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Study of Periodic Orbits in Periodic Perturbations of Planar Reversible Filippov
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Abstract. We study the existence of periodic solutions in a class of planar Filippov systems obtained from non-
autonomous periodic perturbations of reversible piecewise smooth differential systems. It is assumed
that the unperturbed system presents a simple twofold cycle, which is characterized by a closed
trajectory connecting a visible twofold singularity to itself. It is shown that under certain generic
conditions the perturbed system has sliding and crossing periodic solutions. In order to get our
results, Melnikov's ideas are applied together with tools from the geometric singular perturbation
theory. Finally, a study of a perturbed piecewise Hamiltonian model is performed.
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1. Introduction. Over the last decade, the theory of nonsmooth dynamical systems has
been developed at a very fast pace, with growing importance at the frontiers of mathematics,
physics, engineering, and the life sciences (see, for instance, [6, 10, 19, 31] and references
therein). The study of such systems goes back to the work of Andronov, Vitt, and Kha\u {\i}kin
[2] in 1937. A rigorous mathematical formalization of this theory was provided in 1988 by
Filippov [13], who used the theory of differential inclusions for establishing the definition of
trajectory for nonsmooth differential systems. Nowadays, such systems are called Filippov
systems.

In 1981, motivated by the work of Ekeland [11] on discontinuous Hamiltonian vector fields,
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Figure 1. Phase space of the piecewise smooth differential system ( \.x, \.y)T = Z\alpha 
0 (x, y) =

\bigl( 
(1, x2  - \alpha ),

( - 1, x2  - \alpha )
\bigr) 
for \alpha = 1. In general, the points ( - 

\surd 
\alpha , 0) and (

\surd 
\alpha , 0) are the invisible and visible twofold

singularities, respectively. The bold line represents the simple twofold cycle \scrS , which encloses a period annulus
\scrA of crossing periodic orbits.

Teixeira [36] studied generic singularities of refractive nonsmooth vector fields. A qualitative
analyses of twofold singularities appearing in these systems was performed. Later, the generic
classification of such singularities was approached in several works [16, 21, 23].

Recently, many efforts have been dedicated to understanding some typical global minimal
sets in Filippov systems (see, for instance, [1, 9, 24, 32, 33, 34]). In particular, Novaes,
Teixeira, and Zeli [34] studied the unfolding of a simple twofold cycle (see Figure 1) inside
the class of autonomous planar Filippov systems. A simple twofold cycle is characterized by
a closed trajectory connecting a twofold singularity to itself and having a nonconstant first
return map defined in one side of the cycle (see Figure 1).

The present study focuses on understanding how a simple twofold cycle unfolds under
small periodic perturbations. More specifically, we are mainly concerned with sliding and
crossing periodic solutions bifurcating from a simple twofold cycle of an R-reversible planar
Filippov system periodically perturbed. By R-reversibility of a Filippov system,

(1.1) Z0(x, y) =

\Biggl\{ 
F+(x, y) if y > 0,

F - (x, y) if y < 0,

we mean F+(x, y) =  - RF - R(x, y), where R : \BbbR 2 \rightarrow \BbbR 2 is an involution for which y = 0
is the set of fixed points (see [18]). Here, we shall consider R(x, y) = (x, - y). For this
involution, theR-reversibility implies that F+(x, y) = ( - F1(x, - y), F2(x, - y)) and F - (x, y) =
(F1(x, y), F2(x, y)). As a consequence of the R-reversibility, a simple twofold cycle \scrS of (1.1)
is always a boundary of a period annulus \scrA of crossing periodic solutions. Here, we shall
assume that \scrS encloses such a period annulus (see Figure 1).

As examples of piecewise smooth differential systems satisfying the hypotheses above, we
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have the following one-parameter family of piecewise Hamiltonian differential systems:

(1.2) Z\alpha 
0 (x, y) =

\bigl( 
(1, x2  - \alpha ), ( - 1, x2  - \alpha )

\bigr) 
, \alpha > 0,

with Hamiltonian function given by

H(x, y) = | y|  - x3

3
+ \alpha x.

The vector field Z\alpha 
0 contains a simple twofold cycle \scrS connecting the visible twofold singularity

(
\surd 
\alpha , 0) to itself. This cycle encloses an annulus \scrA fulfilled with crossing periodic orbits (see

Figure 1).
In our setting, the construction of a suitable displacement function and its related Melnikov

function are the central mechanisms behind our study. As is fairly known in Melnikov theory,
the existence of periodic solutions bifurcating from a period annulus is associated with simple
zeros of a certain bifurcation function, called the Melnikov function. Such a function is
obtained through the analysis of the perturbed system using its regular dependence with
respect to the perturbation parameter. Indeed, in the smooth case, the displacement function
(equivalently, the Poincar\'e map) is smooth in the parameter of perturbation. Consequently,
the Melnikov function is obtained by expanding the displacement function in a Taylor series.
The same procedure has been used in some nonsmooth systems to study crossing periodic
solutions (see, for instance, [3, 4, 8, 14, 15, 29] and the references therein). However, such an
approach fails when facing sliding dynamics, which appears, for instance, in the unfolding of
twofold singularities. Thus, the main novelty of this study consists in the analysis of crossing
and sliding periodic solutions bifurcating from a simple twofold cycle \scrS which, as noticed
above, is the boundary of a period annulus \scrA in the reversible context. The developed
procedure for the detection of sliding periodic solutions is rather different, because regular
perturbations of a Filippov system produce singular perturbation problems in the sliding
dynamics. Accordingly, tools from singular perturbation theory must be employed. We shall
see that, although unexpected, the same Melnikov function, obtained by the former classical
approach for detecting crossing periodic solutions bifurcating from \scrA , also plays an important
role in the study of the sliding periodic solutions.

We emphasize that the above-mentioned theoretical aspects have been the main motivation
behind our study. To the best of our knowledge, nonsmooth models of real phenomena
exhibiting twofold cycles are not known so far. Nevertheless, this kind of cycle can be easily
found in piecewise mechanical systems, such as our initial example (1.2).

This paper is organized as follows. First, in section 2, we present the basic notions and
results needed to state our main theorems. More specifically, in section 2.1, we recall the
basic definitions about Filippov systems, and in section 2.2 we give some basic concepts and
results concerning the reversible unperturbed problem. In section 3, we state our main results,
Theorems A and B, which deal with periodic nonautonomous perturbations of R--reversible
piecewise smooth differential systems admitting a simple twofold cycle. More specifically, we
provide a Melnikov function which determines the existence of crossing and sliding periodic
solutions for such systems. In Theorem A, it is shown that this function determines the
existence of crossing periodic solutions bifurcating from orbits of the period annulus \scrA . In
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Corollary 3.1, we also consider autonomous perturbations. In Theorem B, it is shown that
the same Melnikov function also determines, with additional hypotheses, the existence of
both sliding and crossing periodic solutions bifurcating from the simple twofold cycle \scrS . In
section 4, we apply our results to study periodic nonautonomous perturbations of the piecewise
Hamiltonian differential system (1.2). Finally, section 5 is devoted to proving our main results.
Some concluding remarks and further directions are provided in section 6.

2. Basic concepts and preliminary results. In this section, we recall the basic concepts
and definitions from the theory of nonsmooth dynamical systems as well as some preliminary
results needed to state our main theorems.

2.1. Filippov systems. The content of this section is standard and can be found in several
other works (see, for instance, [13]).

Let U be an open bounded subset of \BbbR 2. We denote by \scrC r(U,\BbbR 2) the set of all \scrC r vector
fields X : U \rightarrow \BbbR n. Given h : U \rightarrow \BbbR a differentiable function having 0 as a regular value, we
denote by \Omega r

h(U,\BbbR 2) the space of piecewise smooth differential systems Z in \BbbR 2 such that

(2.1) Z(x, y) =

\Biggl\{ 
X+(x, y) if h(x, y) > 0,

X - (x, y) if h(x, y) < 0,

with X+, X - \in \scrC r(U,\BbbR 2). As usual, system (2.1) is denoted by Z = (X+, X - ) and the
switching surface h - 1(0) by \Sigma .

The points on \Sigma where both vectors fields X+ and X - simultaneously point outward or
inward from \Sigma define, respectively, the escaping \Sigma e or sliding \Sigma s regions, and the interior of
its complement in \Sigma defines the crossing region \Sigma c. The complementary of the union of those
regions are the tangency points between X+ or X - with \Sigma .

The points in \Sigma c satisfy X+h(p) \cdot X - h(p) > 0, where Xh denotes the derivative of the
function h in the direction of the vector X, that is, Xh(p) = \langle \nabla h(p), X(p)\rangle . The points in
\Sigma s (resp., \Sigma e) satisfy X+h(p) < 0 and X - h(p) > 0 (resp., X+h(p) > 0 and X - h(p) < 0).
Finally, the tangency points of X+ (resp., X - ) satisfy X+h(p) = 0 (resp., X - h(p) = 0). For
points p \in \Sigma s \cup \Sigma e, we define the sliding vector field

\widetilde Z(p) = X - h(p)X+(p) - X+h(p)X - (p)

X - h(p) - X+h(p)
.

A tangency point p \in \Sigma is called a visible fold of X+ (resp., X - ) if (X+)2h(p) > 0 (resp.,
(X - )2h(p) < 0). Analogously, reversing the inequalities, we define an invisible fold.

2.2. Preliminary results. Consider the involution R(x, y) = (x, - y) and denote by Fix(R)
= \{ (x, 0), x \in \BbbR \} its set of fixed points. For a \scrC 2 function F : D \rightarrow \BbbR 2, defined on an open
bounded subsetD of \BbbR 2, we consider the followingR-reversible discontinuous piecewise smooth
differential system with two zones separated by the straight line \Sigma = Fix(R):

(2.2) (x\prime , y\prime )T = Z0(x, y) =

\Biggl\{ 
F+(x, y) if y > 0,

F - (x, y) if y < 0,
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where

(2.3) F - (x, y) = F (x, y), F+(x, y) =  - RF (R(x, y)).

For z = (x, y)T , we denote by \Gamma \pm (t, z) =
\bigl( 
\Gamma \pm 
1 (t, z),\Gamma 

\pm 
2 (t, z)

\bigr) T
the solutions of systems

(x\prime , y\prime )T = F\pm (x, y) such that \Gamma \pm (0, z) = z. Let

(2.4) Y \pm (t, z) = Dz\Gamma 
\pm (t, z) =

\biggl( 
\partial \Gamma \pm 

\partial x
(t, z)

\partial \Gamma \pm 

\partial y
(t, z)

\biggr) 
be a fundamental matrix solution of the variational equations

(2.5)
\partial Y \pm 

\partial t
(t, z) = DF\pm \bigl( \Gamma \pm (t, z)

\bigr) 
Y \pm (t, z),

with initial condition Y \pm (0, z) = I2 (2\times 2 identity matrix).
The following result is a straightforward consequence of the reversibility property of the

solution, \Gamma +(t, z) = R\Gamma  - ( - t, Rz).
Lemma 2.1. The equality Y  - (t, z) = RY +( - t, Rz)R holds.

As a consequence of the above lemma, we get

Dz\Gamma 
 - 
1 (t, z) = Dz\Gamma 

+
1 ( - t, Rz)R and Dz\Gamma 

 - 
2 (t, z) =  - Dz\Gamma 

+
2 ( - t, Rz)R.

Let F = (F1, F2)
T . In order to ensure that system (2.2) has a simple twofold cycle (see

Figure 2), we have to assume the following hypotheses:
(h1) There exist xi < xv such that

F2(pv) = F2(pi) = 0,
\partial F2

\partial x
(pv)F1(pv) < 0, and

\partial F2

\partial x
(pi)F1(pi) > 0,

where pv = (xv, 0) \in \Sigma , pi = (xi, 0) \in \Sigma , and F2(x, 0) \not = 0 for xi < x < xv.
(h2) For each xi < x \leq xv, the solution \Gamma  - (t, x, 0) reaches transversely the line of disconti-

nuity \Sigma for t = \sigma (x) > 0, that is,

(2.6) \Gamma  - 
2 (\sigma (x), x, 0) = 0 and F2

\bigl( 
\Gamma  - (\sigma (x), x, 0)

\bigr) 
\not = 0.

From the reversibility property of the vector field Z0, hypothesis (h1) implies that the
points pv, pi \in \Sigma are, respectively, visible--visible and invisible--invisible folds.

Hypothesis (h2) fixes the orientation of the flow, which implies that

F1(pv,i) < 0,
\partial F2

\partial x
(pv) > 0, and

\partial F2

\partial x
(pi) < 0.

Hypothesis (h1) also leads to the next result, which allows us to make explicit the first column
of the matrix Y  - (t, pv); see (2.4).

Lemma 2.2. For every t \in \BbbR , the following equality holds:

\partial \Gamma  - 

\partial x
(t, pv) =

F
\bigl( 
\Gamma  - (t, pv)

\bigr) 
F1(pv)

.
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\Sigma pvpiqv
x

\scrS 

Figure 2. Periodic orbits of system (2.2) surrounding the invisible twofold point pi and fulfilling an annulus
enclosed by the simple twofold cycle \scrS .

Proof. First we note that, as F - = F , the function w(t) = \partial \Gamma  - 

\partial x (t, pv) is a solution of the
differential equation \.w = DzF

\bigl( 
\Gamma  - (t, pv)

\bigr) 
w with the initial condition w(0) = (1, 0). Now, take

w(t) =
\partial \Gamma  - 

\partial t (t, pv)

F1(pv)
=
F
\bigl( 
\Gamma  - (t, pv)

\bigr) 
F1(pv)

.

Computing its derivative with respect to the variable t we have

dw

dt
(t) = DzF

\bigl( 
\Gamma  - (t, pv)

\bigr) \partial \Gamma  - 

\partial t (t, pv)

F1(pv)
= DzF

\bigl( 
\Gamma  - (t, pv)

\bigr) 
w(t).

Moreover, hypothesis (h1) implies that

w(0) =
F (pv)

F1(pv)
=

\biggl( 
F1(pv)

F1(pv)
,
F2(pv)

F1(pv)

\biggr) 
= (1, 0) = w(0).

Hence, we conclude that w(t) = w(t).

Hypothesis (h2), together with the reversibility property, implies that for each xi < x \leq xv
the function

(2.7) \gamma (t, x) =
\bigl( 
\gamma 1(t, x), \gamma 2(t, x)

\bigr) 
=

\Biggl\{ 
\Gamma  - (t, x, 0) if 0 \leq t \leq \sigma (x),

R\Gamma  - ( - t, x, 0) if  - \sigma (x) \leq t \leq 0

is a 2\sigma (x)-periodic solution of system (2.2) such that \gamma (0, x) = (x, 0) \in \Sigma . Consequently, the
invisible twofold pi behaves as a center having an annulus of periodic orbits ending at the
simple twofold cycle \scrS = \{ \gamma (t, xv) :  - \sigma (xv) \leq t \leq \sigma (xv)\} (see Figure 2). Notice that

(2.8) \scrS \cap \Sigma = \{ pv, qv\} , where qv = \Gamma  - (\sigma (xv), pv).

From now on, when convenient, we shall denote \Gamma  - and Y  - only by \Gamma and Y , respectively.
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We note that, by hypothesis (h2), the function \sigma (x) is differentiable on the interval (xi, xv].
Indeed, it is a solution of the implicit equation \Gamma 2(\sigma (x), x, 0) = 0. Differentiating this last
equality implicitly in the variable x, we obtain, for each xi < x \leq xv, the relation

(2.9) \sigma \prime (x) =  - 
\partial \Gamma 2
\partial x (\sigma (x), x, 0)

F2(\Gamma (\sigma (x), x, 0))
.

Furthermore, since pi = (xi, 0) is an invisible--invisible fold, then inf\{ \sigma (x) : xi < x \leq xv\} = 0,
and 0 \leq \sigma M = sup\{ \sigma (x) : xi < x \leq xv\} <\infty . Accordingly, we fix the interval \scrT = [0, \sigma M ].

3. Statement of the main results. We consider the following perturbation of system
(2.2):

(3.1) (x\prime , y\prime )T = Z\varepsilon (t, x, y) =

\Biggl\{ 
X+

\varepsilon (t, x, y) if y > 0,

X - 
\varepsilon (t, x, y) if y < 0,

where
X\pm 

\varepsilon (t, x, y) = F\pm (x, y) + \varepsilon G\pm (t, x, y) + \varepsilon 2H\pm (t, x, y; \varepsilon ).

We assume that G\pm (t, x, y) and H\pm (t, x, y; \varepsilon ) are smooth functions in \BbbR \times D and \BbbR \times D \times 
( - \varepsilon 0, \varepsilon 0), respectively, and 2\sigma -periodic in the variable t for some \sigma \in \scrT = [0, \sigma M ].

We want to detect, for \varepsilon > 0 small enough, the existence of isolated 2\sigma -periodic solutions
of system (3.1). First, we notice that if

(3.2) X - 
\varepsilon (t, z) +RX+

\varepsilon (s,Rz) \equiv 0 for (t, s, z) \in \BbbR 2 \times D,

then, for | \varepsilon | \not = 0 sufficiently small, every periodic solution of Z0(x, y) persists for Z\varepsilon (t, x, y). In-
deed, (3.2) implies that Z\varepsilon (t, x, y) is autonomous and R-reversible. Taking (3.2) into account,
we define the following operator:

(3.3)
\bigl\{ 
X+, X - \bigr\} 

\theta 
(t, z) = X - (t+ \theta , z) +RX+( - t+ \theta ,Rz).

Notice that
\bigl\{ 
X+

\varepsilon , X
 - 
\varepsilon 

\bigr\} 
\theta 
can be seen as a measurement of the nonreversibility of Z\varepsilon . Indeed,\bigl\{ 

X+
\varepsilon , X

 - 
\varepsilon 

\bigr\} 
\theta 
\equiv 0 is equivalent to condition (3.2). Thus,

\bigl\{ 
X+

\varepsilon , X
 - 
\varepsilon 

\bigr\} 
\theta 
\not \equiv 0 is a necessary

condition for the existence of isolated periodic solutions of Z\varepsilon . Computing the expansion of\bigl\{ 
X+

\varepsilon , X
 - 
\varepsilon 

\bigr\} 
\theta 
around \varepsilon = 0, we see that

\bigl\{ 
G - , G+

\bigr\} 
\theta 
\not = 0 implies

\bigl\{ 
X+

\varepsilon , X
 - 
\varepsilon 

\bigr\} 
\theta 
\not = 0 for | \varepsilon | \not = 0

sufficiently small. The value
\bigl\{ 
G - , G+

\bigr\} 
\theta 
will be important for the definition of the Melnikov

function.
Accordingly, let \BbbS 1\sigma \equiv \BbbR /(2\sigma \BbbZ ) and define the Melnikov function M : \BbbS 1\sigma \times (xi, xv] \rightarrow \BbbR as

(3.4) M(\theta , x) = F (\gamma (\sigma (x), x)) \wedge 

\Biggl( 
Y (\sigma (x), x, 0)

\int \=\sigma (x)

0
Y (t, x, 0) - 1

\bigl\{ 
G - , G+

\bigr\} 
\theta 
(t, \gamma (t, x))dt

\Biggr) 
,

where \gamma is given in (2.7), and Y is the fundamental matrix given in (2.4). Here, the wedge prod-
uct is defined by (a1, a2)\wedge (b1, b2) = \langle ( - a2, a1), (b1, b2)\rangle . As mentioned before, the expression
(3.4) will be obtained through standard analysis of the expansion of a suitable displacement
function around \varepsilon = 0. A similar Melnikov function was obtained in [14] for autonomous
perturbations of an n-dimensional nonsmooth system with a codimension-1 period annulus.
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3.1. Bifurcations from the period annulus \bfscrA . Our first main result is concerned with
the existence of isolated crossing periodic solutions of system (3.1) bifurcating from the period
annulus \scrA .

This kind of problem has been studied in a rather general setting for smooth systems (see,
for instance, [5, 28] and the references therein). When dealing with nonsmooth systems, the
geometry of the discontinuity manifold has a strong influence on the bifurcation functions
controlling the existence of isolated crossing periodic solutions. Due to this fact, the existing
results in the research literature usually assume some constraints either on the unperturbed
system, on the discontinuity manifold, or on the perturbation. For vanishing unperturbed
systems, the averaging theory [35] provides the first order bifurcation function (see [25, 30]).
The bifurcation functions at any order were obtained in [27] when the discontinuity appears
only in the time variable, and up to order 2 in [3] for more general discontinuity manifolds.
For nonvanishing unperturbed systems with a period annulus of crossing periodic orbits, the
bifurcation functions at any order were obtained in [26], assuming again that the discontinuity
appears only in the time variable. In [15], the Melnikov function was obtained for non-
autonomous perturbation of a class of planar piecewise Hamiltonian systems, and in [17]
for autonomous perturbations of general planar piecewise Hamiltonian systems. In [14], the
Melnikov function was obtained for autonomous perturbation of nonsmooth period annulus
in \BbbR n. In [4], a Melnikov function was obtained for studying the persistence of homoclinic
trajectories in nonsmooth systems. None of the mentioned results can be directly applied in
our case.

Theorem A. Take \sigma \in \scrT = [0, \sigma M ] and x\sigma \in (xi, xv) such that \sigma (x\sigma ) = \sigma and \sigma \prime (x\sigma ) \not = 0,
where \sigma (x) is given in (2.6). Assume that the vector field Z\varepsilon in (3.1) is 2\sigma -periodic in the
variable t. If there exists \theta \ast \in \BbbS 1\sigma such that

M(\theta \ast , x\sigma ) = 0 and
\partial M

\partial \theta 
(\theta \ast , x\sigma ) \not = 0,

then for \varepsilon > 0 sufficiently small there exists an isolated crossing 2\sigma -periodic solution of system
(3.1) with initial condition, in \BbbS 1\sigma \times D, \varepsilon -close to (t0, z0) = (\theta \ast , (x\sigma , 0)).

The next result is obtained as a consequence of Theorem A and deals with the continuation
problem of subharmonic crossing periodic solutions of system (3.1) when it is autonomous.

Corollary 3.1. Assume that the vector field Z\varepsilon in (3.1) is autonomous and denote M(x) =
M(\theta , x). If there exists x\ast \in (xi, xv) such that M(x\ast ) = 0 and M \prime (x\ast ) \not = 0, then for \varepsilon > 0
sufficiently small there exists a crossing periodic solution of system (3.1) with initial condition,
in D, \varepsilon -close to (x\ast , 0).

3.2. Bifurcations from the twofold connection \bfscrS . Our second main result is concerned
with the bifurcation of periodic solutions from the simple twofold connection \scrS in the spe-
cial case that system (3.1) is perturbed by 2\sigma v = 2\sigma (xv)-periodic functions. This problem
resembles the bifurcation of periodic solutions from saddle homoclinic connections in smooth
systems. Indeed, \scrS is a boundary of a period annulus \scrA , with the difference that a trajectory
connects the twofold singularity to itself in a finite time, namely, 2\sigma v. We shall see that, in
this case, the unfolding of \scrS gives rise to sliding dynamics, and either a crossing or a sliding
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periodic solution can appear. Therefore, the standard analysis performed in Theorem A does
not apply here.

For each \theta \in \BbbS 1\sigma v
, we define the number g\theta \in \BbbR as

(3.5)

g\theta =

\biggl\langle 
Dz\Gamma 2(\sigma v, pv) ,

\int \sigma v

0
Y (t, pv)

 - 1
\bigl\{ 
G - , - G+

\bigr\} 
\theta 
(t,\Gamma (t, pv))dt

\biggr\rangle 
=

\biggl\langle 
Dz\Gamma 2(\sigma v, pv) ,

\int \sigma v

0
Y (t, pv)

 - 1
\Bigl( 
G - (t+ \theta ,\Gamma (t, pv)) - RG+( - t+ \theta ,R\Gamma (t, pv))

\Bigr) 
dt

\biggr\rangle 
.

In the above expression, the inner product notation \langle \ast , \ast \rangle is actually an abuse of notation.
Indeed, the left and right factors are expressed as row and column vectors , respectively. Thus,
the matrix product between them results in a scalar. Nevertheless, due to the amount of com-
putations involving matrices, we decide to consider the inner product notation to emphasize
that the result is in fact a scalar, thus avoiding any possible misunderstanding.

Theorem B. Suppose that the vector field Z\varepsilon in (3.1) is 2\sigma v-periodic in the variable t, and
assume that there exists \theta \ast \in \BbbS 1\sigma v

such that M(\theta \ast , xv) = 0 and (\partial M/\partial \theta )(\theta \ast , xv) \not = 0.
(a) If G+

2 (\theta 
\ast , pv) \not = G - 

2 (\theta 
\ast , pv) and

g\theta \ast >
2F2(qv)

F1(pv)
\partial F2

\partial x
(pv)

max
\bigl\{ 
G\pm 

2 (\theta 
\ast , pv)

\bigr\} 
,

then for \varepsilon > 0 sufficiently small there exists a sliding 2\sigma v-periodic solution of sys-
tem (3.1) with initial condition, in \BbbS 1\sigma v

\times D, \varepsilon -close to (t0, z0) = (\theta \ast , pv). More-
over, this solution slides on either \Sigma s or \Sigma e, provided that G+

2 (\theta 
\ast , pv) < G - 

2 (\theta 
\ast , pv) or

G+
2 (\theta 

\ast , pv) > G - 
2 (\theta 

\ast , pv), respectively.
(b) If

g\theta \ast <
2F2(qv)

F1(pv)
\partial F2

\partial x
(pv)

max
\bigl\{ 
G\pm 

2 (\theta 
\ast , pv)

\bigr\} 
,

then for \varepsilon > 0 sufficiently small there exists a crossing 2\sigma v-periodic solution of system
(3.1) with initial condition, in \BbbS 1\sigma v

\times D, \varepsilon -close to (t0, z0) = (\theta \ast , pv).

4. A piecewise Hamiltonian model. In this section, we apply the previous results to study
the crossing and sliding periodic solutions of nonautonomous perturbations of a piecewise
Hamiltonian model. This kind of problem was previously addressed in [22], where the authors
applied KAM theory to prove that, under certain conditions, a piecewise Hamiltonian model
has infinitely many periodic solutions.

Consider the following continuous Hamiltonian function:

H(x, y) = | y|  - x3

3
+ \alpha x, where \alpha > 0.

As usual, | \cdot | denotes the absolute value of a real number. The above Hamiltonian gives rise
to the following discontinuous piecewise Hamiltonian differential system:

(4.1) (x\prime , y\prime )T = Z\alpha 
0 (x, y) = (sign(y), x2  - \alpha ) =

\Biggl\{ 
(1, x2  - \alpha ) if y > 0,

( - 1, x2  - \alpha ) if y < 0.
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The switching surface is given by \Sigma = \{ (x, 0), x \in \BbbR \} . Its phase space is depicted in Figure 1.
Following the notation of the previous section, we take

F - (x, y) = ( - 1, x2  - \alpha ), F+(x, y) = (1, x2  - \alpha ).

Notice that the above piecewise Hamiltonian differential system Z\alpha 
0 is R-reversible with

R(x, y) = (x, - y). In addition, it has two twofold singularities, one invisible, pi = (xi, 0) =
( - 

\surd 
\alpha , 0), and other visible, pv = (xv, 0) = (

\surd 
\alpha , 0).

The solution \Gamma  - (t, x, y) of (x\prime , y\prime )T = F - (x, y) can be easily computed as

\Gamma  - (t, x, y) =

\biggl( 
 - t+ x,

1

3
(t3  - 3t2x+ 3tx2 + 3y  - 3t\alpha )

\biggr) 
.

Furthermore, for each  - 
\surd 
\alpha < x \leq 

\surd 
\alpha , it is straightforward to see that \Gamma  - (t, x, 0) reaches

transversely \Sigma for t = \sigma (x) = 1
2(3x +

\surd 
3
\surd 
 - x2 + 4\alpha ). Hence, for  - 

\surd 
\alpha < x \leq 

\surd 
\alpha , the

reversibility property implies that the solution \gamma (t, x) of (4.1), satisfying \gamma (0, x) = (x, 0), is
given by

\gamma (t, x) =

\left\{         

\biggl( 
 - t+ x,

1

3
(t3  - 3t2x+ 3tx2  - 3t\alpha )

\biggr) 
if 0 \leq t \leq \sigma (x),\biggl( 

t+ x,
1

3
(t3 + 3t2x+ 3tx2  - 3t\alpha )

\biggr) 
if  - \sigma (x) \leq t \leq 0.

From the formula of \sigma (x), one obtains an explicit expression for the point (x\sigma , 0) satisfying
\sigma (x\sigma ) = \sigma :

(4.2) x\sigma =
1

6
(3\sigma  - 

\surd 
3
\sqrt{} 
12\alpha  - \sigma 2) \in ( - 

\surd 
\alpha ,

\surd 
\alpha ).

Accordingly, Z\alpha 
0 satisfies hypotheses (h1) and (h2). Furthermore, since \sigma (

\surd 
\alpha ) = 3

\surd 
\alpha , we

get \scrS = \{ \gamma (t,
\surd 
\alpha ) :  - 3

\surd 
\alpha \leq t \leq 3

\surd 
\alpha \} (see Figure 1). Clearly \scrS \cap \Sigma = \{ pv, qv\} , with

qv = \Gamma  - (\sigma (
\surd 
\alpha ),

\surd 
\alpha , 0) = ( - 2

\surd 
\alpha , 0).

4.1. Nonautonomous perturbation. Now, in order to illustrate the application of Theo-
rems A and B, we consider the following nonautonomous perturbation of (4.1):

(4.3) (x\prime , y\prime )T = Z\varepsilon (x, y) =

\Biggl\{ 
F+(x, y) + \varepsilon G+(t, x, y) if y > 0,

F - (x, y) + \varepsilon G - (t, x, y) if y < 0,

where

G+(t, x, y) =

\biggl( 
0, \lambda sin

\pi t

\sigma 

\biggr) 
and G - (t, x, y) =

\biggl( 
0, sin

\pi t

\sigma 

\biggr) 
for some \lambda \in \BbbR . Notice that G\pm (t, x, y) are 2\sigma -periodic in the variable t. We shall see that,
for convenient values of \lambda , system (4.3) satisfies the hypotheses of either Theorem A or B.

The fundamental matrix solution Y (t, x, y) = Y  - (t, x, y), defined in (2.4), is given by

Y (t, x, y) =

\biggl( 
1 0

 - t2 + 2tx 1

\biggr) 
.
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x

y

Figure 3. Numerical simulation of the Poincar\'e map of system (4.3) assuming \alpha = 1, \lambda = 2, \sigma = 2, and
\varepsilon = 1/1500. The boxes spot the fixed points corresponding to crossing periodic solutions predicted by Proposition
4.1.

Thus, we compute the function (3.4) as

M(\theta , x) =
\sigma 

\pi 

\biggl( 
\lambda cos

\Bigl[ \pi (3x+
\surd 
3
\surd 
4\alpha  - x2 + 2\theta )

2\sigma 

\Bigr] 
+ cos

\Bigl[ \pi (3x+
\surd 
3
\surd 
4\alpha  - x2  - 2\theta )

2\sigma 

\Bigr] 
 - (1 + \lambda ) cos

\Bigl[ \pi \theta 
\sigma 

\Bigr] \biggr) 
.

In the next result, as an application of Theorem A, we show that system (4.3) has two
crossing periodic solutions, provided that the period of the perturbation is strictly less than
6
\surd 
\alpha .

Proposition 4.1. Assume that \lambda \not =  - 1. Then, for each \sigma \in (0, 3
\surd 
\alpha ) and for \varepsilon > 0 suffi-

ciently small, there exist two crossing 2\sigma -periodic solutions of system (4.3) with initial condi-
tions \varepsilon -close to (3\sigma /2, (x\sigma , 0)) and (\sigma /2, (x\sigma , 0)), respectively (see Figure 3).

Proof. Given \sigma \in (0, 3
\surd 
\alpha ), notice that \sigma (x\sigma ) = \sigma if and only if x\sigma =

1

6
(3\sigma  - 

\surd 
3
\sqrt{} 

12\alpha  - \sigma 2)

\in ( - 
\surd 
\alpha ,

\surd 
\alpha ) (see (4.2)). Then

M(\theta , x\sigma ) =  - 2(1 + \lambda )\sigma 

\pi 
cos

\biggl( 
\pi \theta 

\sigma 

\biggr) 
,

where we used the relation\sqrt{} 
36\alpha + 2\sigma 

\Bigl( \sqrt{} 
36\alpha  - 3\sigma 2  - \sigma 

\Bigr) 
= \sigma +

\sqrt{} 
36\alpha  - 3\sigma 2

for every \alpha > 0 and \sigma \in [0, 2
\surd 
3\alpha ].
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Solving M(\theta , x\sigma ) = 0, for \theta \in \BbbS 1\sigma , we get \theta \ast 1 = 3\sigma /2 and \theta \ast 2 = \sigma /2. Moreover,

\partial M

\partial \theta 
(\theta \ast 2, x\sigma ) =  - \partial M

\partial \theta 
(\theta \ast 1, x\sigma ) = 2(1 + \lambda ) \not = 0.

Hence, the proof follows from Theorem A.

In the next result, as an application of Theorem B, we were able to detect crossing and
sliding periodic solutions of system (4.3), provided that the period of the perturbation is equal
to 6

\surd 
\alpha .

Proposition 4.2. Assume that \sigma = 3
\surd 
\alpha and \lambda \not =  - 1. Then, for \varepsilon > 0 sufficiently small,

the following statement holds:
(i) For \lambda \not = 1, there exists a sliding 6

\surd 
\alpha -periodic solution of system (4.3) with initial

condition \varepsilon -close to (3
\surd 
\alpha /2, (xv, 0)), which slides on either \Sigma s or \Sigma e, provided that

\lambda < 1 or \lambda > 1 (see Figure 4).
(ii) For \lambda < 0, there exists a sliding 6

\surd 
\alpha -periodic solution of system (4.3) with initial

conditions \varepsilon -close to (9
\surd 
\alpha /2, (xv, 0)), which slides on \Sigma e.

(iii) For \lambda > 0, there exists a crossing 6
\surd 
\alpha -periodic solution of system (4.3) with initial

conditions \varepsilon -close to (9
\surd 
\alpha /2, (xv, 0)).

Remark 4.3. Notice that, from Proposition 4.2, sliding and crossing periodic solutions
may coexist. More specifically, comparing the statements (i) and (ii), we get the following:

\bullet For \lambda \in ( - \infty , 0) \setminus \{  - 1\} , there exist two sliding 6
\surd 
\alpha -periodic solutions: one with

initial condition \varepsilon -close to (3
\surd 
\alpha /2, (xv, 0)), which slides on \Sigma s, and another with

initial conditions \varepsilon -close to (9
\surd 
\alpha /2, (x\sigma , 0)), which slides on \Sigma e.

\bullet For \lambda \in (0, 1), there exist a crossing 6
\surd 
\alpha -periodic solution with initial conditions

\varepsilon -close to (9
\surd 
\alpha /2, (x\sigma , 0)) and a sliding 6

\surd 
\alpha -periodic solution with initial condition

\varepsilon -close to (3
\surd 
\alpha /2, (xv, 0)), which slides on \Sigma s.

\bullet For \lambda \in (1,+\infty ), there exist a crossing 6
\surd 
\alpha -periodic solution with initial conditions

\varepsilon -close to (9
\surd 
\alpha /2, (x\sigma , 0)) and a sliding 6

\surd 
\alpha -periodic solution with initial condition

\varepsilon -close to (3
\surd 
\alpha /2, (xv, 0)), which slides on \Sigma e.

Proof of Proposition 4.2. If \sigma = 3
\surd 
\alpha , then G\pm (t, x, y) are 6

\surd 
\alpha -periodic in the variable t,

and

M(\theta ,
\surd 
\alpha ) =

 - 6
\surd 
\alpha (1 + \lambda )

\pi 
cos

\biggl( 
\pi \theta 

3
\surd 
\alpha 

\biggr) 
.

Solving M(\theta \ast ,
\surd 
\alpha ) = 0 for \theta \ast \in [0, 6

\surd 
\alpha ], we get \theta \ast 1 = 3

\surd 
\alpha /2 and \theta \ast 2 = 9

\surd 
\alpha /2. Moreover,

\partial M

\partial \theta 
(\theta \ast 2,

\surd 
\alpha ) =  - \partial M

\partial \theta 
(\theta \ast 1,

\surd 
\alpha ) = 2(1 + \lambda ) \not = 0,

and g\theta = 6
\surd 
\alpha (1 - \lambda )
\pi cos

\bigl( 
\pi \theta 
3
\surd 
\alpha 

\bigr) 
. Thus, g\theta \ast 1,2 = 0. Furthermore, G+

2 (\theta 
\ast 
n, pv) = ( - 1)(1+n)\lambda ,

G - 
2 (\theta 

\ast 
n, pv) = ( - 1)(1+n) for n = 1, 2, and

2F2(qv)

F1(pv)
\partial F2
\partial x (pv)

=  - 3
\surd 
\alpha .
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sliding segment

\Sigma 

x
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Figure 4. Numerical simulation of a sliding periodic solution predicted by Proposition 4.2(i) for system
(4.3) assuming \alpha = 1, \lambda =  - 3/2, \sigma = 3

\surd 
\alpha = 3, and \varepsilon = 1/2. The bold trajectory starts at the 2\sigma -periodic

visible fold curve of X - 
\varepsilon , with initial time condition t0 near to 3

\surd 
\alpha /2, then it crosses the discontinuity manifold,

reaches the sliding region, and slides on it reaching again the visible fold curve of X - 
\varepsilon at a time t0 + 2\sigma .

To obtain statement (i) notice that, for \lambda \not = 1, G+
2 (\theta 

\ast 
1, pv) \not = G - 

2 (\theta 
\ast 
1, pv). In this case,

g\theta \ast 1 = 0 >  - 3
\surd 
\alpha max

\bigl\{ 
G\pm 

2 (\theta 
\ast 
1, pv)

\bigr\} 
=  - 3

\surd 
\alpha max

\bigl\{ 
1, \lambda 
\bigr\} 
.

Therefore, from statement (a) of Theorem B, there exists a sliding 6
\surd 
\alpha -periodic solution with

initial condition \varepsilon -close to (3
\surd 
\alpha /2, pv). Moreover, for \lambda > 1, we have G+

2 (\theta 
\ast 
1, pv) > G - 

2 (\theta 
\ast 
1, pv),

which implies that this periodic solution slides on \Sigma e. Analogously, for \lambda < 1, we have
G+

2 (\theta 
\ast 
1, pv) < G - 

2 (\theta 
\ast 
1, pv), which implies that this periodic solution slides on \Sigma s.

To obtain statement (ii), notice that for \lambda < 0 we have

g\theta \ast 2 = 0 >  - 3
\surd 
\alpha max

\bigl\{ 
G\pm 

2 (\theta 
\ast 
2, pv)\} =  - 3

\surd 
\alpha max

\bigl\{ 
 - 1, - \lambda \} = 3

\surd 
\alpha \lambda .

Therefore, from statement (a) of Theorem B, there exists a sliding 6
\surd 
\alpha -periodic solution

with initial condition \varepsilon -close to (9
\surd 
\alpha /2, pv). Moreover, in this case, G+

2 (\theta 
\ast 
2, pv) > G - 

2 (\theta 
\ast 
2, pv),

which implies that this periodic solution slides on \Sigma e.
Finally, to obtain statement (iii), notice that for \lambda > 0 we have

g\theta \ast 2 = 0 <  - 3
\surd 
\alpha max

\bigl\{ 
G\pm 

2 (\theta 
\ast 
2, pv)\} =  - 3

\surd 
\alpha max

\bigl\{ 
 - 1, - \lambda \} .

Therefore, from statement (b) of Theorem B, there exists a crossing 6
\surd 
\alpha -periodic solution

with initial condition \varepsilon -close to (9
\surd 
\alpha /2, pv).

5. Proofs of Theorems A and B. Recall that to study a nonautonomous periodic differ-
ential equation w\prime = f(t, w), (t, z) \in \BbbS 1 \times D we can work in the extended phase space adding
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time as a variable \theta \prime = 1 and v\prime = f(\theta , v). If (\theta (t), v(t)) is a solution of the autonomous system
such that (\theta (0), v(0)) = (\theta , v), then v\prime (t) = f(\theta + t, v(t)) and w(t) := v(t  - \theta ) is the solution
of the nonautonomous system such that w(\theta ) = v.

Accordingly, we study system (3.1) in the extended phase space

(5.1) \theta \prime = 1, (x\prime , y\prime )T = Z\varepsilon (\theta , x, y),

where (\theta , x, y) \in \BbbS 1\sigma \times D, D \subset \BbbR 2, being \BbbS 1\sigma \equiv \BbbR /(2\sigma \BbbZ ). We note that (5.1) is also a
Filippov system having \widetilde \Sigma = \BbbS 1\sigma \times \Sigma as its discontinuity manifold. Moreover, \widetilde \Sigma = \~h - 1(0) for
\~h(\theta , x, y) = y.

Letting z \in D, the solutions \Phi \pm (t, \theta , z; \varepsilon ) of (5.1), restricted to y \gtrless 0, such that \Phi \pm (0, \theta , z; \varepsilon )
= (\theta , z) are given as

\Phi \pm (t, \theta , z; \varepsilon ) =
\bigl( 
t+ \theta , \xi \pm (t, \theta , z; \varepsilon )

\bigr) 
,

where \xi \pm (t, \theta , z; \varepsilon ) are solutions of

(5.2) \xi \prime = X\pm 
\varepsilon (t+ \theta , \xi ), \xi (0) = z, \xi \in D.

Lemma 5.1. Fix T > 0, \theta \in \BbbS 1\sigma , z0 \in D, and z1 \in \BbbR 2. Let

(5.3) \psi \pm (t, \theta , z0, z1) = Y \pm (t, z0)

\biggl( 
z1 +

\int t

0
Y \pm (s, z0)

 - 1G\pm \bigl( s+ \theta ,\Gamma \pm (s, z0)
\bigr) 
ds

\biggr) 
,

where Y \pm are the fundamental solutions (2.4) of the variational equations (2.5). Then, for
\varepsilon > 0 small enough, z0 + \varepsilon z1 \in D and the next equality holds:

\xi \pm (t, \theta 0 + \varepsilon \theta 1, z0 + \varepsilon z1; \varepsilon ) = \Gamma \pm (t, z0) + \varepsilon \psi \pm (t, \theta 0, z0, z1) +\scrO (\varepsilon 2), t \in [ - T, T ].

Proof. Computing the derivative in the variable t on both sides of the equality \xi \pm (t, \theta 0 +
\varepsilon \theta 1, z0 + \varepsilon z1; \varepsilon ) = \Gamma \pm (t, z0) + \varepsilon \Psi \pm (t) +\scrO (\varepsilon 2), we obtain

F\pm \bigl( \xi \pm (t, \theta 0 + \varepsilon \theta 1, z0 + \varepsilon z1; \varepsilon )
\bigr) 
+ \varepsilon G\pm \bigl( t+ \theta 0 + \varepsilon \theta 1, \xi 

\pm (t, \theta 0 + \varepsilon \theta 1, z0 + \varepsilon z1; \varepsilon )
\bigr) 

= F
\bigl( 
\Gamma \pm (t, z0)

\bigr) 
+ \varepsilon 

\partial \Psi \pm 

\partial t
(t) +\scrO (\varepsilon 2).

Expanding in Taylor series the left-hand side of the above equation around \varepsilon = 0, and com-
paring the coefficient of \varepsilon on the both sides, we conclude that

\partial \psi \pm 

\partial t
(t, \theta 0, z0, z1) = DF\pm \bigl( \Gamma \pm (t, z0)

\bigr) 
\Psi \pm (t) +G\pm \bigl( t+ \theta 0,\Gamma 

\pm (t, z0)
\bigr) 
.

Moreover, \psi \pm (0, \theta 0, z0, z1) = z1. Hence, the solution of the above differential equation is
given by (5.3). We observe that \Psi \pm (t) depends on \theta 0, z0, z1; then we denote \Psi \pm (t) =
\psi \pm (t, \theta 0, z0, z1).
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Applying Lemma 2.1 to the fundamental matrices Y \pm (see (2.4)) in the expression (5.3),
we get

\psi  - (t, \theta , z0, z1) = Y (t, z0)

\biggl( 
z1 +

\int t

0
Y (s, z0)

 - 1G - (s+ \theta ,\Gamma (s, z0)) ds

\biggr) 
,

\psi +( - t, \theta , Rz0, Rz1) = RY (t, z0)

\biggl( 
z1  - 

\int t

0
Y (s, z0)

 - 1RG+ ( - s+ \theta ,R\Gamma (s, z0)) ds

\biggr) 
.

Moreover, using that Y (t, z) = Dz\Gamma (t, z) in the first part of the above expressions, we have

(5.4)

\psi  - 
i (t, \theta , z0, z1)

=

\biggl\langle 
Dz\Gamma i(t, z0) , z1 +

\int t

0
Y (s, z0)

 - 1G - (s+ \theta ,\Gamma (s, x, 0)) ds

\biggr\rangle 
,

\psi +
i ( - t, \theta , Rz0, Rz1)

= ( - 1)i+1

\biggl\langle 
Dz\Gamma i(t, z0) , z1  - 

\int t

0
Y (s, z0)

 - 1RG+ ( - s+ \theta ,R\Gamma (s, x, 0)) ds

\biggr\rangle 
for i = 1, 2.

Observe that for \varepsilon = 0, system (5.1) has two lines of twofold points, one invisible (\theta , xi, 0)
and one visible (\theta , xv, 0) (see Figure 5). Moreover, for each \theta \in \BbbS 1\sigma and xi < x \leq xv there
exists a 2\sigma (x)-periodic solution \widetilde \Gamma (t, \theta , x) = \bigl( t+ \theta , \gamma (t, x)

\bigr) 
, where \gamma is given in (2.7).

\Sigma 

\widetilde \Gamma (\sigma v, \theta 0, pv)

(\theta 0, pv)

xi

xv

\theta 

x
y

Figure 5. The 2\sigma v-periodic solution \widetilde \Gamma (t, \theta 0, pv) of the extended system (5.1), for \varepsilon = 0, passing through
the visible twofold point (\theta 0, pv).

Notice that studying the bifurcation of the fold lines of system (5.1), for \varepsilon > 0, is equivalent
to studying the zeros of the functions

\langle \nabla h(x, 0), X\pm 
\varepsilon (\theta , (x, 0))\rangle = X\pm 

2 (\theta , (x, 0); \varepsilon ) = F\pm 
2 (x, 0) + \varepsilon G\pm 

2 (\theta , x, 0) +\scrO (\varepsilon 2).
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Thus, by hypothesis (h1), we obtain that for \varepsilon > 0 sufficiently small each one of the lines of
visible--visible fold points (\theta , xv, 0) bifurcates into two lines (\theta , \ell \pm v (\theta ; \varepsilon ), 0), one of visible fold
points for X+

\varepsilon and another of visible fold points for X - 
\varepsilon . Analogously, the line of invisible--

invisible fold points (\theta , xi, 0) bifurcates into two lines (\theta , \ell \pm i (\theta ; \varepsilon ), 0), one of invisible fold points
for X+

\varepsilon and another of invisible fold points for X - 
\varepsilon . Furthermore,

(5.5)

\ell \pm v (\theta ; \varepsilon ) = xv  - \varepsilon 
G\pm 

2 (\theta , pv)

\partial F2

\partial x
(pv)

+\scrO (\varepsilon 2) = xv + \varepsilon \nu \pm v (\theta ) +\scrO (\varepsilon 2),

\ell \pm i (\theta ; \varepsilon ) = xi  - \varepsilon 
G\pm 

2 (\theta , pi)

\partial F2

\partial x
(pi)

+\scrO (\varepsilon 2) = xi + \varepsilon \nu \pm i (\theta ) +\scrO (\varepsilon 2).

In what follows, \pi \theta , \pi x, and \pi y will denote the projections, defined on \BbbS 1\sigma \times D, onto the
first, second, and third coordinates, respectively.

5.1. Proof of Theorem A. The idea of this proof is to define a function \scrF : \BbbS 1\sigma \times (xi, xv) \rightarrow 
\BbbR 2 which allows us to determine the existence of crossing periodic solutions. Given \theta \in \BbbS 1\sigma 
and x \in (xi, xv), we consider the flows \Phi  - \bigl( t, \theta , (x, 0); \varepsilon \bigr) and \Phi +

\bigl( 
t, \theta + 2\sigma , (x, 0); \varepsilon 

\bigr) 
of (5.1).

If for some \theta \ast \in \BbbS 1\sigma and x\ast \in (xi, xv) there exist t - \ast \geq 0 and t+\ast \leq 0 such that

(5.6) \Phi  - \bigl( t - \ast , \theta \ast , (x\ast , 0); \varepsilon \bigr) = \Phi +
\bigl( 
t+\ast , \theta \ast + 2\sigma , (x\ast , 0); \varepsilon 

\bigr) 
\in \widetilde \Sigma ,

then t+\ast = t - \ast  - 2\sigma and therefore

\Phi 
\bigl( 
t, \theta \ast , (x\ast , 0); \varepsilon 

\bigr) 
=

\Biggl\{ 
\Phi +
\bigl( 
t, \theta \ast + 2\sigma , (x\ast , 0); \varepsilon 

\bigr) 
if t+\ast = t - \ast  - 2\sigma \leq t \leq 0,

\Phi  - \bigl( t, \theta \ast , (x\ast , 0); \varepsilon \bigr) if 0 \leq t \leq t - \ast 

is a 2\sigma -periodic crossing solution of system (5.1). Indeed, this solution is well defined because

\Phi +
\bigl( 
0, \theta \ast + 2\sigma , (x\ast , 0); \varepsilon 

\bigr) 
=
\bigl( 
\theta \ast + 2\sigma , \xi +(0, \theta \ast + 2\sigma , (x\ast , 0); \varepsilon )

\bigr) 
=
\bigl( 
\theta \ast + 2\sigma , x\ast , 0

\bigr) 
,

\Phi  - \bigl( 0, \theta \ast , (x\ast , 0); \varepsilon \bigr) = \bigl( \theta \ast , \xi  - (0, \theta \ast , (x\ast , 0); \varepsilon )\bigr) = \bigl( \theta \ast , x\ast , 0\bigr) 
and, as we are working in the cylinder \BbbS 1\sigma \times D, these two points are the same.

In what follows, we show the existence of \theta \ast and x\ast satisfying (5.6). For \varepsilon = 0 we know
that (see (2.7))

\pi y\Phi 
 - \bigl( \sigma (x), \theta , (x, 0); 0\bigr) = \xi  - 2

\bigl( 
\sigma (x), \theta , (x, 0); 0

\bigr) 
= \Gamma 2(\sigma (x), x, 0) = 0.

Since, by hypothesis (h2), this flow reaches transversally the set of discontinuity \widetilde \Sigma , we can
apply the implicit function theorem to obtain a time t - (\theta , x; \varepsilon ) = \sigma (x)+\varepsilon t - 1 (\theta , x)+\scrO (\varepsilon 2) > 0
such that

\pi y\Phi 
 - \bigl( t - (\theta , x; \varepsilon ), \theta , (x, 0); \varepsilon \bigr) = \xi  - 2

\bigl( 
t - (\theta , x; \varepsilon ), \theta , (x, 0); \varepsilon 

\bigr) 
= 0.

Analogously,

\pi y\Phi 
+
\bigl( 
 - \sigma (x), \theta + 2\sigma , (x, 0); 0

\bigr) 
= \xi +2

\bigl( 
 - \sigma (x), \theta + 2\sigma , (x, 0); 0

\bigr) 
=  - \Gamma 2(\sigma (x), x, 0) = 0;
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therefore there exists t+(\theta , x; \varepsilon ) =  - \sigma (x) + \varepsilon t+1 (\theta , x) < 0 such that

\pi y\Phi 
+
\bigl( 
t+(\theta , x; \varepsilon ), \theta + 2\sigma , (x, 0); \varepsilon 

\bigr) 
= \xi +2

\bigl( 
t+(\theta , x; \varepsilon ), \theta + 2\sigma , (x, 0); \varepsilon 

\bigr) 
= 0.

Using the expression for \xi \pm 2 given in Lemma 5.1 , we can easily obtain that

(5.7) t - 1 (\theta , x) =  - \psi 
 - 
2 (+\sigma (x), \theta , (x, 0), (0, 0))

F2 (\gamma (\sigma (x), x, 0))

and

(5.8)

t+1 (\theta , x) =  - \psi 
+
2 ( - \sigma (x), \theta + 2\sigma , (x, 0), (0, 0))

F2 (\gamma (\sigma (x), x, 0))

=  - \psi 
+
2 ( - \sigma (x), \theta , (x, 0), (0, 0))
F2 (\gamma (\sigma (x), x, 0))

,

where \gamma is defined in (2.7). Moreover, from (5.4), we get

(5.9)

\psi  - 
i (\sigma (x), \theta , (x, 0), (0, 0))

=

\biggl\langle 
Dz\Gamma i(\sigma (x), x, 0) ,

\int \sigma (x)

0
Y (s, x, 0) - 1G - (s+ \theta , \gamma (s, x)) ds

\biggr\rangle 
,

\psi +
i ( - \sigma (x), \theta + 2\sigma , (x, 0), (0, 0))

= ( - 1)i
\biggl\langle 
Dz\Gamma i(\sigma (x), x, 0) ,

\int \sigma (x)

0
Y (s, x, 0) - 1RG+ ( - s+ \theta ,R\gamma (s, x)) ds

\biggr\rangle 
for i = 1, 2.

Accordingly, define \scrF (\theta , x; \varepsilon ) = (\scrF 1(\theta , x; \varepsilon ),\scrF 2(\theta , x; \varepsilon )) as

\scrF 1(\theta , x; \varepsilon ) = \pi \theta \Phi 
 - (t - (\theta , x; \varepsilon ), \theta , (x, 0); \varepsilon ) - \pi \theta \Phi 

+(t+(\theta , x; \varepsilon ), \theta + 2\sigma , (x, 0); \varepsilon )

= t - (\theta , x; \varepsilon ) - t+(\theta , x; \varepsilon ) - 2\sigma = 2(\sigma (x) - \sigma ) +\scrO (\varepsilon ),

\scrF 2(\theta , x; \varepsilon ) = \pi x\Phi 
 - (t - (\theta , x; \varepsilon ), \theta , (x, 0); \varepsilon ) - \pi x\Phi 

+(t+(\theta , x; \varepsilon ), \theta + 2\sigma , (x, 0); \varepsilon )

= \xi  - 1 (t
 - (\theta , x; \varepsilon ), \theta , (x, 0); \varepsilon ) - \xi +1 (t

+(\theta , x; \varepsilon ), \theta + 2\sigma , (x, 0); \varepsilon ).

From Lemma 5.1, expressions (5.7) and (5.8), and the reversibility condition (2.3), and by
using that \gamma ( - \sigma (x), x) = \gamma (\sigma (x), x) for xi < x < xv, we get

\xi +1 (t
+(\theta , x; \varepsilon ), \theta + 2\sigma , (x, 0); \varepsilon )

= \gamma 1(\sigma (x), x) + \varepsilon 
\Bigl( 
F+
1 (\gamma (\sigma (x), x))t+1 (\theta , x) + \psi +

1 ( - \sigma (x), \theta , (x, 0), (0, 0))
\Bigr) 
+\scrO (\varepsilon 2)

= \gamma 1(\sigma (x), x) + \varepsilon 

\Biggl( 
F1(\gamma (\sigma (x), x))

F2(\gamma (\sigma (x), x))
\psi +
2 ( - \sigma (x), \theta + 2\sigma , (x, 0), (0, 0))

+ \psi +
1 ( - \sigma (x), \theta , (x, 0), (0, 0))

\Biggr) 
+\scrO (\varepsilon 2),
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\xi  - 1 (t
 - (\theta , x; \varepsilon ), \theta , (x, 0); \varepsilon )

= \gamma 1(\sigma (x), x) + \varepsilon 
\Bigl( 
F - 
1 (\gamma (\sigma (x), x))t - 1 (\theta , x) + \psi  - 

1 (\sigma (x), \theta , (x, 0), (0, 0))
\Bigr) 
+\scrO (\varepsilon 2)

= \gamma 1(\sigma (x), x) + \varepsilon 

\Biggl( 
 - F1(\gamma (\sigma (x), x))

F2(\gamma (\sigma (x), x))
\psi  - 
2 (\sigma (x), \theta , (x, 0), (0, 0))

+ \psi  - 
1 (\sigma (x), \theta , (x, 0), (0, 0))

\Biggr) 
+\scrO (\varepsilon 2).

Therefore,

\scrF 2(\theta , x; \varepsilon )

\varepsilon 
= \psi  - 

1 (\sigma (x), \theta , (x, 0), (0, 0)) - \psi +
1 ( - \sigma (x), \theta + 2\sigma , (x, 0), (0, 0))

 - F1(\gamma (\sigma (x), x))

F2(\gamma (\sigma (x), x))

\Bigl( 
\psi +
2 ( - \sigma (x), \theta + 2\sigma , (x, 0), (0, 0))

+ \psi  - 
2 (\sigma (x), \theta , (x, 0), (0, 0))

\Bigr) 
+\scrO (\varepsilon ).

Now, from (5.9) we have that

\psi  - 
1 (\sigma (x), \theta , (x, 0), (0, 0)) - \psi +

1 ( - \sigma (x), \theta + 2\sigma , (x, 0), (0, 0))

=

\biggl\langle 
Dz\Gamma 1(\sigma (x), x, 0) ,

\int \sigma (x)

0
Y (t, x, 0) - 1

\bigl\{ 
G - , G+

\bigr\} 
\theta 
(t, \gamma (t, x))dt

\biggr\rangle 
and

\psi  - 
2 (\sigma (x), \theta , (x, 0), (0, 0)) + \psi +

2 ( - \sigma (x), \theta + 2\sigma , (x, 0), (0, 0))

=

\biggl\langle 
Dz\Gamma 2(\sigma (x), x, 0) ,

\int \sigma (x)

0
Y (t, x, 0) - 1

\bigl\{ 
G - , G+

\bigr\} 
\theta 
(t, \gamma (t, x))dt

\biggr\rangle 
,

where \{ G - , G+\} \theta (t, z) = G - (t+ \theta , z) +RG+( - t+ \theta ,Rz), see (3.3).

Since Y T
\bigl( 
 - F2, F1

\bigr) T
= F1Dz\Gamma 2  - F2Dz\Gamma 1, we obtain

\langle F1Dz\Gamma 1  - F2Dz\Gamma 2 , V \rangle =
\bigl\langle \bigl( 

 - F2, F1

\bigr) 
, Y V

\bigr\rangle 
= F \wedge Y V.

Hence, we conclude that

(5.10)  - F2(\gamma (\sigma (x), x))\scrF 2(\theta , x; \varepsilon ) = \varepsilon M(\theta , x) +\scrO (\varepsilon 2),

where M(\theta , x) is defined in (3.4).
From the construction of \scrF it is clear that a subharmonic crossing periodic solution of

system (3.1) exists, for \varepsilon > 0 sufficiently small, if and only if there are \theta \varepsilon \in \BbbS 1\sigma and x\varepsilon \in (xi, xv)
such that \scrF (\theta \varepsilon , x\varepsilon ; \varepsilon ) = (0, 0).

By the hypothesis, \scrF 1(\theta , x\sigma ; 0) = 0 and, from (2.9),

\partial \scrF 1

\partial x
(\theta , x\sigma ; 0) = 2\sigma \prime (x\sigma ) =

\partial \gamma 2
\partial x

(\sigma (x\sigma ), x\sigma )

F2(\gamma (\sigma (x\sigma ), x\sigma ))
\not = 0.
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Thus, by the implicit function theorem there exists x(\theta ; \varepsilon ) such that

\scrF 1(\theta , x(\theta ; \varepsilon ); \varepsilon ) = 0 and x(\theta ; \varepsilon ) \rightarrow x\sigma 

when \varepsilon \rightarrow 0 for every \theta \in \BbbS 1\sigma .
Now, we take

\widetilde \scrF (\theta ; \varepsilon ) =  - 
F+
2

\bigl( 
\gamma (\sigma (x(\theta ; \varepsilon )), x(\theta ; \varepsilon ))

\bigr) 
\varepsilon 

\scrF 2(\theta , x(\theta ; \varepsilon ); \varepsilon ).

From (5.10) the above equation is written as\widetilde \scrF (\theta ; \varepsilon ) =M(\theta , x(\theta ; \varepsilon )) +\scrO (\varepsilon ) =M(\theta , x\sigma ) +\scrO (\varepsilon ).

By hypothesis there exists \theta \ast \in \BbbS 1\sigma such that\widetilde \scrF (\theta \ast , 0) =M(\theta \ast , x\sigma ) = 0 and (\partial \widetilde \scrF /\partial \theta )(\theta \ast , 0) = (\partial M/\partial \theta )(\theta \ast , x\sigma ) \not = 0.

Thus, applying again the implicit function theorem, we conclude that, for \varepsilon > 0 sufficiently
small, there exists \theta \varepsilon \in \BbbS 1\sigma such that \widetilde \scrF (\theta \varepsilon ; \varepsilon ) = 0. Moreover, \theta \varepsilon \rightarrow \theta \ast as \varepsilon \rightarrow 0. This concludes
the proof of Theorem A.

5.2. Proof of statement (a) of Theorem B. Since G+
2 (\theta 

\ast , pv) \not = G - 
2 (\theta 

\ast , pv), we can
assume that there exist a, b \in [0, 2\sigma v] with a < b and \theta \ast \in (a, b) such thatG+

2 (t, pv) \not = G - 
2 (t, pv)

for every t \in [a, b]. Without loss of generality, we suppose that G+
2 (t, pv) < G - 

2 (t, pv) for every
t \in [a, b]. At the end of the proof we shall comment on the case when G+

2 (t, pv) > G - 
2 (t, pv)

for every t \in [a, b].
The above assumption and expression (5.5) imply that \ell +v (\theta ; \varepsilon ) > \ell  - v (\theta ; \varepsilon ) for every \theta \in 

[a, b] and \varepsilon > 0 sufficiently small.
Let \scrR \varepsilon be the region on \widetilde \Sigma \subset \BbbS 1\sigma v

\times \BbbR delimited by the graphs \ell \pm v (\theta ; \varepsilon ) for \theta \in [a, b],
that is, \scrR \varepsilon = \{ (\theta , x, 0) : \theta \in [a, b], \ell  - v (\theta ; \varepsilon ) < x < \ell +v (\theta ; \varepsilon )\} . A straightforward computation
shows that this is a region of sliding type. Moreover, the autonomous vector field (5.1) is
2\sigma v-periodic in the variable \theta , so the regions \scrR n

\varepsilon = \{ (\theta +2n\sigma v, x) : (\theta , x) \in \scrR \varepsilon \} for n \in \BbbN are
of sliding type.

The expression of the sliding vector field for each region \scrR n
\varepsilon , n \in \BbbN , is

(5.11)

\theta \prime = u(\theta , x; \varepsilon ) = 1,

\varepsilon x\prime = v(\theta , x; \varepsilon ) =
f0(x)

G+
2 (\theta , x, 0) - G - 

2 (\theta , x, 0)
+ \varepsilon 

\Biggl( 
f1(\theta , x)

G+
2 (\theta , x, 0) - G - 

2 (\theta , x, 0)

+ f0(x)
H - 

2 (\theta , (x, 0); \varepsilon ) - H+
2 (\theta , (x, 0); \varepsilon )

(G+
2 (\theta , x, 0) - G - 

2 (\theta , x, 0))
2

\Biggr) 
+\scrO (\varepsilon 2),

where
f0(x) = 2F1(x, 0)F2(x, 0),

f1(\theta , x) = F2(x, 0)
\bigl( 
G - 

1 (\theta , x, 0) - G+
1 (\theta , x, 0)

\bigr) 
+ F1(x, 0)

\bigl( 
G+

2 (\theta , x, 0) +G - 
2 (\theta , x, 0)

\bigr) 
.
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System (5.11) can be studied using singular perturbation theory (see, for instance, [12, 20]).
In this theory, system (5.11) is known as a slow system. Setting \varepsilon = 0, we can find the critical
manifold as

\scrM 0 = \{ (\theta , x) \in \scrR n
\varepsilon : f0(x) = 0\} = \{ (\theta + 2n\sigma v, xv) : \theta \in [a, b]\} .

Now, doing the time rescaling t = \varepsilon \tau , system (5.11), for \varepsilon > 0, becomes

(5.12)
\.\theta = \varepsilon u(\theta , x; \varepsilon ) = \varepsilon ,

\.x = v(\theta , x; \varepsilon ),

which is known as a fast system. Computing the derivative with respect to the variable x of
the function v for \varepsilon = 0 at the points of (\theta + 2n\sigma v, xv) \in \scrM 0, we obtain

(5.13)
\partial v

\partial x
(\theta + 2n\sigma v, xv; 0) = p(\theta ) =

2F1(pv)
\partial F2

\partial x
(pv)

G+
2 (\theta , pv) - G - 

2 (\theta , pv)
> 0,

for every \theta \in [a, b], by hypothesis (h2) and the assumption G+
2 (\theta , pv) < G - 

2 (\theta , pv). Therefore,
for \varepsilon = 0, \scrM 0 is a normally hyperbolic repelling critical manifold for the vector field (5.12)
and also for the sliding vector field (5.11).

Applying Fenichel's theorem we conclude that there exists a normally hyperbolic repelling
locally invariant manifold \scrM \varepsilon = \{ (\theta + 2n\sigma v,m(\theta ; \varepsilon )) : \theta \in [a, b]\} of the system (5.12), which
is \varepsilon -close to \scrM 0:

m(\theta ; \varepsilon ) = xv + \varepsilon m1(\theta ) +\scrO (\varepsilon 2).

Notice that (\theta (t) + 2n\sigma v,m(\theta (t); \varepsilon )) is a trajectory of system (5.11), so

v(\theta + 2n\sigma v,m(\theta ; \varepsilon ); \varepsilon ) = \varepsilon (\partial m/\partial \theta )(\theta ; \varepsilon ).

Accordingly, for \varepsilon \geq 0 small enough, we may compute

(5.14) m1(\theta ) =  - G
+
2 (\theta , pv) +G - 

2 (\theta , pv)

2
\partial F2

\partial x
(pv)

,

and therefore \scrM \varepsilon \subset \scrR \varepsilon .
Since Fenichel's manifold is repelling, we have that for a given point (\theta 0, \ell 

 - 
v (\theta 0; \varepsilon )) \in \partial \scrR n

\varepsilon 

there exists an orbit \delta (\theta 0; \varepsilon ) of the sliding vector field (5.11) reaching the point (\theta 0, \ell 
 - 
v (\theta 0; \varepsilon ))

(see Figure 6). In what follows, we shall parametrize this orbit.
Given N > 0, we want to compute the solution of system (5.11) starting at (\theta , \ell  - v (\theta ; \varepsilon ))

for  - N\varepsilon < t < 0. Equivalently, we compute the solution of system (5.12) starting at the same
point but for  - N < \tau < 0.

We denote by
\bigl( 
\theta s(\tau , \theta ; \varepsilon ), xs(\tau , \theta ; \varepsilon )

\bigr) 
the solution of (5.12) with initial condition:

\bigl( 
\theta s(0, \theta ; \varepsilon ),

xs(0, \theta ; \varepsilon )
\bigr) 
= (\theta , \ell  - v (\theta ; \varepsilon )). Clearly \theta s(\tau , \theta ; \varepsilon ) = \theta + \varepsilon \tau . Take xs(\tau , \theta ; \varepsilon ) = xv + \varepsilon k(\tau , \theta )+\scrO (\varepsilon 2).

Expanding both sides of the equality

\partial xs
\partial \tau 

(\tau , \theta ; \varepsilon ) = v(\theta + \varepsilon \tau , xs(\tau , \theta ; \varepsilon ); \varepsilon )
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in Taylor series with respect to \varepsilon we derive the following differential equation

(5.15)

\partial k

\partial \tau 
(\tau , \theta ) = p(\theta )k(\tau , \theta ) + F1(pv)

\biggl( 
G+

2 (\theta , pv) +G - 
2 (\theta , pv)

G+
2 (\theta , pv) - G - 

2 (\theta , pv)

\biggr) 
= p(\theta )k(\tau , \theta ) - m1(\theta )p(\theta ),

k(0, \theta ) = \nu  - v (\theta ) =  - G
 - 
2 (\theta , pv)

\partial F2

\partial x
(pv)

= m1(\theta ) +
F1(pv)

p(\theta )
,

where \nu  - v (\theta ), p(\theta ), andm1(\theta ) are defined in (5.5), (5.13), and (5.14), respectively. The relation
p(\theta )(\nu  - v (\theta ) - m1(\theta )) = F1(pv) has been used in order to get the above equalities. Solving the
initial value problem (5.15), we obtain

(5.16) k(\tau , \theta ) = m1(\theta ) +
F1(pv)

p(\theta )
e\tau p(\theta ).

We have then found a set

\widetilde \delta (\theta ; \varepsilon ) = \{ (\theta s(\tau , \theta ; \varepsilon ), xs(\tau , \theta ; \varepsilon )) :  - N < \tau < 0\} 

parametrized by \tau , which is contained in the orbit \delta (\theta ; \varepsilon ).
From here, the idea of the proof is analogous to the proof of Theorem A, which consists

in defining a function \scrF : (a, b) \times ( - N, 0) \rightarrow \BbbR 2 that allows us to determine the existence of
sliding periodic solutions of system (3.1). Given \theta \in (a, b), we consider the flows

\Phi  - \bigl( t, \theta , \ell  - v (\theta ; \varepsilon ), 0; \varepsilon \bigr) and \Phi +
\bigl( 
t, \theta s(\tau , \theta + 2\sigma v; \varepsilon ), xs(\tau , \theta + 2\sigma v; \varepsilon ), 0; \varepsilon 

\bigr) 
.

The vector field (5.1) is 2\sigma v-periodic in the variable \theta , which means that \theta \equiv \theta + 2\sigma v. Thus,
if for some \theta \ast \in [0, 2\sigma v] and \tau \ast \in ( - N, 0) there exist s - \ast \geq 0 and s+\ast \leq 0 such that

\Phi  - \bigl( s - \ast , \theta \ast , \ell  - v (\theta \ast ; \varepsilon ), 0; \varepsilon \bigr) = \Phi +
\bigl( 
s+\ast , \theta s(\tau \ast , \theta \ast + 2\sigma v; \varepsilon ), xs(\tau \ast , \theta \ast + 2\sigma v; \varepsilon ), 0; \varepsilon 

\bigr) 
\in \Sigma ,

then there exists a sliding 2\sigma v-periodic solution of system (5.1) and, consequently, of system
(3.1) (see Figure 6).

Again, analogously to the proof of Theorem A, we can use the implicit function theorem
to find times s - (\theta ; \varepsilon ) > 0 and s+(\tau , \theta ; \varepsilon ) < 0 such that

\xi  - 2
\bigl( 
s - (\theta ; \varepsilon ), \theta , \ell  - v (\theta ; \varepsilon ), 0; \varepsilon 

\bigr) 
= 0 and

\xi +2
\bigl( 
s+(\tau , \theta ; \varepsilon ), \theta s(\tau , \theta + 2\sigma v; \varepsilon ), xs(\tau , \theta + 2\sigma v; \varepsilon ), 0; \varepsilon 

\bigr) 
= 0.

Moreover, using the expression for \xi  - 2 given in Lemma 5.1 with \theta = \theta , z0 = pv, and z1 =
(\nu  - v (\theta ), 0), where \nu 

 - 
v (\theta ) is given in (5.5), we obtain that s - (\theta ; \varepsilon ) = \sigma v + \varepsilon s - 1 (\theta ) + \scrO (\varepsilon 2),

provided that

(5.17) s - 1 (\theta ) =  - \psi 
 - 
2 (\sigma v, \theta , pv, (\nu 

 - 
v (\theta ), 0))

F2 (qv)
,
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\Sigma 

\ell +v
\ell  - v

\theta 

xy

\theta \ast 
\scrM \varepsilon 

\~\delta \subset \delta 
\theta \ast + 2\sigma v

Figure 6. Methodology for constructing the displacement function to detect sliding 2\sigma v-periodic solutions
of system (3.1) for \varepsilon > 0 sufficiently small.

where qv is defined in (2.8). Analogously, using the expression for \xi +2 given in Lemma 5.1
with \theta = \theta + 2\sigma v, z0 = pv, and z1 = (k(\tau , \theta ), 0), where k(\tau , \theta ) is given in (5.16), we obtain
s+(\tau , \theta ; \varepsilon ) =  - \sigma v + \varepsilon s+1 (\tau , \theta ) +\scrO (\varepsilon 2), provided that

(5.18) s+1 (\tau , \theta ) =  - \psi 
+
2 ( - \sigma v, \theta , pv, (k(\tau , \theta ), 0))

F2 (qv)
.

Moreover, from (5.4), we get

(5.19)

\psi  - 
i (\sigma v, \theta , pv, (\nu 

 - 
v (\theta ), 0)) =

\partial \Gamma i

\partial x
(\sigma v, pv)\nu 

 - 
v (\theta )

+

\biggl\langle 
Dz\Gamma i(\sigma v, pv) ,

\int \sigma v

0
Y (s, pv)

 - 1G - (s+ \theta , \gamma (s, xv)) ds

\biggr\rangle 
,

\psi +
i ( - \sigma v, \theta , pv, (k(\tau , \theta ), 0)) = ( - 1)i+1\partial \Gamma i

\partial x
(\sigma v, pv)k(\tau , \theta )

+

\biggl\langle 
Dz\Gamma i(\sigma v, pv) , ( - 1)i

\int \sigma v

0
Y (s, pv)

 - 1RG+ ( - s+ \theta ,R\gamma (s, xv)) ds

\biggr\rangle 

for i = 1, 2.
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Accordingly, define \scrG (\tau , \theta ; \varepsilon ) = (\scrG 1(\tau , \theta ; \varepsilon ),\scrG 2(\tau , \theta ; \varepsilon )) as

\scrG 1(\tau , \theta ; \varepsilon ) = \pi \theta \Phi 
 - (s - (\theta ; \varepsilon ), \theta , (\ell  - v (\theta ; \varepsilon ), 0); \varepsilon )

 - \pi \theta \Phi 
+(s+(\tau , \theta ; \varepsilon ), \theta s(\tau , \theta + 2\sigma v; \varepsilon ), (xs(\tau , \theta + 2\sigma v; \varepsilon ), 0); \varepsilon )

= s - (\theta ; \varepsilon ) + \theta  - s+(\tau , \theta ; \varepsilon ) - \theta s(\tau , \theta + 2\sigma v; \varepsilon )

= \varepsilon (s - 1 (\theta ) - s+1 (\tau , \theta ) - \tau ) +\scrO (\varepsilon 2),

\scrG 2(\tau , \theta ; \varepsilon ) = \pi x\Phi 
 - (s - (\theta ; \varepsilon ), \theta , (\ell  - v (\theta ; \varepsilon ), 0); \varepsilon )

 - \pi x\Phi 
+(s+(\tau , \theta ; \varepsilon ), \theta s(\tau , \theta + 2\sigma v; \varepsilon ), (xs(\tau , \theta + 2\sigma v; \varepsilon ), 0); \varepsilon )

= \xi  - 1 (s
 - (\theta ; \varepsilon ), \theta , (xv + \varepsilon \nu  - v (\theta ), 0); \varepsilon )

 - \xi +1 (s
+(\tau , \theta ; \varepsilon ), \theta + 2\sigma v + \varepsilon \tau , (xv + \varepsilon k(\tau , \theta ), 0); \varepsilon ).

To compute the function \scrG 2, first we see that

F2(qv)
\bigl( 
s - 1 (\theta ) - s+1 (\tau , \theta )

\bigr) 
= \psi +

2 ( - \sigma v, \theta , pv, (k(\tau , \theta ), 0)) - \psi  - 
2 (\sigma v, \theta , pv, (\nu 

 - 
v (\theta ), 0))

=  - \partial \Gamma 2

\partial x
(\sigma v, pv)

\bigl( 
k(\tau , \theta ) + \nu  - v (\theta )

\bigr) 
 - g\theta 

=  - F2(qv)

F1(pv)

\bigl( 
k(\tau , \theta ) + \nu  - v (\theta )

\bigr) 
 - g\theta ,

where g\theta is defined in (3.5). To obtain the above expression we have used Lemma 2.2 and
expression (5.19). Therefore,

\scrG 1(\tau , \theta ; \varepsilon ) =  - \varepsilon 

F2(qv)

\biggl( 
F2(qv)\tau +

F2(qv)

F1(pv)

\bigl( 
k(\tau , \theta ) + \nu  - v (\theta )

\bigr) 
+ g\theta 

\biggr) 
+\scrO (\varepsilon 2).

We compute \scrG 2(\tau , \theta ; \varepsilon ). From Lemma 5.1 and expressions (5.17), (5.18), and (5.19) we get

\xi  - 1 (s
 - (\theta ; \varepsilon ), \theta , (xv + \varepsilon \nu  - v (\theta ), 0); \varepsilon )

= \gamma 1(\sigma v, xv) + \varepsilon 
\Bigl( 
F - 
1 (qv)s

 - 
1 (\theta ) + \psi  - 

1 (\sigma v, \theta , pv, (\nu 
 - 
v (\theta ), 0))

\Bigr) 
+\scrO (\varepsilon 2)

= \gamma 1(\sigma v, xv) + \varepsilon 

\Biggl( 
 - F1(qv)

F2(qv)
\psi  - 
2 (\sigma v, \theta , pv, (\nu 

 - 
v (\theta ), 0))

+ \psi  - 
1 (\sigma v, \theta , pv, (\nu 

 - 
v (\theta ), 0))

\Biggr) 
+\scrO (\varepsilon 2),
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where \gamma is given in (2.7), and

\xi +1 (s
+(\tau , \theta ; \varepsilon ), \theta + 2\sigma v + \varepsilon \tau , (xv + \varepsilon k(\tau , \theta ), 0); \varepsilon )

= \gamma 1(\sigma v, xv) + \varepsilon 
\Bigl( 
F+
1 (qv)s

+
1 (\tau , \theta ) + \psi +

1 ( - \sigma v, \theta , pv, (k(\tau , \theta ), 0))
\Bigr) 
+\scrO (\varepsilon 2)

= \gamma 1(\sigma v, xv) + \varepsilon 

\Biggl( 
F1(qv)

F2(qv)
\psi +
2 ( - \sigma v, \theta , pv, (k(\tau , \theta ), 0))

+ \psi +
1 ( - \sigma v, \theta , pv, (k(\tau , \theta ), 0))

\Biggr) 
+\scrO (\varepsilon 2).

Thus,

\scrG 2(\tau , \theta ; \varepsilon )

\varepsilon 
= \psi  - 

1 (\sigma v, \theta , pv, (\nu 
 - 
v (\theta ), 0)) - \psi +

1 ( - \sigma v, \theta , pv, (k(\tau , \theta ), 0))

 - F1(qv)

F2(qv)

\Bigl( 
\psi  - 
2 (\sigma v, \theta , pv, (\nu 

 - 
v (\theta ), 0)) + \psi +

2 ( - \sigma v, \theta , pv, (k(\tau , \theta ), 0))
\Bigr) 
+\scrO (\varepsilon ).

From (5.19) we have

\psi  - 
1 (\sigma v, \theta , pv, (\nu 

 - 
v (\theta ), 0)) - \psi +

1 ( - \sigma v, \theta , pv, (k(\tau , \theta ), 0))

=
\partial \Gamma 1

\partial x
(\sigma v, pv)

\bigl( 
\nu  - v (\theta ) - k(\tau , \theta )

\bigr) 
+

\Biggl\langle 
Dz\Gamma 1(\sigma v, pv) ,

\int \sigma v

0
Y (t, pv)

 - 1
\bigl\{ 
G - , G+

\bigr\} 
\theta 
(t, \gamma (t, xv))dt

\Biggr\rangle 

and
\psi  - 
2 (\sigma v, \theta , pv, (\nu 

 - 
v (\theta ), 0)) + \psi +

2 ( - \sigma v, \theta , pv, (k(\tau , \theta ), 0))

=
\partial \Gamma 2

\partial x
(\sigma v, pv)

\bigl( 
\nu  - v (\theta ) - k(\tau , \theta )

\bigr) 
+

\Biggl\langle 
Dz\Gamma 2(\sigma v, pv) ,

\int \sigma v

0
Y (t, pv)

 - 1
\bigl\{ 
G - , G+

\bigr\} 
\theta 
(t, \gamma (t, xv))dt

\Biggr\rangle 
.

Similar to the proof of Theorem A we obtain that

 - F2(qv)\scrG 2(\tau , \theta ; \varepsilon ) = \varepsilon 
\bigl( 
\nu  - v (\theta ) - k(\tau , \theta )

\bigr) 
F (qv) \wedge 

\partial \Gamma 

\partial x
(\sigma v, pv) + \varepsilon M(\theta , xv) +\scrO (\varepsilon 2),

where M(\theta , x) is defined in (3.4). As a direct consequence of Lemma 2.2 we have that the
above wedge product vanishes. Therefore,

\scrG 2(\tau , \theta ; \varepsilon ) =  - \varepsilon 

F2(qv)
M(\theta , xv) +\scrO (\varepsilon 2).
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Now, consider the function

\widetilde \scrG (\tau , \theta ; \varepsilon ) =  - F2(qv)

\varepsilon 
\scrG (\tau , \theta ; \varepsilon ) =

\Bigl( \widetilde \scrG 1(\tau , \theta ) , \widetilde \scrG 2(\theta )
\Bigr) 
+\scrO (\varepsilon ).

Thus, \widetilde \scrG 1(\tau , \theta ) = F2(qv)\tau +
F2(qv)

F1(pv)

\bigl( 
k(\tau , \theta ) + \nu  - v (\theta )

\bigr) 
+ g\theta ,

\widetilde \scrG 2(\theta ) =M(\theta , xv).

By the hypothesis there exists \theta \ast \in \BbbS 1\sigma v
such that M(\theta \ast , xv) = 0 and (\partial M/\partial \theta ) (\theta \ast , xv) \not = 0.

Now, we note that the equation \widetilde \scrG 1(\tau , \theta 
\ast ) = 0 is equivalent, using (5.16), to the equation

(5.20) \tau +
1

p(\theta \ast )
e\tau p(\theta 

\ast ) +A(\theta \ast ) = 0, where A(\theta ) =
m1(\theta ) + \nu  - v (\theta )

F1(pv)
+

g\theta 
F2(qv)

,

where p(\theta ) and m1(\theta ) are defined in (5.13) and (5.14), respectively. Since p(\theta \ast ) > 0, (5.20)
becomes

r(\tau )er(\tau ) = e - A(\theta \ast )p(\theta \ast ) with r(\tau ) =  - (\tau +A(\theta \ast ))p(\theta \ast ),

which admits a unique real solution

\tau \ast =  - A(\theta \ast ) - 1

p(\theta \ast )
W
\Bigl( 
e - A(\theta \ast )p(\theta \ast )

\Bigr) 
.

Here, W denotes the Lambert W-function (x = W (y) gives the solution of xex = y; for a
definition, see [7]). From the properties of the W-function, we know that W (e\beta ) > \beta if and
only if \beta < 1. Then we obtain that \tau \ast < 0 if and only if A(\theta \ast )p(\theta \ast ) >  - 1. This follows from
hypothesis (a) of the theorem, which we write as

g\theta \ast >
2F2(qv)

F1(pv)
\partial F2

\partial x
(pv)

G - 
2 (\theta 

\ast , pv).

Accordingly, we takeN =  - 2\tau \ast in order to have (\tau \ast , \theta \ast ) \in ( - N, 0)\times (a, b) and \widetilde \scrG (\tau \ast , \theta \ast , 0) =
0. Moreover,

det

\Biggl( 
\partial \widetilde \scrG 

\partial (\tau , \theta )
(\tau \ast , \theta \ast , 0)

\Biggr) 
=

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
F2(qv)

\bigl( 
1 + e\tau 

\ast p(\theta \ast )
\bigr) 

\#

0
\partial M

\partial \theta 
(\theta \ast , xv)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
= F2(qv)

\Bigl( 
1 + e\tau 

\ast p(\theta \ast )
\Bigr) \partial M
\partial \theta 

(\theta \ast , xv) \not = 0.

Thus, applying the implicit function theorem, we conclude that for \varepsilon > 0 sufficiently small
there exist \theta \varepsilon \in (a, b) and \tau \varepsilon \in ( - N, 0) such that \scrG (\tau \varepsilon , \theta \varepsilon ; \varepsilon ) = \widetilde \scrG (\tau \varepsilon , \theta \varepsilon ; \varepsilon ) = 0 and \theta \varepsilon \rightarrow \theta \ast 

and \tau \varepsilon \rightarrow \tau \ast when \varepsilon \rightarrow 0.
For the case when G+

2 (t, pv) > G - 
2 (t, pv) for every t \in [a, b] the same argument works

reversing time. Therefore, in this case, the obtained sliding periodic solutions slide on \Sigma e.
This concludes the proof of item (a) of Theorem B.
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5.3. Proof of statement (b) of Theorem B. Let K \subset \BbbS 1\sigma v
\times \BbbR be the set of pairs (\theta , \chi )

such that \chi < min\{ \nu \pm (\theta )\} . Clearly, in this case, \zeta \varepsilon = xv + \varepsilon \chi < \ell \pm v (\theta ; \varepsilon ), and therefore
the solutions of system (5.2) cross the set of discontinuity \widetilde \Sigma at the points (\theta , (\zeta \varepsilon , 0)) when
(\theta , \chi ) \in K.

In what follows, we define a function \scrH : K \times (0; \varepsilon 0) \rightarrow \BbbR 2 such that its zeros determine
the existence of crossing periodic solutions near the separatrix \scrS . Given (\theta , \zeta \varepsilon ) \in K, we
consider the flows \Phi  - \bigl( t, \theta , (\zeta \varepsilon , 0); \varepsilon \bigr) and \Phi +

\bigl( 
t, \theta + 2\sigma v, (\zeta \varepsilon , 0); \varepsilon 

\bigr) 
. The existence of times

r - = r - (\theta , \chi ; \varepsilon ) > 0 and r+ = r+(\theta , \chi ; \varepsilon ) < 0 such that

\xi  - 2
\bigl( 
r - , \theta , (\zeta \varepsilon , 0); \varepsilon 

\bigr) 
= 0, \xi +2

\bigl( 
r+, \theta + 2\sigma v, (\zeta \varepsilon , 0); \varepsilon 

\bigr) 
= 0

is guaranteed by the implicit function theorem. These times can be computed analogously to
(5.17) and (5.18) as

r - (\theta , \chi ; \varepsilon ) = \sigma v + \varepsilon r - 1 (\theta , \chi ) +\scrO (\varepsilon 2) r+(\theta , \chi ; \varepsilon ) =  - \sigma v + \varepsilon r+1 (\theta , \chi ) +\scrO (\varepsilon 2),

where

r\pm 1 (\theta , \chi ) =  - \psi 
\pm 
2 (\mp \sigma v, \theta , pv, (\chi , 0))

F2(qv)
,

but here we have used the formula of Lemma 5.1 for z0 = pv and z1 = (\chi , 0).
Accordingly, define \scrH (\theta , \chi ; \varepsilon ) = (\scrH 1(\theta , \chi ; \varepsilon ),\scrH 2(\theta , x; \varepsilon )) as

\scrH 1(\theta , \chi ; \varepsilon ) = \pi \theta \Phi 
 - (r - (\theta , \chi ; \varepsilon ), \theta , (\zeta \varepsilon , 0); \varepsilon ) - \pi \theta \Phi 

+(r+(\theta , \chi ; \varepsilon ), \theta + 2\sigma v, (\zeta \varepsilon , 0); \varepsilon )

= r - (\theta , \chi ; \varepsilon ) - r+(\theta , \chi ; \varepsilon ) - 2\sigma v

= \varepsilon (r - 1 (\theta , \chi ) - r+1 (\theta , \chi )) +\scrO (\varepsilon 2),

\scrH 2(\theta , \chi ; \varepsilon ) = \pi x\Phi 
 - (r - (\theta , \chi ; \varepsilon ), \theta , (\zeta \varepsilon , 0); \varepsilon ) - \pi x\Phi 

+(r+(\theta , \chi ; \varepsilon ), \theta + 2\sigma v, (\zeta \varepsilon , 0); \varepsilon )

= \xi  - 1 (r
 - (\theta , \chi ; \varepsilon ), \theta , (xv + \varepsilon \chi , 0); \varepsilon )

 - \xi +1 (r
+(\theta , \chi ; \varepsilon ), \theta + 2\sigma v, (xv + \varepsilon \chi , 0); \varepsilon ) +\scrO (\varepsilon 2).

From the construction of \scrH it is clear that a crossing 2\sigma v-periodic solution of system (3.1)
exists if and only if we find (\theta \varepsilon , \chi \varepsilon ) \in K such that \scrH (\theta \varepsilon , \chi \varepsilon ; \varepsilon ) = (0, 0). To compute \scrH we
proceed analogously to the proof of statement (a) of Theorem B, but now using the expressions
just obtained for r\pm 1 and again Lemma 5.1 with z0 = pv and z1 = (\chi , 0), obtaining

\scrH 1(\theta , \chi ; \varepsilon ) =  - \varepsilon 
\biggl( 

2\chi 

F1(pv)
+

g\theta 
F2(qv)

\biggr) 
+\scrO (\varepsilon 2),

\scrH 2(\theta , \chi ; \varepsilon ) =  - \varepsilon M(\theta , xv)

F2(qv)
+\scrO (\varepsilon 2).

We define \widetilde \scrH (\theta , \chi ; \varepsilon ) =  - F2(qv)

\varepsilon 
\scrH (\theta , \chi ; \varepsilon ).
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By the hypothesis there exists \theta \ast \in \BbbS 1 such that M(\theta \ast , xv) = 0 and (\partial M\partial \theta ) (\theta \ast , xv) \not = 0.
Therefore, for \chi \ast =  - F1(pv)g\theta \ast /(2F2(qv)) we get

det

\Biggl( 
\partial \widetilde \scrH 

\partial (\theta , \chi )
(\theta \ast , \chi \ast , 0)

\Biggr) 
=

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\# 2F2(qv)

F1(pv)
\partial M

\partial \theta 
(\theta \ast , xv) 0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
=  - 2F2(qv)

F1(pv)

\partial M

\partial \theta 
(\theta \ast , xv) \not = 0.

Applying the implicit function theorem, it follows that, for \varepsilon > 0 sufficiently small, there
exist \theta \varepsilon = \theta \ast + \scrO (\varepsilon ) \in (a, b) and \chi \varepsilon = \chi \ast + \scrO (\varepsilon ) such that \scrH (\theta \varepsilon , \chi \varepsilon ; \varepsilon ) = \widetilde \scrH (\theta \varepsilon , \chi \varepsilon ; \varepsilon ) = 0.
Furthermore, (\theta \varepsilon , \chi \varepsilon ) \in K. Indeed, hypothesis (b) of the theorem, which we write as

g\theta \ast <
2F2(qv)

F1(pv)
\partial F2

\partial x
(pv)

max
\bigl\{ 
G\pm 

2 (\theta 
\ast , pv)

\bigr\} 
,

and (5.5) imply that \chi \ast < min\{ \nu \pm (\theta \ast )\} . Consequently, \chi \varepsilon < min\{ \nu \pm (\theta \varepsilon )\} for \varepsilon > 0 small
enough. This concludes the proof of statement (b) of Theorem B.

6. Conclusions and further directions. In this paper, we have considered a reversible
planar Filippov system Z0 having a simple twofold cycle \scrS . The reversibility property forces
\scrS always to be the boundary of a period annulus \scrA of crossing periodic orbits. Our main
goal consisted in understanding how such a simple twofold cycle \scrS unfolds under small non-
autonomous periodic perturbations Z\varepsilon of Z0.

As usual, the perturbation Z\varepsilon was assumed to be periodic with the same period of some
of the periodic orbits in \scrS \cup \scrA . Then generic conditions were provided guaranteeing the
persistence of such a periodic solution (see Theorems A and B). The construction of a suitable
displacement function and its related Melnikov function was the central tool behind our study.
For periodic solutions bifurcating from the period annulus \scrA , the Melnikov function was
obtained, as usual, by expanding such a displacement function around \varepsilon = 0. However, this
approach fails when facing sliding dynamics, which appears, for instance, in the unfolding of
twofold singularities. Hence, the main novelty of this study consisted in developing a procedure
for detecting the existence of sliding and crossing periodic solutions bifurcating from the simple
twofold connection \scrS , where the sliding dynamics must be taken into account. In particular,
the detection of sliding periodic solutions is rather different, because regular perturbations of a
Filippov system produce singular perturbation problems in the sliding dynamics. Accordingly,
tools from singular perturbation theory had to be employed.

The study of global phenomena in Filippov systems, especially polycycles such as simple
twofold cycles, is rather recent (see, for instance, [9, 33, 34]). The procedure that we have
developed in this paper can be applied for a wide range of polycycles in reversible Filippov
systems. For instance, polycycles formed by trajectories containing several twofold singulari-
ties. Allowing more tangential singularities increases the degeneracy of the problem, and one
could certainly expect a richer dynamics bifurcating from the polycycle.

Another possible issue is to consider higher dimensional systems, such as generic cusp--
cusp singularities in 3D reversible Filippov systems. If the fixed set of the involution coincides
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with the switching manifold, then such a system has a topological cylinder foliated by simple
twofold connections. Thus, the ideas developed in this paper could be applied for studying
the bifurcation of crossing and sliding periodic solutions from this cylinder.

Acknowledgment. We thank the referees for their comments and suggestions which helped
us to improve the presentation of this paper.
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