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Abstract

The restricted elliptic isosceles three body problem (REI3BP) models the motion of a massless body 
under the influence of the Newtonian gravitational force caused by two other bodies called the primaries. 
The primaries of masses m1 = m2 move along a degenerate Keplerian elliptic collision orbit (on a line) 
under their gravitational attraction, whereas the third, massless particle, moves on the plane perpendicular 
to their line of motion and passing through the center of mass of the primaries. By symmetry, the component 
of the angular momentum G of the massless particle along the direction of the line of the primaries is 
conserved.

We show the existence of symbolic dynamics in the REI3BP for large G by building a Smale horseshoe 
on a certain subset of the phase space. As a consequence we deduce that the REI3BP possesses oscillatory 
motions, namely orbits which leave every bounded region but return infinitely often to some fixed bounded 
region. The proof relies on the existence of transversal homoclinic connections associated to an invariant 
manifold at infinity. Since the distance between the stable and unstable manifolds of infinity is exponentially 
small, Melnikov theory does not apply.
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1. Introduction

The restricted three body problem studies the motion of three bodies, one of them massless, 
under Newtonian gravitational force. The massless body does not exert any force on the other 
two, the primaries, and move therefore according to Kepler laws. As a particular case, in the re-
stricted elliptic isosceles three body problem (REI3BP), the primaries move along a degenerate 
ellipse and the third (massless) body moves on the perpendicular plane to their line of motion 
passing through their center of mass, which is invariant. In this configuration the primaries col-
lide, but since it is a Keplerian motion its collisions can be regularized. In a coordinate system 
with origin at the center of mass of the primaries, the position of the primaries is given by

q1 (t) = ρ (t)

2
(0,0,1) q2 (t) = ρ (t)

2
(0,0,−1) , (1.1)

where

ρ (t) = 1 − cosE (t) (1.2)

and the eccentric anomaly E (t) satisfies

t = E − sinE. (1.3)

Introducing polar coordinates (r, y,α,G) in the plane of motion of the third body, where (y,G)

denote the conjugated momenta to (r,α) the REI3BP is Hamiltonian with respect to

H (r, y,G, t) = y2

2
+ G2

r2 − 1√
r2 + ρ2(t)

4

. (1.4)

It is immediate to check that G is a conserved quantity so the REI3BP is a system of 1 + 1/2
degrees of freedom. We fix G �= 0 in order to avoid triple collisions.

In [3] authors the study the existence of symmetric periodic solutions of the Hamiltonian 
system associated to (1.4). In the present paper we prove the existence of chaotic dynamics in 
the REI3BP for large values of the angular momentum G, by building a Smale horseshoe with 
infinitely many symbols on a certain subset of the phase space. To build this horseshoe we first 
prove that the stable and unstable manifold associated to a certain invariant manifold intersect 
transversally, giving rise to homoclinic connections to the invariant manifold.

As a consequence, from the way the horseshoe is built, we deduce the existence of different 
types of orbits of the REI3BP according to their behavior as t → ±∞. In particular, the existence 
of infinitely many periodic orbits of arbitrary large period is obtained. A complete classification 
of the orbits of the three body problem according to their final motion was already established by 
Chazy in 1922 (see [1]). For the restricted three body problem (either planar or spatial, circular 
or elliptic) the possibilities reduce to four:

• H±(hyperbolic) : ‖r (t)‖ → ∞ and ‖ṙ (t)‖ → c > 0 as t → ±∞.
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• P ±(parabolic) : ‖r (t)‖ → ∞ and ‖ṙ (t)‖ → 0 as t → ±∞.
• B±(bounded) : lim supt→±∞ ‖r (t)‖ < ∞.
• OS±(oscillatory) : lim supt→±∞ ‖r (t)‖ = ∞ and lim inft→±∞ ‖r (t)‖ < ∞.

Examples of hyperbolic, parabolic and bounded motions were already known by Chazy (in par-
ticular they are present in the two body problem). However, no examples of oscillatory motions 
were known until Sitnikov [28] proved their existence on a certain symmetric configuration of 
the spatial restricted three body problem, now called the Sitnikov example. We shall prove that 
any past-future combination of the four possible final motions exists in the REI3BP.

The connection between chaotic dynamics and the existence of different types of final mo-
tions was first devised by Moser [25], who gave a new proof of the existence of oscillatory 
motions in the Sitnikov model. Moser’s approach relying on the connection between final mo-
tions, transversal homoclinic points and symbolic dynamics has been successfully extended to 
provide more examples of these motions [15,16,20,21,23,24]. When dealing with perturbations 
of integrable systems the classical strategy for showing the existence of transversal intersections 
between the invariant manifolds is to find non-degenerate zeros of the Melnikov function, which 
gives an asymptotic expression for the distance between them. However, when considering fast 
non-autonomous perturbations, the Melnikov function is exponentially small with respect to the 
perturbative parameter and the validity of Melnikov theory is not justified. This difficulty can be 
solved when the system in consideration has two perturbative parameters and an exponentially 
smallness condition between them is assumed. This was the approach in [20], where the exis-
tence of oscillatory motions in the restricted planar circular three body problem (RPC3BP) was 
shown for values of the mass ratio exponentially small compared to the value of the inverse of 
the Jacobi constant.

The study of the existence of intersections between invariant manifolds for fast non-
autonomous perturbations without assuming smallness conditions on extra parameters requires 
showing that the distance between invariant manifolds is indeed exponentially small. This prob-
lem, now known as exponentially small splitting of separatrices, has drawn remarkable attention 
in the past decades, but, due to its difficulty most of the available results concern concrete mod-
els [9,12,14,17,19] or in general systems under very restrictive hypothesis to be applicable to 
problems in Celestial Mechanics [4,5,10,11,13,18,29]. Following these ideas, [16] proves the 
transversality of certain invariant manifolds of the RPC3BP for any mass ratio and large Jacobi 
constants, extending the result in [21] of existence of oscillatory motions to any mass ratio.

Following the same approach in [16], the present paper proves the exponentially small split-
ting of separatrices in a real problem arising from Celestial Mechanics, the aforementioned 
REI3BP, under the only assumption of large angular momentum G. It is worth pointing out 
that the Hamiltonian (1.4) is, in general, far from being integrable. However, we will see in Sec-
tion 2 that for orbits with large angular momentum G, the Hamiltonian (1.4) can be considered 
as a fast non-autonomous perturbation of the two body problem, which is integrable.

From our result we deduce the existence of transverse homoclinic connections and we are able 
to build a Smale horseshoe on a certain subset which is close to the homoclinic points. This result 
completes the previous work [2], where the existence of symbolic dynamics in the EIR3BP was 
investigated for large values of G using numerical techniques for analyzing the exponentially 
small splitting of separatrices.

The main result of the present paper, which gives the existence of chaotic dynamics in the 
REI3BP, is the following.
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Theorem 1.1. Denote by ψ the Poincaré map induced by the flow of the Hamiltonian (1.4) on 
the section Σ+ = {(r, y, t) ∈R+ ×R×T : y = 0, ẏ > 0}. Then, there exists 0 < G∗ < ∞ such 
that for G > G∗ there exists an invariant set S ⊂ Σ+ such that the dynamics of ψ : S → S is 
topologically conjugated to the shift

σ : NZ → NZ

{an}n∈Z 	→ {an−1}n∈Z

Namely ψ has a Smale horseshoe of infinite symbols.

An immediate consequence of Theorem 1.1 is the existence of infinitely many periodic orbits 
in the system associated to Hamiltonian (1.4). Moreover, from the way the Smale horseshoe of 
Theorem 1.1 is built, we obtain the second main result (see Section 2 for a detailed exposition of 
this connection).

Theorem 1.2. Denote by X+ (respectively Y−) either H+, P +, B+ or OS+ (respectively 
H−, P −, B− or OS−). Then, there exists G∗ < ∞ such that if G > G∗ we have

X+ ∩ Y− �= ∅
for all possible combinations of X+ and Y−. In particular, the Hamiltonian system (1.4) posses 
oscillatory orbits, that is, orbits such that

lim sup
t→±∞

|r (t)| = ∞ and lim inf
t→±∞ |r (t)| < ∞.

As commented above, the proof of Theorem 1.1 relies on two main ingredients: establishing 
the existence of transversal intersections between the invariant manifolds Wu,s∞ associated to a 
periodic orbit at infinity and showing the existence of a Smale horseshoe on a certain subset close 
to the homoclinic points. The latter follows from the arguments presented in [25] without signifi-
cant modifications. These arguments are sketched in Section 2 for the sake of self-completeness.

For the analysis of the splitting of the invariant manifolds, we use the fact that Wu,s∞ are 
Lagrangian submanifolds so they can be parametrized as graphs which satisfy the Hamilton-
Jacobi equation associated to H . Then, we study solutions to this equation in a suitable complex 
domain to get exponentially small asymptotics for the distance between Ws∞ and Wu∞. In order 
to obtain the appropriate exponent these parameterizations must be analyzed in a neighborhood
O

(
G−3

)
of the singularities of the unperturbed homoclinic (G → ∞).

The document is organized as follows. In Section 2 we introduce the invariant manifolds at 
infinity and discuss the proofs and connection between Theorem 1.1 and Theorem 1.2. In par-
ticular, from Theorem 2.1, which claims the existence of transverse intersections of the infinity 
manifolds, we build a Smale horseshoe that is then used to show the existence of any past-future 
combination of final motions. The rest of the paper is devoted to the proof of Theorem 2.1. We 
discuss the integrable system (G → ∞) and its homoclinic manifold in Section 3.1. Section 3.2
is devoted to rewrite the problem of existence of the infinity manifolds as a fixed point equation. 
We solve this equation and bound the solution in a suitable complex domain in Section 4. In 
Section 5 we show that the distance between the invariant manifolds is given, up to first order, by 
the Melnikov function and then we compute its asymptotic expansion for large G in Section 6.
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2. Description of the proof of Theorems 1.1 and 1.2

We notice from the Hamiltonian (1.4) that the angular momentum G is a conserved quantity. 
Therefore, we apply the conformally symplectic change of variables

r = G2r̃ , y = G−1ỹ, t = G3s,

to the equations of motion associated to the Hamiltonian (1.4) to obtain a new system which is 
also Hamiltonian with respect to the scaled Hamiltonian.

H̃ (r̃, ỹ, s;G) = G2H
(
G2r̃ ,G−1ỹ,G3s

)

= ỹ2

2
+ 1

r̃2 − 1

r̃
+ U

(
r̃ ,G3s

) (2.1)

where

U
(
r̃ ,G3s

)
= 1

r̃
− 1√

r̃2 + ρ2
(
G3s

)
/4G4

= ρ2
(
G3s

)
8G4r̃3

(
1 +O

(
1

r̃2G4

))
. (2.2)

Observe that, for G large, the system associated to the Hamiltonian (2.1) can be studied as a 
fast and small non-autonomous perturbation of the Kepler two-body problem. Adding time t as 
a phase variable, which we now denote by ξ , we see from the equations of motion associated to 
the Hamiltonian (2.1)

dr̃

ds
= ỹ

dỹ

ds
= 1

r̃3 − 1

r̃2 − ∂r̃U

dξ

ds
= G3,

(2.3)

that Λ = {(r̃, ỹ, ξ) = (∞,0, ξ) : ξ ∈ T } is a parabolic periodic orbit, which we will call infinity.
Denoting by φs = (φr̃

s , φ
ỹ
s , φξ

s ) the flow of the system (2.3), we define the stable and unstable 
manifolds of infinity as

Ws∞ =
{
(r̃, ỹ, ξ) ∈R+ ×R×T : lim

s→+∞φr̃
s (r̃, ỹ, ξ) = ∞, lim

s→+∞φ
ỹ
s (r̃, ỹ, ξ) = 0

}

Wu∞ =
{
(r̃, ỹ, ξ) ∈R+ ×R×T : lim

s→−∞φr̃
s (r̃, ỹ, ξ) = ∞, lim

s→−∞φ
ỹ
s (r̃, ỹ, ξ) = 0

}
.

(2.4)

The usual way to study the dynamics near infinity is to use McGehee coordinates r = 2x−2

which map neighborhoods of infinity into bounded domains containing the origin. In particular, 
the periodic orbit Λ corresponds to the periodic orbit {(x, y, ξ) = (0,0, ξ) : ξ ∈ T } in McGe-
hee coordinates. This transformation was used in [22] to show that Wu,s∞ exist and are analytic 
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Fig. 2.1. Stable and unstable invariant manifolds of infinity for the Poincaré map Pξ0 in (2.6).

submanifolds except at infinity, where only C∞ regularity is proven (see [6,7] for more gen-
eral results). However, in the present work we prefer to stick to the original variables since the 
symplectic form is non canonical in McGehee coordinates.

For G → ∞ the system is integrable since U → 0 and therefore Ws∞ and Wu∞ coincide along 
a two dimensional homoclinic manifold which is foliated by Keplerian parabolic orbits. Hence, 
it can be parametrized by the time section ξ and a suitable time parametrization (r̃h (v) , ỹh (v))

of the parabolic orbit. We denote the parametrization of this invariant manifold as

z̃h (v, ξ) = (r̃h (v) , ỹh (v) , ξ) where (v, ξ) ∈R×T , (2.5)

and fix the origin of v such that ỹh (0) = 0, which makes the homoclinic orbit symmetric under 
the map v → −v. Some properties of this parametrization are discussed in Section 3.1.

We will prove that in the full problem (2.1), this two dimensional homoclinic manifold breaks 
down for 1 � G < ∞, and Ws∞, Wu∞ do not longer coincide. In order to measure the distance 
between the invariant manifolds we introduce the Poincaré stroboscopic map

Pξ0 : {ξ = ξ0} → {ξ = ξ0 + 2π} (2.6)

(r̃, ỹ) 	→Pξ0 (r̃, ỹ)

so Ws,u∞ ∩ {ξ = ξ0} become invariant curves γ s,u (see Fig. 2.1).
Then, for y > 0, considering a parametrization of γ s,u of the form

r̃ = r̃h (v)

ỹ = Y
s,u
ξ0

(v)
(2.7)

where r̃h (v) is the parametrization of the unperturbed homoclinic (2.5), we observe that to mea-
sure the distance between the invariant manifolds along a suitable section v = v∗ it suffices to 
measure the difference between the functions Y s,u

ξ0
. The following theorem is one of the two main 

ingredients needed for the proof of Theorem 1.1.

Theorem 2.1. Let Ws∞ and Wu∞ be the infinity manifolds associated to the periodic orbit Λ and 
γ s,u the corresponding curves of the map Pξ . Then, for G large enough,
0
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(i) The curves γ s,u exist and have a parametrization of the form (2.7),
(ii) If we fix a section r̃ = r̃ (v∗) the distance d between these curves along this section is given 

by

d = J1 (1)
√

2π

ỹh (v∗)
G

1/2e− G3
3 sin

(
ξ0 − G3v∗) + E, |E| ≤ CG−1/2e− G3

3 , (2.8)

where J1 is the first Bessel function of first kind and ỹh correspond to the ỹ component of 
the unperturbed homoclinic and C > 0 is a constant independent of G.

(iii) There exist (at least) two transverse homoclinic connections to the periodic orbit Λ.

Item (iii) is a direct consequence of Item (ii). Indeed, since

J1 (1) ∼ 0.44051 �= 0

we observe that formula (2.8) in Theorem 2.1, implies that the zeros of the distance are given, up 
to first order, by the zeros of the function sin

(
ξ0 − G3v∗). Therefore, transversal intersections of 

the invariant curves γ s,u will occur for values of ξ0 − G3v∗ located in a neighborhood O
(
G−1

)
of the points ξ0 − G3v∗ = 0, π . These transversal intersections give rise to two homoclinic con-
nections to the invariant manifold Λ as stated in the third item of Theorem 2.1.

Observe that the distance between the invariant manifolds is exponentially small with respect 
to G. As usually happens in exponentially small splitting of separatrices phenomena, the smaller 
the period of the fast perturbation (in our case 2π/G3), the smaller the distance between the 
manifolds (see [27]).

2.1. Symbolic dynamics and oscillatory orbits

Once Theorem 2.1 is proven, the existence of chaotic dynamics is obtained following the 
techniques introduced in [25]. For that we define the section

Σ+ =
{
(r̃, ỹ, ξ) ∈R+ ×R×T : ỹ = 0, ˙̃y > 0

}
(2.9)

and use coordinates (r̃0, ξ0) for this section. Then, we define the Poincaré map

ψ : Σ+ → Σ+
(r̃0, ξ0) 	→ (r̃1, ξ1)

(2.10)

where ξ1 = ξ0 + G3s, and s > 0 is the first time in which φs (r̃0,0, ξ0) intersects Σ+ again and 
r̃1 is such that φs (r̃0,0, ξ0) = (r̃1,0, ξ1). We set ξ1 = ∞ for points (r̃0, ξ0) which do not intersect 
Σ+ anymore in the future and define D0 ⊂ Σ+ as the set of points for which ξ1 < ∞. In the 
unperturbed problem (G → ∞) one easily deduces, using the conservation of energy, that Σ+
is divided in two open sets, corresponding to initial conditions leading to hyperbolic and elliptic 
motions, whose common boundary is the curve in which the homoclinic manifold (2.5) intersects 
Σ+. In this case, D0 corresponds to the set of initial conditions leading to elliptic motions.

In order to characterize the set D0 in the full problem (2.1) we make use of the following 
proposition, already proven in [2], which describes the intersection Ws,u ∩ Σ+.
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Proposition 2.2. The stable manifold Ws intersects Σ+ backwards for the first time in a simple 
curve

γ̃ s = {(
r̃ s

0 (ξ0) , ξ0
) ∈ Σ+ : r̃ s

0 (ξ0 + 2π) = r̃ s
0 (ξ0)

}
. (2.11)

Analogously, the unstable manifold Wu intersects Σ+ forward for the first time in a simple curve

γ̃ u = {(
r̃u

0 (ξ0) , ξ0
) ∈ Σ+ : r̃u

0 (ξ0 + 2π) = r̃u
0 (ξ0)

}
. (2.12)

Remark 2.3. From Theorem 2.1 we deduce that the curves γ̃ s,u described in Proposition 2.2
intersect transversally, a fact which is crucial for the proof of Theorem 2.4.

The curve γ̃ s divides Σ+ in two connected components. One of these components correspond 
to D0 and the other component consists of initial conditions leading to orbits which do not 
intersect Σ+ again and which escape to infinity with positive asymptotic radial velocity. We also 
define the set D1 ⊂ Σ+ of initial conditions (r̃0, ξ0), in which the map ψ−1 is well defined. A 
similar argument to the one above using γ̃ u instead of γ̃ s can be used to identify this set.

Once we have identified D0 and D1, given a point (r̃0, ξ0) ∈ D0 ∩D1 we consider the sequence 
of consecutive times ξn given by ψn (r̃0, ξ0) = (r̃n, ξn) for n ∈ Z (whenever they exist) to define 
the sequence of integers

an =
[
ξn − ξn−1

2π

]
,

where [·] defines the integer part. Thus, an ∈ N measures the number of binary collisions of 
the primaries between consecutive approaches of the third body. We introduce some technical 
concepts needed for stating the theorem that establishes the existence of symbolic dynamics on a 
subset of the closure D0 ∩D1 by conjugating ψ with the shift acting on a space of doubly infinite 
sequences.

Let A denote the set of all doubly infinite sequences

a = (. . . a−2, a−1, a0;a1, a2 . . . )

of elements an ∈N . Equipping A with the product topology, the shift σ : A → A given by

σ
({an}n∈Z

) = {an−1}n∈Z (2.13)

is a homeomorphism.
We can define the compactification Ā of A admitting elements of the following type: For α, β

integers satisfying α ≤ 0, β ≥ 1, let

a = (∞, aα+1, . . . , aβ−1,∞
)

an ∈N.

We also admit half infinite sequences with α = −∞, β < ∞ or α > −∞, β = ∞. It is possible 
to extend the topology defined on A to Ā in a way such that the shift (2.13) is a homeomorphism 
when restricted to
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Ā0 = {
a ∈ Ā : a0 �= ∞}

(see [25] for details).
The proof of the following theorem, from which Theorems 1.1 and 1.2 are deduced, follows 

from direct adaptation of the ideas presented in [25] for the Sitnikov problem. The main in-
gredients are the transversal intersection of the curves γ s,u and a C1 Lambda-Lemma for the 
parabolic invariant manifold Λ. This Lambda-Lemma follows from a careful analysis of the dy-
namics near Λ using McGehee coordinates which map neighborhoods of infinity into bounded 
neighborhoods of the origin.

Theorem 2.4. There exists a set S ⊂ (D0 ∩ D1) which is invariant under the Poincaré map ψ
defined in (2.10) and such that its restriction to S, is conjugated to the shift σ defined in (2.13). 
That is, there exists an homeomorphism χ : A → S such that

ψχ = χσ.

Moreover, χ can be extended to χ̄ : Ā → S̄ such that

ψχ̄ = χ̄σ

if both sides are restricted to Ā0.

In other words, to each point p = (r0, ξ0) ∈ S we associate a sequence a(p) ∈ A which codi-
fies the time between successive intersections of the flow φs (r0,0, ξ0) with Σ+. In this setting, 
the connection between Theorem 1.1 and Theorem 1.2 becomes clear. The first part of Theo-
rem 2.4 corresponds to sequences

• a (p) = (. . . a−2, a−1, a0, a1, . . . ) with an ∈ N for all n ∈ Z. These represent orbits which 
perform an infinite number of “close” approaches to the line where the primaries move both 
in the past and in the future. From this result we deduce the existence of any past-future 
combination of bounded (supn∈Z an < ∞) and oscillatory (lim supn→±∞ an = ∞) motions.

The second part of the theorem, concerns sequences of the following type

• a (p) = (∞, a−k, a−k+1, . . . ) with an ∈ N for all n > −k, which represent capture orbits, 
i.e., orbits where the third body comes from infinity at t → −∞ and remains revolving 
around the line of primaries for all future times. In particular, we obtain orbits which are 
hyperbolic or parabolic in the past and bounded or oscillatory in the future.

• a (p) = (. . . al−1, al,∞) with an ∈ N for all n < l. In this case the third body performed an 
infinite number of oscillations in the past but escapes to infinity as t → ∞. These sequences 
correspond to orbits which are bounded or oscillatory in the past and parabolic or hyperbolic 
in the future.

• a (p) = (∞, ak, . . . , al,∞) with an ∈ N for all n ∈ Z which corresponds to orbits coming 
from infinity, revolving around the primaries a finite number of times and escaping again to 
infinity as t → ∞. They correspond to past-future combinations of parabolic and hyperbolic 
motions.
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Finally, we point out that the existence of infinitely many periodic orbits in the REI3BP is de-
duced from Theorem 1.1 since fixed points for the shift correspond to periodic orbits of the 
Hamiltonian (2.1).

3. The invariant manifolds as graphs

3.1. The unperturbed homoclinic solution

For the unperturbed problem, G → ∞ in (2.1), the equations of motion reduce to

dr̃

dv
= ỹ

dỹ

dv
= 1

r̃3 − 1

r̃2 .

(3.1)

In this case the infinity manifolds Ws,u∞ associated to Λ coincide along the two dimensional ho-
moclinic manifold z̃h introduced in (2.5). The (complex) singularities of z̃h (v, ξ) will be crucial 
for studying the existence of the invariant manifolds of the perturbed problem in certain complex 
domains. Thus, we state the following results, which were already obtained in [26].

1. The homoclinic solution (2.5) behaves as

r̃h (v) ∼ 3v2/3, ỹh (v) ∼ 2v−1/3 as |v| → ∞.

2. The homoclinic solution (2.5) is a real analytic function of v with singularities at v = ±i/3.
3. Close to its singularities, the homoclinic solution (2.5) behaves as

r̃h (v) ∼ C

(
v ∓ i

3

)1/2

, ỹh (v) ∼ C

2

(
v ∓ i

3

)1/2

, where C2 = ±2i.

3.2. The perturbed invariant manifolds and their difference

In this section we look for parametrizations of the infinity manifolds Wu,s∞ in certain complex 
domains defined below. More concretely we look for graph parametrizations of Wu,s∞ as solutions 
to a PDE. To do this we observe that the canonical form λ = r̃dỹ − H̃ds is closed on the infinity 
manifolds (since the infinity manifolds are invariant by the flow it is enough to check that dλ is 
null on Λ). Then, one can see λ as the differential of a function S (r̃, ξ) such that

∂r̃S = ỹ G3∂ξS = −H̃

or, putting this together, as a solution of the Hamilton-Jacobi equation

G3∂ξS + H (r̃, ∂r̃S, ξ) = 0.

We write S = S0 + S1 where S0 is the solution to the unperturbed problem
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G3∂ξS0 + (∂r̃S0)
2

2
+ 1

2r̃2 − 1

r̃
= 0

and perform the change of variables

(r̃, ξ) 	→ (r̃h (v) , ξ) . (3.2)

Then, the equation for T1 (v, ξ) = S1 (r̃h (v) , ξ) becomes

∂vT1 + 1

2ỹh
2 (∂vT1)

2 + G3∂ξT1 + V (v, ξ) = 0, (3.3)

where

V (v, ξ) = U (r̃h(v), ξ) . (3.4)

Note that the change of variables (3.2) implies that we are looking for parametrizations of the 
stable and unstable manifolds of the form

r̃ = r̃h (v)

ỹ = ỹh (v) + 1

ỹh (v)
∂vT

u,s
1

(3.5)

where r̃h (v) , ỹh (v) correspond to the unperturbed homoclinic (2.5) and T u,s
1 (v, ξ) are solutions 

of equation (3.3) with asymptotic boundary condition for the unstable manifold

lim
v→−∞

1

ỹh (v)
∂vT

u
1 = 0 (3.6)

and the analogous one for the stable manifold. Once we show the existence of the unstable 
manifold, the existence of the stable one is guaranteed by symmetry. Indeed, if T1 (v, ξ) is a 
solution of (3.3), −T1 (−v,−ξ) is also a solution satisfying the opposite boundary condition.

Before going into the analysis of the existence of the generating functions T u,s
1 we recall 

that our goal is to have a first asymptotic approximation of the distance between the infinity 
manifolds which now boils down to obtain an asymptotic formula for ∂v

(
T u

1 − T s
1

)
. To this end, 

we introduce the Melnikov potential

L(v, ξ ;G) =
∞∫

−∞
V

(
r̃h (v + s) , ξ + G3s

)
ds, (3.7)

which, as we state in Theorem 3.2 below approximates to first order the difference Δ = T s
1 −T u

1 .
We point out that the parametrization (3.5) becomes undefined at v = 0 since we have fixed 

v such that ỹh (0) = 0. Since in order to measure ∂v

(
T u

1 − T s
1

)
we need both functions to be 

defined in a common domain we will introduce a different parametrization to extend the unstable 
manifold across v = 0. This is discussed in full detail in Section 4.

The next proposition gives the first asymptotic term of the Melnikov potential and will be 
proved in Section 6.
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Proposition 3.1. The function L (v, ξ ;G) defined in (3.7) satisfies

L(v, ξ ;G) = L[0] (G) + 2
∞∑
l=1

L[l] (G) cos
(
l
(
ξ − G3v

))
,

where

L[1] (G) = −J1 (1)
√

2πG
−5/2e

−G3
3

(
1 +O

(
G−3/2

))
∣∣∣L[l] (G)

∣∣∣ ≤ KG
−5/2el−1/2e

−|l|G3
3 , for l > 1,

with J1 the first Bessel function of the first kind and K > 0 a constant independent of G.

Theorem 3.2. Choose any 0 < v− < v+ < ∞. Then, there exists K > 0 such that for any v ∈[
v−, v+

]
and for any G large enough, the generating functions T u,s

1 (v, ξ) satisfy

∣∣T s
1 (v, ξ) − T u

1 (v, ξ) − L(v, ξ) − E
∣∣ ≤ KG−7/2e

−G3
3 ,

where E ∈ R is a constant and

∣∣∂v

(
T s

1 (v, ξ) − T u
1 (v, ξ)

) − ∂vL (v, ξ)
∣∣ ≤ KG−1/2e

−G3
3 .

From Proposition 3.1, Theorem 3.2 and Equation (3.5) we deduce Theorem 2.1. We devote 
Sections 4 and 5 to the proof of Theorem 3.2.

4. The invariant manifolds in complex domains

The classical procedure when studying exponentially small splitting of separatrices is to look 
for the functions T u

1 and T s
1 in a complex common domain D ×Tσ where D ⊂ C is a connected 

domain which reaches a neighborhood of size O
(
G−3

)
(recall that the period of the perturbation 

(2.2) is 2π/G3) of the singularities of the unperturbed separatrix, i.e., v = ±i/3 (see Section 3.1) 
and

Tσ = {ξ ∈C/2πZ : |Im(ξ)| < σ } .

The idea behind this approach is that for v ∈ R we will get exponentially small bounds on the 
distance d (v, ξ) between the invariant manifolds if we show that d is a quasiperiodic function in 
some suitable coordinates and we manage to bound |d| in a connected domain D which contains 
a subset of the real line and gets close to the singularities v = ±i/3.

Since boundary conditions are imposed at infinity, we need to solve the equation (3.3) for 
T u

1 (resp. T s
1 ) in a complex unbounded domain reaching v → −∞ (resp. v → ∞). On the other 

hand, in order to measure their difference we need them to be defined in a common domain, we 
need to extend one of them across v = 0. However, the equation (3.3) becomes singular at v = 0
since ỹh (0) = 0. To overcome this problem we divide the process of extension of the invariant 
manifolds into three steps.
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Fig. 4.1. The domain D
∞,u
κ,δ defined in (4.1).

We first solve equation (3.3) together with the boundary condition (3.6) in the domain

D
∞,u
κ,δ = {

v ∈ C : |Im(v)| < −tanβ1Re(v) + 1/3 − κG−3, |Im(v)| > tanβ2Re(v) + 1/6 − δ
}
,

(4.1)
which does not contain v = 0 and where κ, δ and β1, β2 ∈ (0,π/2) are fixed independently of G
(see Fig. 4.1). One can check that for δ ∈ (0,1/12), κ ∼ O (1), we can always find G big enough 
such that this domain is non empty. Once the existence of T u

1 in the domain D∞,u
κ,δ is proven, 

we exploit the symmetry of equation (3.3) under the map (v, ξ) → (−v,−ξ) to atutomatically 
deduce the existence of T s

1 in the domain

D
∞,s
κ,δ = {

v ∈C : |Im(v)| < tanβ1Re(v) + 1/3 − κG−3, |Im(v)| > −tanβ2Re(v) + 1/6 − δ
}
.

(4.2)
The next step is to perform the analytical continuation of T u

1 across the imaginary axis. Thus, 
we would have both invariant manifolds defined on a common domain (this domain will be 
contained in D∞,s

κ,δ where T s
1 is already defined). Since yh (0) = 0, the equation (3.3) becomes 

singular at v = 0 so we change to a parametrization invariant by the flow in the bounded domain

Dρ,κ,δ = D
∞,u
κ,δ ∩ (Re(v) > −ρ) (4.3)

for some finite ρ > 0. Then, we use the flow φs associated to the system (2.3) to extend the 
unstable manifold T u

1 to the domain

Dflow
κ,δ = {

v ∈ C : |Im(v)| < − tanβ1Re(v) + 1/3 − κG−3, |Imv| < tanβ2Re(v) + 1/6 + δ
}

(4.4)
which contains v = 0 (see Fig. 4.2). Then we go back to the original parametrization in a 
“boomerang domain”
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Fig. 4.2. The domain Dflow
κ,δ defined in (4.4).

Fig. 4.3. The domain Dκ,δ defined in (4.5).

Dκ,δ =
{
v ∈ C : |Im(v)| < −tanβ1Re(v) + 1/3 − κG−3, |Im(v)| < tanβ1Re(v) + 1/3 − κG−3,

|Im(v)| > −tanβ2Re(v) + 1/6 − δ
}
,

(4.5)

(which does not contain v = 0) in order to measure the distance between the stable and unstable 
manifold.

4.1. Existence of the invariant manifolds close to infinity

In order to prove existence of the invariant manifolds we rewrite equation (3.3) as a fixed point 
equation in a suitable Banach space. We start by defining the linear operator

L = ∂v + G3∂ξ (4.6)

so equation (3.3) reads
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L
(
T

u,s
1

) = F
(
T

u,s
1

)
where F

(
T

u,s
1

) = − 1

2ỹ2
h

(
∂vT

u,s
1

)2 − V (v, ξ) . (4.7)

We introduce the left inverse operators

Gu (f ) (v, ξ) =
0∫

−∞
f

(
v + s, ξ + G3s

)
ds

Gs (f ) (v, ξ) =
0∫

+∞
f

(
v + s, ξ + G3s

)
ds,

(4.8)

so we can rewrite equation (4.7) as the fixed point equation

T
u,s
1 = Gu,s ◦F (

T
u,s
1

)
. (4.9)

Remark. Throughout this section we will only work with the unstable manifold so we will omit 
the superindex u and write D∞

κ,δ, T1 and G instead of D∞,u
κ,δ , T u

1 and Gu if there is no possible 
confusion.

We look for solutions of this equation in the Banach spaces

Z∞
ν,μ = {

h : D∞
κ,δ ×Tσ → C : h is real analytic, ‖h‖ν,μ < ∞}

, (4.10)

where

‖h‖ν,μ =
∑
l∈Z

∥∥∥h[l]
∥∥∥

ν,μ
e|l|σ

and

∥∥∥h[l]
∥∥∥

ν,μ
= sup

v∈D∞
κ,δ\Dρ,κ,δ

∣∣∣vνh[l] (v)

∣∣∣ + sup
v∈Dρ,κ,δ

∣∣∣(v2 + 1/9
)μ

h[l] (v)

∣∣∣ .
Notice that the first term takes account of the behavior at infinity and the second one of the 
behavior near the singularities since v2 + 1/9 = (v − i/3) (v + i/3). As we see from (4.9) we 
will also need to take control on the derivatives so we introduce

Z̃∞
ν,μ =

{
h : D∞

κ,δ ×Tσ →C : h is real analytic, �h�ν,μ < ∞
}

, (4.11)

where

�h�ν,μ = ‖h‖ν,μ + ‖∂vh‖ν+1,μ+1 .

The following lemma provides estimates for the norm of the perturbative potential.
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Lemma 4.1. Let V be the perturbative potential defined in (3.4). Then, for G large enough we 
have that

‖V ‖2,3/2 ≤ KG−4

for a constant K > 0 independent of G.

Proof. Since the domain D∞
κ,δ reaches a neighborhood of order O

(
G−3

)
of v = ±i/3 we have 

that for G sufficiently large

∣∣∣∣∣ 1

G4r̃2
h (v)

∣∣∣∣∣ ≤ KG−1,

for K > 0 independent of G. Therefore, from (2.2) we deduce that for all (v, ξ) ∈ D∞
κ,δ ×Tσ

|V (v, ξ)| ≤ K

G4 |r̃h (v)|3 .

The conclusion follows now using the asymptotic expressions for r̃h (v) obtained in Sec-
tion 3.1. �

We also state algebra-like properties for these spaces, which are straightforward from their 
definition and will be useful when dealing with the fixed point equation.

Lemma 4.2. Let Z∞
ν,μ be the Banach spaces defined in (4.10). Then

i) If h ∈ Z∞
ν,μ and g ∈Z∞

ν′,μ′ then hg ∈ Z∞
ν+ν′,μ+μ′ with

‖hg‖ν+ν′,μ+μ′ ≤ ‖h‖ν,μ ‖g‖ν′,μ′ .

ii) If h ∈Z∞
ν,μ, then h ∈Z∞

ν−α for α > 0 with

‖h‖ν−α,μ ≤ K ‖h‖ν,μ .

iii) If h ∈Z∞
ν,μ then, for α > 0 we have that h ∈Z∞

ν,μ−α with

‖h‖ν,μ−α ≤ KG3α ‖h‖ν,μ .

iv) If h ∈Z∞
ν,μ then, for α > 0 we have that h ∈Z∞

ν,μ+α with

‖h‖ν,μ+α ≤ K ‖h‖ν,μ .

The following lemma provides estimates for the inverse operator. The proof follows the exact 
same lines as in Lemma 5.5. in [17] (see also [5]).
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Lemma 4.3. The operator G defined on (4.8) satisfies the following properties
i) For any ν > 1, μ 1, G :Zν,μ → Zν−1,μ−1 is well defined, linear and satisfies L ◦ G = Id.
ii) If h ∈Zν,μ for some ν > 1, μ > 1, then

‖G (h)‖ν−1,μ−1 ≤ K ‖h‖ν,μ . (4.12)

iii) If h ∈Zν,μ for some ν ≥ 1, μ ≥ 1, then

‖∂vG (h)‖ν,μ ≤ K ‖h‖ν,μ . (4.13)

Now we are ready to solve the fixed point equation.

Theorem 4.4. Fix κ > 0, δ > 0 and σ > 0. Then, for G large enough the fixed point equation 
(4.9) has a unique solution T u

1 on D∞
κ,δ ×Tσ which satisfies

�T u
1 �1,1/2 ≤ b0G

−4

with b0 > 0 independent of G. Moreover, if we define the function

Lu
1 (v, ξ) = Gu (V ) (v, ξ)

we have

∥∥T u
1 − Lu

1

∥∥
1,1/2 ≤ KG−13/2 (4.14)

where K > 0 is independent of G.

Proof. We show that T1 is the unique solution the fixed point equation (4.9). For that we first 
check that the operator G ◦F is well defined from Z̃1,1/2 to itself. Indeed, from Lemma 4.1 we 
have that

‖V ‖2,3/2 ≤ KG−4.

Then, the result follows from direct application of the properties of the homoclinic solution stated 
in Section 3.1, the algebra properties of the norm stated in Lemma 4.2 and Lemma 4.3 since we 
obtain that for h ∈ Z̃1,1/2

�G ◦F (h)�1,1/2 ≤ K min
(
�h�1,1/2 ,G−4

)
(4.15)

for some K > 0 independent of G. In particular we deduce that there exists b0 > 0 independent 
of G such that

�G ◦F (0)�1,1/2 ≤ b0

2
G−4.

Then in order to show existence and uniqueness of solutions it is enough to show that the map 
G ◦F is contractive on the ball B

(
b0G

−4
) ⊂ Z̃1,1/2 centered at 0. For that purpose we write
159



M. Guardia, J. Paradela, T.M. Seara et al. Journal of Differential Equations 294 (2021) 143–177
F (h2) −F (h1) = 1

2y2
h

(∂vh1 + ∂vh2) (∂vh1 − ∂vh2)

so using that h1, h2 ∈ B
(
b0G

−4
) ⊂ Z̃1,1/2,κ,δ,σ we have

‖F (h2) −F (h1)‖2,3/2 ≤
∥∥∥∥∥ 1

2y2
h

(∂vh1 + ∂vh2)

∥∥∥∥∥
0,0

‖∂vh1 − ∂vh2‖2,3/2

≤ KG3/2

∥∥∥∥∥ 1

2y2
h

(∂vh1 + ∂vh2)

∥∥∥∥∥
0,1/2

�h1 − h2�1,1/2

≤ KG−5/2 �h1 − h2�1,1/2 ,

and contractivity follows from Lemma 4.3 (enlarging G if necessary).
To obtain (4.14) we notice that

∥∥T1 − Lu
1

∥∥
1,1/2 = ‖G ◦ (F (T1) −F (0))‖1,1/2

≤ �G ◦ (F (T1) −F (0))�1,1/2

≤ KG−5/2 �T1�1,1/2 ≤ KG−13/2. �
Since the parametrization (3.5) becomes singular at v = 0, in the next section we look for a 

new parametrization of the unstable manifold which is regular at v = 0 and therefore allows us 
to extend it across v = 0.

4.2. Analytic continuation of the solution to the domain Dflow
κ,δ

In order to measure the distance between the stable and unstable manifolds we need them to 
be defined in a common domain. However, a parametrization of the form

Γ (v, ξ) =
(

r̃ (v, ξ)

ỹ (v, ξ)

)
=

(
r̃h (v)
1

ỹh(v)
∂vT

u

)

becomes undefined at v = 0. To avoid this difficulty we look for a different parametrization of 
the unstable manifold in the domain Dρ,κ,δ (4.3) which does not contain v = 0 and then extend 
it by the flow. In order to proceed, we introduce the Banach spaces

Yμ,ρ,κ,δ,σ = {
h : Dρ,κ,δ ×Tσ → C : h is real analytic, ‖h‖μ < ∞}

(4.16)

where

‖h‖μ =
∑
l∈Z

∥∥∥h[l]
∥∥∥

μ
(4.17)

and
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∥∥∥h[l]
∥∥∥

μ
= sup

v∈Dρ,κ,δ

∣∣∣(v2 + 1/9
)μ

h[l] (v)

∣∣∣ (4.18)

and the analogues of (4.11)

Ỹμ,ρ,κ,δ =
{
h : Dρ,κ,δ ×Tσ →C : h is real analytic, �h�μ < ∞

}

with

�h�μ = ‖h‖μ + ‖∂vh‖μ+1 .

Remark 4.5. Throughout this section we will work on different domains Dρ,κ,δ , Dflow
κ,δ and D̃κ,δ

(the latter is defined in (4.32)). We will denote by Yμ,κ,δ the analogue to the Banach spaces (4.16)
associated to the domain D̃κ,δ , and by Yflow

μ,κ,δ the analogues for domain Dflow
κ,δ (4.4) (in this case 

for vectorial functions since we will work with vector fields on the plane).

4.2.1. From Hamilton-Jacobi parametrizations to parametrizations invariant by the flow
We look for a change of variables of the form Id + g : (v, ξ) 	→ (v + g (v, ξ) , ξ) such that

Γ̂ (v, ξ) = Γ ◦ (Id + g) (v, ξ) (4.19)

satisfies

φs

(
Γ̂ (v, ξ)

)
= Γ̂

(
v + s, ξ + G3s

)
.

Denoting by X the vector field generated by the Hamiltonian (2.1), this equation is equivalent to

X ◦ Γ̂ = L
(
Γ̂

)
, (4.20)

which we can rewrite as

L (g) (v, ξ) = F ◦ (Id + g) (v, ξ) where F = 1

y2
h

∂vT1 (4.21)

and L stands for the differential operator (4.6). As before we transform (4.21) into a fixed point 
equation. Thus, we introduce the inverse operator

G̃ (h) =
∑
l∈Z

G̃ (h)[l] eilξ

where
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G̃ (h)[l] =
v∫

v1

eilG3(t−v)h[l] (t)dt

G̃ (h)[0] =
v∫

−ρ

h[l] (t)dt (4.22)

G̃ (h)[l] =
v∫

v̄1

eilG3(t−v)h[l] (t)dt,

and v1, v̄1 are the top and bottom points of the domain Dρ,κ,δ defined in equation (4.3). The 
following lemma is proved as Lemma 5.5 in [17].

Lemma 4.6. The operator G̃ defined on (4.22) satisfies the following properties.
i) For any μ ≥ 0, G̃ : Yμ,ρ,κ,δ,σ → Yμ,ρ,κ,δ,σ is well defined, linear and satisfies L ◦ G̃ = Id.
ii) If h ∈ Yμ,ρ,κ,δ,σ for some μ > 1, then

∥∥∥G̃ (h)

∥∥∥
μ−1

≤ K ‖h‖μ . (4.23)

iii) If h ∈ Yμ,ρ,κ,δ,σ for some μ ≥ 1, then

∥∥∥∂vG̃ (h)

∥∥∥
μ

≤ K ‖h‖μ . (4.24)

Therefore, solutions of (4.21) are also fixed points of

g = G̃ ◦F ◦ (Id + g) . (4.25)

We state two technical lemmas which will be useful for dealing with compositions of functions 
and are deduced from the proofs of Lemmas 5.14 and 5.15 in [16].

Lemma 4.7. Fix constants δ′ < δ, ρ′ < ρ, κ ′ > κ and take h ∈ Yμ,ρ,κ,δ,σ . Then, ∂vh ∈
Yμ,ρ′,κ ′,δ′,σ and satisfy

‖∂vh‖μ ≤ G3

(κ ′ − κ)

(
κ ′

κ

)μ

‖h‖μ .

Lemma 4.8. Fix constants ρ′ < ρ, δ′ < δ, κ ′ > κ + 1 and σ ′ < σ . Then,
i) If h ∈ Yμ,ρ,κ,δ,σ and g ∈ B

(
G−3

) ⊂ Yμ,ρ′,κ ′,δ′,σ ′ we have that h̃ = h ◦ (Id + g) ∈
Yμ,ρ′,κ ′,δ′,σ ′ and

∥∥∥h̃

∥∥∥
μ

≤
(

κ ′

κ

)μ

‖h‖μ .

ii) Moreover if g1, g2 ∈ B
(
G−3

) ⊂ Yμ,ρ′,κ ′,δ′,σ ′ , then f = h ◦ (Id + g1) − h ◦ (Id + g2) satisfies
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‖f ‖μ ≤ G3

(κ ′ − κ)

(
κ ′

κ

)μ

‖h‖μ ‖g1 − g2‖0,0 .

Theorem 4.9. Let δ, κ and σ be the constants given by Theorem 4.4. Let ρ1 < ρ, δ1 < δ, σ1 < σ

and κ1 > κ . Then, for G big enough, there exist a function g ∈ Y0,ρ1,κ1,δ1,σ1 satisfying

‖g‖0 ≤ b1G
−7/2

for b1 > 0 independent of G and such that

Γ̂ = Γ ◦ (Id + g)

satisfies (4.20).

Proof. To find g we solve the fixed point equation (4.25). For that, we take g ∈ B
(
KG−7/2

) ⊂
Y0,ρ1,κ1,δ1,σ1 , with K a constant independent of G. Then by Lemma 4.8 and using the estimate 
for ∂vT1 obtained in Theorem 4.4 we have

‖F ◦ (Id + g)‖1/2 ≤
(κ1

κ

)1/2 ‖F‖1/2

≤
(κ1

κ

)1/2
KG−4

≤ KG−4

where K is a constant depending only on the reduction of the domain. From here it is clear using 
Lemma 4.6 that the map G̃ ◦ F ◦ (Id + g) : B (

KG−7/2
) ⊂ Y0,ρ1,κ1,δ1,σ1 → Y0,ρ1,κ1,δ1,σ1 is well 

defined. Moreover, we obtain that

∥∥∥G̃ ◦F ◦ (Id + g)|g=0

∥∥∥
0
≤ KG1/2

∥∥∥G̃ ◦F ◦ (Id + g)|g=0

∥∥∥
1/6

≤ KG1/2
∥∥F ◦ (Id + g)|g=0

∥∥
7/6

≤ KG1/2
∥∥F ◦ (Id + g)|g=0

∥∥
1/2

≤ b1G
−7/2

(4.26)

for some b1 independent of G. It only remains to show that the map G̃ ◦ F ◦ (Id + g) is con-
tractive in a neighborhood of the origin. Take g1, g2 ∈ B

(
b1G

−7/2
) ⊂ Y0,ρ1,κ1,δ1,σ1 , using again 

Lemma 4.8 we have that

‖F ◦ (Id + g1) −F ◦ (Id + g2)‖1/2 ≤ K̃G−1/2 ‖g1 − g2‖0 .

Direct application of Lemma 4.3 yields

∥∥∥G̃ (F ◦ (Id + g1) −F ◦ (Id + g2))

∥∥∥ ≤ K̃G−1/2 ‖g1 − g2‖0 ,

0
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so for G big enough the map g 	→ G̃ ◦F ◦ (Id + g) is contractive on B
(
b1G

−7/2
) ⊂ Y0,ρ1,κ1,δ1,σ1

and the proof is completed. �
4.2.2. Analytic extension of the unstable manifold by the flow parametrization

Now we perform the analytic continuation of the parametrization (4.19) given by Theorem 4.4
to the domain Dflow

κ,δ defined in (4.4) using the flow of the Hamiltonian (2.1). Notice that since 
the domain Dflow

κ,δ is bounded and at distance of order O (1) with respect to the singularities all 
norms ‖h‖μ are equivalent, therefore it will suffice to get estimates on the norm ‖h‖0.

Write Γ̂ = Γ̂0 + Γ̂1, where

Γ̂0 (v, ξ) = Γ0 ◦ (Id + g) (v, ξ) Γ0 (v) = (r̃h (v) , ỹh (v)) . (4.27)

Then, the equation (4.20) that defines this extension is rewritten as

L̂
(
Γ̂1

)
= F̂

(
Γ̂1

)
(4.28)

where

L̂ (h) =L (h) − DX0

(
Γ̂0

)
h

F̂ (h) =X0

(
Γ̂0 + h

)
− X0

(
Γ̂0

)
− DX0

(
Γ̂0

)
h + X1

(
Γ̂0 + h

)
.

Denote by Ψ (v) the fundamental matrix of the linear system

ż (v) = DX0 (Γ0 (v, ξ)) z (v) , v ∈ Dflow
κ,δ .

Then, equation (4.28), together with a suitable initial condition Γ̂h, can be reformulated as the 
fixed point equation

Γ̂1 = Γ̂h + Ĝ ◦ F̂
(
Γ̂1

)
, (4.29)

where

Γ̂h =
∑
l>0

Ψ (v)Ψ −1 (v1) Γ̂
[l]

1 (v1) eilG3(v1−v)eilξ

+
∑
l<0

Ψ (v)Ψ −1 (v̄1) Γ̂
[l]

1 (v̄1) eilG3(v̄1−v)eilξ

+Ψ (v)Ψ −1 (−ρ1) Γ̂
[0]

1 (−ρ1)

is the solution of the homogeneous equation L̂ (h) = 0 (observe that since v1, v̄1, −ρ1 are con-
tained in Dρ,κ,δ , the terms Γ̂ [l]

1 (v1) , Γ̂ [l]
1 (v̄1) and Γ̂ [l]

1 (−ρ1) are already defined) and

Ĝ (h) = Ψ G̃
(
Ψ −1h

)
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is a right inverse operator. Notice that since DX
(
Γ̂0 (v, ξ)

)
is continuous and Dflow

κ,δ is a compact 
domain at distance O (1) from the singularities, we have that there exists K > 0 such that

sup
v∈Dflow

κ,δ

max
{
‖Ψ ‖0 ,

∥∥∥Ψ −1
∥∥∥

0

}
≤ K, (4.30)

in the matrix norm associated to the usual vector norm in C2.

Lemma 4.10. Assume h, h̃ ∈ B
(
KG−4

) ⊂ Yflow
0,κ1,δ1,σ1

for some K > 0. Then there exists K ′ > 0
such that

i) Defining Y (h) = X0

(
Γ̂0 + h

)
− X0

(
Γ̂0

)
− DX0

(
Γ̂0

)
h we have that Y (h) ∈ Yflow

0,κ1,δ1,σ1
,

and

‖Y (h)‖0 ≤ K ′G−4,

ii) X1

(
Γ̂0 + h

)
∈ Yflow

0,κ1,δ1,σ1
. with 

∥∥∥X1

(
Γ̂0 + h

)∥∥∥
0
≤ K ′G−4,

iii) 
∥∥∥Y (h) − Y

(
h̃
)∥∥∥

0
≤ K ′G−4

∥∥∥h − h̃

∥∥∥
0
,

iv) 
∥∥∥X1

(
Γ̂0 + h

)
− X1

(
Γ̂0 + h̃

)∥∥∥
0
≤ K ′G−4

∥∥∥h − h̃

∥∥∥
0
.

Proof. The proof follows from the mean value theorem together with the straightforward bounds

∥∥∥DX0

(
Γ̂0

)∥∥∥
0
≤ K ′

∥∥∥X1

(
Γ̂0

)∥∥∥
0
≤ K ′G−4

∥∥∥DX1

(
Γ̂0

)∥∥∥
0
≤ K ′G−4. �

Proposition 4.11. Let κ1, δ1 and σ1 be the constants considered in Theorem 4.9. Then, there 
exists b2 > 0 such that if G is large enough, the fixed point equation (4.29) has a unique solution 
Γ̂1 ∈ B

(
b2G

−4
) ⊂ Yflow

0,κ1,δ1,σ1
.

Proof. As v1, v̄1, ρ1 ∈ Dρ1,κ1,δ1 we have that Γ̂h ∈ Y0,ρ1,κ1,δ1 with

∥∥∥Γ̂h

∥∥∥
0
≤ KG−4.

We claim using Lemma 4.10 that the map K̂ : h 	→ Γh + Ĝ ◦ F̂ (h) is well defined from 
B

(
KG−4

) ⊂ Yflow
0,κ1,δ1,σ1

to Yflow
0,κ1,δ1,σ1

. Moreover, we see from the estimate (4.30) for the fun-
damental matrix Ψ (v) that there exists b2 such that

∥∥∥K̂ (0)

∥∥∥
0
=

∥∥∥Γh + Ĝ (X1 ◦ Γ0)

∥∥∥
0
≤ b2

2
G−4.

Finally, from Lemma 4.10, we conclude that for G big enough K̂ is Lipschitz in B
(
b2G

−4
) ⊂

Yflow with Lipschitz constant KG−4. �
0,κ1,δ1,σ1
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4.2.3. From flow parametrization to Hamilton-Jacobi parametrization
Now that we have extended the parametrization (4.19) across v = 0, the next step is to come 

back to the Hamilton-Jacobi parametrization (3.5) so we have both stable and unstable manifolds 
parametrized as graphs of the form (r̃h (v) , ỹu,s (v, ξ)) and we can easily measure the distance 
between them.

We look for a change of variables of the form Id + f such that

π1 ◦ Γ̂ ◦ (Id + f ) (v, ξ) = r̃h (v) (4.31)

in the domain

D̃κ1,δ1 = D
f low
κ1,δ1

∩ Dκ1,δ1 , (4.32)

where Df low
κ1,δ1

, Dκ1,δ1 are the domains defined in (4.4) and (4.5). Therefore, in Du
ρ1,κ1,δ1

∩ D̃κ1,δ1

the change Id + f is the inverse of the change Id + g obtained in Theorem 4.9. We will see that 
this change of variables is unique under certain conditions, therefore, once we have f , the second 
component of the unstable manifold is given by

π2 ◦ Γ̂1 ◦ (Id + f ) (v, ξ) = 1

yh (v)
∂vT1. (4.33)

Using the properties of the unperturbed solution, i.e. π1 ◦ Γ0 (v, ξ) = r̃h (v), we can write equa-
tion (4.31) as

f = P (f )

where

P (f ) = −1

yh (v)
(r̃h (v + f (v, ξ)) − r̃h (v) − ỹh (v)f (v, ξ) − π1 ◦ Γ1 ◦ (Id + f ) (v, ξ)) .

Proposition 4.12. Consider the constants κ1, δ1 and σ1 given by Proposition 4.11 and any κ2 >

κ1, δ2 < δ1, σ2 < σ1. Then,
i) There exists b3 > 0 such that for G large enough, the operator P has a unique fixed point 

f ∈ Y0,κ2,δ2,σ2 with

‖f ‖0 ≤ b3G
−4.

ii) Equation (4.33) defines the graph of the unstable manifold which can be written as T u =
T0 + T u

1 where T u
1 satisfies

∥∥∂vT
u
∥∥ ≤ KG−4.
1 0
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Proof. For the first part we observe that, for f2, f1 ∈ B
(
KG−4

) ⊂ Y0,κ2,δ2,σ2 ,

|r̃h (v + f2) − r̃h (v + f1) − ỹh (f2 − f1)| ≤ K

∣∣∣f 2
2 − f 2

1

∣∣∣
≤ KG−4 |f2 − f1| .

Then, from Lemma 4.8 and the fact and 
∥∥∥Γ̂ u

1

∥∥∥
0
≤ KG−4 we deduce that

|P (f2) −P (f1)| ≤ KG−4 |f2 − f1| ,

i.e. P (f ) is a contractive mapping on B
(
b3G

−4
) ⊂ Y0,κ2,δ2,σ2 for some b3 > 0 so there exists a

unique f ∈ B
(
b3G

−4
) ⊂ Y0,κ2,δ2,σ2 solving f = P (f ).

For the second part we have from equation (4.33) that

π2 ◦ Γ̂1 ◦ (Id + f ) (v, ξ) = 1

yh (v)
∂vT1.

Therefore,

‖∂vT1‖0,0 ≤ K

∥∥∥∥ 1

yh (v)
∂vT1

∥∥∥∥
0

= K

∥∥∥π2 ◦ Γ̂1 ◦ (Id + f )

∥∥∥
0

≤ K

∥∥∥Γ̂1 ◦ (Id + f )

∥∥∥
0

≤ K

∥∥∥Γ̂1

∥∥∥
0
≤ KG−4,

where we have used Lemma 4.8 and the estimate for 
∥∥∥Γ̂1

∥∥∥
0

obtained in Proposition 4.11. �
We sum up the results obtained in this section in the following theorem.

Theorem 4.13. Let κ2, δ2 and σ2 the constants given by Proposition 4.12. Then, for G big enough 
there exist real analytic functions T u,s

1 defined in Dκ2,δ2 which are solutions of equation (3.3) and 
satisfy

∥∥∂vT
u,s
1

∥∥
3/2 ≤ b4G

−4

for a certain b4 > 0 independent of G.

Proof. For the stable manifold, the result was obtained in Theorem 4.4 since Dκ2,δ2 ⊂ D
∞,s
κ,δ . For 

the unstable manifold, using that Dκ2,δ2 ⊂ D
∞,u
κ,δ ∪D̃κ2,δ2 the result follows from the combination 

of Theorem 4.4 and Proposition 4.12. �
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5. The difference between the manifolds

Once we have obtained the parametrization of the invariant manifolds in the common domain 
Dκ,δ defined in (4.3), the next step is to study their difference. To this end we define

Δ̃ (v, ξ) = T s (v, ξ) − T u (v, ξ) . (5.1)

Substracting equation (3.3) for T s
1 and T u

1 one obtains that

Δ̃ ∈ KerL̃

where L̃ is the differential operator

L̃ = (1 + A(v, ξ)) ∂v − G3∂ξ

with

A(v, ξ) = 1

2ỹ2
h

(
∂vT

s
1 − ∂vT

u
1

)
. (5.2)

To obtain exponentially small bounds on the difference between the invariant manifolds we will 
look for a close to identity change of variables (v, ξ) = (w + C (w, ξ) , ξ) such that the function

Δ(w, ξ) = Δ̃ (w + C (w, ξ) , ξ) (w, ξ) ∈ Dκ,δ ×Tσ , (5.3)

satisfies

Δ ∈ KerL

where L is the differential operator defined in (4.6). The condition Δ ∈ KerL implies that Δ =
f

(
ξ − G3w

)
. Therefore, since Δ is periodic in ξ it must be periodic in w. Since Δ is real 

analytic and bounded in a strip that reaches up to points O
(
G−3

)
close to the singularities the 

exponentially small bound for |Δ(w, ξ)| where w ∈ R comes straightforward by a classical 
argument (see Lemma 5.2 below). We devote the rest of the section to make this rigorous.

5.1. Straightening the operator L̃

As we did in the previous sections we introduce the Banach spaces

Qμ,ρ,κ,δ,σ = {
h : Dκ,δ ×Tσ →C : h is real analytic, ‖h‖μ < ∞}

where

‖h‖μ = sup
∣∣∣(v2 + 1/9

)μ

h (v)

∣∣∣ .

v∈Dκ,δ
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Theorem 5.1. Let κ2 and δ2 the constants defined in Theorem 4.13. Let κ3 > κ2, δ3 < δ2 and 
σ3 < σ2 be fixed. Then, for G big enough, there exists C ∈ Q0,κ3,δ3,σ3 such that the function

Δ(w, ξ) = Δ̃ (w + C (w, ξ) , ξ)

satisfies that Δ ∈ KerL. Moreover, we have that

‖C‖0 ≤ b5G
−7/2

for a certain b5 > 0 independent of G.

Proof. Using the chain rule we obtain that the implication Δ ∈ KerL if and only if Δ ∈ KerL̃, is 
equivalent to finding C satisfying

L (C) = A|v=w+C(w)

= A ◦ (Id + C) ,

where A (v, ξ) was defined in (5.2). We can rewrite this equation as a fixed point equation

C = G̃ (A ◦ (Id + C)) ,

where G̃ is the inverse operator defined in (4.22). Using the bounds for ∂vT
u,s
1 in Theorem 4.13, 

the properties of the homoclinic orbit stated in Section 3.1, and Lemma 4.8 for the composition, 
we obtain that, for C ∈ B

(
KG−4

) ⊂ Q0,κ3,δ3,σ3 ,

‖A ◦ (Id + C)‖1/2 ≤ K ′G−4

for some K ′ > 0 independent of G. Hence, from Lemma 4.8 we observe that the map C 	→
G̃ (A ◦ (Id + C)) is well defined from C ∈ B

(
KG−7/2

) ⊂ Q0,κ3,δ3,σ3 → Q0,κ3,δ3,σ3 . Moreover, 
we also get

∥∥∥G̃ (
A ◦ (Id + C)|C=0

)∥∥∥
0
≤ b5

2
G−7/2,

for some b5 independent of G. Hence, it only remains to prove that the map C 	→ G̃ (A ◦ (Id + C))

is contractive on the ball B
(
b5G

−7/2
) ⊂ Q0,κ3,δ3,σ3 . Again by Lemma 4.8 we have that if 

C1, C2 ∈ B
(
b5G

−7/2
) ⊂ Q0,κ3,δ3,σ3 , then

‖A ◦ (Id + C2) − A ◦ (Id + C1)‖1/2 ≤ KG3 ‖A‖1/2 ‖C2 − C1‖0

≤ KG−1 ‖C2 − C1‖0 ,

and contractivity follows from Lemma 4.6 for G big enough. �
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5.2. Estimates for the difference between the invariant manifolds

Now we exploit the fact that the function Δ (w, ξ) defined in (5.3) satisfies

Δ ∈ KerL

to get exponentially small bounds on the real line.

Lemma 5.2. Let h : Dκ,δ × Tσ →C be a real-analytic function such that h ∈ Q0,κ,δ,σ and h ∈
KerL. Then,

i) h is of the form

h(w, ξ) =
∑
l∈Z

h[l] (w) eilξ =
∑
l∈Z

β[l]eil
(
ξ−G3w

)
.

ii) the coefficients β[l] satisfy the bounds

∣∣∣β[l]
∣∣∣ ≤ ‖h‖0 K |l|e

−|l|G3
3 .

Proof. Since h ∈ KerL and is periodic in ξ , we have that each Fourier coefficient h[l] satisfies

d

dw
h[l] + ilG3h[l] = 0

so it has to be

h[l] (w) = β[l]e−ilG3w

for certain constants β[l]. Moreover, evaluating this equality at the top vertex w2 = i
(
1/3 − κG−3

)
of the domain Dκ,δ for l < 0 and at the bottom vertex w̄2 = i

(
1/3 − κG−3

)
for l > 0 we obtain 

that ∣∣∣β[l]
∣∣∣ ≤ max

{
h[l] (w2) , h[l] (w̄2)

}
e

−|l|G3
3 e|l|κ3

≤ ‖h‖0 e|l|κ3e
−|l|G3

3

≤ ‖h‖0 K |l|e
−|l|G3

3 ,

for a constant K independent of G and l. Therefore, for u ∈R ∩ Dκ,δ

∣∣∣h[l] (u)

∣∣∣ =
∣∣∣β[l]

∣∣∣ ≤ ‖h‖0 K |l|e
−|l|G3

3 . �
Using this lemma we already have exponentially small bounds for Δ (w, ξ). Nevertheless, our 

goal is to prove that the function L defined in (3.7) is the main term in Δ. Thus we study the 
function
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E (w, ξ) = Δ(w, ξ) − L(w, ξ) .

Lemma 5.3. Consider the constants κ3 δ3 and σ3 defined in Theorem 5.1. Then, for (w, ξ) ∈(
Dκ3,δ3 ∩R

) ×T we get

|E (w, ξ) − E| ≤ KG−7/2e
−G3

3 ,

where E is a constant and

|∂wE | ≤ KG−1/2e
−G3

3 .

Proof. Notice that L = Ls − Lu where L∗ = G∗ (V ), with Gu,s are the left inverse operators 
introduced in (4.8). Then, it is clear that L (L) = 0 and we have that E ∈ KerL. We bound E in 
the domain Dκ,δ so that we can apply Lemma 5.2. We decompose E = E s

1 − Eu
1 + E2 where

E∗
1 = T ∗

1 − L∗

E2 = Δ − Δ̃.

From Lemma 4.2 and equation (4.14) we have

∥∥E∗
1

∥∥
0 = ∥∥T ∗

1 − L∗∥∥
0 ≤ KG3/2

∥∥T ∗
1 − L∗∥∥

1/2 ≤ KG−5.

For the second term we use Lemmas 4.2, 4.8 and the bounds for Δ̃ and C from Theorems 4.13
and 5.1 to obtain

‖E2‖0 =
∥∥∥Δ̃ ◦ (Id + C) − Δ̃

∥∥∥
0
≤ KG3

∥∥∥Δ̃

∥∥∥
0
‖C‖0

≤ KG9/2
∥∥∥Δ̃

∥∥∥
1/2

‖C‖0 ≤ KG−7/2,

Combining these results

‖E‖0 ≤ KG−7/2.

Hence, by direct application of Lemma 5.2 we obtain that for u ∈ Dκ3,δ3 ∩R

∣∣∣E [l] (w)

∣∣∣ ≤ G−7/2K |l|e
−|l|G3

3 .

Now, defining E = E [0] (notice that by Lemma 5.2, E0 is constant) we have that for (w, ξ) ∈(
Dκ ,δ ∩R

) ×Tσ
3 3 3
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|E − E| ≤
∑
|l|>1

∣∣∣E [l] (w)

∣∣∣
≤ G−7/2e

−G3
3

∑
|l|>2

(
Ke

−G3
3

)|l|

≤ KG−7/2e
−G3

3 .

Finally, it is a straightforward computation to check that

∣∣∣∣ d

dw
E [l] (w)

∣∣∣∣ ≤ G−1/2K |l|e
−|l|G3

3

so we conclude that

|∂wE | ≤ KG−1/2e
−G3

3 . �
There is only one step left for achieving our goal, going back to the original variables (v, ξ). 

This is done in the next lemma.

Lemma 5.4. Consider the function

Ẽ (v, ξ) = Δ̃ (v, ξ) − L(v, ξ)

where Δ̃ (v, ξ) is defined in (5.1) and L (v, ξ) is defined in (3.7). Fix κ4 > κ3, δ4 < δ3 and σ4 >

σ3. Then, for (v, ξ) ∈ (
Dκ4,δ4 ∩R

) ×Tσ4 ,

∣∣∣Ẽ (v, ξ) − E

∣∣∣ ≤ KG−7/2e
−G3

3 (5.4)

where E is a constant and ∣∣∣∂v Ẽ (v, ξ)

∣∣∣ ≤ KG
−1/2e

−G3
3 . (5.5)

Proof. We look for a function ϕ (v, ξ) such that (Id + C) ◦ (Id + ϕ) (v, ξ) = (v, ξ), i.e., ϕ must 
satisfy

v = v + ϕ (v, ξ) + C (v + ϕ (v, ξ) , ξ)

or what is the same

ϕ (v, ξ) = −C (v + ϕ (v, ξ) , ξ) . (5.6)

In order to solve this fixed point equation we first use Lemma 4.8 to obtain that for 
ϕ ∈B

(
KG−4

) ⊂ Y0,κ4,δ4,σ4

‖C ◦ (Id + ϕ)‖0 ≤ ‖C‖0 ≤ KG−4
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so the map ϕ 	→ C ◦ (Id + ϕ) is well defined from B
(
KG−4

) ⊂ Y0,κ4,δ4,σ4 → Y0,κ4,δ4,σ4 . More-
over we get that there exists b6 such that

∥∥C ◦ (Id + ϕ)|ϕ=0

∥∥
0 ≤ b6

2
G−4.

Since for ϕ1, ϕ2 ∈ B
(
KG−4

) ⊂ Y0,κ4,δ4,σ4 we have

‖C ◦ (Id + ϕ2) − C ◦ (Id + ϕ1)‖0 ≤ KG−4 ‖ϕ2 − ϕ1‖0

we have shown the existence of a unique ϕ ∈ B
(
b6G

−4
) ⊂ Y0,κ4,δ4,σ4 solving (5.6).

Now that we have obtained the inverse change of variables, the bounds (5.4) and (5.5) follow 
from direct application of Lemma 4.8 if we notice that

E (w (v, ξ) , ξ) = (Δ − L) ◦ (Id + ϕ) (v, ξ)

=
(
Δ̃ ◦ (Id + C) − L

)
◦ (Id + ϕ) (v, ξ)

= Δ̃ (v, ξ) − L ◦ (Id + ϕ) (v, ξ)

so

Ẽ (v, ξ) = E (v, ξ) + L ◦ (Id + ϕ) (v, ξ) − L(v, ξ) .

Then, the result follows from Lemma 4.8 and the estimates on Proposition 3.1. �
6. Computation of the Melnikov potential

We devote this section to the computation of the Melnikov potential L (v, ξ) whose partial 
derivative with respect to v gives us the first order term of the distance between the infinity 
manifolds. From its definition (3.7) we have

L(v, ξ) =
∞∫

−∞
V

(
r̃h (v + s) , ξ + G3s

)
ds

=
∞∫

−∞
V

(
r̃h (s) , ξ + G3 (s − v)

)
ds.

Expanding in Taylor series the square root in (2.2) we obtain that

V
(
r̃h (s) , ξ + G3 (s − v)

)
= −

∞∑
k=1

( −1
2
k

)(
4G4

)−k
∞∫

−∞

ρ2k
(
ξ + G3 (s − v)

)
ds

r̃2k+1
h (s)

.

Hence, expanding now the terms ρ2k in Fourier series we get
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L(v, ξ) = −
∑
l∈Z

eil
(
ξ−G3v

) ∞∑
k=1

( −1
2
k

)
al,k

(
4G4

)−k
∞∫

−∞

eilG3sds

r̃2k+1
h (s)

,

where

al,k = 1

2π

2π∫
0

ρ2k (σ ) e−ilσ dσ.

Since for all σ ∈ [0,2π] we have |ρ| < 2 we easily bound

∣∣al,k

∣∣ ≤ 4k. (6.1)

Moreover, changing the integration variable to the eccentric anomaly E defined by t = E −
sinE

ρ (E) = 1 − cosE,

we obtain that

a1,1 = −2J1 (1) �= 0 (6.2)

where J1 is the Bessel function of first kind.
Under the time reparametrization

s = 1

2

(
τ + τ 3

3

)
,

we can write

L(v, ξ) = −2
∑
l∈Z

eil
(
ξ−G3v

) ∞∑
k=1

( −1
2
k

)
al,kG

4k

∞∫
−∞

e
ilG3

(
τ+ τ3

3

)
/2

dτ

(τ − i)2k (τ + i)2k

= −2
∑
l∈Z

eil
(
ξ−G3v

) ∞∑
k=1

( −1
2
k

)
al,kG

4kI (l, k)

=
∑
l∈Z

L[l]eil
(
ξ−G3v

)
.

(6.3)

The harmonic with l = 0 is readily bounded using that

I (0, k) = √
π

Γ (2k − 1/2)

Γ (2k)
,

where Γ stands for the Gamma function.
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A standard computation shows that L[l] = L[−l] so we focus only on the case l > 0. The 
next proposition, which can be deduced from Propositions 19 and 22 in [8] gives estimates for 
|I (l, k)| and the asymptotic first order term for I (1,1) which we use to identify the main term 
in L[1] (v, ξ).

Proposition 6.1. Let G be large enough, then the estimate

|I (l, k)| ≤ 8elG3k−3/2e
−lG3

3 ,

holds for l ≥ 1, k ≥ 1. Moreover we have that

I (1,1) = √
π

(
G

2

)3/2

e
−G3

3

(
1 +O

(
G−3/2

))
.

For l = 1 we have

L[1] = −2

(
−1

2
a1,1G

−4I1,1 +
∞∑

k=2

( −1
2
k

)
a1,kG

4kI (1, k)

)
.

Using Proposition 6.1 and the estimate in (6.1) we have that

∣∣∣∣∣
∞∑

k=2

( −1
2
k

)
a1,kG

4kI (1, k)

∣∣∣∣∣ ≤ 8e1/2e
−G3

3 G−3/2

∞∑
k=2

G−k

≤ 16e1/2e
−G3

3 G−7/2.

Therefore

L[1] = a1,1
√

π2−3/2G−5/2e
−G3

3

(
1 +O

(
G−1

))
.

For l ≥ 2 we have

L[l] = −2
∞∑

k=1

( −1
2
k

)
al,kG

−4kIl,k

and again from Proposition 6.1 and the estimate in (6.1) we obtain

∣∣∣L[l]
∣∣∣ ≤ 32el−1/2G−5/2e

−lG3
3 .

From the estimates we have obtained for 
∣∣L[l]∣∣ the double series is absolutely convergent, 

which justify the expansions in Taylor and Fourier series and the proof of Proposition 3.1 is 
completed.
175



M. Guardia, J. Paradela, T.M. Seara et al. Journal of Differential Equations 294 (2021) 143–177
Acknowledgments

M. G. and J. P. have received funding from the European Research Council (ERC) un-
der the European Union’s Horizon 2020 research and innovation programme (grant agreement 
No 757802). T. M. S. has been also partly supported by the Spanish MINECO-FEDER Grant 
PGC2018-098676-B-100 (AEI/FEDER/UE) and the Catalan grant 2017SGR1049. M. G. and T. 
M. S. are supported by the Catalan Institution for Research and Advanced Studies via an ICREA 
Academia Prize 2019. C. Vidal is supported by FONDECYT 1180288.

References

[1] Vladimir I. Arnold, V.V. Kozlov, A.I. Neishtadt, Dynamical Systems III, Springer, 1988.
[2] Lúcia Brandão Dias, Joaquín Delgado, Claudio Vidal, Dynamics and chaos in the elliptic isosceles restricted three-

body problem with collision, J. Dyn. Differ. Equ. 29 (1) (2017) 259–288.
[3] Lúcia Brandão Dias, Claudio Vidal, Periodic solutions of the elliptic isosceles restricted three-body problem with 

collision, J. Dyn. Differ. Equ. 20 (2) (2008) 377–423.
[4] Inmaculada Baldomá, Ernest Fontich, Stable manifolds associated to fixed points with linear part equal to identity, 

J. Differ. Equ. 197 (1) (2004) 45–72.
[5] Inmaculada Baldomá, Ernest Fontich, Marcel Guardia, Tere M. Seara, Exponentially small splitting of separatrices 

beyond Melnikov analysis: rigorous results, J. Differ. Equ. 253 (12) (2012) 3304–3439.
[6] Inmaculada Baldomá, Ernest Fontich, Pau Martín, Invariant manifolds of parabolic fixed points (i). Existence and 

dependence on parameters, J. Differ. Equ. 268 (9) (2020) 5516–5573.
[7] Inmaculada Baldomá, Ernest Fontich, Pau Martín, Invariant manifolds of parabolic fixed points (ii). Approximations 

by sums of homogeneous functions, J. Differ. Equ. 268 (9) (2020) 5574–5627.
[8] Amadeu Delshams, Vadim Kaloshin, Abraham de la Rosa, Tere M. Seara, Global instability in the restricted planar 

elliptic three body problem, Commun. Math. Phys. 366 (3) (2019) 1173–1228.
[9] Amadeu Delshams, Tere M. Seara, An asymptotic expression for the splitting of separatrices of the rapidly forced 

pendulum, Commun. Math. Phys. 150 (1992) 433.
[10] A. Delshams, T.M. Seara, Splitting of separatrices in Hamiltonian systems with one and a half degrees of freedom, 

Math. Phys. Electron. J. 3 (1997), Paper 4, 40 pp. (electronic). MR 1474213 (98k:58197).
[11] José Pedro Gaivão, Exponentially small splitting of separatrices, Bol. Soc. Port. Mat.: Special Issue (2012) 181–184, 

MR 3098782.
[12] José Pedro Gaivão, Vassili Gelfreich, Splitting of separatrices for the Hamiltonian-Hopf bifurcation with the Swift-

Hohenberg equation as an example, Nonlinearity 24 (3) (2011) 677–698, MR 2765480.
[13] Vassili G. Gelfreich, Melnikov method and exponentially small splitting of separatrices, Physica D, Nonlinear Phe-

nom. 101 (3–4) (1997) 227–248.
[14] V.G. Gelfreich, Separatrix splitting for a high-frequency perturbation of the pendulum, Russ. J. Math. Phys. 7 (1) 

(2000) 48–71, MR 1832773.
[15] A. Gorodetski, V. Kaloshin, Hausdorff dimension of oscillatory motions for restricted three body problems, Preprint, 

available at http://www.terpconnect .umd .edu /~vkaloshi, 2012.
[16] Marcel Guardia, Pau Martín, Tere M. Seara, Oscillatory motions for the restricted planar circular three body prob-

lem, Invent. Math. 203 (2) (2016) 417–492.
[17] Marcel Guardia, Carme Olivé, Tere M. Seara, Exponentially small splitting for the pendulum: a classical problem 

revisited, J. Nonlinear Sci. 20 (5) (2010) 595–685.
[18] Marcel Guardia, Splitting of separatrices in the resonances of nearly integrable Hamiltonian systems of one and a 

half degrees of freedom, arXiv preprint, arXiv :1204 .2784, 2012.
[19] Philip Holmes, Jerrold Marsden, Jurgen Scheurle, Exponentially small splittings of separatrices with applications 

to KAM theory and degenerate bifurcations.
[20] J. Llibre, C. Simó, Oscillatory solutions in the planar restricted three-body problem, Math. Ann. 248 (2) (1980) 

153–184, MR 573346 (81f:70009).
[21] Jaume Llibre, Carles Simó, Some homoclinic phenomena in the three-body problem, J. Differ. Equ. 37 (3) (1980) 

444–465.
[22] Richard McGehee, A stable manifold theorem for degenerate fixed points with applications to celestial mechanics, 

J. Differ. Equ. 14 (1) (1973) 70–88.
176

http://refhub.elsevier.com/S0022-0396(21)00301-6/bib069FA266B842B6A8D33834C730653E56s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib2ABD0503E10920BC694B3F758954E173s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib2ABD0503E10920BC694B3F758954E173s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib750790318D8D87BE4BC40C4078B761DCs1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib750790318D8D87BE4BC40C4078B761DCs1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bibE7C1963E0323BC1A7FA782B7D0766F94s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bibE7C1963E0323BC1A7FA782B7D0766F94s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib006E1BB299DD536C7E2002DC9E79982Ds1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib006E1BB299DD536C7E2002DC9E79982Ds1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib4E0F6952B5F50D40E25D4B3B8B0D79FBs1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib4E0F6952B5F50D40E25D4B3B8B0D79FBs1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib5F5718DEB049E1768F3333EF82399293s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib5F5718DEB049E1768F3333EF82399293s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bibA2773E58D0271DBAFD65CD92411C6972s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bibA2773E58D0271DBAFD65CD92411C6972s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bibA6EE46D951EC1D6CC8C1443F20F0918Bs1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bibA6EE46D951EC1D6CC8C1443F20F0918Bs1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib30E3D348055D01D67239C240A876D907s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib30E3D348055D01D67239C240A876D907s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bibCC11633DF745F3E1B4F24F829F0097C8s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bibCC11633DF745F3E1B4F24F829F0097C8s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bibD43189497F32B53C1A46A0A064650F57s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bibD43189497F32B53C1A46A0A064650F57s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib10B823FDD69ED9E9A1DA6194C10307D6s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib10B823FDD69ED9E9A1DA6194C10307D6s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bibBD02F553FA6F6C48A35E90BF06565397s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bibBD02F553FA6F6C48A35E90BF06565397s1
http://www.terpconnect.umd.edu/~vkaloshi
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib74AF9B09FB66CE67A3898B6B6C3CF356s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib74AF9B09FB66CE67A3898B6B6C3CF356s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib6A89DAF1A949E2145F32AB486C1501A2s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib6A89DAF1A949E2145F32AB486C1501A2s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib31638D6D18010773ABBCCC1C99E3560Bs1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib31638D6D18010773ABBCCC1C99E3560Bs1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bibE5D6C3B832895AEEE65EBEB7EB47809Bs1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bibE5D6C3B832895AEEE65EBEB7EB47809Bs1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib4AF74BE71CCC38FE1FA7CC8E6EC0C106s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib4AF74BE71CCC38FE1FA7CC8E6EC0C106s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib22D730E4A7C80A132AA9ECC80CB9DA19s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib22D730E4A7C80A132AA9ECC80CB9DA19s1


M. Guardia, J. Paradela, T.M. Seara et al. Journal of Differential Equations 294 (2021) 143–177
[23] R. Moeckel, Heteroclinic phenomena in the isosceles three-body problem, SIAM J. Math. Anal. 15 (5) (1984) 
857–876, MR 86j:58047.

[24] R. Moeckel, Symbolic dynamics in the planar three-body problem, Regul. Chaotic Dyn. 12 (5) (2007) 449–475, 
MR 2350333.

[25] Jurgen K. Moser, Stable and Random Motions in Dynamical Systems, Annals of Mathematics Studies, vol. 77, 
1973.

[26] Regina Martínez, Conxita Pinyol, Parabolic orbits in the elliptic restricted three body problem, J. Differ. Equ. 111 (2) 
(1994) 299–339.

[27] Anatoly I. Neishtadt, The separation of motions in systems with rapidly rotating phase, J. Appl. Math. Mech. 48 (2) 
(1984) 133–139.

[28] K. Sitnikov, The existence of oscillatory motions in the three-body problem, Dokl. Akad. Nauk SSSR 133 (1960) 
303–306.

[29] D. Treschev, Separatrix splitting for a pendulum with rapidly oscillating suspension point, Russ. J. Math. Phys. 5 (1) 
(1997) 63–98.
177

http://refhub.elsevier.com/S0022-0396(21)00301-6/bib79DB6D24309E13E645C096EBA5D27C6Cs1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib79DB6D24309E13E645C096EBA5D27C6Cs1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bibB2A8BE2617438420F8E0A2C7EE4FB746s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bibB2A8BE2617438420F8E0A2C7EE4FB746s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib41E71142CF9B78032F8EB2AEDC38D02Bs1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib41E71142CF9B78032F8EB2AEDC38D02Bs1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib6EE532DA82839C12724BF03893A4A9F6s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib6EE532DA82839C12724BF03893A4A9F6s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib78FD6BF4E3AD641CD7162341CD096B22s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib78FD6BF4E3AD641CD7162341CD096B22s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bibCE6016B55952FD063DA44D9F7E2553A2s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bibCE6016B55952FD063DA44D9F7E2553A2s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib2488A7E6FE529B1D29F38C70C15D4D44s1
http://refhub.elsevier.com/S0022-0396(21)00301-6/bib2488A7E6FE529B1D29F38C70C15D4D44s1

	Symbolic dynamics in the restricted elliptic isosceles three body problem
	1 Introduction
	2 Description of the proof of Theorems 1.1 and 1.2
	2.1 Symbolic dynamics and oscillatory orbits

	3 The invariant manifolds as graphs
	3.1 The unperturbed homoclinic solution
	3.2 The perturbed invariant manifolds and their difference

	4 The invariant manifolds in complex domains
	4.1 Existence of the invariant manifolds close to infinity
	4.2 Analytic continuation of the solution to the domain Dflowκ,δ
	4.2.1 From Hamilton-Jacobi parametrizations to parametrizations invariant by the flow
	4.2.2 Analytic extension of the unstable manifold by the flow parametrization
	4.2.3 From flow parametrization to Hamilton-Jacobi parametrization


	5 The difference between the manifolds
	5.1 Straightening the operator L̃
	5.2 Estimates for the difference between the invariant manifolds

	6 Computation of the Melnikov potential
	Acknowledgments
	References


