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Abstract In this paper, we study the classical problem of the exponentially small
splitting of separatrices of the rapidly forced pendulum. Firstly, we give an asymptotic
formula for the distance between the perturbed invariant manifolds in the so-called
singular case and we compare it with the prediction of Melnikov theory. Secondly,
we give exponentially small upper bounds in some cases in which the perturbation is
bigger than in the singular case and we give some heuristic ideas how to obtain an
asymptotic formula for these cases. Finally, we study how the splitting of separatrices
behaves when the parameters are close to a codimension-2 bifurcation point.
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1 Introduction

In this paper, we consider the classical problem of the splitting of separatrices for the
rapidly forced pendulum whose equation is

. no.t
X =sinx + — sin—, (1)
e £
where © is a real parameter and ¢ > 0 is a small parameter.
When 62 is small, this equation is a small perturbation of the classical pendu-
lum

X =sinx 2)

and has been considered as a model of a two dimensional integrable system perturbed
by a rapidly forcing term. Reparameterizing time t = £, (1) can be considered as a

&
nearly integrable system with slow dynamics
" 2 :
x" =¢&“sinx + pusint 3)
with/ = %. Rewriting this equation as a first order system,

{x’ =ey,
y =esinx + us~

. @
sint,

one can see that it is a Hamiltonian system of one and a half degrees of freedom, with

Hamiltonian function

2
H(x,y,r,,u,s):e(% + cosx — l—us_zxsinr>. 5)

Due to the 2w e-periodicity of the forcing in (1), its dynamical properties can be
better visualized with the help of the Poincaré map P defined on a section X, =
{(x,y.10), (x, ) €R?).

If u =0, the phase portrait of P is very simple. It is given by the level curves of the
Hamiltonian Hy(x, y) = (yj 4 cosx — 1). Our interest will be the stable and unstable
manifolds of the hyperbolic fixed point (0, 0), which in this case, coincide along two
separatrices given by the homoclinic orbits of the pendulum: (xo (), £yo(¢)) where

xo(t) = 4arctan(e'), yo(t) = xo(2).
The phase space looks more complicated when p # 0. Roughly speaking, if je >
is small enough, there still exists a hyperbolic fixed point of P corresponding to a
hyperbolic periodic orbit of (1), as well as the stable and unstable invariant curves
C3(tp) and C"(fg), which lie near the unperturbed separatrix. Due to the symme-
tries of system (4), C5(f9) and C"(fp) intersect on a point zy, which lies on the line
x = 7 in the case fop = 0. If this intersection is transversal at zj, the curves enclose
lobes whose area A does not depend on the homoclinic point we have chosen (see
Fig. 1). The measure of this area in terms of ¢ and p is the main purpose of this

@ Springer



J Nonlinear Sci (2010) 20: 595-685 597

Fig. 1 Splitting of separatrices

paper. Another quantity that can be measured at the homoclinic points to check the
transversality of the intersection, is the angle between the curves C(#y) and C"(t9),
but this quantity depends on the chosen homoclinic point. In fact, the corresponding
invariant quantity is the so-called Lazutkin invariant (see, for instance Gelfreich et al.
1991).

As it is known in the dynamical systems community, the existence of transversal
intersections between stable and unstable manifolds of one or more critical points
in a dynamical system was described by Poincaré as the fundamental problem of
mechanics (Poincaré 1890, Sect. 19). In fact, the transversal intersection of stable
and unstable manifolds of fixed points of smooth planar diffeomorphisms is the sim-
plest setting where this phenomenon gives rise to the existence of chaotic behavior
(see Smale 1965). For this reason, it has been one of the most studied problems in the
last century.

An easy way to produce planar diffeomorphisms is to consider the Poincaré
map of a T-periodically perturbed planar vector field defined in a Poincaré section
t = ty. Furthermore, in this regular perturbative context, Poincaré, and later Melnikov
(see Melnikov 1963), developed a method which measures the distance between the
invariant manifolds of hyperbolic critical points which coincide in the unperturbed
integrable system. The Poincaré—Melnikov method provides a function L(#y), called
Poincaré function or Melnikov potential, whose nondegenerate critical points give
rise to transversal intersections between the stable and unstable perturbed manifolds
(see, for instance, Melnikov 1963; Guckenheimer and Holmes 1983). In fact, %
gives the main term of the distance d(fy) between the perturbed invariant manifolds
in the Poincaré section ¢ = fy. Moreover, the main term of the area A is given by
L(t(}) — L(tg), where t(; and tg are two consecutive critical points of L(zp).

The generalization of this problem to higher dimensional systems has been
achieved by several authors, mainly in the Hamiltonian case. See, for instance,
Holmes and Marsden (1981, 1982, 1983), Eliasson (1994), Treschev (1994),
Delshams and Gutiérrez (2000), Lochak et al. (2003) and references therein. A Mel-
nikov theory for twist maps can be found in Delshams and Ramirez-Ros (1997).

In the case of rapidly forced systems, a difficult problem arises due to the
fact that the Poincaré function depends on the perturbed parameter and, in fact,
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turns out to be exponentially small with respect to it. Sanders (1982) noticed
this problem, previously stated by Poincaré, arising from the direct application of
the Poincaré—Melnikov method in these cases. A similar problem occurs in fam-
ilies of area preserving diffeomorphisms close to the identity. In all these cases,
even if the prediction of the Poincaré function for the splitting is exponentially
small, it is not clear if this function gives the main term of this distance and
even if the distance itself is exponentially small or not (see Scheurle et al. 1991;
Fontich 1995).

Several authors have given partial answers to this problem. The first group of re-
sults is concerned about exponentially small upper bounds. Neishtadt (1984) gave
exponentially small upper bounds for the splitting in two degrees of freedom Hamil-
tonians. For area preserving maps close to the identity, Fontich and Simé provided
upper bounds in Fontich and Sim6 (1990). For second order equations with a rapidly
forced periodic term, several authors gave sharp exponentially small upper bounds in
Fontich (1993, 1995), Fiedler and Scheurle (1996) and, for the higher dimensional
case, the papers Sauzin (2001), Simé (1994) gave (not sharp) exponentially small
upper bounds.

The second group of results is concerned about the validity of the Melnikov po-
tential in the exponentially small case. This problem needs more information about
the system under consideration and, for this reason, the results existing in this di-
rection deal mostly with specific examples. The first result was obtained by Holmes
et al. (1988) (followed by Scheurle 1989; Angenent 1993), where they studied the
rapidly perturbed pendulum (1). Taking = O(g?), they confirmed the prediction of
the Melnikov potential establishing exponentially small upper and lower bounds for
the area A provided p > 10,

T

_ _ — —
creP e < A<ciePlem .

Let us observe that for (1), the Melnikov potential is given by

2me
L(ty) = — costy

T
osh o

and, therefore, the prediction for the area is
~8reP~le % (©6)

In Ellison et al. (1993), the range for p was extended to p > 5 using the same ap-
proach. Following the ideas in Gelfreich et al. (1991), Gelfreich (1994) established an
asymptotic expression for the splitting provided p > 7 and Delshams and Seara es-
tablished rigorously the result in Delshams and Seara (1992) for p > 2. An alternative
proof, using parametric resurgence, was done in Sauzin (1995) for a simplified per-
turbation of the pendulum equation. Later, in Delshams and Seara (1997), Gelfreich
(1997a), the authors gave a proof for the validity of the Melnikov method for gen-
eral rapidly periodic Hamiltonian perturbations of a class of second order equations.
The case of a perturbed second order equation with a parabolic point was studied

@ Springer



J Nonlinear Sci (2010) 20: 595-685 599

in Baldoma and Fontich (2004), Baldoma and Fontich (2005). Some results about
the validity of the prediction given by the Poincaré function for area preserving maps
were given in Delshams and Ramirez-Ros (1998) and, for higher dimensional Hamil-
tonian systems, in Gallavotti (1994), Chierchia and Gallavotti (1994), Delshams et al.
(1997, 2004), Gallavotti et al. (1999), Sauzin (2001). Finally, in a non-Hamiltonian
setting, in Baldoma and Seara (2006), the splitting of a heteroclinic orbit for some
degenerate unfoldings of the Hopf-zero singularity of vector fields in R was found.

The third group of results deal with what is called the singular case. In these cases,
the splitting of separatrices is still exponentially small but its asymptotic value is no
longer given by the Melnikov potential. The first paper that dealt with this kind of
problem was the paper by Lazutkin (1984, 2003). There, the author studied the split-
ting of separatrices in the classical Chirikov standard map, and gave the main tools to
obtain an asymptotic formula for it. The problem, in this case, can be approximated
by an integrable flow, but there is not a good Melnikov potential which gives the
asymptotic value of the area between the stable and unstable invariant curves.

Even if Lazutkin (1984) was not complete (the complete proof was achieved by
Gelfreich 1999), the ideas in this paper have inspired most of the work in this area. As
it is known by the experts in the subject, the detection of an exponentially small split-
ting relies on suitable complex parameterizations of the invariant manifolds. These
parameterizations are analytic in a complex strip, whose size is limited by the singu-
larities of the unperturbed homoclinic orbit. In the regular case, these manifolds are
well approximated by the unperturbed homoclinic orbit even for complex values of
the parameter. Hence, the prediction of the Melnikov potential, which is mainly an
integral over the unperturbed homoclinic orbit, gives the main term of the distance.

However, in the singular case, one has to deal with different approximations of the
invariant manifolds in different zones of the complex plane. Close to the singularities
of the homoclinic orbit, an equation for the leading term is obtained and it is called
the inner equation. It is a nonintegrable equation without parameters, which needs
a deep study itself. Once this equation is solved, matching techniques are required
to match the different approximations obtained for the invariant manifolds. Roughly
speaking, the difference between the solutions of the inner equation replaces the Mel-
nikov potential in the asymptotic formula for the splitting.

Following these ideas, some authors have obtained partial results for some specific
equations. The study of the inner equation of the Hénon map, using the resurgence
theory, can be found in Gelfreich and Sauzin (2001) and the inner system associ-
ated to the Hopf-zero singularity was studied in Baldomd and Seara (2008) using
functional analysis techniques. For several periodically perturbed second order equa-
tions, Gelfreich stated in Gelfreich (1997b) the corresponding inner equation which
he called the reference system. The analysis of the inner equation for the Hamilton—
Jacobi equation associated to a system analogous to (1) was done in Olivé et al.
(2003) using the resurgence theory, and for a wider class of second order equations
in Baldoma (2006). Using the results of the inner equation, Gelfreich (2000) gave
a detailed sketch of the proof for the splitting of separatrices for (1). Numerical re-
sults about the splitting for this problem can be found in Benseny and Olivé (1993),
Gelfreich (1997b). The complete proof for the pendulum with a different perturba-
tion was achieved in Olivé (2006). Following the same approach, Lombardi proved
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in Lombardi (2000) the splitting of separatrix connections for a certain class of re-
versible systems in R*. Finally, Treschev gave in Treschev (1997) an asymptotic for-
mula for the splitting in the case of a pendulum with a moving suspension point using
a different method called continuous averaging and a related problem about adiabatic
invariants in the harmonic oscillator using matching techniques and the resurgence
theory was done in Bonet et al. (1998).

As we have said before, most of the previous works adapted the ideas in Lazutkin
(1984, 2003) to rigorously prove the asymptotic formula for the splitting in differ-
ent settings. A fundamental tool in Lazutkin’s work is the use of “flow box coordi-
nates,” called “straightening the flow” in Gelfreich (2000), around one of the mani-
folds. In this way, one obtains a periodic function whose values are related with the
distance between the manifolds and whose zeros correspond to the intersections be-
tween them. Consequently, the result about exponentially small splitting is derived
from some properties of analytic periodic functions bounded in complex strips (see,
for instance, Proposition 2.7 in Delshams and Seara 1997).

A significantly different method was presented by Lochak, Marco, and Sauzin in
the papers Sauzin (2001), Lochak et al. (2003). There, the authors were able to mea-
sure the distance between the manifolds (and all the related quantities like the angle,
etc.) in the original variables of the problem without using “flow box coordinates.”
The authors used a very simple but clever idea: since the graphs of both manifolds
are solutions of the same equation, their difference satisfies a linear equation and is
bounded in some complex strip. Studying the properties of bounded solutions of this
linear equation, where periodicity also plays a role, one obtains exponentially small
results.

In the present paper, following the method of Sauzin (2001), Lochak et al. (2003),
we obtain three main results. The main part of the paper is devoted to rigorously
prove the asymptotic formula of the splitting of separatrices for (1) in the singular
case (Ju| < O(1)) following the ideas given in Sauzin (2001), Olivé et al. (2003),
Olivé (2006). The key idea is to look for the invariant manifolds as graphs of the
differential of certain functions S*. These functions, called generating functions, are
solutions of the Hamilton—Jacobi equation associated to (1), which is a first order par-
tial differential equation. In this way, the method to establish an asymptotic formula
for the area of the lobes relies on computing the difference ST — S~ in their common
domain.

As we have already pointed out, the main difference of this approach from the
previous ones, is the fact that we do not use “complex flow box variables” to obtain
a good “splitting function” which measures the distance between both manifolds.
Instead, we give a formula for the distance in the original parameterizations of the
manifolds, working in the original variables of the problem. The main idea that was
already used in Sauzin (2001), Olivé et al. (2003), Olivé (2006) is the fact that the
difference ST — S~ satisfies a linear partial differential equation whose solutions
can be characterized and bounded by exponentially small terms in R, provided they
are bounded in a complex strip. The results obtained in this singular case coincide
with Gelfreich (2000).

On the other hand, studying the manifolds in the original variables, one can see
that they exist even if the parameter w in (1) is big with respect to ¢ or when u is
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finite but approaches some values of bifurcation w;, which correspond to the zeros
of the zero order Bessel function of first type (see (10)). So, there is still the question
of the size of the splitting of these manifolds in these cases that we call below the
singular case and close to a bifurcation case. The rest of the paper is devoted to
study the splitting of separatrices in these cases, that is, when p = &” with p <0 or
=g —ce” with r > 0 and ¢ > 0, which as far as the authors know, had not been
studied before.

As a first result, we state the existence of the periodic orbit for (1) for any w,
including the case u = ¢” with p < 0, even if in this case it is no longer close to
the hyperbolic critical point of the pendulum, but to the periodic solution of (3) for
& = 0. Later, for © = ¢? with p € (—4,0) or u = o — ce” withr € (0,2) and ¢ > 0,
we state that this periodic orbit is still hyperbolic and we obtain an exponentially
small upper bound for the distance between its global stable and unstable manifolds.
Finally, we give some conjectures about the size of the splitting of separatrices when
= po—ce” withr >2and c > 0.

2 Main Results

The system associated to (2) has a hyperbolic fixed point at the origin. The first result
in this paper is Theorem 2.1 where we prove that, if ¢ is small enough, (1) has a
2m e-periodic orbit for any value of u, even if u = e? for p < 0.

Theorem 2.1 Let us consider (1), then there exists g > 0 such that:

(i) There exists a constant C1 > 0, such that for any u > 0 and ¢ € (0, 9), (1) has
a 2me-periodic orbit xp(é), which satisfies for t € R:

t Lt
xp<—) + pusin —
e e

(i1) Moreover, for any fixed 1 > 0, there exists a constant Cy > 0 such that if u €
(0, ), € € (0, e0) and t € R, xp satisfies the sharper bound.

t Lt
xp<—> + psin —
& &

This theorem is proved in Sect. 4.

Once we know the existence of the periodic orbit x, for (1), the next step is to
establish for which values of the parameter u, taking & small enough, x; is hyper-
bolic as a solution of the corresponding system. When it is hyperbolic, we will study
the existence of the stable and unstable manifolds associated to it and their possible
intersection.

Classical perturbation theory applied to (1), gives a positive answer for these ques-
tions provided pe 2 is small enough because (1) is close to the classical pendulum.
Nevertheless, to obtain the widest range of values of u where the periodic orbit is still
hyperbolic, we use that (1) is periodic in time with period 2 ¢. This is due to the fact

§C182.

< Coue’.
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that, in the fast periodic case, there is a natural method to obtain good autonomous
approximations for this equation even if u is not small: the averaging method. Per-
forming several steps of the averaging procedure and looking for the critical point of
the averaged system corresponding to our periodic orbit, we will be able to deduce
the “true limit” of the splitting problem. This limit will occur when the averaged
system is not the pendulum equation anymore and so its critical point can lose its
hyperbolicity. We will see that it occurs when u = O(e?), with p = —4.

On the other hand, studying the averaged system, even when pu = O(1), we will
find values where the corresponding averaged system encounters bifurcations and
then the critical point also loses its hyperbolicity. This phenomenon will give rise, as
we explain in Sect. 2.4, to a new splitting problem.

2.1 Averaging Method: A Tool to Obtain the “the True Limit”
of the Splitting Problem

In this section, we use averaging theory to obtain a good approximation, when ¢ is
small but not p, of the system associated to (1) (see Sim6 1994; Gelfreich 1997b).
To obtain this approximation, one can average several times. In fact, two steps of
averaging give the change

~ Lt " n t
X=X—jsin—, y=y— —cos—, 7)
£ € e
which leads to
d_. .
—5=79,
dr
d_ (. 1 ®)
—y=sin{ X — usin— |,
dr Y H £
whose averaged system is
d_ .
—i=7,
a4 ©)
—y=J sin X,
a” o(u) sinx
where
1 2w
Jo(n) = — / cos(usint)dr (10)
2w 0
is the zero order Bessel function of first type (see Abramowitz and Stegun 1992).
In order to perform another step of averaging, we write system (8) as
d_
—3=7,
a7
d_ o _t
Ey:]g(,u)smx—i—smx cos| usin— | — Jo(u) (11)
&
—cosxsin| psin— ).
€
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Later, in Sect. 2.5, we will study the behavior of this system for values of u such
that Jo(u) = 0. We assume now that Jo(u) > 0 (the case Jo(u) < 0 can be done
analogously), and we consider the scaling of time and variables

*, ) = (&, /v Jo(w)), s =1/ Jo(p), 12)

obtaining
d, .
—i=9,
ds Y
ds sinx + : sin £ ( cos( sin - Jo()
—y=sinx inXx in- | —
as” Jo(0) psing ) = Jol (13)
1 . ( . s)
- cosxsin{ wsin= |,
Jo(w) s

where § = e/ Jo().

This system is a 2w §-periodic perturbation of size 1/Jy(p) of the system associ-
ated to pendulum equation (2). We perform one step more of averaging in this new
time, which corresponds to the change of variables

X=x,
8 8
j;=)7+—h1(i) sini——hz(i) cos X, a5
Jo(n) \é Jo(n) “\ 8

where hi(r) and hy(r) are the primitives of fi(r) = cos(usint) — Jo(u) and
f2(t) = sin(usint) with zero average, and thus A and &, are respectively an odd
and an even function. Moreover, they depend on p = &P, but are of order 1 with
respect to ¢ for T € R even when p < 0.

This change leads to

d_ _ 8 s s _

ax v+ 7o) <h1< )smx—h2<8)cosx),

diy—smx— JO(M) <h1< >cosx+h2(;>sini> (15)
“(a0) (25

m(x, )= —(hl(r)cosx + hy (1) sinx)(h1 (t)sinx — hy(7) cosx). (16)

where

Let us observe that for values of u such that Jo(u) < 0, an analogous procedure leads
to a system whose first order is the pendulum with the x coordinate shifted by 7 (see
Gelfreich 1997b).

Once we have averaged our system three times, we are going to discuss the true
limit of the splitting problem, simply by studying the hyperbolicity of the periodic
orbit of the different approximations of system (15), depending on the value of w. It
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is clear that the main point will be the size of the function Jy(u) which appears in
systems (11) and (15), obtained after two or three steps of averaging, and the scaling
(12), respectively.

The function Jo() (see Abramowitz and Stegun 1992) has isolated zeros g <
n1 < pp < --- with g >~ 2.404825558 and tends to zero as ;4 — +00 as

2 b4
Jo(w) ~ /Ecos<u — Z) as . — +o0. a7

For fixed n € (0, o), Jo(u) > 0 and system (15) is a small and fast perturbation
of period 278 = 2mwe/Jo(u) of the classical pendulum. Going back to the origi-
nal variables of the problem and due to the scaling (12), we expect that, for fixed
€ (0, o), the periodic orbit of system (4) will be hyperbolic and that its invariant
manifolds will be close to the separatrix of system (9), which is the pendulum slightly
modified by this coefficient 1/Jo(1).

The same argument applies to any fixed p belonging to any compact subset of
(H2i+1, H2i+2)-

Once we have understood the behavior of system (15) for any fixed value of u for
which Jo(u) # 0, next step is to study the case Jyo(u) — 0. This occurs when w is
close to a zero u; of the Bessel function Jy(u) or when . — oo.

We first study this last case, and thus we take pu = e” with p < 0. More-
over, we restrict ourselves to values of ¢ such that y belongs to compact intervals
I; C (2i41, M2i+2), in such a way that cos(u — 7 /4) has a positive lower bound
independent of ¢. In particular, Jo(n) > 0 and Jo(p) = O(eP/?),

Using (17), we have that 8/ Jo(i) = £/+/Jo(i) ~ €' P/4 Therefore, if e 177/ « 1
and u = &? € I; for some i € N, system (15) is still a small and fast perturbation of
period 2778 = O(e!~P/4) of the classical pendulum. Thus, considering u = &” with
n € I; and p € (—4,0), the periodic orbit is still hyperbolic and consequently it has
local stable and unstable manifolds.

The question about the global behavior of these manifolds and their splitting is
more involved. In Theorems 2.2 and 2.7, we state their existence and we give a bound
of their distance to the separatrix of system (9). We also provide, in these theorems,
an asymptotic formula for the splitting for p > 0 and an exponentially small upper
bound for p € (—4,0).

In Sect. 2.3, we conjecture the possible size of the splitting for p € (—4,0) and
give some ideas of how to prove it. Nevertheless, the authors think that the “true limit”
of the splitting problem is given by p = —4, in the sense that for p < —4, system (15)
is not a perturbation of the pendulum. In fact, if we look at the averaged system of
system (15):

dx

&= (18)
d—y =sinx + <L)2(m)(_),

ds Jo()
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where (m)(x) =1/2m) fozn m(x, t)drt is the average of m in (16) and is given by

1
onxx)zzi(mg)—(hﬂ)mnzx,

and p < —4, the leading term of the averaged system will be given by (m)(x) instead
of sinx.

Another case in which Jy(u) — 0 is when u — u; (being u; any zero of Jo(u)).
Let us observe that w; are simple zeros, and then Jo(u) ~ i — p;. If we focus on the
first zero and we reach it from below, that is taking © = po — ce” with ¢ > 0, we have
that Jo(u) > 0. Now system (15) is a 27 = O(al+’/2)-peri0dic perturbation of size
8/Jo(i) ~ O(e'~"/2) of the classical pendulum. Analogously to the results obtained
for the below the singular case in Theorem 2.7, in Theorem 2.9 of Sect. 2.4 we state
the existence of the invariant manifolds and we give an exponentially small upper
bound of the size of their splitting provided r < 2. In Sect. 2.4, we also give some
insight about the case u closer to wg, that is, u = g — ce” with r > 2 and ¢ > 0,
which is analogous to the case u = ¢” with p < —4. In this case, the leading term
of the averaged system (18) is not the pendulum anymore, and thus the hyperbolic
structure, and so the splitting changes drastically. The same argument applies to any
other fixed zero wo; approached from below. To approach them from above, one has
to take into account that Jo(u) < 0 and, therefore, the first order is the pendulum with
the x coordinate shifted by 7. For any fixed zero p,;11, the arguments go the other
way round.

For the rest of this section, we consider ue* <« 1 and |u — ;| > €2 and we study
the splitting between its stable and unstable manifolds. The results are split in three
cases depending on w. The results for u belonging to any compact subset of (0, 110)
are stated in Sect. 2.2. The asymptotic formula for the splitting of separatrices is
given in the Analytic Theorem 2.2. Later, in the Geometric Theorem 2.6, we give
an asymptotic formula for the splitting in terms of the area of the lobes between the
invariant curves C*(¢p) and C"(#() in the Poincaré section (see Fig. 1).

Later, in Sect. 2.3, we consider the below the singular case, that is, u = ¢” with
p € (—4,0) and, in Theorem 2.7, we provide exponentially small upper bounds for
the distance between the invariant manifolds.

Finally, in Theorem 2.9 of Sect. 2.4, we give the result for u = g — ce” with r €
(0, 2) and ¢ > 0. Even if we focus in the first zero of Jy(u), the results are analogous
for all the zeros. The asymptotic size of the distance between the invariant manifolds
in these two last cases is still an open problem.

2.2 The Classical Singular Case

From now on, we work with the fast time T = ¢/¢ and, therefore, we deal with sys-
tem (4). This system has a periodic orbit (xp(7), yp(7)), where xlg(r) = &yp(7) and
xp(t/¢€) is given in Theorem 2.1.

In order to study the invariant manifolds of this periodic orbit, as a first step, we
consider the symplectic time-dependent change of variables,

{qzx—%ux

19
p=y—yp(1). e
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With this change, system (4) becomes a new Hamiltonian system with a (weakly)
hyperbolic periodic orbit at the origin which has stable and unstable 2-dimensional
invariant manifolds. Unlike the unperturbed system, these invariant manifolds do not
coincide. On the other hand, since they are Lagrangian (see Lochak et al. 2003),
they can be written locally as the graph of the differential of certain functions as
p =0y S*(q, 7), where S* are usually called generating functions and satisfy the
so-called Hamilton—Jacobi equation (see (32)). However, since for the unperturbed
system they can be written as a graph globally, it is expected that the same happens
for the perturbed case.

Moreover, the difference 9, S T, 1t)— 9457 (g, ) gives us the difference between
the manifolds in the original coordinates.

Theorem 2.2 (Main theorem: analytic version) Let o be the first zero of the Bessel
function Jo(). Then for fixed Qo € (0,7/4) and i € (0, wo), there exists g9 > 0
(depending on [1) such that for € € (0, &9) and n € (0, f1):

(i) System (4) has a hyperbolic 2m -periodic orbit (xp(t), yp(7)). Moreover, it has
stable and unstable invariant manifolds which can be parameterized as graphs

y=yp(®) + 8qSi(x —xp(1), r).

(ii) Let So(g,t) = So(q) = 4(1 — cos(q/2)) be the separatrix of system (4) for
w =0, which corresponds to the separatrix of the pendulum equation (2). Then
writing q = x — xp(T), the functions S satisfy

3,5%(q, T) = yp(0) + V' Jo(1)3ySo(q, 7) + O(ne?),

forq e (m — Qo,m+ Qo) and T € R.
(iii) Forqg e (m — Qo,m + Qp) and Tt € R,

3,57 (q, 1) — 9,5 (g, 7)

. n W jw sinh(q, t) ( 1 >>
= Jhgoe. (f Winad T\maw)) @

where

hig, 1) =1 — (8\/J0(/,L))_1 In(tan(q/4))

and f () =2 + O(u?) is a real-analytic even function.
(iv) There exists a constant &(i, €) = O(ue?), such that

$*(q, ) =857 (q, ) —@(u, €)

_2,U« 2e/To () l
= Vo <f(u)cosh<q ”*O(lna/s)))' o

Remark 2.3 The result presented in this theorem is valid for p belonging to any
compact set in which Jo(n) > 0. However, in order to simplify the notation and to
make this result comparable to the previous ones (see Delshams and Seara 1992;
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Gelfreich 1994) we restrict ourselves to u € (0, i) C (0, nog). When p belongs to a
compact set in which Jy(u) < 0, an analogous result can be obtained making little
changes (see Gelfreich 1997b, 2000).

Remark 2.4 The exponent 7 /(2e+/Jo(t)) in the exponentially small term of the for-
mulae (20) and (21) is the natural one if we take into account that the invariant man-
ifolds of system (4) are also, up to the change (7) and the rescalings (12), the invari-
ant manifolds of system (13). Indeed, applying Melnikov theory to this system, we
would obtain the same exponent since the perturbation in system (13) is 2w e~/ Jo(u)-
periodic in time.

Remark 2.5 Let us observe that formulas (20) and (21) of Theorem 2.2 give the
main order of the difference between the functions S* and their derivatives provided
| f (1)| has a positive lower bound independent of ¢. Since f(u) =27 + O(/Lz), we
know that f(u) > 0 for  small enough.

From Theorem 2.2, one can easily derive asymptotic formulae for several geomet-
ric quantities related with the splitting of the invariant manifolds of system (4).

In next theorem, which is indeed a corollary of Theorem 2.2, we compute the area
of the lobes delimited by the stable and unstable curves of the hyperbolic fixed point
of the Poincaré map between to consecutive homoclinic points. The computation of
the maximal distance between the stable and unstable manifolds, the splitting angle,
or the Lazutkin invariant at any homoclinic point can be done in an analogous way.

Theorem 2.6 (Main theorem: geometric version) Consider the hyperbolic fixed point
of the Poincaré map of system (4) associated to the periodic orbit (x,(7), yp(7)) of
system (4). Let wo and [ig be respectively the first zero of the Bessel function Jo(u)
in (10) and the function f(u) given in Theorem 2.2. Then for any i € (0, no) N
(0, fip), there exists ey > 0 (depending on (1) such that for ¢ € (0, &y) and 11 € (0, 1),
the area of the lobes between the invariant stable and unstable curves associated to
this point is given by the asymptotic formula

_Eiza«/z_(u) 1
A=e <4|f(“)|+0<1n(1/s>)>’ 22

where f(u) =2m + (9(,142) is the function given in Theorem 2.2.

Proof The result follows almost directly from equality (21) of Theorem 2.2.
The intersections of the invariant manifolds with a transversal section X% =
{(x,y,70), (x,y) e R?} are two different curves C*"(z0), which can be parame-
terized by ¥ % (x) = (x, yp(10) + 95 S* (x — xp(10), 70)). Then taking ¢ = x — x,(0),
the area is given by

A=

q1
[ st @ - 0,5 @ wda | = |57 @ - 5@ ol @)
q

0

where g and g correspond to two consecutive points of C*(79) N C"(7p) C X', that
is, 9,87 (gi, T0) = 948 (gi, o) fori =1, 2.
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To simplify the notation, we define

_ b

Fo(q,t)=§e 2V f () cosh(q, 7). (24)

Then by (21) and (23),

A=pn Fo(q1, ©0) — Fo(qo, ©0) + (g0 — ql)o(me

)
Using (20), we have that gg and g1 are given by h(q;, to) = ri, where r; satisfies

. Ly
f([l/) sSin r; +O<m) —0,

and, therefore,

1 1
V1:O+O<m) and 72:ﬂ+0<m).

Their existence for ¢ small enough is obtained applying the implicit function theorem
using that 1/f () is bounded for u € [0, i1].

Now,
A= /L‘%e_%\/mf(u)(cosrl — COS Q) +O<—e_m>‘
£ eln(l/e)
— ﬁ 72&‘«/% 1
== ok <4|f(u)|+0<ln(1/8)>)' -

Comparing the result of Theorem 2.6 with the prediction of the Melnikov for-
mula (6) and using that Jo(u) = 1 + O(u?) for u small (see Abramowitz and Stegun
1992), it is clear that both coincide provided p = e? with p > 1/2.

For v = e with p € (0, 1/2], the result of Theorem 2.6 does not coincide with the
Melnikov formula applied to system (4) but to system (13) modulo the rescaling (12).

Finally, for the classical singular case u = O(1), Melnikov theory fails to predict
correctly the exponentially small splitting as is showed in Theorem 2.6.

2.3 Below the Singular Case

In the below the singular case, that is, u = ¢P with p € (—4, 0), the next theorem
states that the invariant manifolds of the periodic orbit (x,(7), yp()) of the Hamil-
tonian system (4) given in Theorem 2.1 are still close to the separatrix of the pendu-
lum (9). Furthermore, it gives an exponentially small upper bound for their splitting.

Theorem 2.7 (Below the singular case) Let wy be the kth zero of the Bessel function
in (10). Then for fixed Qo € (0,7/4), p e (—4,0),a >0and y €[0,1 + p/4), there
exists e > 0 such that for € € (0, g0) and p =¢e? € I; & (L2i41, U2i+42):
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(i) The 2m-periodic orbit (xp(t), yp(T)) of system (4) is hyperbolic and its stable
and unstable invariant manifolds can be parameterized as graphs

Y= yp(1) 4 945™ (x — xp(1). 7).

(ii) Writing x = xp(t) +¢q, for g € (m — Qo, 7 + Qo) and t € R, the functions s+
satisfy

3,5 (q, T) = yp(¥) + v/ To(10)3, So(g, T) + O(e' T ¥ In(1 /),

where So(q, T) = So(g) = 4(1 — cos(q/2)) is the separatrix of system (4) for
u =0, which corresponds to the separatrix of the pendulum equation (2).

(iii) There exists a constant C > 0 independent of € such that, for q € (wx — Qo, 7 +
Qo) and t € R,

— _ _+(E_‘117)
|3,5T(q,7) — 8,5 (g, T)| < Ce*He Vw2 w@n)

Theorem 2.7 gives an exponentially small upper bound for the splitting of sepa-
ratrices for system (4) when u = ¢ and p € (—4, 0). Nevertheless, in this theorem,
the exponent y, which appears in the term as? that corrects the exponent /2, can
not be taken equal to 1 — p/4, which corresponds to the size of the denominator
e/ Jo() = O(e' P14,

A sharper estimate for the splitting could be obtained working with system (15)
instead of system (9) and looking for the stable and unstable manifolds as perturba-
tions of the separatrix of its averaged system, which is given in (18). This system has
a separatrix contained in the 0 level set of the Hamiltonian

2 2\ 32\y82
ﬁ(x,y):%—i—cosx—l—i—%

which is given by (xp(¢), yn(#)) with X () = yn(¢) and

(cos2x — 1),

8(1 + 2A)62t\/ 142A

1-— = 2
cos xn (1) e4t«/l+2A+262t«/l+2A(1_’_4A)_’_1’ (25)
where
h?) — (h2))8?
A D) = s 6

2(Jo(1))?

so that A = O(g2+P/2).
One can see that the singularities of this separatrix closest to the real axis are given
by

1 T
t=——-In|14+4A+V8A+16A2| +i———.
V1+2A | | 2/ 142A

Therefore, their imaginary parts are given by

T T
St =di—— = Fi— + O(2TP/?),
2J/1+24 2 ( )
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We recall that system (15) is a 2we+/Jo(u) = O(sl=p/ 4)-pelriodic perturbation of
system (18). Therefore, one can expect an upper bound of the distance between the
perturbed invariant manifolds of order

=z
O(eﬂe 2 /JO(M)(1+2A))7

for some B € R. Consequently, a necessary condition to have bounds of the form
O(sﬁe’”/(ze\”—(})), as we had in the singular case, is that 2+ p/2 > 1 — p/4. Then
we expect that a similar formula to the one given in Theorem 2.2 can be obtained
for p > —4/3. Nevertheless, for lower values of p the exponent in the asymp-
totic formula for the difference between the functions ST will have the exponent
—1/(2e/Jo()(1 + 2A)), so that the size of the splitting changes dramatically.

The method to prove these conjectures, could be to study the corresponding
Hamilton—Jacobi equation associated to the system (15), and thus reparameterizing
through the new homoclinic orbit (25) of the averaged system (18), and then looking
for a suitable inner equation which gave the first order approximation of the invariant
manifolds in the inner domain. Nevertheless, the main purpose of Theorem 2.7 is to
illustrate that the splitting problem of the pendulum still has meaning for 1 = e” with
p € (—4,0), which is below the usually considered “limiting case” p = 0.

2.4 Close to a Codimension-2 Bifurcation

Finally, we deal with the case in which p is close to po where g is the first zero of
the Bessel function, so that

Jo(w) ~ p — po-

We restrict ourselves to the case u < g since the other one can be done analogously.
Therefore, we take yu = g — ce” with ¢ > 0, and thus we have that Jyo() = O(g").
We can deal with this case as we have done with the below the singular case in
Theorem 2.7: provided r < 2, the system (15) is still close to the pendulum and,
therefore, the invariant manifolds of the periodic orbit are close to the separatrix of
the pendulum (9). Let us observe that now r plays the role of —p/2 in Sect. 2.3.

Remark 2.8 We want to point out that if we focus on system (11) instead of sys-
tem (4), the study of the splitting of separatrices has interest in itself, since sys-
tem (11) can be seen as a very simple toy model for two degrees of freedom Hamil-
tonian system close to a second order resonance. In fact, when one studies perturba-
tions of a completely integrable Hamiltonian system close to a simple resonance and
averages with respect to the fast frequency, at first order one obtains a pendulum-like
structure of size square root of the size of the perturbation. Nevertheless, in some
degenerate cases this first order vanishes in the resonance and, therefore, there is no
impediment to perform another step of non-resonant averaging. In that case, we have
a higher order resonance in which the hyperbolic structure is smaller (at least, same
order as the size of the perturbation) as it is happening in this problem. Even if a more
accurate model of a Hamiltonian system close to second order resonances should de-
pend on the actions in a more complicated form, it would be interesting, as a first
step, to study system (11) with u close to pg.
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Theorem 2.9 Let g be the first zero of the Bessel function Jo(u), then for fixed
00€0,7/4),r€(0,2),c>0,a>0and y €[0,1 —r/2), there exists ey > 0 such
that for € € (0, &9) and u = o — ce":

(i) The 2w -periodic orbit (x,(T), yp(T)) of system (4) is hyperbolic and its stable
and unstable invariant manifolds can be parameterized as graphs

y=yp(r) + BqSi(x — xp(7), r).

(ii) Writing x = xp(t) + q, for g € (m — Qo, 7w + Qo) and t € R, the invariant
manifolds satisfy

9,5 (g, T) = yp(¥) + /o134 S0(q, ) + O(e1 2 In(1/e)),

where So(q, t) = So(g) = 4(1 — cos(q/2)) is the separatrix of system (4) for
u =0, which corresponds to the separatrix of the pendulum equation (2).

(iii) There exists a constant C > 0 independent of € such that, for q € (1 — Qq, 7 +
Qo) and Tt € R,

L )(%—ée%'

18,5 (q. 1) — 8,57 (q. 7)| < Ce*e Vow

Remark 2.10 A similar observation to the one made after Theorem 2.7 about the
possible asymptotic formula of the splitting of separatrices applies also in this case.
The exponent in the asymptotic formula for the difference between the functions S*
should be —7/(2e+/Jo(u)(1 +2A)) where A is the constant in (26) and, therefore,
A = O(e>7"). So, a similar asymptotic formula to the one in Theorem 2.2 can be
expected provided r € (0, 2/3). Nevertheless, for r € (2/3, 2), the size of the splitting
could change dramatically.

2.5 The Codimension-2 Bifurcation

The problem of considering p closer to g, namely pu = uog — ce” with r > 2 and
¢ > 0, has to be studied in a different way. Indeed, the averaging procedure performed
in Sect. 2.1 cannot be completed since the rescaling (12) is close to singular.

Now system (11) is better understood by considering it as being close to the cor-
responding one at the bifurcating value 1o. For i = g, this system has zero average
and period 27t e, and thus for © = wg — ce” with r > 2 and ¢ > 0, it is worth perform-
ing another step of averaging to understand its behavior. One step of averaging gives
the change
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=N\
INSEE/ZAE2,

Fig. 2 Phase space of the averaged system (29)

which after the rescaling § = ¢y and t = s /¢, transforms system (11) into

dx

= y+h <:—2> sinx — h2<:—2) CcoS X,

dy N/

Y@+ 2 Gz =5 (S ) cosi 4+ ha( ) sini 27)
ds g2 g2 g2

+ <m (x, :—2> - (m)()?))

with k1, hy, and m the functions which appear in system (15). The averaged system
of (27) is given by

dx _

— =Y,

ds

o 28
dy b %)
— = (m)(x) + sinx,

ds g2

where Jo(u)/e2 = O(e"~2) and (m)(%) = 1((h3) — (h?))sin2%, which is a Hamil-
tonian system with Hamiltonian
y* | Jo(w

K(x,y)=7+

_ 1 _
S+ (cosE—1+ Z((hg) — (1)) (cos 2% — 1).

Since Jo(1p) =0, for u = po, the averaged system is

o
ds (29)
dy _
d_ = (m)(x),
R

which has a double-well potential. Moreover, it can be checked that (h%) — (h%) ~
0.4298451 > 0 for u = po and, therefore, it has two hyperbolic critical points at
(0, 0) and (r, 0) which are in the same energy level and are connected by four hete-
roclinic orbits and it has also two elliptic points at (77/2, 0) and (377/2, 0) (see Fig. 2).

Taking now u = o — ce” with r > 2, ¢ > 0 and ¢ small enough, the averaged
system (28) is a small perturbation of system (29). Therefore, this system has also
two elliptic points close to (;r/2,0) and (37/2,0) and the two hyperbolic critical
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)

Fig. 3 Phase space of the averaged system (28) for ¢ small enough

points remain the same. Nevertheless, they belong to different levels of energy and,
therefore, the heteroclinic connections bifurcate into four homoclinic orbits, as can
be seen in Fig. 3: two of them forming an “eye” as in the classical pendulum given by
K (x,y) =0 and the other two forming a figure eight around the elliptic points given
by K (%, y) = —2Jo(u) /€.

Between the dynamics observed for i = g — ce” with r > 2 and the one studied
in Theorem 2.9, and thus for r € (0, 2), there exists a codimension-1 bifurcation of
the averaged system (28) which takes place at a curve in the (u, &) parameter space
which is given by

(h3) — (h7)
Wé‘z +0(82).

Since system (28) is reversible with respect to the involution R(x, y,s) = 27 — X,
y, —s), this is a pitchfork bifurcation, namely the two elliptic critical points and the
hyperbolic critical point at (;r, 0) merge together and become a parabolic point. At the
same time, the figure eight homoclinic orbits shrink, also merging with the parabolic
point. After the bifurcation, this point becomes elliptic, and thus we obtain again the
classical picture of the pendulum equation.

Once we have studied the dynamics of the averaged integrable system (28), one
could continue the study of the splitting of separatrices of (0, 0) for system (27) for
= po—ce" withr > 2 and ¢ > 0. As in the case r € (2/3, 2), the main point would
be to consider the separatrix of system (28) as a first order approximation for the
perturbed invariant manifolds. Moreover, for » > 2, a new splitting of separatrices
problem arises since in system (28) there exist also two separatrices of (i, 0). So,
one can expect that system (27) has two exponentially small chaotic layers in the
phase space around the four homoclinics of system (28).

n(e) = po +

Remark 2.11 Looking at the averaged system (28), it is straightforward to see that
the existence of heteroclinic orbits is only possible on the line ; = . Nevertheless,
the transversal splitting of the homoclinic orbits which exist away from p = pg for
system (27) might imply the transversal intersection between the stable and the un-
stable invariant manifolds of the two hyperbolic points. However, since this splitting

@ Springer



614 J Nonlinear Sci (2010) 20: 595-685

is exponentially small, it is expected that the region in the parameter space where
these heteroclinic orbits could exist would be delimited by two curves emanating
from (e, u) = (0, o) which are exponentially close (see Gelfreich and Naudot 2009
for a related problem). Away from this region, the two exponentially small chaotic
zones seem to be enough separated to allow the existence of some invariant curves,
as is indicated in Treschev (1998).

Remark 2.12 Let us observe that to study system (27) for u ~ po with u > o,
that is, taking for instance u = o + ce” with ¢ > 0, one has to take into account
that Jo(u) < 0 for u € (o, 1) (see Gelfreich 1997b, 2000). Then, in particular, the
pitchfork bifurcation takes place at the point (0, 0) (instead of (i, 0)) along the curve

_ (h3) = (A7) , 2
w(e) = o — WS +o(e?).

2.6 Structure of the Paper

The rest of the paper is organized as follows. In Sect. 3, we write the invariant man-
ifolds as graphs of functions S* (g, t) which are solutions of the Hamilton—Jacobi
equation (32) associated to (4). We also give the complete description of the proof of
Theorem 2.2. However, to make the paper more readable, we postpone the proofs of
the theorems stated in Sect. 3 to Sects. 4, 5, 6, 7, and 8.

Section 4 is devoted to the proof of the first part of Theorem 2.1. The existence
of stable and unstable manifolds and their first order approximations for || < O(1)
are established, in different domains, in Sects. 5 and 6. Firstly, in Sect. 5, we present
results in the outer domain, a region of the complex plane up to a distance O(g?),
with 0 < y < 1, from %im /2. These points are the singularities of the unperturbed
homoclinic orbit closest to R. In this domain, the manifolds are well approximated
by the unperturbed homoclinic orbit. Secondly, in Sect. 6, we present the results in
the inner domain, a region of the complex plane up to a distance O(eIn(1/¢)) from
the singularities. As it is shown in Sect. 3, in the inner region the manifolds are well
approximated by the solutions of the so-called inner equation, which was studied
in Olivé et al. (2003) and Baldoma (2006) and corresponds to the reference sys-
tem in Gelfreich (1997a). This is done using complex matching techniques in the
Hamilton—Jacobi equation.

In Sects. 7 and 8, we obtain a change of variables which allows us to have the
difference between manifolds as a solution of a homogeneous linear partial differen-
tial equation with constant coefficients. Proceeding as in the preceding sections, first
we obtain this change of variables in the outer domain and afterwards, using com-
plex matching techniques, we extend it to the inner one. The final result follows from
straightforward properties of linear partial differential equations with constant coef-
ficients. This idea was already used in Sauzin (2001), Olivé et al. (2003), Baldom4
(2006).

Finally, the results about the below the singular case given in Theorem 2.7 are
proved in Sect. 9. In this case the manifolds, as well as the change of variables, are
just studied in the outer domain where they are well approximated by the unperturbed
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homoclinic orbit. Consequently, we only obtain exponentially small upper bounds
which are not sharp.

The proof of Theorem 2.9 will not be given since it is completely analogous to the
one of Theorem 2.7 considering p = —2r with r < 2.

3 Description of the Proof of Theorem 2.2
3.1 The Hamilton—Jacobi Equation

Even if Hamiltonian (5) is entire as a function of 7, we do not take advantage of it.
Instead, we restrict ourselves to strips which make the proofs easier. We consider a
complex strip around the torus: T, = {t € C/27Z: |31| < 0} with o independent of
& and w. In fact, since through the proof we have to reduce slightly the strip of analyt-
icity, we consider o1 > 03 > --- > 05 > 0. Note that o1 will be given by Theorem 3.2
and will be independent of ¢ and u and, therefore, we will be able to make this finite
number of reductions.

Notation 3.1 From now on, in order to simplify the notation, if there is no danger of
confusion, the dependence on w or ¢ of all the functions will be omitted.

First, we state the existence of the periodic orbit in the complex extension of the
torus.

Theorem 3.2 There exists gy > 0 such that for any L > 0 there exists o1 > 0, such
that for € € (0, &o) and u € (0, 1), system (4) has a 21 -periodic orbit (x,(7), yp(1)) :
T, — C? which is real-analytic and satisfies

sup |xp(r) + ,usinr| < bo,uez, (30)

reTg]
where by is a constant depending only on o1, 1 and .

The proof of this theorem, which is done in Fontich (1993) for u small enough, is
postponed to Sect. 4.

Remark 3.3 The strip of analyticity of the periodic orbit does not play any role
in the results of this paper as it does in the case of a quasi-periodic perturbation
(see Delshams et al. 1997). For this reason, even though it is possible to prove that
the periodic orbit is analytic in a strip of size 0, = O(In(C/u)) for a suitable constant
C > 0 (see Seara and Villanueva 2000 for a related problem), we content ourselves
to work in a strip of fixed width o1 > 0.

Once we know the existence of the hyperbolic periodic orbit by Theorem 3.2, with
change (19), system (4) becomes a Hamiltonian system with Hamiltonian

2
K(g,p,71)= 8<% + (cosg — 1) cosxp(t) + (¢ —sing) sinxp(r)) (31
which has a hyperbolic periodic orbit at the origin p =g =0.
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Since its local invariant manifolds are Lagrangian, they have a parameterization
of the form (g, 3,S%(q, 7)), where ST are 27 -periodic in T solutions of the nonau-
tonomous Hamilton—Jacobi equation

3:S+ K(q,94S(q.7),7) =0,

that is,
1
3. S + 8(5(8[,5)2 + (cosqg — 1) cos xp(T) + (¢ — sinq)sinxp(r)> =0, (32)

with asymptotic conditions
1in}) 948 (g, t)=0  (for the unstable manifold),
q%
111121 335 (g,7)=0 (for the stable manifold).
q—) J
Note that the separatrix of the unperturbed system is given by (g, d,S0(¢g)) where
So(g) =4(1 —cos(g/2)), which is a solution of (32) for u = 0.

Recalling that x,(7) = —usint + (’)(uaz), (32) is approximated up to first order
in ¢ by

1
;S + 8(5(3,15)2 4 (cosg — 1) cos(usint) — (g — sing) sin(u sin r)) =0, (33)

which is the Hamilton—Jacobi equation of the Hamiltonian

1
Ko(g, p,7) = 8(§p2 + (cosq — 1) cos(usint) — (g — sing) sin(u sin 1:)),

whose associated system of differential equations is

q' =¢p,

p' =¢(sing cos(usint) 4 (1 — cosg) sin(u sin7)).
Even if this system is a perturbation of the pendulum

r_
{ 4= (34)
p' =esing,

for  small enough with respect to ¢, this is not true for general values of w. On the
other hand, as it is nonautonomous and periodic in time, averaging theory ensures
that it is close to the averaged system

q' =ep,
35
{p’zslo(u) sing, )

where Jo () is the zero order Bessel function of first type defined in (10). Recall that
when p is small, Jo(u) has the asymptotic expansion

2
Doy =1= "=+ 0(u?).
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so that (35) is an (’)(52)—perturbation of the pendulum (34) provided uz = O(e).
The Hamilton—Jacobi equation of (35) is

1
5 @S> + Jo(w)(cosg — 1) =0.

Due to the coefficient Jo(u), this equation does not correspond exactly to the
Hamilton—Jacobi equation of the unperturbed pendulum (34). In fact, the solution
of this equation is /Jo (1) So(q) = So(g) + O(u?).

In order to have the classical pendulum as a first order approximation of (32), we
perform the change

S(g,v) = Jo(w) - S(g, 1) (36)

for u € (0, o), where g is the first zero of the Bessel function. This change is well
defined since Jo(u) > 0 for u € (0, o) (see Remark 2.3). From now on, we consider
1 belonging to compact sets [0, o] for ftg < ro. Therefore, all the results which are
stated in the rest of this section and Sects. 5 to 8 are only valid provided this condition
holds.

In order to simplify the notation, from now on, we write J instead of Jy(u). More-
over, we consider as a new small parameter

§=evJ,

so that the transformed Hamilton—Jacobi equation reads
- 1, -, 1 1 . .
0: S+ 6 5(8,15) + 7(COSC] — D cosxp(t) + 7(q —sing)sinx,(7) ) =0.

Remark 3.4 With this new parameter § and taking u € (0, fio], Theorem 3.2 is still
valid if we replace ¢ by 8, for § < 8o =¢o/J.

Following the idea given by Poincaré in Poincaré (1892-1899), we reparameterize
the invariant manifolds with the time through the homoclinic orbit, namely

q = qo(u) = 4arctan(e"). (37)
Taking

T*(u, 7) = 5% (qo(), 7) (38)
and defining

¥ (u) = qo(u) — singo(u), (39

we obtain that the stable and unstable manifolds 7% (u, t) are 27 -periodic in t solu-
tions of the equation

3. T (u, 1)

cosh?
+a< (0T, ) —

1
m cosxp(7) + 7W(u) sinxp(t)> =0, 40)
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with asymptotic conditions
lim coshu-0,T (u,7)=0,
u——0o

lim coshu-3,T"(u,7)=0.
u——+00

(41)

In order to understand the behavior of 7%, we expand them formally in power
series

T, t)~ Y 8T (u, 1), 42)
k=0

where TkjE are 2 -periodic in 7 and satisfy asymptotic conditions (41). Next proposi-
tion, whose proof is straightforward, gives the first terms in these asymptotic expan-
sions.

Proposition 3.5 Except for constant terms, the first terms in (42) are

u

To(u) :4coshu’ 43)
2
Ti(u, 1) =—Cosh2uf1(f)+¢(u)f2(f)» (44)

where r is the function defined in (39) and fi(t) and f>(t) are the primitives of
l1(t) =(J —cos(usint))/J and lo(t) = sin(usint)/J which are 2r -periodic and
have zero mean. Moreover, we remark that for T € Tq,, they satisfy

| A@], | L@] <OWw). (45)

’

One can see that Tk+ =T, =T for all k € N, so that the formal expansion T =
Y reo 8* Ty is the same for both manifolds and is of Gevrey type (in suitable domains,
there exist M > 0 and p > 0 such that |T};| < MpXk!, see Balser 1994). This fact, as
it is well known, leads to the exponential smallness of the difference between Tt
and 7.

The first term of these asymptotic expansions, Ty, corresponds to the homoclinic
orbit for the unperturbed problem, namely for u = 0. In other words, for the un-
perturbed system, the homoclinic orbit in the new variable # can be parameterized
by (u, %an To(u)). This term has polar singularities at u =i /2 + kmi for k € Z
which propagate to all the terms in the series (42).

On the other hand, in order to compute the exponentially small splitting of the
perturbed invariant manifolds 7% (u, 7), it is a crucial step to prove their existence for
u in a complex strip as wide as possible. In fact, following the idea given by Lazutkin
(2003), we study the invariant manifolds up to a distance of order O(§ In(1/§)) of the
singularities u = +ix /2, which are the closest to the real axis.

3.2 Existence and Approximation of the Invariant Manifolds in the Outer Domains

As a first step, we prove the existence of 7% in certain domains that are called outer
domains, which correspond to sectorial neighborhoods of +=co which are far from the
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Fig. 4 The outer domain D)‘j
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singularities of Tp(u), that is, at a distance O(8¥) with y € (0, 1). In Sect. 3.3, we
study the invariant manifolds when u is closer to +im /2.
The outer domains, as it can be seen in Fig. 4, are given by
b4 i
D =3ueC: |Sul < ————(Ru+as” +—},
14 { Iul 2(uo +a5V)( ) 2 (46)

D;:{ue(C: —ueD]‘j},

where a € (0,7/4), y € [0, 1) and ug > 0 are fixed. Throughout the article, we will
also consider the constant Sy related to the slopes of the boundaries of the outer
domains, which can be obtained from u¢, a and § as

T T
— | < —. 47
2(up + ad?) 2
It is necessary to split these domains into two parts in order to study the behavior
of the invariant manifolds whether i — =£o00 or near the singularities u = +im /2.
Thus, we fix real constants p > 0, small but independent of 6, and U > ug, and we
consider the domains (see Fig. 5),

Bo= arctan(

DuC {ueDu|$ﬁu> -U — ,0}

where “c” is written for close to the singularity, (48)
Duf {ue D) |Ru<-U+p},
where “f” is written for far from the singularity. (49)

Let us note that D)‘i’f N D¢ # ¢ provided p > 0. We define analogously D}¢
and D)S;f.

Moreover, for technical reasons, throughout the article, we have to reduce slightly
the domains a finite number = 14 of times. These reductions, which are called
Du(l) Dy <@ and Dy ) for 0 <i < N, are done in such a way that they preserve
the shape of the orlglnal ones, as can be seen in Fig. 6. We take parameters 0 = kg <

-+ < hpy < 1. Then for fixed § and y, we consider the modified parameters

a®V = (1+ hy)a,
u(()i) =ug— h;ad’, u(()o) =ug,

p =1 —hip,
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Fig. 5 The domain far from the singularity and close to the singularity: D", Dy,

Fig. 6 Reduction of the outer
domain, D;(’) C D}‘j hZCL(S'Y

S

in such a way that the new domains are defined as
DY ={u € C: |Ju| < —tan fo (Nu +a"8") + 7 /2} (50)
and analogously for D;ﬁ’c(i) and D;i’f(i), where * denotes either s or u.

With these reductions, writing * for either s or u, we obtain the following inclu-
sions:

*(N) — ... (1) #(0)
Dy C C Dy - Dy .

Moreover, for u € D;(Z) ,

d(u, 3D} "D) > O(s7). (51)

Observe that these properties also hold for D;;’f(i) and D;’C(i).
The next theorem gives the existence and the asymptotic expressions of the invari-
ant manifolds in the outer domains.

Theorem 3.6 Let o1, jig and y be real numbers such that 0 < o1 < 0p, 0 <
o < o and y € [0, 1). Then there exists o > 0 such that for § € (0, do) and
u € (0, fiol, (40) has unique (module an additive constant) solutions in D;(l) x Tg,
and D}S,(l) x Tg, of the form

T, t)=To(u) + 8Ty (u,7) + 0T (u, 1)

satisfying asymptotic conditions (41).
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Moreover, there exists a real constant by > 0 independent of § and ., such that

2—iy
—b1“84 for (u, 1) € D;’C(l) x Ty,
i+1 A |cosh™ u|

|au Q (M, T)| = b1M82—iy Du’f(]) T
m for (u, T) € y X Ly

fori =0, 1. Analogous bounds for Q™ also hold.

This theorem is proved in Sect. 5. It shows that the invariant manifolds in the outer
domains are well approximated by the unperturbed separatrix. In fact, using (44), as
a consequence of this theorem we have that,

1
|0, T* (u, ) — 8, To(w)| < |C—(9(u5)

osh? u|

foru e D;’C(l). However, in the proofs of Theorems 3.9 and 3.11, it will be convenient
to have explicitly the order 8 term 7} in the expansion of T=.

3.3 Existence and Approximation of the Invariant Manifolds in the Inner Domains

In order to prove the exponentially small difference between T and T, it is neces-
sary to obtain good approximations of the invariant manifolds close to the singulari-
ties u = =im /2. In fact, from Theorem 3.6 and formulas (43) and (44), near these sin-
gularities the invariant stable and unstable manifolds grow considerably. In order to
study the unstable manifold 7~ close to the singularities +ix /2, following Lazutkin
(1984), we extend the unstable outer domain to the inner domain defined as

Dy, = {u eC: Ju > —tanﬁo(é)’tu ~|—&8y) +7/2, Su<m/2—cSIn(1/6),
Su < —tan B1Ru + /2 — c81n(1/8)}, (52)
Dy _={ueC:ueDj_}

where fp is the parameter defined in (47), c is a parameter that we choose such that
0 <c < 1and B > By is taken such that 8 — By = O(1) (see Fig. 7).
As for the outer domain, the inner one is reduced, obtaining

D;(i) = {u € C: Su > —tan fo(Nu +aV8”) +7/2, Ju <7/2 - D8In(1/8),

Su < —tan fi%Ru + /2 — DsIn(1/8)}, (53)
where
a = (1 -hpa,
. (54)
D=1 +h)e
and hence
¢ <2 fori=1,...,N. (55)
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Fig. 7 The inner domain for
T-, Dy LU Dy _
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For the other domains the reduction is done analogously. Moreover, this reduction
guarantees that for u € D;(;) it holds that

d(u, 8Dy ") > O(81n(1/6)) (56)

and

*(N) *(1) *(0)
Dy C---CDs CDs

Furthermore, since we need an overlapping domain between the inner and outer

domains, we take a > a in (46), such that for all i, j with 1 <i,j <N, D;(Q N

y .
Since the behavior near both singularities is analogous, we deal only with the

proof for Dgs(jr). In order to study the unstable manifold in this domain, we consider
the change

z=8"Yu—in/2). (57)

The variable z is called the inner variable, in contraposition to the outer variable u.
Formulas (43) and (44) suggest the change

¢ (z,7)=6T (6z+im/2, 7). (58)
We will prove the existence of ¢~ in

Dgfﬁ ={zeC: 3z> —tanfy(Nz + a6 1), 3z < —cPIn(1/8),

3z < —tan 10z — ¢V In(1/8)} (59)
which corresponds to D:;’(i) expressed in the inner variable. Let us observe that for
z€ Dg(f:

d(z, 8D ") > O(In(1/9)). (60)
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By (40), the unstable manifold in the inner variables, ¢~ (z, 7), has to satisfy

cosh?(Zi+ 8z2) 2682 cos X, (T)
9o+ 2 9.6)2 — P
4 882 ©:9) cosh’(Zi+6z) J
+W<i%+&)%=o, (61)

where 1 is the function defined in (39).
Using (43), (44), and Theorem 3.6, one expects that for iz < 0, Iz < 0 with
|6z] <« 1, the following equality holds

T 4
¢ (z,7) = 3To<iz ~|—5Z) ~|—52T1 <15 + 4z, ‘L'> + ..

4 1
Z Z

So, we look for the solution of (61) which is 27 -periodic in t and satisfies the as-
ymptotic condition

lim ¢ (z,7)=0. (62)

Rz——00

Analogously, for the stable manifold, we define the domains Dz(i and D;fi_z, and the
function ¢ defined in Dg(l_g which has to satisfy (61) and

lim ¢*(z,7)=0. (63)

Rz—~+00

As a first step, we have to study (61) for the first order terms in §. Taking § = 0,
we obtain the so-called inner equation

2
2
debo — %(aqu))z + J—Zz(cos(u sint) +isin(usint)) =0 (64)

and we look for 2z -periodic in t solutions ¢>0+ and ¢, satisfying asymptotic condi-
tions (63) and (62), defined for z in domains of the form

D}l ={ze€C: Iz < —tan 1Nz — d},
D} ={zeC: Iz <tan BNz — d},

where (1 was introduced to define the domains Dg; in (52) and d > 0 is a real
constant (see Fig. 8).

Remark 3.7 Let us observe that the inner equation (64) is the Hamilton—Jacobi equa-
tion of the Hamiltonian system with Hamiltonian

Zz 2 2 . .. .
Hiz,w,T) = —gw + ﬁ(cos(u sin T) + isin(u sin r)).
z

@ Springer



624 J Nonlinear Sci (2010) 20: 595-685

Fig. 8 The inner domain for
¢o and ¢y D" 7\ /

D! N Ds

The dynamical system associated to this Hamiltonian was called reference system
in Gelfreich (1997b).

Theorem 3.8 The following statements hold:

e Foreach u € C, (64) has a unique formal solution

hoe =320, (65)
n>0 "~
where co = 4, c1(t) = 2(f1(t) —if2(1)) (see Proposition 3.5) and c,(t) are 27w -
periodic entire functions.

o Let us consider the constant o1 defined in Theorem 3.6 and any 1 > 0. Then there
exists a constant d > 0 such that, for e 0, 1), (64) has unique 27 -periodic
in T solutions ¢0 (z, T) asymptotic to ¢0 in the corresponding domains (z,t) €
Du * x Ty,. In particular, they satisfy the asymptotic conditions (63) and (62),
respectively.

Furthermore, their difference is exponentially small. There exists a constant
by > 0, such that, for z € D; N D}, T € Ty, and ju € (0, j1):

¢ (2. 7) — ¢ (2. 1) — uf (e C0| <byu(lz] e + e, (66)

where f is a real-analytic even function which satisfies f () = 2w + O(u?) for u
small and ay is any constant such that a; € (1, 2).
o There exists a change of variables defined in D;' x Ty,

z=x+R (x,7) (67)
which conjugates
- 1
L= = 72%0:0 (2, 1)0; (68)
with
L =0; + dy. (69)
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Moreover, there exists 8y > 0, such that for 6 € (0, §p), Du(l) C Dufort ,N
and:
@) If (x,7) €Dy x Toy, z=x+ R (x,1) € Dy fori=1,....N.

(i) There exists a constant bz > 0, such that for (x, 1) € Du(l)

1,..., N, it satisfies

x Ty, with i =

. b3
Jp— .
|{R™(x.7)| < e fori=0.1.2

o There exists the inverse change of variables x = z + S~ (z, T) which holds:

M) If (2, 0) €Dy x Ty, x =2+ 5 (2.0 € DY fori=1, ..

(i) There exists a constant by > 0, such that for (z,7) € Du(l)

1,..., N, it holds

x Ty, with i =

8/57(z,0)| < for j=0,1,2.

by
|z]/+1
Outline of the proof The paper Olivé et al. (2003) provides a complete and detailed
proof of the results of this theorem in the case q&gt are solutions of the equation

0790 — —(8 ¢0)* + (1 —psint) =0, (70)

which corresponds to the inner equation of

x" =¢e%sinx + pe’sinxsint.

Let us observe that both (64) and (70) are of the form

2
z 1
&m—g@mﬂ+;mm=a

where P, (7) is an entire 277 -periodic function.

As it is stated in Remark 1 of that paper, the proof of these results for general
27 -periodic functions P, (7) can be handled by the same method with little effort.
For this reason, we will just give the main ideas of the proof and we refer the reader
to that paper to check the technical details.

The proof in Olivé et al. (2003) is done using resurgence theory of Ecalle (Ecalle
1981a, 1981b; Candelpergher et al. 1993).

To stress the symmetries of the solutions and of function f(u) in formula (66),
we will write the dependence on u of all the functions which appear in this sketch.

First, we look for a formal solution

J’O(Z, T, ) = Z an(r;,_fL)

n>0

of (64) by inserting it in the equation and obtaining a recurrence relation for the
coefficients ¢, (t, i). This recurrence can be easily solved by entire periodic functions
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and are unique provided co =4 (see Lemma 1 of Olivé et al. 2003). Moreover, as
P, (t) = P, (7 — 1), this formal solution has the symmetry

bo(—z.7m — T, 10) = —¢o (2, T, ).
On the other hand, since it also satisfies P, (t) = P_,(t — ), the formal solution

has also the symmetry

b0z, T, — ) = oz, T + T, 1).

This last symmetry is the cause of the evenness of function f(u) in formula (66).
Once we have the formal solution ¢y, the solutions ¢3E are obtained using the
Borel resummation method.
First, one considers the Borel transform of qso (z, T, u) with respect to the vari-
able z, namely

dA)O(Ca T, /"l') = ch(f, M)%,

n>0

which satisfies:
do(—¢,m — T, 1) = go(¢, T, 1), (71)
do(L, T, —p) = o(¢, T + T, ). (72)

The first result, which concerns ¢A>0(§, T, u) is that it converges when ¢ is near the
origin (uniformly in © and 7) and defines a holomorphic function of ¢ with analytic
continuation along any path of C which starts from the origin and avoids iZ. This fact
is proved studying the Borel transform B of (64), which using that

B(¢ ¥) = B(¢) * B,

where
" A ¢, .
<¢w><c>=/0 S0V — ) da

and that B(zd,¢) = —0; (;“qAb), reads:

.1, s 2 . N
Ao — §(¢O +20:¢00)™ + " (cos(usint) +isin(usint)) =0, (73)

where

¢ =dx.
Studying this equation, one can see that the only possible singularities of the analytic
continuation of ¢ lie on iZ. Considering the Riemann surface R consisting of all
homotopy classes of paths issuing from the origin and lying on C \ iZ (except for

their origin), one can see that ¢0 is holomorphic in R?, the main sheet of R, which
consists on points ¢ that can be represented by a straight segment [0, ¢]. And also
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in R!, which consists on the union of R? and of the “nearby half-sheets”: this is the
subset of R consisting of the homotopy classes of paths issuing from 0 and lying in
C \ iZ but crossing the imaginary axis at most once. These results are contained in
Theorem 1 of the paper.

Once we know that the function qAﬁo can be extended to C \ iZ, one can define its
Laplace transform along straight lines avoiding iZ:

e 0o

L8 B0y, T ) = fo e o (¢, 7, ) de.

By Cauchy’s theorem, this process defines two analytic functions ¢3E in suitable do-

mains D*, taking 6 € (=%, %) in the case of ¢6r and 0 € (3, 37”) in the case of ¢, .

An analogous process gives us information about the solutions of the “formal”
linearized equation around ¢y,

1 ~
0¥ — 2220:d0(z, 7, DY =0,
and about the solutions of the linearized equation around ¢, ,

3.Y — %zzango_ (z,7, )3, Y =0.
One can first find a “formal solution” of the formal linearized equation (see Lemma 3
in Olivé et al. 2003) of the form Y (z, 7, u) =z — t + S(z, 7, ) and then using the
Borel resummation method, one can obtain the analytic solution S~ (z, , u). Once
we have proved the existence of S™(z, 7, i), one can easily see the existence and
properties of R~ using the fact that z =x + R~ (x, 7, u) is the inverse change of
x =274 S (z, T, ). These results are summarized in Proposition 5 of Olivé et al.
(2003).

To obtain information about the difference ¢J — ¢, , one needs to have more
precise information about the singularities of $o. In fact, it is enough to study the
nearest singularities to the real axis +i, and, by symmetry (71), it is enough to study
the point ¢ =1i.

The study of this singularity is done by using the so called “alien derivatives.”
The result is given in Theorem 2 of Olivé et al. (2003) where one can see that ¢30
has a simply ramified singularity at ¢ = i, that is, it only has a polar part (which
corresponds to a simple pole) and a logarithmic part:

e

n o 1
doli+g T =" E G u)%f +RE T ) (74)

for suitable holomorphic functions 1/}(5 ,T, 1), F(&, T, 1), 2m-periodic in T and that
have analytic continuations for ¢ € R°. The function fo[’](u) is analytic and, as a
consequence of symmetry (72), odd in u.

This theorem is proved using Ecalle’s theory and, mainly, its concept of “alien
derivative” A,,, which is an operator that gives the singular part of the function ¢30 in

@ Springer



628 J Nonlinear Sci (2010) 20: 595-685

any point w € C. In terms of the resurgence theory, (74) reads
Aigo = f e + 9z )

where ¥/ (z, 7) is the formal Laplace transform of Y (¢, 7). Let us just say here that
a crucial tool in the resurgence theory is what is known as the “bridge equation.” In
our system, the bridge equation relates the alien derivative at the singularity i, A; o,
with the solutions of the linearized formal equation around ¢

1, -
3. Y — Zzz(a%)azy =0

and knowing that any solution of this equation are the composition of any analytic
function with f(z, T,W)=2z—T+ S‘(z, T, L), one can get expressions for it. We refer
to the paper to make this argument rigorous.

Finally, writing fo[’](M) = uf(u), f(u) is even and analyzing the linear terms in
wu of the equation one can easily see that f(u) =2 + (’)(,uz).

Once we know the behavior of quSo near its singularity i, we can easily compute the
difference between the functions ¢>0+ and ¢, , just using Cauchy’s theorem to compute
the difference between the integrals defining them.

Another proof of the first part of Theorem 3.8 (in particular of (66)) can be found
in Baldoma4 (2006). Let us remark that in that paper the result is obtained without the
use of the resurgence theory but with direct methods of functional analysis. Moreover,
it applies to more general Hamiltonians which only are C! in 7. O

Theorem 3.8 gives the existence and behavior of ¢0i. The next theorem proves the

s, u(7)

existence of the invariant manifolds ¢¥ in Dy, considering them as a perturbation

ofqbo.

Theorem 3.9 Let [ig be the constant considered in Theorem 3.6 and o3 and y be real
numbers such that 0 < o3 < o1 and y € (1/3, 1/2). Then there exists 5o > 0 such that
foré € (0, 80) and u € [0, [ig], there exists functions qbi(z T) defined in DS U o Tos
which are solutions of (61) and satisfy asymptotic conditions (63) and (62) respec-
tively. .
The functions 871¢i(%) are the analytic continuation of the invariant mani-
folds T*(u, ) given by Theorem 3.6, to the corresponding inner domains Du _7_(7)
Moreover, there exists bs > 0 independent of § and p such that for (z T) €
DD % T
5 + 03>
|0:07™ (2, 7) — 0.0 (2, )| < bs?,
2+ 2+ 82
) 7, T)— 0 2, 7)| S bs——r.
0207 (2. 1) — 976 (2. 7)) 2(1/5)
This theorem is proved in Sect. 6 using complex matching techniques. That is,
using a characteristic-like method which consists in integrating the Hamilton—Jacobi
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Ds(?)

/

Fig.9 The domains for 7~ and T+

equation (61) from the overlapping zone between the inner and outer domains where
the invariant manifolds are already defined by Theorem 3.6. This procedure ensures
that the functions we obtain are the analytic continuation of the invariant manifolds
defined in the outer domains.

In conclusion, Theorems 3.6 and 3.9 give the existence of the invariant manifolds
T% in the domains D" and D7) (see Fig. 9) defined as

i i @) @)
D" = p¥®u Dy u DY,
s(i) s(@) s() s(i) 75
D" = ps U Dy u Dy,
3.4 Study of the Difference Between the Invariant Manifolds

Next step is to compute AT (u, 7) =T (u,7) — T~ (u, 7) in DD c DD N pvD
which is of the form

D@ — {u € C: |Ju| + tan Bo|Nu| < % - c(i)(Sln(l/(S)}, (76)

where ¢ are the constants defined in (54). The angle P2 > Bi, satisfying |B2| =
(1), has been chosen in such a way that the domains D) can be split as

p® =p¥up{’ upy (77)

where D)(,i) =DOn D;(i) N D)S,(i), and the same for Déi)i (see Fig. 10).
Let us consider in D7) the linear differential operator

2
Ls=5"0, + (C"S; LT w0+ 3uT (. r)))au (78)

which satisfies E(; (AT) =0. Tp deal with 53, we observe that, heuristically, as 9, T+
and 9,7~ are close to 9, Ty, L; is close to the linear differential operator with con-
stants coefficients

Ls=058"19; +9,. (79)
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Fig. 10 The domain for
7+ —7-, DD

The following lemma that will be crucial to prove the exponentially small asymp-
totic expansion of AT, shows that analytic solutions ¢ (u, t) of L£s¢ = 0 defined for
(u, ) € (—irg, irg) x Ty, are exponentially small for real (u, 7).

Lemma 3.10 Let us consider a function ¢ (u, T) analytic in (—irg, irg) x Ty, which
is solution of L5¢ = 0. Then ¢ can be extended analytically to {|Su| < ro} x Ty, and
its mean value

2

1
<§>=2— ¢(u,7)dr
T Jo

does not depend on u. Moreover, for r € (0, rg) and o € (0, 04), we define

M, = max _ [92¢(u, 7). (80)

(u,7)€[—ir,ir]x Ty
Then provided § is small enough, the following inequalities hold
020 (u, T)] < 4M,e75

Y(u,7) e R x T, 8¢, )| < 48M,e™5,
@, T) = (£)] <48 M,e75.

Proof Since ¢ is periodic in t, we can write

()= ¢Fwekr.

keZ

On the other hand, being ¢ solution of L£s¢ = 0, there exists a 27 -periodic function
A(s) such that

¢u, )= At — 87 "u).

Thus, it is straightforward to see that (¢) does not depend on u and it can be extended
tou € {|Su| <ro} as

Cu, )= At =8 "Ru — 187" Su) = ¢ (187 Su, T — 87" Nu).
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Considering ﬁr defined in (80), one has that |83§(u, )| < M, fo_r (u,7) €
{ISu| <r} x Ty. Moreover since ¢ is analytic for (u, 1) € {|Su| <r} x Ty,

92¢5 )| < Mye™ k.

On the other hand, it can be seen that for k € Z

k>
32¢k(u) = —8—2Ake iku/s (81)

and taking u = =ir,
k 52 2.k +kr/s
Ak =— 50 (Fir)etkr/s,
Hence, with this equality and (81), we obtain that for u € R,
l0z¢k )| < ag¢* (—sgn(k)ir)|e 70 < M e~ Kloe=IkIS,

With this bound and recalling that 83;“0(14) = 83(;“) =0, foru e Rand |J7| <0,

82c(u. )| < Y [92¢ R <2, 37 (PTI==0) < 4m, e,
k540 k>0

The other two bounds are obtained proceeding analogously. g

In order to apply Lemma 3.10 to AT, it is natural to look for a change of variables
that conjugates operators (78) and (79). The operator Ls can be split as

2
fs=1;5+ <C°S§ L (0.7 . 1) — 0, (u, r)))au,

where

cosh? u

Ly =8, + 0T (1, 7). (82)

As a first step, we prove the existence of a change which straightens ﬁé_

Theorem 3.11 Let 03 and 1y be the constants considered in Theorem 3.9. Then for
any fixed y € (1/3,1/2), there exists o > 0 such that for 6 € (0, §¢) and n € (0, fio],
there exists a real-analytic function C~(w, T) defined in D10 x To,, such that the
change

(u,7)= (w +C (w, 1), r)

conjugates the operators ﬁg and L defined in (82) and (79).

@ Springer



632 J Nonlinear Sci (2010) 20: 595-685

Moreover, there exists a constant bg > 0, independent of § and |, such that:

e For(w, 7)€ D;(lo) X Tgy, it holds thatu =w +C~(w, 1) € D}li(g) and

|C™(w, T)| < be(8%|w] + 82727),
|05C™ (w, T)| < bes*UFDY  for j=1,2.

e For(w, 1) € D;(io) X Te,, it holds thatu =w +C~(w, 1) € D;fi) and

|0JC™ (w, )| < b8/ In(1/8)"'"7  for j=0,1,2.

The proof of this theorem is given in Sect. 7. We note that we will need to proceed
as in the proof of the existence of the invariant manifolds in Sects. 5 and 6. First,
in Sect. 7.1 it is proved the existence of the change of variables in the outer domain
D41 and afterwards it is extended to the inner ones D:;(io) using complex matching
techniques in Sect. 7.2. ’

Applying the change C~ to L5 (in (78)) as a first step, it can be found the global
change which conjugates Lsto Ls.

Theorem 3.12 Let jio be the constant considered in Theorem 3.11 and o4 and y real
numbers such that 0 < o4 < 03 and y € (1/3,1/2). Then there exists 8y > O such
that for all 6 € (0, 8p) and n € (0, figl, there exists a real-analytic function U(v, T)
in DU x To,, such that the change

(u,7)= (v +U(v, 1), r)

conjugates the operators Ls and Ls defined in (78) and (79). Moreover, there exist
constants b7 > 0 and vi > 0 independent of 6 and wu such that:

o Forall (v,7) € DY x Ty, it holds that v+ U(v, t) € DY and
0jU(v, 1) <b78'1 717 for j=0,1,2.
(12) . an
e Forall (v, ) € Dy I x To,, it holds that v +U(v, 7) € Dy ;- and
0jut(v, )| < 78" (In(1/8)) "™ for j=0,1,2.

It will also be necessary to consider the inverse change of variables in the outer
domain D)(,”). The existence and properties of it are stated in the following theorem
whose proof is straightforward considering a fixed point argument.

Theorem 3.13 Let [1g, 04 and vi be the constants defined in Theorem 3.12 and y be
any fixed constant y € (1/3,1/2). Then there exists o > 0 such that for all 5 € (0, §p)
and | € (0, fLol, there exists a real-analytic function V(u, t) in D)(,M) x Te,, such that

W, ) =W+Vur1),1)
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is the inverse of the change given in Theorem 3.12. Moreover, there exists a constant
bg > 0 independent of § and wu such that for all (u,t) € D)(,M) x Ty,, it holds that
u+Vu,1)e D}(,B) and

|00V, )| < bs8' 1777 for j=0,1,2.

With Lemma 3.10 and the change of variables obtained in Theorem 3.12, we have
all the tools which will be necessary to obtain the exponentially small asymptotic
expression of the splitting of separatrices.

In fact, in the following theorem, we prove that the first asymptotic term of AT is
given essentially by the function

F(u,7) =287 uf (e % cos(v — 8 'u)
. cu—im/2 . sutin/2
=67 uf ) (e T e ) (83)
which comes from the difference between the solutions of the inner equation d)oi (z,7)
(see (660)) stated in Theorem 3.8.

Theorem 3.14 Let [ig be the constant defined in Theorem 3.13, then for any fixed
0 < it < o there exist 5o > 0 and bg > 0 independent of 5 and | such that, for
6€(0,60) and nw e 0, n], u € (—uy,uy) := DIY NR and t € T, the following
bounds hold:

AT (u,7) —a(u,8) — F(u,t)| <b s le %,

|AT (u, 7) —a(u, 8) — F(u, 7)| < HiiTsS
|0 AT (1, 7) — 8, F (u, 7)| < bguln(l/é)g—%—%,
|0ZAT (u, ) — 97 F (u, 7)| < bop 83 %,

In(1/6)
where o (i, 8) = (AT (v + U (v, T), T)) (Which is independent of v) and U is the

change given in Theorem 3.12.

Proof of Theorem 2.2 After the statement of Theorem 3.14, we are ready to prove
Theorem 2.2. Changes (38), (37), (36), and (19), Theorems 3.2 and 3.6, and for-
mula (44) give the two first statements. For the last two ones, we also need Theo-
rem 3.14. O

In order to prove Theorem 3.14, we consider the change of variables found in
Theorem 3.12 and we split AT (4, t) — F(u, 1) as

AT(v+UW, 7). 7) = Fo + U@, 7), 7) =51 (v, 1) + £2(v, 7).
where
O, )=AT(v+UW,1),7) — F(v, 1),

(84)
H,t)=F(,7)— Flv+U®W,1),1).

@ Springer



634 J Nonlinear Sci (2010) 20: 595-685

In the following two propositions, whose proofs are delayed to the end of this
section, we obtain the desired bounds of ¢; and ¢, which will lead to the proof of
Theorem 3.14.

Proposition 3.15 Let 1o be the constant defined in Theorem 3.13, then for any fixed
0 < L < fug there exist 5o > 0 and b1p > 0 independent of 6 and p such that for
8§ €(0,80), e (0,], ve DY NR and v € T, the function ¢ defined in (84)
satisfies:

-1.-%

’

"
[f1. 1) — (¢1)] < 101n(1/8)8

1) ¢1(v, )| < bro 5~ UtDe=%  for j=1,2,

In (1/5)

where (1) is independent of u.

Proposition 3.16 Let jio and vy be the constants defined in Theorem 3.12, then there
exist 8o > 0 and b1 > 0 independent of § and w such that for 6 € (0, 8p), u € (0, i1o),
ve DD NRandt €T,

07 62(v, D) <brus" 7 7le™F  for j=1,2. (85)

Proof of Theorem 3.14 In order to recover the bounds stated in Theorem 3.14 from
the bounds obtained in Propositions 3.15 and 3.16, it is enough to perform the real-
analytic change of variables obtained in Theorem 3.13. g

In the rest of the paper, we will use the following convention.

Notation 3.17 In order to make the proofs more readable, we will use the following
convention: we will say that g1 < O(g2) in some domain D if there exists some con-
stant C > 0 that may depend on other constants that will be defined through the arti-
cle, but does not depend on ¢ neither u (and, therefore, neither on §), such that |g1]| <
C|g2] in D. Moreover, we will say that g1 = O(g2) if g1 < O(g2) and g» < O(g1).

Proof of Proposition 3.15 By Theorem 3.12 and definition of F in (83),
Ls¢1(v,t) = 0. Then Lemma 3.10 can be applied and it gives that (¢1) does not
depend on v. In order to bound ¢y, we recall that AT =T+ — =0t -0".
Differentiating ¢1:

821(v, 1) = 2AT (v + U, 1), 7) (1 + 3U W, T))°
+ 3 AT (v + U, 1), 7)2UW, T) — 32 F (v, 7).

The next step is to bound |33§1 (v, 7)| for (v, T) € [—ir,ir] x T_US for any fixed 05 < 04
and r =7/2 — c1381n(1/6).

For v € D)(,B) we apply Theorems 3.6 and 3.12, and the expression of F in (83),
obtaining, since y > 1/3,

971, D) = O(rs*7) < 0(s71). (86)
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(13) 12y

For v € Dy 5.+

cD we have that

2= +UW, 1) —in/2)/5 € D(“)

We split ¢ using the functions ¢* and qb(jf whose existence has been proved in The-
orems 3.8 and 3.9

801, = (T — )@, 1) — (¢~ — ¢ )(z, T)
+ (¢ — 85) (2, 1) = 8F (v, 7).

Thus, differentiating it twice, we obtain

830201 (v, 1) = 02(¢* — o) @ (1 + U W, 1)) (87)
—02(¢” — )@ (1 + U, r))2 (83)
+80:(¢" — ¢ ) (2. DU W, 7) (89)
—80:(¢™ — ¢ ) (2. T)RU W, T) (90)
+02(o¢ — ¢y )@ (1 +0,Uw, 7)) —8%02F(v, 1) (91)
+89:(og — &g ) (2, DU, T). (92)

Applying Theorems 3.9 and 3.12, we obtain that terms (87) and (88) can be bounded
by 082 ln_z(l/S)) and terms (89) and (90) by oItk ln_3(1/8)).
To bound (91), we differentiate twice formula (66) for qbar — ¢, and (83) for F:

102(g — ¢5) (v + U@, T) —i7/2) /8, T) (1 + U, 7)) = 8392 F (v, 7)|

3(U+L{(u,5t)—in/2

[=14+0(n""(1/8))] + 06 ")) |1 + d,Uw, 1))
' v+i57'r/2))

2 + e
[—1+0(n7'(1/8))](1 + U (v, T))” + 1))

U@
5
01+ 0, U, D).

< O((ne

\)(v in/’

+ O(Me

< O(ueg(w—”/z)(e

v4im /2

+ O(ue_s(
Applying the bounds obtained in Theorem 3.12 and recalling that 0 < Jv < m /2 —
c¢1351n(1/8), we obtain the following statements:

U

e =14+ 0(n1(1/8)),

o3 voin/2 ) <0 (SC(B) )

o~ vtin/2
_\g(T/

) < O(e_%).

From these bounds and applying again Theorem 3.12, it can be seen that term (91) is
bounded by O(5<"” In=1(1/8)).
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The last term (92) can be bounded analogously by (9(8"(13) (In(1/8))~3) differen-
tiating formula (66) once and using Theorem 3.12.

Therefore, since 0 < ¢1? < 2 (see (53)), for (v, 7) € D;}i) X Toys,

s
2 -3
|01 (v, 7)| 5(9(3 1n(1/5))'

Thus, joining this bound with (86), for (v, 7) € D13 x T,

s
2 -3
|0s¢1(v, )| < o(a 1n(1/5)>'

Furthermore, taking m (v, 7,6, ) = 83{1 (v, ), m is analytic in u and holds that

m(v, 7, 8,0) = 0. Thus, considering an arbitrary i € (0, f1o) such that p = |fio — 1|
is independent of §, and applying Cauchy integral formula, for u < &

~(13)
L/‘ m(v,r,S,é)d§‘§O<8_3 ) )
27 Jie—p=p (€ — )2 In(1/5)

9501w, D)| = [m(v, 7,8, )|

laﬂm(v, 7,0, y,)‘ =

Therefore,

. s
<O[ué ) (93)

n
_ ‘/0 Bum (v, 7,8, ) dE In(1/5)

Finally, we apply Lemma 3.10 to ¢y with r = /2 — ¢(1)81In(1/8) and

¢
M, = 573 ,
O(“ 1n<1/6)>

and we obtain the bounds stated in the proposition having into account that

pig

.(13
e 5 =5"Ve %, O

Proof of Proposition 3.16 1t is enough to apply carefully the mean value theorem to
the function F given in (83) using the bounds of Theorem 3.12. g

Notation 3.18 In the forthcoming sections, we will use several Banach spaces
(X, |l - ). We will denote the ball of center 0 and radius r as

B(r)= {x e X: x| <r}.

4 Proof of Theorem 2.1 and 3.2

As it was noticed in Delshams and Seara (1992), the periodic orbit x;, of system (3)
holds the symmetry x,(—7) = —x,(7), and thus it has zero mean. On the other hand,
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it has to hold the functional equation
Lo(xp) = &2 sin(xp) + usint,

where Lox = x".
However, for a fixed value of 11 > 0 independent of &, xp(7) is not small. Expand-
ing formally the periodic orbit in powers of ¢ is obtained that

xp(T) = —psint + C’)(ez).

Thus, in order to apply a fixed point argument, we consider z,(t) = xp(t) + usinTt.
Hence, we will look for a solution of the equation

Lozp = &2 sin(zp — pusint)
in the Banach space

Xy = {z : Ty, = C: real-analytic, 2m-periodic, z(t) = —z(—1) =0, |zlls, < oo},

(94)

where the norm || - ||, is defined using the Fourier series of z and is given by

Izlloy = Z \Z[k]|e\k|00_

keZ)\{0}

Moreover, we take o depending on u, since the strip of analyticity of the periodic
orbit seems to shrink when p — oco. Indeed, one has to take the width of the strip
in such a way that the function b(t) = sin(u sin7) holds |b(7)| < O(1). As it will
be seen in the proof of Proposition 4.1, this bound holds provided wsinho < O(1).
Therefore, one has to take

oo(,u)zln(i—i— %—{—1). (95)
wo\u

Notice that when © — 0 it holds that og(u) ~ In(1/u) whereas as u — oo it holds

that og(u) ~ 1/p.
On the other hand, for functions belonging to Xj, the operator Ly has an inverse
which is defined through the Fourier series

M ikt
Go(z) =— Z k_ze

keZ\{0}

and thus it can be bounded by [|Golls, < O(1). Using this operator, first statement of
Theorem 2.1 will be a straightforward consequence of the following proposition.

Proposition 4.1 There exists ey such that for € € (0, &y) and any pu > 0 there exists
a 2m -periodic real-analytic function z,(t) € Xy defined in Ty, which is a fixed point
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of the functional
Fo(z) =Go (52 sin(z + psin7)). (96)
Moreover, it satisfies ||zp(T) |y < O(&?).

From this proposition, we obtain the following corollary which has Theorem 3.2,
and thus also the second statement of Theorem 2.1, as a consequence.

Corollary 4.2 There exists g such that, for any fixed [i, there exists o1 > 0 (indepen-
dent of u and ¢), such that for € € (0, g9) and u € (0, iv), system (3) has a periodic
orbit, which holds the following bound,

pr(r) + usint ||U1 < O(usz).
In order to prove the proposition, we need the following technical lemma.

Lemma 4.3 There exists constants ¢y > 0 and gy > 0 such that for all ¢ € (0, g9) and
any i > 0:

NFoO) oy < G
2. Forall z1, 22 € B(c111€%) C X0, I1F0(z1) — Fo(z2)llog < QD121 — 2210

Proof For the first statement, we take b(7) = sin(u sin 7), and thus
2 2 b k
Fo0) =Go(=e?b(m) =& D~
keZ\{0}

As a first step, we bound b(t) = sin(usint). Writing T as t = ¢ + i6 with |[f| <
oo(i),

|b(r)| = ]sin(,u sinr)|
< |sin(u sin ¢ cosh 9)| |cosh(,u cos ¢ sinh 9)|
+ |cos(usin¢ cosh)||sinh(s cos ¢ sinh6)|

=00

for certain constant co > 0 independent of & and p. Therefore, |b!¥]| < coeIkloo,
Thus, taking ¢; = 2com2/3,

|70, <& Z " |2| oo g2 3 € W 3 %82
keZ\{0} keZN (0}
For the second statement,
| Fo(z1) — F(z2) ||UO < 0(52) [sin(z1 — psin(t)) — sin(z> — psin(t)) ”00

< 0(?)llz1 — 22llop- O

A
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Proof of Proposition 4.1 Considering the bounds of Lemma 4.3, Fy is a contraction
from B(c1€2) C A to itself. Thus, it has a fixed point z,(7) that gives the periodic
orbit xp(t) = zp(7) — wsint and holds the wanted bound. O

5 Invariant Manifolds in the Outer Domains: Proof of Theorem 3.6
5.1 Banach Spaces and Technical Lemmas

We define several norms which will be used throughout the proof. Since we work with
functions that near the singularities iz /2 behave like A (u, ) ~ cosh™ u and near
infinity like h(u, t) ~ et we will use certain weighted norms in the variable u.
However, for simplicity and in order to have symmetry between 400 and —oo, we
will also use cosh™ i as weight at infinity. Moreover, since we work with analytic
functions 2 -periodic in 7, Fourier norms are considered, as well as weighted supre-
mum norms.

In this way, we define for analytic functions /4 (u) the following norms in the do-
mains defined in (48), (49), and (50).

(i) Forh: DYV — C: |h]lyc = SUp, . puccn [cosh - h(w)].
(ii) For h : D;’f(j) — C: |hllms= supueD;,f(_,y |cosh™ u - h(u)|.
(iii) For i : DY — C: | hllam = Ihllnc + 1l

Given h(u, ) an analytic function of 2 variables 27 -periodic in 7, we consider the
corresponding Fourier norms

(i) For h: DYY x T, = C: [lhlln.c.op = gz 111 e .
.. Bt )
(ii) For /s Dy 5 Tg, > C: 1l .o = Xz, W eI
(i) For i : DY) x Ty, — C: hllnmo; = illn.c.or + 1Bl to;-

On the other hand, it will be used also the Fourier supremum norm defined by
1ll00.0; = ez IR loce!*loi where a subindex ¢ or f will be added if we are

restricted to the domains D' or DY Note that when & does not depend on u,
this norm coincides with the Fourier norm || - ||, introduced in Sect. 4. In order

to clarify the notation, we will denote the classical supremum norm for functions
defined in D;(J ) % T, as || - [loo,i- All these norms are defined analogously for the
domains where the stable manifold is defined. Using the Fourier expansion properties,
one can see the following relations between these norms:

Lemma 5.1 The following inequalities hold:

- NAlloso,i = 17 lloo,0;-

1
2. |lcosh™ u - hlloo,x,i < hlln,+,0; for = =1, c.

1
3. Al w0 < O(W)Hcoshn u-hlooxiforx=1=,candforany0 < o;y1 < 0.
4. Nhy - h2llnso; < Whilloo,x,0; 12110 x,0; for x =1, .
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5. ”hl . h2||n‘m,o,- = ”hl ”oo,ai ”hZHn,m,ai-
6. [l cosh"u - hihallne,o; < W1 llns,o; A2l x,0; for * =1, c.

Since the proof for both invariant manifolds is analogous, we will deal only with
the unstable case and then for the proof of Theorem 3.6, we will look for a solution
of (40) with a fixed point argument in the Banach space

Enm={h(.7) | h: DYV x Tg, — C, real-analytic, [|Allnm.o, <00} (97)

for certain naturals n and m.
For the proof of Theorem 5.9, the Banach space will be needed:

Em=1{h@u,7) | h: DY x Ty, — C, real-analytic, [|h|lm s, <o0}. (98)
We state some previous technical lemmas.

Lemma 5.2 For § > 0 small enough and u € D;(j):

1. Jcosh™'u| < O@™Y).

2. |tanhu| < OG7Y).

3. VB €0, Bo/2] (see (47)) and V& € R™, | —=SMi __| < O(1).

cosh(u+£e*if)
0
4. Form=1, [ |28 mdr < O(1).

Lemma 5.3 The following inequalities hold:

. . L . u(j+1) u(j) u(0)
1. (Cauchy inequalities) Considering the nested domains D, cD,”” CD,”,

and denoting the corresponding norms || - IIEIJ:Z};I. and || - ||£,];2,,,gi,f0rh €&m,
18k 1m0, < O™ )l

2. Forhe &, ,morhe&y withm>0,andl <m, limy,— oo cosh u - h(u,t)=0
and ffoo h(v, ) dv exists and is bounded.

Proof For the first statement, we consider (1, 7) =) ;. R ()e*T and we have:

cosh™ u - 3,