea for finding ¢, is to consider = z + S(z,7)
as a formal change of variable which conjugates the vector field 8, + Do(z,7)0.
with 0, + 0,.

We shall skip the induction which supplies all these formal series, but it must be
mentioned that the way @, and the next 4, ’s relate to ug directly shows that their
Borel transforms inherit the properties of convergence and analytic continuation
of Gio, and similarly for the ¢, ’s. As a result, the arguments given in Section 2.2
are sufficient to establish the analyticity of the minors @,, and gzgn in RM.

But, according to Section 3.1, this makes it possible to define the singulari-
ties Aqorily, OT Aiiq;n. And the same kind of arguments as in Section 3.2 will
apply to them, yielding relations between them and the components of the formal
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integrals. In the same time, since
Aqﬁﬂh):(ﬁkﬂo—kbﬂl, a::zL b::®/84

(by (3.3)), we see that the minor of Ay, il itself extends analytically to R(Y). This
amounts to a property of analytic continuation of g in half-sheets of R which
are part of a subset R(?) (accessed from R(Y) by crossing once more the imaginary
axis), and allows us to define Aor;Aoqitio and Ayq;tig, and similarly Ao ; Aoy iio
and A_4,;Up (using a counterpart of Corollary 3.2 for the alien derivative at —273).
And still by the same kind of arguments, these new singularities will turn out to
be combinations of components of the formal integral, as will be the case of the
successive alien derivatives of all the ,’s.

Of course, the chain of reasoning that we have just sketched for the ,’s works
the same for the ¢y’s, starting with A;dy = Be~i91.

This explains why in [GS01] or [OSS03] the proof of the resurgent relations
and that of Theorem 2.2 are done simultaneously: once that the possibility of
following the analytic continuation of gy or J)g in R™M has been checked (by the
method indicated in Section 2.2) and that the first resurgent relations (3.3) or (3.6)
have been derived, analyticity is, so to say, automatically propagated in the further
sheets of R.

Summing up, and taking for granted the analyticity of all minors in R, the
shape of the resurgent relations can be derived very simply, at the level of the
formal integrals, by the following computations (whose justifications must however
be provided component-wise):

— Since 1(z, ¢) solves the equation Pi = —4? and A,, is a derivation which commutes
with P for w € 2miZ*, the generating series A,i = ), o, " AL, (2) is solution
of the linearized equation P% = 2iiw; but (9.1, 0.%) is a system of fundamental
solutions of the linearized equation, hence A,% must be a linear combination of
these two series.

— Since ¢(z,7,¢) solves equation (1.7) and A, is a derivation which commutes
with 0, and 8, for w € iZ*, the generating series Awq; = s0C" Awi)n(z,r) is
solution of the linearized equation (8, + D3.)Y = 0, where D = —%2262,(5(2, T, cC);
but 8ng~5(z, 7,¢) = z—7+0(c, 27 1) is solution of the linearized equation, hence Awgz;
must be a function of 0.¢ and, in fact, proportional to exp(—wd.¢) (because of the
periodicity requirement with respect to 7 and for homogeneity reasons with respect
to ei).

The reader is once more referred to [GS01] and [OSS03] for more details. Let
us synthetize our conclusions:

THEOREM 4.2. Fach minor 4, (¢) or (Z)n(C,T) extends analytically to R, with
al most exponential growth of order 1 with respect to ¢ along non-vertical rays; the

series i, and ¢, are thus resurgent functions. There ezist three families of formal
series

A,(e) = Z Ay e, B,(c) = Z By, w € 2mil*,
n>0 n>0
and
Cy(c) = Z Cunc™, w € iZ",

n>0
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such that
(45)  Auii(z,0) = (Au()0e + Bu()d:)ii,  Aud(z,7,¢) = Culc) e %9,

These equations must be understood as a compact way of writing the systems of
resurgence relations

Aw’lj,n = Z [(TLQ + I)Aw7nlan2+1 + mel 8211”2], n Z 0,

ni+ns=n

and Awq;o =Cupo e‘”""g,
- " (—1)"w" 7 ; s
Aw¢n = [Cw,n + Z 77.! Z ny...Np Cw,ng anl Ce (f)nr] evT v
r=1 no+...4+n.=n+r
ngZO
ni,...,np>2

for n > 1, which allow one to compute all the successive alien derivatives of the
resurgent functions t, or ¢,.

Both equations in (4.5) are examples of what Ecalle called the Bridge equa-
tion: they throw a bridge between alien calculus (the alien derivatives in the left-
hand sides) and usual differential calculus (derivatives with respect to ¢ or z in the
right-hand sides).

The coefficients C,, ,, depend on the parameter p of equation (1.7) as entire func-
tions; we have C; o = 8 and Aario = 0, Bario = A. The numbers A, ,,, By n, Cun
represent the transcendental part of the information, in contrast with the coeffi-
cients of the series @, or gz;n which are computable by induction. They can be
compared with Stokes constants, inasmuch as the Bridge equation can be viewed as
the infinitesimal version of a nonlinear Stokes phenomenon. One is indeed tempted
to consider the formal automorphisms obtained by exponentiating the operators
involved in the right-hand sides of (4.5), in view of connecting the two different
sums of each formal integral

ut(z,c) = Z A LE,, o= (z,7,¢) = Z c"ﬁi(;)n

n>0 n>0

obtained by extended Borel-Laplace summation in the direction of R*. But there
is here an analytical difficulty: in [GSO01, Section 5.5b], the convergence of the
above u*(z,c) with respect to ¢ was conjectured, whereas numerical experiments
by R. Schiifke and coworkers seem to indicate divergence for any fixed value of z.
The situation might be more favourable for the convergence of ¢*(z,7,c). Both
questions are currently under investigation.
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