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Abstract. Breathers are nontrivial time-periodic and spatially localized solutions of nonlinear dispersive
partial differential equations (PDEs). Families of breathers have been found for certain integrable PDEs but

are believed to be rare in non-integrable ones such as nonlinear Klein-Gordon equations. In this paper we
show that small amplitude breathers of any temporal frequency do not exist for semilinear Klein-Gordon

equations with generic analytic odd nonlinearities.

A breather with small amplitude exists only when its temporal frequency is close to be resonant with the
linear Klein-Gordon dispersion relation. Our main result is that, for such frequencies, we rigorously identify

the leading order term in the exponentially small (with respect to the small amplitude) obstruction to the

existence of small breathers in terms of the so-called Stokes constant, which depends on the nonlinearity
analytically, but is independent of the frequency. This gives a rigorous justification of a formal asymptotic

argument by Kruskal and Segur [60] in the analysis of small breathers.

We rely on the spatial dynamics approach where breathers can be seen as homoclinic orbits. The
birth of such small homoclinics is analyzed via a singular perturbation setting where a Bogdanov-Takens

type bifurcation is coupled to infinitely many rapidly oscillatory directions. The leading order term of the

exponentially small splitting between the stable/unstable invariant manifolds is obtained through a careful
analysis of the analytic continuation of their parameterizations. This requires the study of another limit

equation in the complexified evolution variable, the so-called inner equation.
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1. Introduction

Breathers are nontrivial time-periodic and spatially localized solutions of nonlinear dispersive partial
differential equations (PDEs). This kind of solutions play an important role in physical applications and the
interest in their existence or breakdown gives rise to a fundamental problem in the mathematical study of
the dynamics of such PDEs.

So far breathers have been constructed mostly for completely integrable PDEs. As far as the authors
know, the sine-Gordon equation

(sG) ∂2t u− ∂2xu+ sin(u) = 0,

is one of the first PDEs found to admit a family of breathers (see e. g. [1]), which is given explicitly by

(1.1) uω(x, t) = 4 arctan

(
m

ω

sin(ωt)

cosh(mx)

)
, m, ω > 0, m2 + ω2 = 1.

They are viewed as the locked states of a kink and an anti-kink in the integrable theory. Along with spatial
and temporal translation, the breathers form a 3-dim surface in the infinite dimensional phase space of (sG).

1.1. Non-existence of small amplitude breathers. The sine-Gordon equation (sG) is a particular case
of the family of nonlinear Klein-Gordon equations in one space dimension. In this paper, we study the
existence/non-existence of small breathers of a class of nonlinear Klein-Gordon equations

(1.2) ∂2t u− ∂2xu+ u− 1

3
u3 − f(u) = 0,

where the nonlinearity f satisfies

(1.3) f(u) is a real-analytic odd function and f(u) = O(u5) near 0.

While their signs are natural restrictions, the coefficients 1 and 1
3 in the above equation are not. In fact,

given any nonlinear Klein-Gordon equation (∂2T v− ∂2X)v+F (v) = 0 with a smooth real valued odd function
F (v) with F ′(0) > 0 and F ′′′(0) < 0, it is always possible to rescale v(X,T ) = Au(aX, aT ) so that u(x, t)
satisfies (1.2).

Let ω > 0 denote the temporal frequency of a possible breather u(x, t) of (1.2). A solution u(x, t) of (1.2)
is a breather of temporal frequency ω if u(x, t) is 2π

ω -periodic in t and

lim
x→±∞

u(x, ·) = 0

in some appropriate metric. Due to the Lagrangian structure of (1.2),

(1.4) H =

∫ π
ω

− π
ω

(
1

2
(∂xu)

2 +
1

2
(∂tu)

2 − 1

2
u2 +

1

12
u4 + F (u)

)
dt, where F (u) =

∫ u

0

f(s)ds = O(|u|6),

is a constant in x for any 2π
ω -periodic-in-t solutions of (1.2), which vanishes for any breather of temporal

frequency ω.
Any real valued function 2π

ω -periodic in t can be expressed as a Fourier series

(1.5) u(t) =

+∞∑
n=−∞

(
− i

2

)
une

inωt, u−n = −un,
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Figure 1. Multi-bump (left) and single-bump (right) functions according to Definition 1.1.

where the factor − i
2 is purely for the technical convenience when the problem is reduced to functions odd

in t represented in Fourier sine series. We denote

(1.6) Πn[u] = un =
iω

π

∫ π
ω

− π
ω

u(t)e−inωtdt, ∥u∥ℓ1 =

+∞∑
n=−∞

|un| =
+∞∑

n=−∞
|Πn[u]|.

Sometimes, with slight abuse of the notation, we also use Πn[u] to denote the mode − i
2une

inωt. Just like
∥ · ∥L∞

t
, the above norm ∥ · ∥ℓ1 is invariant under the rescaling in t, but controls the former. As we shall also

take the advantage of the conservation (in the variable x) of H, Sobolev norms like ∥ · ∥
Hk

t

(
(− π

ω , πω )
) will be

involved as well.
To state the first main result of the paper, we introduce the function space Fr of the nonlinearity f under

consideration and the definition of single bump (in x) breathers (see Figure 1).

Fr =
{
f : {u ∈ C : |u| < r} → C, f odd and real-analytic,

f(u) =
∑
k≥2

fku
2k+1, fk ∈ R, ∥f∥r :=

∑
k≥2

|fk|r2k+1 <∞
}
,

(1.7)

which is equivalent to the Banach space of real valued sequences (fk)
∞
k=2 with the above weighted ℓ1 norm.

Definition 1.1. Let σ ∈ (0, 1) and ω > 0. We say that a 2π
ω -periodic-in-t function u(x, t) is σ-multi-bump

in x in the ℓ1 norm if there exist x1 < x2 < x3 < x4 < x5 such that

max{∥u(xj1 , ·)∥ℓ1 | j1 ∈ 1, 3, 5} ≤ σmin{∥u(xj2 , ·)∥ℓ1 | j2 ∈ 2, 4}.
A function u(x, t) is said to be σ-single-bump if it is not σ-multi-bump.

Here x2 and x4 can be viewed as two bumps separated by a trough at x3. The following theorem is the
first main result of this paper. It will be a consequence of the more detailed Theorems 1.3 and 1.4 below.

Theorem 1.2. Fix r > 0. Then there exists an open and dense set U ⊂ Fr such that for any f ∈ U the
following holds. For any σ ∈ (0, 1), there exists ρ∗ > 0 such that there does not exist any solution u(x, t) to
(1.2) which:

(1) is 2π
ω -periodic in t for some ω > 0,

(2) is σ-single-bump in the ℓ1 norm in the sense of Definition 1.1,
(3) satisfies that, as |x| → +∞,

(1.8) ∥u(x, ·)∥
H1

t

(
(− π

ω , πω )
) + ∥∂xu(x, ·)∥

L2
t

(
(− π

ω , πω )
) → 0,

(4) satisfies

(1.9) sup
x∈R

∥u(x, ·)∥ℓ1 < min{1, ρ∗ω 1
2 }.

Some comments on Theorem 1.2 are in order.

(1) About U : in the more detailed Theorems 1.3 and 1.4 below we give a more precise characterization
of the set U ⊂ Fr where Theorem 1.2 holds. Indeed, the complement of U in Fr is the preimage of
zero of a certain analytic non-trivial function Cin : Fr → C.
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(2) Regarding the smallness: it is worth pointing out that, for a function 2π
ω -periodic in t, while the norm

∥ · ∥ℓ1 is at the same level as ∥ · ∥L∞
t

in scaling and controls the latter, the smallness in the theorem

(see (1.9)) is measured uniformly in ω in terms of ω− 1
2 ∥u(x, ·)∥ℓ1 . Even though this quantity looks

to depend on ω ∈ R+, in scaling it is comparable to ∥·∥L2
t (− π

ω , πω ) involved in the conserved (H). This

norm is weaker than ∥ · ∥H1
t
, clearly the above theorem also implies the nonexistence of single-bump

breather solutions, small in the energy norm (as in (1.8)).
(3) Theorem 1.2 is only concerned with small single-bump-in-x breathers and it does not rule out possible

small periodic-in-t solutions which decay as |x| → ∞ but with multiple bumps. Clearly if u(x, t) is
σ-multi-bump, then it is also multi-bump for any σ′ ∈ (σ, 1). Hence the constant ρ∗ of the smallness
increases as σ increases.

(4) Breathers with exponentially small tails: while small single-bump breathers are not expected for
(1.2) for most nonlinearities f , a more generic phenomenon is the existence of small breathers with
exponentially small (with respect to the amplitude), but non-vanishing, tails for certain values of ω.
Such solutions are usually called generalized breathers (see [43]). Proposition 1.5 below gives precise
estimates on the tails of those generalized breathers.

Before stating the more detailed Theorems 1.3 and 1.4, let us put our result into some context.
Breather type solutions represent important structures in high energy physics etc. Moreover, they are

of fundamental importance since they serve as building blocks organizing the infinite dimensional dynamics
of the underlying evolutionary PDE. In [14], Chen, Liu, and Lu proved the soliton resolution of (sG) using
the integrable theory. Namely, in certain weighted Sobolev norm, solutions to (sG) decay (at an algebraic
rate in t) to a finite superposition of kinks, anti-kinks, and breathers, where breathers are the only spatially
localized class. Therefore breather type structures could play a crucial role in the asymptotic dynamics of
the nonlinear Klein-Gordon equations. In particular, unlike relative equilibria such as kinks, standing waves,
etc., breathers may be of arbitrarily small amplitudes and energy and thus give rise to obstacles to possible
nonlinear dispersive decay or scattering of small energy solutions. (Small amplitude breathers become large
in certain weighted norms adopted in some literatures, e.g. [34, 17, 14] etc.)

The (sG) breathers (1.1) are obtained based on the complete integrability of (sG). However, for non-
integrable Klein-Gordon equations, the existence of (small amplitude) breathers is a completely different
problem due to the lack of effective tools such as the inverse scattering method. It is a fundamental question
to assert whether the existence of breathers is a special phenomenon due to the integrability or it occurs
more generally. In fact, the existence of breathers for non-integrable nonlinear wave equations is expected
to be rare1 (see [20, 62, 12]).

In the seminal work [60] from 1987, Kruskal and Segur used an ingenious formal asymptotic expansion to
show the nonexistence of small O(ε) amplitude breathers in a class of nonlinear Klein-Gordon equations for
ω which is ε2-close to the resonant frequency ω = 1. The obstacle to solving for breathers is exponentially
small in ε≪ 1. For the past more than thirty years, as far as the authors know, no rigorous justification of
their leading order exponentially small asymptotics had been given for such nonlinear PDEs. A fundamental
part of the proof of Theorem 1.2 is to provide a rigorous proof of Kruskal and Segur’s formal argument (for
odd analytic nonlinearities) as well as rule out the existence of breathers for other frequencies (either close
to other resonances or away from resonances). This is stated more precisely in Theorem 1.3 below.

Among other works on small breathers, in [39], the authors proved that small breathers odd in x do
not exist for (1.2) by establishing certain asymptotic stability in the phase space of odd-in-x functions. The
oddness is, however, contrary to the well-known examples – the (sG) breathers (1.1) are even in x. Breathers
have also been proven not to exist for some generalized KdV equations and the Benjamin-Ono equation, see
[51, 52]. In [13], small breathers of a 1-dim nonlinear wave equation in periodic (in x) media were obtained.
They play an important role in theoretical scenarios where photonic crystals are used as optical storage. In
this model, the periodic media causes the spectra of the linearized problem to be rather different, and this
makes the existence of small breathers possible.

For breathers of O(1) amplitude, in the classical works [20, 21, 12], Denzler and Birnir-McKean-Weinstein
studied the rigidity of breathers, namely, the persistence of (infinite subfamilies of) breathers (1.1) when
(sG) is perturbed as

∂2t u− ∂2xu+ sin(u) = ε∆(u) +O(ε2),

1On the contrary breathers are more likely to exist in Hamiltonian systems on lattices, see for instance [46, 45, 72, 56, 57].
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where ∆ is an analytic function in a small neighborhood of u = 0. They proved that breathers corresponding
to infinitely many amplitudes m =

√
1− ω2 persist only if ∆(u) results from a trivial rescaling of (sG). In

[37], (sG) was also singled out as the only 1-dim nonlinear Klein-Gordon equation admitting breathers in
certain form (see also [47]). These rigidity results are consistent with the generic non-existence of breathers.
Even though for small amplitude, (1.2) might also be viewed as close to (sG) in the C∞ class, it does not
help much in the analysis of the exponential small obstruction to the existence of breathers (see Theorem
1.3 below) since the nonlinearity of the former is not a perturbation to that of the latter in the analytic
function class.

The nonlinear Klein-Gordon equation (1.2) is also quite different from the one studied in [63] (see also
[11]). The spatial variable in [63, 11] is taken in R3 (which gives stronger dispersion than in R) and an extra
potential term V (x)u is added. This term creates an isolated oscillatory eigenvalue of the linear problem
whose interaction with the continuous spectra leads to slow radiation. In contrast, (1.2) does not contain a
potential term and its small breathers have temporal frequencies slightly less than 1, which is the end point of
the continuous spectrum of (1.2) linearized at 0. In [58], temporally periodic and spatially decaying solutions
were found for the nonlinear Klein-Gordon equation with cubic nonlinearity, i.e. f(u) = 0, for x ∈ R3. These
solutions are close to some steady solutions (not necessarily small) with O(1/|x|) spatial decay. Such decay,
which is too slow for the solutions to be in the energy space, is due to the 3-dim Helmholtz equation, whose
solutions would only be in L∞ and oscillate if x ∈ R1. Hence these solutions are more analogous to the
breathers with tails constructed in [61] in 1-dim.

1.2. Main quantitative results: leading order of the exponentially small obstruction. Theorem
1.2 is a consequence of the more detailed Theorems 1.3 and 1.4 below. In seeking small breathers, which
are conceptually born from the end point of the continuous spectra of the linear Klein-Gordon equation, it
is essential that the temporal frequency ω is close to resonant. Hence, to state the more detailed theorem,
we divide ω ∈ R+ into two primary classes

(1.10) Ik(ε0) =

[√
1

k(k + ε20)
,
1

k

)
, k ∈ N, and Jk(ε0) =

[
1

k + 1
,

√
1

k(k + ε20)

)
, k ∈ N ∪ {0},

where 0 < ε0 ≤ 1/2 is a parameter to be determined later. Note J0(ε0) = [1,∞) and (0,∞) = (∪k∈NIk)
⋃

(∪k≥0Jk).
We shall comment more on these sets in the context of spatial dynamics in Section 1.4.

Theorem 1.3. Fix r > 0 and consider f ∈ Fr (see (1.7)), then the following statements hold.

(1) There exists ρ∗1 > 0 such that for any ε0 ∈ (0, 1/2], ω ∈ Jk(ε0), k ∈ N ∪ {0}, if u(x, t) is a 2π
ω -

periodic-in-t solution to (1.2) satisfying

(1.11) ∥u(x, ·)∥
H1

t

(
(− π

ω , πω )
) + ∥∂xu(x, ·)∥

L2
t

(
(− π

ω , πω )
) → 0,

as x→ +∞ or −∞, then

(1.12) sup
x∈R

∥u(x, ·)∥ℓ1 ≥ ρ∗1 min{1, ε0ω
1
2 }.

(2) There exists Cin ∈ C and ρ∗2 > 0 depending on f such that, for any y0 > 0, there exist ε0,M > 0
such that for any

(1.13) ω =

√
1

k(k + ε2)
∈ Ik(ε0), ∀ k ≥ 1,

there exist unique 2π
kω -periodic and odd in t solutions u⋆wk(x, t), ⋆ = s, u, to (1.2), only containing

Fourier modes n ∈ kZ with odd n
k in (1.5), such that

(a) For x ≥ − y0

ε
√
kω

for ⋆ = s and x ≤ y0

ε
√
kω

for ⋆ = u, they can be approximated as

(1.14)

∥∥∥∥∥(1− 1

(kω)2
∂2t
)((u⋆wk(x, t)

∂xu
⋆
wk(x,t)

ε
√
kω

)
− ε

√
kω

(
vh(ε

√
kωx)

(vh)′(ε
√
kωx)

)
sin kωt

)∥∥∥∥∥
ℓ1

≤Mk−
3
2 ε3vh(ε

√
kωx),

where vh(y) = 2
√
2

cosh y ;
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(b) They also satisfy Πk

[
∂xu

⋆
wk(0, ·)

]
= 0, ⋆ = s, u, and

(1.15)
∥∥∥(| − ∂2t − 1| 12 (uuwk − uswk) + i∂x(u

u
wk − uswk)

)
(0, t)− 4

√
2Cine

−
√

2kπ
ε sin 3kωt

∥∥∥
ℓ1

≤ Me−
√

2kπ
ε

1
2 log k − log ε

.

(c) A 2π
ω -periodic-in-t solution u(x, t) to (1.2) satisfies

(1.16) sup
x∈R

∥u(x, ·)∥ℓ1 ≤ ρ∗2ω
1
2

and (1.11) as x→ −∞ (or as x→ +∞) iff uuwk satisfies (1.16) and u(x, t) = uuwk(x+x0, t+ t0)
(or u(x, t) = uswk(x+x0, t+t0)) for some x0, t0 ∈ R. Consequently, there exists a solution u(x, t)
to (1.2) satisfying (1.16) and (1.11) as |x| → ∞ iff there exists r ∈ R such that uuwk(x+ r, t) =
uswk(x, t) for all x and t and satisfies (1.16).

In this theorem, while the non-existence of small breathers is confirmed in the case of temporal frequency
ω ∈ Jk(ε0), the only possible (up to translations) candidates u⋆wk(x, t), ⋆ = s, u, of small breathers with
ω ∈ Ik(ε0) are identified along with optimal estimates. In particular, it gives a necessary and sufficient
condition (in statement (2c)) on the existence of small breathers that u⋆wk, ⋆ = s, u, must remain small for
all x ∈ R and coincide after a translation. The most important result of the theorem is statement (2b) which
rigorously identifies the exponentially small leading order term and its coefficient Cin in the splitting of u⋆wk,
⋆ = s, u, when they get close in an infinite dimensional space (of periodic functions of the variable t) in their
first opportunity in x.

From Theorem 1.3(2ab), one may verify that x = 0 is the only critical point of Πk[u
⋆
wk(x, ·)] for ±x ≤ 1

ε
√
kω

,

⋆ = u, s. Therefore, if Cin ̸= 0, then there does not exist |r| ≤ 1
ε
√
kω

such that uswk(x, t) ≡ uuwk(x + r, t).

Hence Cin ̸= 0 excludes the existence of small single bump breathers due to (1.14) and (1.15), which are the
simplest and the most natural class of small breathers including those given in (1.1) for (sG) (see Figure 1).

Note then that Theorem 1.3 is conditional, since it proves the nonexistence of single-bump small amplitude
breathers provided the constant Cin = Cin(f) ∈ C satisfies Cin ̸= 0. In particular, it proves Theorem 1.2 as
long as Cin(f) ̸= 0 for an open and dense set of f ∈ Fr. Next theorem, proven in Section 11, shows that this
is indeed the case. In fact, we also give an explicit family of nonlinearities f(µ, u), involving a parameter µ,
such that Cin(f) ̸= 0 for all but a discrete set of µ ∈ R.

Theorem 1.4. Fix r > 0. The map Cin : Fr → C introduced in Theorem 1.3(2) is analytic and non-constant.
Moreover, the set U = Fr \ C−1

in (0) is open and dense.

As already mentioned, even if small single-bump breathers are not expected to exist for (1.2) with most
f , the more generic phenomenon is the existence of small breathers with non-vanishing tails which are
exponentially small with respect to the amplitude. This is stated in the next proposition.

Proposition 1.5. Fix r > 0 and consider f ∈ Fr, then the following holds. There exist ε0,M > 0 such that

for any k ∈ N and ω =
√

1
k(k+ε2) ∈ Ik(ε0):

(1) There always exist 2π
ω -periodic-in-t solutions u(x, t) such that∥∥| − ∂2t − 1| 12 (u− u⋆wk)(x, ·)

∥∥
L2

t (− π
ω , πω )

+
∥∥∂x(u− u⋆wk)(x, ·)

∥∥
L2

t (− π
ω , πω )

≤Mk
1
2 e−

√
2kπ
ε ,

for both all x ≥ 0 with ⋆ = s and x ≤ 0 with ⋆ = u.
(2) Suppose that the constant Cin introduced in Theorem 1.3 satisfies Cin ̸= 0. Then, the breather with

tails u(x, t) given by item (1) also satisfies∥∥| − ∂2t − 1| 12 (u− u⋆wk)(x, ·)
∥∥
L2

t (− π
ω , πω )

+
∥∥∂x(u− u⋆wk)(x, ·)

∥∥
L2

t (− π
ω , πω )

≥ |Cin|
M k

1
2 e−

√
2kπ
ε ,

for both all x ≥ 0 with ⋆ = s and x ≤ 0 with ⋆ = u.

We give several remarks on Theorems 1.3, 1.4 and Proposition 1.5.

(1) The constant Cin introduced in Theorem 1.3 is often referred to as the Stokes constant in the
literature, which is the coefficient of the leading order term in the exponentially small obstruction
in (1.15). We emphasize that the non-existence of small single bump amplitude breathers holds for
all frequencies under the single condition Cin ̸= 0. This constant depends on the full jet of the real
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analytic nonlinearity f , but is independent of k or ω. No simple closed formula has been identified
for Cin in the literature. We expect that one should be able to develop a computer assisted proof
to check the nonvanishing of Cin for given nonlinearities (following the ideas developed in [4] for a
3-dimensional Hopf-zero bifurcation). In Section 11.2 below, we conjecture a formula of the Stokes
constant in terms of a series.

(2) The relative scale between u and ∂xu in the estimates in Theorem 1.3(2) is consistent with the
quadratic part of the Hamiltonian H, where |−∂2t −1| is somewhat degenerate of the order O(k−1ε2)
when applied to the k-th Fourier mode eikωt.

(3) The generalized small amplitude breathers given by Proposition 1.5 have frequency ω slightly smaller
than each 1

k . This
1
k is consistent with the fact that small (sG) breathers (1.1) have periods slightly

greater than 2kπ. Each of these breather-like solutions to (1.2) with exponentially small tails is the

superposition of a small exponentially localized-in-x wave of order O(εk−
1
2 e−εk− 1

2 |x|) with an L∞
xt

correction up to order O(k
1
2 ε−1e−

√
2kπ
ε ). In the generic non-degenerate case of Cin ̸= 0, the infimum

of the tails of such generalized breathers is also bounded below by this exponential order.
(4) In contrast to the fact that the breathers of (sG) form a 3-dim manifold in the infinite dimen-

sional space of solutions, the breathers with exponentially small tails actually form a family of finite
codimension (see Proposition 2.2 below).

(5) As u⋆wk, ⋆ = u, s, are special solutions of high regularity, the norm in Theorem 1.3(2ab) actually could
be refined to be Hn

t for any n ≥ 0. In contrast, since the set of breathers with exponentially small
tails is of finite codimension in the energy space of the spatial dynamics, the norms in Proposition
1.5 arising from the quadratic part of the Hamiltonian H are not expected to be improved.

(6) In the generic case of Cin ̸= 0 provided by Theorem 1.4 which implies that (1.2) does not have
small breathers, the asymptotic behavior of small solutions in the energy space H1

x(R) × L2
x(R) is

a natural but intriguing question. Even though the breathers with exponentially small tails u(x, t)
obtained in Proposition 1.5 are not in the energy space H1

x(R) × L2
x(R), they still shed some light

on the dynamics of (1.2). Take k = 1 for simplicity. Let γ ∈ C∞
0 (R,R) be a cut-off function

satisfying γ(s) = 1 for |s| ≤ 1 and u(x, t) be a sufficiently smooth breather like solution with
exponentially small tails (see Proposition 1.5). Consider the solution ũ(x, t) to (1.2) with initial

value γ( 1
ε3 e

−
√

2π
ε x)

(
u(x, 0), ∂tu(x, 0)

)
. Its H1

x × L2
x norm is of the order O(

√
ε). The propagation

speed of (1.2) being equal to 1 implies that ũ is periodic in t for |x|, |t| ≤ O(ε−3e
√

2π
ε ). Hence,

this exponential time scale has to be relevant in studying the asymptotic dynamics of small energy
solutions of (1.2).

Breathers with small tails as well as some other similar types of solutions had already been obtained, but
often with only exponentially small upper bound estimates on the tails, instead of their precise orders or lower

bounds (and without the explicit exponent −
√
2kπ
ε ). In [43], Lu derived breathers with tails bounded by

O(e−
c
ε ) for some unspecified c > 0. In a sequence of papers, Groves and Schneider considered small amplitude

modulating pulse solutions to a class of semilinear [30] and quasilinear [31, 32] reversible wave equations.
These are solutions consisting of pulse-like spatially localized envelopes advancing in the laboratory frame
and modulating an underlying wave-train of a fixed wave number ξ0 > 0, which are time-periodic in a moving
frame of reference. They would become breathers if ξ0 = 0. For quasilinear reversible wave equations, Groves

and Schneider constructed solutions u(x, t) of this type with tails bounded by O(e
− c√

ε ) but only defined for

|x| ≤ O(e
c√
ε ). The finite length of the domain in x was mainly due to difficulties arising in quasilinear PDEs.

In the semilinear case, such solutions could be derived globally in x ∈ R with the same O(e
− c√

ε ) estimates
on the tails. The upper bounds of the tails in these papers were obtained by making the error terms small
through consecutive applications of partial normal forms, e. g. as in [53, 36].

The proof of Theorems 1.2, 1.3 and Proposition 1.5 rely on the spatial dynamics method (see, e.g. [38, 71]).
This method is often an effective approach in constructing certain coherent structures for nonlinear PDEs
where a spatial variable x plays a distinct role. In such a framework, the desired solutions are sought as
special solutions in an evolutionary system where this x is treated as the dynamic variable.

We fix a temporal frequency ω > 0 and consider in the rescaled variable τ = ωt,

(1.17) ω2∂2τu− ∂2xu+ u− 1

3
u3 − f(u) = 0.
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σ σ

Figure 2. Multi-bump (left) and single-bump (right) solutions in the spatial dynamics framework.

Considering x as the evolutionary variable, it is a globally well-posed infinite dimensional Hamiltonian system
in appropriate spaces of 2π-periodic-in-τ functions where its Hamiltonian can be derived from H.

Breathers of (1.2) correspond to 2π-periodic-in-τ solutions of (1.17) which decay to 0 as |x| → ∞, namely,
orbits homoclinic to the equilibrium 0 due to the intersection of its stable and unstable manifolds. Note that,
on the one hand, the notions of single-bump and multi-bump breathers (see Definition 1.1) get translated to
homoclinics as in Figure 2. On the other hand, small amplitude breathers correspond to small homoclinic
loops. From this point of view, the proof of Theorem 1.3 will rely on analyzing the (finite dimensional)
stable and unstable invariant manifolds of u = 0 and on whether their intersections lead to small homoclinic
loops. Proposition 1.5 will rely on analyzing the center-stable and center-unstable invariant manifolds and
constructing small homoclinic loops to the center manifold.

In the next section we first present an abstract setting for analyzing (the breakdown of) small homoclinic
loops through a dynamical system approach. Then, we show how the Klein Gordon equation (1.17) fits into
this framework regarded from the spatial dynamics point of view.

1.3. Birth of small homoclinics via “eigenvalue collision”: exponentially small splitting of sep-
aratrices. Let us consider an N -dimensional system, N ≤ ∞, (Pα) involving a parameter α ∈ I ⊂ R, which
has a steady state at 0. We want to analyze whether this steady state has small homoclinic loops.

Assume the following happens in (Pα).

(a) “Eigenvalue collision” at α = 0. Namely, in a neighborhood of 0 ∈ C, there are exactly two
eigenvalues ±λ(α) ∼ ±

√
α (modulo symmetries, but counting the algebraic multiplicity) of the

linearization of (Pα) at 0. As α increases, they move towards 0 from the imaginary axis iR and then
move into the real axis R after coinciding at 0 when α = 0.

(b) For α > 0, the normal form of the local nonlinear system (Pα) near 0 projected to the 2-dimensional
eigenspace M associated to ±λ(α) is equivalent to

(1.18) ü− λ(α)2u+ um = 0, m ≥ 2,

where the “+” sign matters only when m is odd. Apparently this normal form system has one or

two small homoclinic orbits of amplitude O
(
λ(α)

2
m−1

)
for 0 < α≪ 1.

(c) The system (Pα) has a first integral which is locally positive definite in the center manifold around
the steady state.

Note that, under these assumptions, small homoclinic loops cannot exist either of α < 0 or if α > 0 is
“not close to 0”. One first observes that they cannot exist in the center manifold W c(0) since the steady
state is isolated at its level of energy inside W c(0). Hence homoclinic orbits exist only at the intersection of
the stable and unstable invariant manifolds W s,u(0). However, if α is not small, then the dynamics inside
the stable and unstable manifolds W s,u(0) are conjugate to the linear dynamics in a large neighborhood of
0. Then any orbit in them (and in particular any possible homoclinic orbits) must first go away at a uniform
distance from 0. In conclusion, small homoclinic loops can only exist for small α > 0.

If the whole system (Pα) is 2-dimensional, α = 0 corresponds to one type of the Bogdanov-Takens
bifurcations. In this case the existence of a conserved quantity leads to the existence of small homoclinic
orbit for all small α > 0.

When (Pα) is of higher dimensions, then the dynamics in the directions transverse to M is at a fast scale
and thus (Pα) is a typical singular perturbation system.

If the fast dynamic is hyperbolic, then by the standard normally hyperbolic invariant manifold theory, a
2-dimensional slow manifold Mα persists for 0 < α ≪ 1 and the existence of small homoclinic orbit can
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be reduced to the above 2-dim case on Mα. This mechanism indeed happens in the construction of some
special solutions in some nonlinear PDEs including [13] (or more of the elliptic type PDE, see, e.g. [50]).

However, if there are fast elliptic/oscillatory directions (as happens for the Klein-Gordon equation (1.17)),
then there does not necessarily exist a slow manifold and one cannot reduce (Pα) to 2 dimensions. Without
such reduction, one is forced to find small homoclinic orbits as the intersection of the low dimensional stable
and unstable manifolds Wu,s(0) of 0 close to M in the N -dimensional phase space of (Pα), but this is highly
unlikely simply by counting the dimensions. Homoclinic orbits are generated via such eigenvalue collision
mechanism only in some very lucky/rare systems, such as the completely integrable (sG) where the family
of breathers actually can be also extended to large amplitudes.

In a generic system of the above normally elliptic case with rapid oscillations, while the stable and unstable
invariant manifolds, denoted byWu,s(0), do not intersect, the existence of a conserved quantity whose Hessian
is positive definite in the center direction of the linearized (Pα) at 0 often ensures the transverse intersection
of the center-stable and center-unstable manifolds W cs,cu(0). This intersection yields a finite co-dimensional
tube homoclinic to the center manifold, which corresponds to generalized breathers for the Klein-Gordon
equation (1.17)). Moreover, the distance between Wu,s(0) determines how close this homoclinic tube is to 0
which, in the present paper, corresponds to how small the tails of the generalized breathers of the nonlinear
Klein-Gordon equations can be.

Regarding the distance betweenWu,s(0), the strong averaging effect of the fast oscillations makesWu,s(0)

very close to each other – usually O(αn) if (Pα) has finite smoothness and O(e−
1

αδ ) if (Pα) analytic. A leading
order approximation such as the one obtained in Theorem 1.3(2ab) provides accurate information of this
distance, usually called splitting distance2.

To summarize, the mechanism of eigenvalue collision leading to a Bogdanov-Takens type bifurcation
embedded in a normally elliptic singular perturbation problem is primarily responsible for the birth of small
homoclinic orbits/breathers with small tails for the nonlinear Klein-Gordon equation (1.17). It yields exact
breathers in some very special cases such as the completely integrable (sG).

In fact, this general mechanism leads to what is usually called exponentially small splitting of separatrixs,
a phenomenon that usually arises in analytic systems with two time scales with i.) fast oscillations and
ii.) slow hyperbolic dynamics with a homoclinic loop (also called separatrix), as in the setting explained
above. Other settings where this phenomenon occurs are the resonances of nearly integrable Hamiltonian
systems and close to the identity area preserving maps. Analysis of such phenomena is fundamental in the
construction of unstable behaviors in these models such as Arnold diffusion or chaotic dynamics.

The study of the exponentially small splitting of separatrixs goes back to the seminal paper by Lazutkin
[40], which dealt with the standard map. His strategy can be described as follows:

(1) The singular limit (1.18) has a homoclinic orbit whose time parameterization is analytic in a strip
containing the real line and has singularities in the complex plane.

(2) One looks for parameterizations of the perturbed invariant manifolds which are close to the unper-
turbed homoclinic. They can be extended to complex values of the parameter which are close to the
singularities of the unperturbed homoclinic with smallest imaginary part.

(3) One analyzes the difference between the perturbed stable and unstable manifolds close to these
singularities. To this end, one has to look for the leading order of the perturbed invariant manifolds
in these complex domains. Then, one is encountered with two different situations:
(i) In some problems, the perturbed invariant manifolds are also well approximated by the unper-

turbed homoclinic solution near its singularities. In this case, one can show that the classical
Melnikov method gives the first order of the difference between these manifolds.

(ii) In most of the problems, like the problem at hand, the unperturbed homoclinic is not a good
approximation of the perturbed invariant manifolds in these complex domains. Therefore, one
must look for new first order approximations. These first orders are solutions of the so-called in-
ner equation, which is a singular limit equation independent of the perturbative parameter. The
analysis of this equation gives the asymptotic formula for the difference between the invariant
manifolds. In particular, it provides the Stokes constant Cin appearing in Theorem 1.3.

(4) The last step is to translate the analysis in the complex domain to the real parameterizations of the
invariant manifolds.

2It also sheds light for the future study of scattering maps [18] induced by the homoclinic tube and multi-bump homoclinics.
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In the present paper we apply this strategy to the nonlinear Klein-Gordon equation (1.17), or equivalently
(1.2). It is explained heuristically in more detail in Sections 2.1 and 2.2 below.

In the last decades this strategy or similar ones relying on analytic continuation of the parameterization
of the invariant manifolds has been applied to various problems mostly in finite dimensions. The first
category (case 3(i) above), where the Melnikov function provides the leading order of the splitting distance,
includes fast periodic forcing of integrable Hamiltonian systems [35, 59, 19, 27] and non-generic unfoldings
of the Hopf-zero singularity [9]. This category can also be handled by other methods such as direct series
expansions [24, 69, 70]. Problems falling into the second category (case 3(ii) above), where one needs an
inner equation, are more common. Among them are near identity maps [28, 26, 48, 49], resonances of nearly
integrable Hamiltonian systems [29, 54, 3, 8], and generic local bifurcations [41, 42, 10, 5, 6, 7, 25, 23]. This
category can also be handled by a different method, the so-called continuous averaging by Treschev [68].

Exponentially small splitting phenomena also arise in the construction of solitary and traveling waves in
PDEs and lattices [2, 22, 65, 41, 64, 42, 66, 67, 55]. However, in all the above papers involving leading order
analysis of the exponentially smallness the fast oscillatory dimentions are finite (often two). As far as the
authors know, the present paper is the first one dealing with an infinite number of oscillatory directions.

1.4. The spatial dynamics approach for the Klein-Gordon equation. We devote this section to
implement the spatial dynamics approach for equation 1.17 and to write it as a system having the features
of the class of models Pα introduced in Section 1.3. To this end, we denote

(1.19) g(u) =
1

3
u3 + f(u).

In terms of the Fourier series expansion (1.5) (see also (1.6)), the equation (1.17) reads

(1.20) (∂2x + n2ω2 − 1)un = −Πn [g(u)] , n ∈ Z.

The eigenvalues of the linearization equation at 0, that is

∂2xu− ω2∂2τu− u = 0,

are ±νn, where
νn =

√
1− n2ω2,

and their eigenfunctions can be calculated using the Fourier modes.
Consider ω ∈ [ 1

k+1 ,
1
k ) for some k ≥ 0. For 0 ≤ |n| ≤ k, the eigenvalues ±νn ∈ R \ {0} are hyperbolic,

while the center eigenvalues ±νn = ±iϑn, ϑn =
√
n2ω2 − 1, correspond to |n| ≥ k + 1. Recall the two

primary classes of intervals Ik(ε0), k ∈ N, and Jk(ε0), k ∈ N ∪ {0}, of the frequency ω defined in (1.10) for
some ε0 ∈ (0, 12 ). Clearly the dimension of the hyperbolic eigenspace of 0 increases by 1 as the frequency ω

decreases through 1
k moving from Jk−1(ε0) into Ik(ε0).

In the strongly hyperbolic case of ω ∈ Jk(ε0), k ≥ 0, the smallest hyperbolic eigenvalue satisfies

νk >
ε0√
k+ε20

> min{1, ε0
2
√
k
}.

Based on the general local invariant manifold theory (see, e.g. Theorem 4.4 in [16]) and this spectral gap
along with the cubic nonlinearity of wave type equation (1.17), one expects that the local stable/unstable
manifolds of 0 are close to the stable/unstable subspaces in a neighborhood of 0 of radius of the order
O
(
min{1, ε0

2
√
k
}
)
and all orbits on both these manifolds leave such neighborhood eventually. This argument

is carried out uniformly in k and ω in Section 9 and statement (1) of Theorem 1.3 follows consequently.
Therefore they cannot intersect in such a neighborhood to produce small homoclinic orbits.

In contrast to the above case, when ω decreases through 1
k and enters Ik(ε0), k ≥ 1, νk can be arbitrarily

small. The linearized (1.17) is only weakly hyperbolic in the k-th modes – the newly generated hyperbolic
directions – and small homoclinics might be generated through a Bogdanov-Takens bifurcation as described
in Section 1.3. The fact ω ∈ Ik(ε0) is consistent with that the periods of small (sG) breathers (1.1) are close
to 2kπ. The different scales in x in these weakly hyperbolic directions and the other much faster directions
make the local dynamics of (1.17) near 0 a singular perturbation problem. More precisely, let

(1.21) ε =

√
1

k

(
1

ω2
− k2

)
∈ (0, ε0)
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and consider the following rescaling of the amplitude and x,

(1.22) u = ε
√
kωv and y = ε

√
kωx.

Thus, u(x, τ) satisfies (1.17) if, and only if, v(y, τ) satisfies

(1.23) ∂2yv −
1

ε2k
∂2τv −

1

ε2kω2
v +

1

3
v3 +

1

ε3k
3
2ω3

f
(
ε
√
kωv

)
= 0,

which is a Hamiltonian PDE in the dynamical variable y with the Hamiltonian

(1.24) H(v, ∂yv) =

∫
T

(
(∂yv)

2

2
+

(∂τv)
2

2ε2k
− v2

2ε2kω2
+
v4

12
+
F (ε

√
kωv)

ε4k2ω4

)
dτ.

Using the projection Πn defined in (1.6) and denoting · = d/dy, we obtain (see (1.20)),

(1.25) v̈n = − (n2ω2 − 1)

ε2kω2
vn − 1

ε3k
3
2ω3

Πn

[
g(ε

√
kωv)

]
, n ∈ Z.

By (1.21),

λn =

√
1

k

∣∣∣∣n2 − 1

ω2

∣∣∣∣ ≥ 1

2
, for each |n| ≠ k.

Using this notation, (1.25) becomes

(1.26)



v̈n =
λ2n
ε2
vn − 1

ε3k
3
2ω3

Πn

[
g(ε

√
kωv)

]
, |n| < k,

v̈±k = v±k − 1

ε3k
3
2ω3

Π±k

[
g(ε

√
kωv)

]
,

v̈n = −λ
2
n

ε2
vn − 1

ε3k
3
2ω3

Πn

[
g(ε

√
kωv)

]
, |n| > k.

Notice v−n = −vn and (εk
1
2ω)−3g(ε

√
kωv) = O(|v|3) is smooth with bounds uniform in ε

√
kω. The stable

and unstable invariant manifolds W s(0) and Wu(0) of 2k+1 real dimensions correspond to solutions vs and
vu of (1.26) satisfying the asymptotic conditions3

(1.27) lim
y→+∞

vsn(y) = lim
y→+∞

v̇sn(y) = lim
y→−∞

vun(y) = lim
y→−∞

v̇un(y) = 0, for all n ∈ Z.

The singular perturbation problem (1.26) can be written as

(1.28)



εv̇n = λnwn

εẇn = λnvn − λ−1
n ε−1k−

3
2ω−3Πn

[
g(ε

√
kv)
]
, |n| < k,

εẇn = −λnvn − λ−1
n ε−1k−

3
2ω−3Πn

[
g(ε

√
kωv)

]
, |n| > k,

v̈±k = v±k − (ε
√
kω)−3Π±k

[
g(ε

√
kωv)

]
.

The formal singular limit of this system as ε→ 0 defines a critical manifold

M = {(v, w) | vn = wn = 0 for all n ̸= ±k}
of real dimension 4 due to v−n = −vn. The limiting dynamics on M is given by the Duffing equation

(1.29) v̈k = vk − 1

3
Πk

[(
Im(vke

ikτ )
)3]

= vk − 1

4
|vk|2vk,

which is integrable with the phase symmetry. It is known that in (1.29) the 2-dimensional stable and
unstable manifolds of 0 coincide. In particular, it has a unique real homoclinic orbit to 0 satisfying vk > 0
and v̇k(0) = 0, which is given by (see Figure 3)

(1.30) vk = vh(y) =
2
√
2

cosh(y)
.

3The Hamiltonian restricted to the center manifold is positive definitive locally around u = 0 for all ω > 0 and, therefore,

all orbits backward/forward asymptotic to u = 0 must belong to the unstable/stable manifold (see Corollary 9.4 below).
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v1

v̇1

Figure 3. Real positive homoclinic (1.30) to 0 of the Duffing equation (1.29) in the critical manifold M.

For 0 < ε ≪ 1, the special solutions u⋆wk, ⋆ = u, s, given in Theorem 1.3(2) and principally supported in
the k-modes, are the ones on the (2k + 1)-dimensional invariant manifolds W ⋆(0) with the weakest decay,
which are natural deformations of vh(y) sin kτ with proper rescaling. In Section 10 we prove that u⋆wk is

the only possible intersection of W ⋆(0), ⋆ = u, s, in an O(k−
1
2 ) neighborhood of 0 (much greater than the

amplitude O(εk−
1
2 ) of u⋆wk).

Most of the analysis in the paper is devoted to identifying the exponentially small leading order term of
the splitting (uuwk − uswk)|x=0, where x = 0 corresponds to the first opportunity when they get close, and
deriving the leading order coefficient Cin (see Theorem 1.3(2b)).

Structure of the paper. The core of the proof of most of the results in Theorem 1.3(2ab) is for the case
k = 1, ω ∈ I1(ε0), and under the oddness assumption in t. The main results for this particular setting
are stated in Section 2: Theorem 2.1 deals with the break up of single bump breathers and Proposition 2.2
deals with the existence of generalized breathers. The proof of Theorem 2.1 is given in Section 3 (Section 4
- 7 contain the proofs of some of the statements in Section 3). Then, Proposition 2.2 is proven in Section
8. Section 9 is devoted to prove the nonexistence of breathers for frequencies which are far from resonant,
that is item (1) of Theorem 1.3. Section 10 explains the reduction of the general case of close to resonant
frequencies to that considered in Section 2: oddness in t assumption and ω ∈ I1(ε0). This completes the
prove of item (2) of Theorem 1.3. Finally, in Section 11, we prove Theorem 1.4.

2. Analysis of the first bifurcation (k = 1) with oddness assumption in t

We devote this section to analyze the stable and unstable manifolds of v = 0 and their splitting for
equation (1.23) with k = 1 and ω ∈ I1(ε0) (see (1.10)). We also analyze the center-stable and center-
unstable manifolds to construct the generalized breathers provided by Proposition 1.5.

To make the function space setting precise, recall the norm ∥ · ∥ℓ1 defined in (1.6) which is simply the ℓ1
norm of the Fourier coefficients in τ . Since

∥f1f2∥ℓ1 ≤ ∥f1∥ℓ1∥f2∥ℓ1 ,

treating y as the evolution variable, the local-in-y well-posedness of (1.23) with (v, ∂yv)(y, ·) ∈ X, where

(2.1) X := {(v, w) | v, w are 2π-periodic in τ and ∥(v, w)∥X := ∥v∥ℓ1 + ∥(1 + |∂τ |)−1w∥ℓ1 <∞},

follows from a standard procedure. Here the operator |∂τ | is simply the multiplication of |n| to the n-th
Fourier modes for each n. For some results where the conservation of energy is used, we also consider the
energy space H1

τ × L2
τ which is a dense subspace of X where (1.23) is also well-posed.

Due to the oddness assumptions on f , the subspace

(2.2) Xo = {(v, w) ∈ X | v, w are odd in τ} ⊂ X

of 2π-periodic odd functions of τ is invariant under the flow of (1.23), so we first restrict the analysis to this
subspace. For such odd functions (of real values) of τ , the Fourier series (1.5) turns out to be

(2.3) v(t) =

+∞∑
n=−∞

(
− i

2

)
sgn(n)v|n|e

inτ =
∑
n≥1

vn sin(nτ), τ = ωt, Πn[v] = vn ∈ R, n ∈ N.
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With a slight abuse of notation, sometimes we may also use Πn[v] to denote the n-th mode vn sinnτ . Later
in Section 10, we extend the analysis to the general setting.

As explained in Section 1.4, we refer to the analysis in the setting of k = 1 and ω ∈ I1(ε0) as the first
bifurcation. Indeed, for ω ∈ I1(ε0), the linearization around v = 0 possesses (in the odd-in-t functions space
Xo) a pair of weak hyperbolic eigenvalues and all the other eigenvalues are elliptic. In particular the stable
and unstable manifolds, W s(0) and Wu(0), are one dimensional.

Next theorem gives an asymptotic formula for the splitting betweenWu(0) andW s(0) in the cross section

(2.4) Σ = {(v, ∂yv) ∈ Xo : Π1 [∂yv] = 0},
(see Figure 4).

Theorem 2.1. Fix r > 0. Consider the equation (1.23) with f ∈ Fr (equivalently (1.26) or (1.28)) for
k = 1 and ω ∈ I1(ε0) defined as in (1.13). Then, there exist a constant Cin ∈ C such that for any fixed
y0 > 0 there exists ε0,M > 0 such that, for every 0 < ε ≤ ε0, the following statements hold.

(1) The invariant manifolds Wu(0) and W s(0) of (1.23) in Xo correspond to unique solutions vu(y, τ)
and vs(y, τ) of (1.26) satisfying (1.27), which are real-analytic in y, 2π-periodic in τ , and satisfy
Π1 [∂yv

u,s] (0) = 0, respectively. Moreover, Π2l [v
u,s] ≡ 0, for every l ∈ N and∥∥∂2τ(vu(y, τ)− vh(y) sin τ

)∥∥
ℓ1
+
∥∥∂2τ∂y(vu(y, τ)− vh(y) sin τ

)∥∥
ℓ1

≤Mε2vh(y) for y ≤ y0,∥∥∂2τ(vs(y, τ)− vh(y) sin τ
)∥∥

ℓ1
+
∥∥∂2τ∂y(vs(y, τ)− vh(y) sin τ

)∥∥
ℓ1

≤Mε2vh(y) for y ≥ −y0,

where vh is the homoclinic orbit given in (1.30).
(2) At y = 0, their difference satisfies

(2.5)

∥∥∥∥∥(| − ∂2τ − ω−2| 12 (vu − vs) + iε∂y(v
u − vs)

)
(0, τ)− 4

√
2

ε
e−

π
√

2
ε Cin sin(3τ)

∥∥∥∥∥
ℓ1

≤ Me−
π
√

2
ε

ε log(ε−1)
.

We highlight that Theorem 2.1 is concerned with the distance between the stable and unstable invariant
manifolds at the first crossing with the transversal section Σ. This does not exclude intersections at further
crossings and thus existence of multi-bump breathers. See Figures 2 and 4.

Theorem 2.1 proves statements in Theorem 1.3(2ab) for k = 1 and ω ∈ I1(ε0) (restricted to the odd in t
setting) which deal with the one-dimensional stable and unstable manifolds .

The next proposition analyzes the intersection between the center-stable and center-unstable invariant
manifolds of v = 0.

Proposition 2.2. Fix r > 0. Consider the equation (1.23) with f ∈ Fr for k = 1 and ω ∈ I1(ε0) defined
as in (1.13). For any fixed y0 > 0, there exists ε0,M > 0 such that, for every 0 < ε ≤ ε0, the following
statements hold.

LetW ⊂ Σ be the intersection near (vh(0) sin τ, 0) of the center-stable manifoldW cs(0) and center-unstable
manifold W cu(0) of (1.23) in Xo when they intersect the hyperplane Σ for the first time in y. Then,

(1) Let

N = {(v, ∂yv) | ε−1
∥∥| − ∂2τ − ω−2| 12

(
v − v⋆(0)

)∥∥
L2 + ∥∂yv − ∂yv

⋆(0)∥L2

≤M
(
ε−1
∥∥| − ∂2τ − ω−2| 12

(
vu(0)− vs(0)

)∥∥
L2 + ∥∂yvu(0)− ∂yv

s(0)∥L2

)
, ⋆ = u, s}

.

Then W ∩N ̸= ∅ and the Hamiltonian H evaluated at solutions in W ∩N satisfies

1
M inf

W∩N
H ≤ ε−2

∥∥| − ∂2τ − ω−2| 12
(
vu(0)− vs(0)

)∥∥2
L2 + ∥∂yvu(0)− ∂yv

s(0)∥2L2 ≤M inf
W∩N

H.

(2) Each (v, ∂yv) ∈ W corresponds to a single bump homoclinic orbit
(
v(y, τ), ∂yv(y, τ)

)
to W c(0), i.e

(v, ∂yv) is asymptotic to two orbits
(
v±c (y), ∂yv

±
c (y)

)
in the center manifold W c(0) as y → ±∞.

Moreover, (v, ∂yv) satisfies

(2.6) 1
MH(v, ∂yv) ≤ ε−2

∥∥| − ∂2τ − ω−2| 12
(
v(y)− v⋆(y)

)∥∥2
L2 + ∥∂yv(y)− ∂yv

⋆(y)∥2L2 ≤MH(v, ∂yv),

for y ≥ −y0 with ⋆ = s and y ≤ y0 with ⋆ = u.
(3) If vu = vs, where vu, vs are the solutions obtained in Theorem 2.1, then it is a homoclinic orbit to

0, otherwise the intersection W cs(0) ∩W cu(0), which is codimension 2 in Xo, is transverse in N .
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v1
Σ

Wu(0)

W s(0)

v̇1

Figure 4. The (infinite dimensional) transverse section Σ (see (2.4)) where we measure the distance between the
perturbed manifolds Wu(0) and W s(0).

Remark 2.3. In the case vu ̸= vs, the transversality of the intersection of the codimension-1 W cs(0) and
W cu(0) actually implies that a dense subset of W consists of functions smooth in τ . See Remark 8.1 below.

This proposition implies Proposition 1.5 for k = 1 and ω ∈ I1(ε0), which deal with generalized breathers
with exponentially small tails. Indeed, Proposition 2.2 implies the existence of a family of orbits homoclinic
to the center manifold with exponentially small energy. They correspond to breather like solutions u(x, t) of
(1.2) which are 2π

ω -periodic in t and decaying in x like O(εe−ε|x|) subject to perturbations whose L∞
x (H1

t ×L2
t )

norm is bounded by O( 1εe
−

√
2π
ε ).

Theorem 2.1 and Proposition 2.2 are proven in Sections 3 and 8 respectively. We devote the rest of this
section to give some heuristics on the proof of Theorem 2.1, in particular, on why the distance between the
invariant manifolds is exponentially small and on how to obtain its asymptotic formula.

2.1. Heuristics of the proof of Theorem 2.1; exponentially small bounds. Looking at formula (2.5)
one can see that the distance between the one dimensional invariant manifolds Wu(0) and W s(0) of (1.23)
is exponentially small in ε. In this section we give some intuition why and we explain which are the steps
needed to obtain upper bounds on this distance. Later, in Section 2.2, we show how to obtain the asymptotic
formula (2.5) for it.

Since the invariant manifolds are one-dimensional, one can parameterize them as solutions of the second
order equation (1.26) for k = 1, which satisfies

v̈1 = v1 −
v31
4

+Oℓ1(Π̃v) +O(ε2)

ε2v̈n = − λ2nvn +Oℓ1(ε
2v3), n ≥ 2,

for small Π̃v, where we have introduced the following notation, which is also used in the forthcoming sections

(2.7) Π̃(v) = v −Π1(v) sin τ =
∑
n≥2

vn sin(nτ).

Imposing decay at infinity (as y → +∞ for W s(0), as y → −∞ for Wu(0)) and ∂yv
u,s
1 (0) = 0, item (1) of

Theorem 2.1 looks natural: the distance between the perturbed and unperturbed manifolds (v1, Π̃v) = (vh, 0)
is of the same order as the perturbation (notice the singular character of the model and the different size
of each component of the vector field). These estimates can be proven through a fixed point argument by
using the standard Perron method.

Even if the perturbed invariant manifolds are O(ε2) close to the unperturbed ones, the singular character
of the model makes their difference beyond all orders in ε, in fact exponentially small. Let us give some
heuristic ideas of why this phenomenon happens. We have chosen parameterizations such that ∂yv

u,s
1 (0) = 0.

Moreover, as the system conserves the Hamiltonian, both manifolds belong to the energy level of the saddle-
center critical point v = 0. Therefore, the difference vu1 − vs1 at y = 0 can be recovered from the differences

projected to the rest of directions, namely Π̃(vu − vs) and Π̃(∂yv
u − ∂yv

s). Thus, we focus on measuring
these differences. Let us write the equations for these components as a first order equation for n ≥ 3 (recall
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that Π2lv
u,s = 0 for l ≥ 0),

v̇n =wn

ẇn = − λ2n
ε2
vn +

1

ε3ω3
Πn [g(εωv)] .

As the parameterizations of both invariant manifolds satisfy the same equation, their difference

(∆n,Ξn) ≜ (vun − vsn, ∂yv
u
n − ∂yv

s
n)

satisfies a linear equation for n ≥ 3,

∆̇n =Ξn

Ξ̇n = − λ2n
ε2

∆n +Πn [M(vu, vs)∆] .

Since the last term is much smaller than the oscillating one, to give a heuristic idea of the phenomenon
taking place, let us assume that M = 0. Then, the system becomes a linear system of constant coefficients
which we can diagonalize by taking

Γn =λn∆n + iεΞn

Θn =λn∆n − iεΞn
(2.8)

to obtain

Γ̇n = − i
λn
ε
Γn

Θ̇n = i
λn
ε
Θn.

The solutions of this system can be easily computed as

Γn(y) = e−iλn
ε (y−y+)Γn(y

+)

Θn(y) = ei
λn
ε (y−y−)Θn(y

−)

for any points y±.
By the definition of (Γn,Θn) in (2.8), one has

Γn(y
+) =λn(v

u
n(y

+)− vsn(y
+)) + iε(∂yv

u
n(y

+)− ∂yv
s
n(y

+))

Θn(y
−) =λn(v

u
n(y

−)− vsn(y
−))− iε(∂yv

u
n(y

−)− ∂yv
s
n(y

−)).

The main observation here is that, if we are able to extend both the stable and unstable manifolds vu,sn (y)
to some complex values y± = ±iσ, σ > 0, one obtains the following estimates for y ∈ R near y = 0,

|Γn(y)| ≤ e−
λnσ
ε |Γn(iσ)|

|Θn(y)| ≤ e−
λnσ
ε |Θn(−iσ)|,

which are exponentially small in ε and strongly depend on the size of the unstable/stable solutions at the
complex points y± = ±iσ.

For the nonlinear system, we will find the solutions

vsn(y) for Re y ≥ 0, vun(y) for Re y ≤ 0

as perturbations of the singular limit solution v1 = vh(y), vn = 0, n ≥ 2, where vh(y) is the unperturbed
homoclinic solution (1.30). As this function has poles of order one at the points y± = ±iπ/2, it is natural
to expect that the optimal value for σ is in a neighborhood on the lower side of π/2. In Theorem 3.1 to be
proved in Section 4 we show that, for y close to ±iπ/2,

(2.9) vs,u(y, τ) = vh(y) sin τ +Oℓ1

(
ε2

|y2 + π2

4 |3

)
=

2
√
2

cosh y
sin τ +Oℓ1

(
ε2

|y2 + π2

4 |3

)
.

Therefore, we see that

|vu,s(y±)| ≲ 1

ε
, at y± = ±iσ, with σ =

π

2
− κε and some κ > 0.
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Consequently, |Γn(y
+)| ≲ 1

ε , |Θn(y
−)| ≲ 1

ε . Therefore, one expects that for y ∈ R close to y = 0,

|Γn(y)| ≲
1

ε
e−

λnπ
2ε , |Θn(y)| ≲

1

ε
e−

λnπ
2ε .

As λn ≥ λ3 = 2
√
2 +O(ε) for n ≥ 3, one obtains an upper bound for the difference

|Γn(y)| ≲
1

ε
e−

√
2π
ε , |Θn(y)| ≲

1

ε
e−

√
2π
ε

and similar bounds are satisfied by ∆n(y) = vun(y)− vsn(y).
Observe that these bounds fit with the estimates (2.5) given in Theorem 2.1. However, Theorem 2.1 gives

certainly more information since it provides an asymptotic formula for ∆.

2.2. Strategy of the proof of Theorem 2.1; exponentially small asymptotics. As we have seen in
Section 2.1, to obtain an asymptotic formula of vs − vu, one needs a deeper study of these functions near
y± = ±i(π/2− κε) for some κ > 0.

According to (2.9), for real values of y, the invariant manifolds are ε2-perturbations of the unperturbed
homoclinic orbit, but, when y ∓ iπ

2 = O(ε) we have that both the homoclinic and error term become of

the same size O( 1ε ) and therefore vs,u(y, τ) are not well approximated by the homoclinic solution vh(y) sin τ

anymore. Thus, we look for suitable leading orders of vs,u(y, τ) for y such that y ∓ iπ
2 = O(ε).

We focus on the singularity y = iπ/2 (the same analysis can be performed near the singularity y = −iπ/2
analogously). We proceed as follows. We perform the singular change to the inner variable

z = ε−1
(
y − i

π

2

)
and the scaling

ϕ(z, τ) = εv
(
i
π

2
+ εz, τ

)
.

From (1.23), one can deduce the equation satisfied by ϕ(z, τ),

∂2zϕ− ∂2τϕ− 1

ω2
ϕ+

1

3
ϕ3 +

1

ω3
f(ωϕ) = 0, ω =

1√
1 + ε2

.

The first order of this equation corresponds to the regular limit ε = 0, which gives the so-called inner
equation

∂2zϕ
0 − ∂2τϕ

0 − ϕ0 +
1

3
(ϕ0)3 + f(ϕ0) = 0.

The estimates (2.9) show, that, after these changes, the stable/unstable manifolds behave as

ϕs,u(z, τ) = −2
√
2i

z
sin τ +Oℓ1

(
1

z3

)
.

Therefore, it is natural to look for solutions of the inner equation which “match” these asymptotics. This is
done in Theorem 3.3 below where we obtain and analyze two solutions ϕ0,u, ϕ0,s of the inner equation which
are the first order of the unstable/stable manifolds “close to the singularity” y = iπ/2. They are of the form

ϕ0,s(z, τ) = −2
√
2i

z
sin τ + ψs(z, τ), for Re z > 0

ϕ0,u(z, τ) = −2
√
2i

z
sin τ + ψu(z, τ), for Re z < 0,

(2.10)

with ψs,u = O( 1
z3 ) in suitable complex domains satisfying |z| ≥ κ and containing the negative imaginary

axis ℑz ≤ −κ (recall that z = ε−1(y − iπ
2 ) and therefore y = 0 lies on this negative imaginary axis of z).

Again these solutions contain only odd modes in τ .
Moreover, in Theorem 3.3 we provide a formula for the difference of these two solutions which reads

(2.11) ϕ0,u(−ir, τ)− ϕ0,s(−ir, τ) = e−2
√
2r

(
Cin sin(3τ) +Oℓ1

(
1

r

))
as r → +∞.

This asymptotic formula can be obtained relying on different techniques. In the literature, one can find
proofs relying either on fixed point arguments for the difference [3, 10] or on Borel resummation techniques

and Écalle Resurgence Theory [54] (applied to finite dimensional inner equations). In the present paper, we
obtain this formula through a different method relying on invariant manifolds and foliations for a an ill-posed
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associated PDE, which is more in line with the techniques used throughout the paper. Let us give here a
(very) heuristic idea of the origin of this result from this new point of view.

Writing a solution of the inner equation as ϕ0 =
∑
ϕ0n sin(nτ) we obtain

d2

dz2
ϕ01 −

1

4
(ϕ01)

3 = F1

(
ϕ0
)

d2

dz2
ϕ0n + µ2

nϕ
0
n = Fn

(
ϕ0
)
, n ≥ 3,

(2.12)

where ′ = d/dz, µn =
√
n2 − 1, and Fn contain higher order terms.

Let us assume that Fn = 0 to give an heuristic idea of the process. First, let us make the change z = −ir
and write system (2.12) as a first order system through the change

Ψc(r) =

(
ϕ01(−ir),−i

d

dz
ϕ01(−ir)

)
, Ψn,± = −i d

dz
ϕ0n(−ir)±

√
n2 − 1ϕ0n(−ir), Ψ± = (Ψ2l−1,±)

∞
l=2,

which gives
d

dr
Ψ1

c = Ψ2
c

d

dr
Ψn,− =−

√
n2 − 1Ψn,−

d

dr
Ψ2

c =
1

4

(
Ψ1

c

)3 d

dr
Ψn,+ =

√
n2 − 1Ψn,+.

Observe that Ψ = 0 is a critical point with a center manifold W c given by Ψ+ = Ψ− = 0, and a center-stable
manifold W cs given by Ψ+ = 0. Moreover, W cs possesses the classical stable foliation. Indeed, given a point
Ψ = (Ψc,Ψ−, 0) ∈W cs there exists a point Ψb = (Ψc, 0, 0) ∈W c such that |Φr(Ψ)− Φr(Ψb)| ≤ O(e−2r), as

2 ∈ (0,
√
32 − 1), where Φr is the flow on W cs which is well defined for r ≥ 0. The points whose trajectories

are asymptotic to a given Ψb ∈W c form a leaf of the foliation.
This foliation allows us to give an asymptotic formula for ϕ0,s(z)− ϕ0,u(z):

• The first observation is that our solutions ϕ0,s(z), ϕ0,u(z), when restricted to the negative imaginary
axis away from 0 and written in these coordinates, correspond to Ψu,s(r) = (Ψu,s

c ,Ψu,s
− ,Ψu,s

+ )(r)
satisfying

lim
r→+∞

Ψs,u(r) = 0.

Therefore, they belong to W cs and, in this simplified model, should have the “unstable coordinate”
Ψu,s

+ (r) ≡ 0.
• The second observation is that we know, by (2.10), that

|Ψu(r)−Ψs(r)| ≤ Oℓ1

(
1

r3

)
, as r → +∞,

which implies that they should have the same “central coordinate” (Ψu
c (r) = Ψs

c(r) in this simplified
model) and therefore they belong to the same leaf in the stable foliation. One can see this fact
using the linearized fundamental solutions in the central coordinates which give: Ψu

c (r) − Ψs
c(r) ∼

c1r
−2 + c2r

3 and the decay of this difference immediately gives c1 = c2 = 0.
• Now that we know that Ψu,s(r) = (Ψc(r),Ψ

u,s
− (r), 0), we only need to compute the difference in the

stable coordinate β−(r) = Ψu
−(r)−Ψs

−(r) which satisfies:

d

dr
β− = Aβ−, A = diag(−

√
n2 − 1)

and this immediately implies that

β−(r) = e(r−r0)Aβ−(r0) = e−2
√
2(r−r0)β3,−(r0) sin(3τ) +Oℓ1

(
e−3r

)
.

Calling C = e2
√
2r0β3,−(r0) we have

lim
r→+∞

e2
√
2rβ−(r)− C sin 3τ = 0.

Using these ideas, in Theorem 3.3 below, we incorporate the dismissed higher order terms (see (2.12)) and
give a complete proof of the asymptotic formula for the difference between the solutions of the inner equation.
Note that the constant C above corresponds to the constant Cin in (2.11).
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Once we obtain the difference between the inner solutions ϕ0,u − ϕ0,s, we must show that this difference
gives indeed a first order of the difference between the perturbed invariant manifolds. That is, we must
estimate the function (ϕu − ϕs)− (ϕ0,u − ϕ0,s) in some appropriate complex domain. To this end, it starts
with showing that the solutions of the inner equation ϕ0,u(z), ϕ0,s(z), when written in the original variables
y = iπ2+εz, are good approximations of the stable and unstable solutions vu, vs for y satisfying y∓ iπ

2 = O(ε).
Such analysis is done in Theorem 3.6.

From such estimates, applying the ideas in Section 2.1, we obtain smaller exponentially small errors at
y = 0. This shows that the difference of ϕ0,u − ϕ0,s provides the main term of the exponentially small
distance between vu and vs and that the first order of this distance is given by the Stokes constant Cin.

3. Description of the Proof of Theorem 2.1

We describe the main steps of the proof of Theorem 2.1 where k = 1 and the odd symmetry of functions
in τ is assumed.

3.1. Estimates of the invariant manifolds in complex domains. In order to estimate the distance
between the perturbed invariant manifolds W s(0) and Wu(0) in Σ, we consider suitable parameterizations
for them. Since the invariant manifolds Wu(0) and W s(0) are one dimensional, they are the images of
solutions vu and vs of (1.26) with the asymptotic conditions

lim
y→+∞

vs(y, τ) = lim
y→−∞

vu(y, τ) = 0, for all τ ∈ T.

We write equation (1.26) as 
v̈1 = v1 −

v31
4

+

(
− 1

ε3ω3
Π1 [g(εωv)] +

v31
4

)
,

v̈n = −λ
2
n

ε2
vn − 1

ε3ω3
Πn [g(εωv)] , n ≥ 2,

where Πn is the Fourier projection given by (2.3) and g is given by (1.19).
We study the solutions vu, vs as perturbations of the homoclinic orbit vh(y) sin τ given by (1.30), which

satisfies v̈h = vh − (vh)3/4. Thus, we set

ξ(y, τ) = v(y, τ)− vh(y) sin τ =
∑
n≥1

ξn(y) sin(nτ),

whose Fourier coefficients satisfy
ξ̈1 = ξ1 −

3(vh)2ξ1
4

− 3vhξ21
4

− ξ31
4

+

(
− 1

ε3ω3
Π1(g(εω(ξ + vh sin τ))) +

(ξ1 + vh)3

4

)
,

ξ̈n = −λ
2
n

ε2
ξn − 1

ε3ω3
Πn(g(εω(ξ + vh sin τ))), n ≥ 2.

Define the operators

L(ξ) =
(
ξ̈1 − ξ1 +

3(vh)2ξ1
4

)
sin τ +

∑
n≥2

(
ξ̈n +

λ2n
ε2
ξn

)
sin(nτ),(3.1)

F(ξ) =− 1

ε3ω3
g(εω(ξ + vh sin τ)) +

(
(ξ1 + vh)3

4
− 3vhξ21

4
− ξ31

4

)
sin τ.(3.2)

To obtain solutions v⋆, ⋆ = u, s, of (1.23) satisfying (1.27) is equivalent to find solutions ξ⋆ of the functional
equation

(3.3) L(ξ) = F(ξ),

satisfying

(3.4) lim
y→−∞

ξu(y, τ) = lim
y→∞

ξs(y, τ) = 0, for all τ ∈ T.
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iπ
2

iπ
2

−iπ
2

−iπ
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i
(
π
2
− κε

)
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(
π
2
− κε

)

i
(
π
2
− κε

)

−i
(
π
2
− κε

)
β β

Dout,u
κ Dout,s

κ

Figure 5. Outer domains Dout,u
κ and Dout,s

κ .

We analyze these parameterizations in the following complex sectorial domains, usually called outer do-
mains,

Dout,u
κ =

{
y ∈ C; |Im(y)| ≤ − tanβRe(y) +

π

2
− κε

}
Dout,s

κ =
{
y ∈ C;−y ∈ Dout,u

κ

}
,

(3.5)

where 0 < β < π/4 is a fixed angle independent of ε and κ ≥ 1 (see Figure 5). Observe that Dout,∗
κ , ∗ = u, s,

reach domains at a κε–distance of the singularities y = ±iπ/2 of vh (see Section 2.1).
The next theorem proves the existence and estimates of the functions ξu, ξs. It is proven in Section 4.

Theorem 3.1 (Outer). Consider the equation (1.23) with k = 1. There exist κ0 ≥ 1 big enough and ε0 > 0
small enough, such that, for each 0 < ε ≤ ε0 and κ ≥ κ0, the invariant manifolds W ⋆(0) ⊂ Xo of (1.23),
⋆ = u, s, are parameterized as unique solutions of equation (1.23) by

v⋆(y, τ) = vh(y) sin τ + ξ⋆(y, τ), y ∈ Dout,⋆
κ , τ ∈ T,

where vh is given by (1.30) and ξ⋆ : Dout,⋆
κ × T → C are functions real-analytic in the variable y such that

(1) They satisfy the asymptotic condition (3.4), ∂yΠ1[ξ
⋆](0) = 0 and Π2l[ξ

⋆](y) ≡ 0 for l ∈ N.
(2) There exists a constant M1 > 0 independent of ε and κ, such that

∥ξ⋆∥ℓ1 (y) ≤
M1ε

2

| cosh(y)|
for y ∈ Dout,⋆

κ ∩ {|Re(y)| > 1}

∥ξ⋆∥ℓ1 (y) ≤
M1ε

2

|y2 + π2/4|3
for y ∈ Dout,⋆

κ ∩ {|Re(y)| ≤ 1}.

Moreover, the derivatives of ξ⋆ can be bounded as

(1) For y ∈ Dout,⋆
κ ∩ {|Re(y)| > 1},

∥∥∂2τ ξ⋆∥∥ℓ1 (y), ∥∂2τ∂yξ⋆∥(y) ≤
M1ε

2

| cosh(y)|
.

(2) For y ∈ Dout,⋆
κ ∩ {|Re(y)| ≤ 1},

∥∥∂2τ ξ⋆∥∥ℓ1 (y) ≤ M1ε
2

|y2 + π2/4|3
and

∥∥∂2τ∂yξ⋆∥∥ℓ1 (y) ≤ M1ε
2

|y2 + π2/4|4
.

Remark 3.2. While the 1-dim stable and unstable manifolds of the equilibrium 0 are determined by their
exponential asymptotic behavior as y → ±∞ where the freedom of translation in y is fixed by ∂yΠ1[ξ

u,s] = 0,

it is important that the precise order of the error ξu,s = O( ε2

|y2+π2

4 |3
) is obtained near the singularity y = ±π

2 i.

This does not only allows one to identify the correct scaling leading to the limit of the inner equation in the
next subsection, but also uniquely fix the solutions of the inner equation optimally approximating vu,s.
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3.2. Analysis close to the singularities. Notice that the parameterizations v⋆(y, τ) of W ⋆(0), ⋆ = u, s
given by Theorem 3.1, are ε2-close to the homoclinic orbit vh(y) sin(τ) for y ∈ R ∩Dout,⋆

κ . Nevertheless, at
distance O(ε) of the poles y = ±iπ/2 of vh, vh ∼ ε−1 has comparable size to the error ξ⋆ ∼ ε−1.

To obtain a first order approximation of the invariant manifolds at distance O(ε) of the poles y = ±iπ/2
we proceed as follows. We focus on the singularity y = iπ/2 since similar results can be derived near the
singularity y = −iπ/2 by the conjugacy. Consider the inner variable

(3.6) z = ε−1
(
y − i

π

2

)
and the scaling

(3.7) ϕ(z, τ) = εv
(
i
π

2
+ εz, τ

)
.

Writing equation (1.23) for ϕ(z, τ) and recalling ω = (1 + ε2)−
1
2 , we obtain

(3.8) ∂2zϕ− ∂2τϕ− 1

ω2
ϕ+

1

3
ϕ3 +

1

ω3
f(ωϕ) = 0.

This equation coincides with the original Klein-Gordon equation (1.17)4. However, notice that now the

evolution variable is z = x− i
π

2ε
.

The first order of (3.8) corresponds to the regular limit ε = 0, which gives the so-called inner equation

(3.9) ∂2zϕ
0 − ∂2τϕ

0 − ϕ0 +
1

3
(ϕ0)3 + f(ϕ0) = 0.

We are interested in identifying certain solutions of (3.9) with the same first order of the outer solutions
vu,s(y, τ) given in Theorem 3.1 near the pole y = iπ/2. Therefore, we look for solutions ϕ0,∗(z, τ), ∗ = u, s,

of (3.9) which have the same leading order expansion as ϕu,s(z, τ) = εvu,s
(
i
(π
2
+ εz

)
, τ
)
. Near the pole

y = iπ/2, by Theorem 3.1 we have

vu,s(y, τ) = vh(y) sin τ +O
(

ε2

(y − iπ/2)3

)
=

−2
√
2i

y − iπ/2
sin τ +O(y − iπ/2) +O

(
ε2

(y − iπ/2)3

)
which, in the inner variables (3.6) and (3.7), corresponds to

ϕu,s(z, τ) =
−2

√
2i

z
sin τ +O(ε2z) +O

(
1

z3

)
.

Taking into account the change of variables (3.6) and the shape of the outer domains (3.5), this asymptotic
condition must hold for Im z < 0 and Re z < 0 for ϕu and for Im z < 0 and Re z > 0 for ϕs.

Therefore we consider the inner domains

(3.10)
Du,in

θ,κ = {z ∈ C; | Im(z)| > tan θRe(z) + κ},

Ds,in
θ,κ = {z ∈ C;−z ∈ Du,in

θ,κ },

for 0 < θ < π/6 and κ > 0 (see Figure 6), and we look for solutions of the inner equation of the form

ϕ0,⋆(z, τ) =
−2

√
2i

z
sin τ + ψ⋆(z, τ), with ψ⋆ = O

(
1

z3

)
, for (z, τ) ∈ D⋆,in

θ,κ × T, ⋆ = u, s.

We present the results concerning the existence of these solutions ϕ0,⋆ of (3.8), ⋆ = u, s. Moreover we give
an asymptotic expression for the difference ϕ0,u(z, τ) − ϕ0,s(z, τ) as Im(z) → −∞, which will be crucial to
compute the first order of the difference vu − vs. The following theorem will be proved in Section 5.

Theorem 3.3 (Inner). Let θ ∈ (0, π6 ) and r > 0 be fixed and consider f ∈ Fr. There exists κ0 ≥ 1 big
enough such that, for each κ ≥ κ0,

4Warning: It is the original one for ψ = ωϕ, but will be analyzed near a singular complex function.
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Figure 7. Domain Rin,+
θ,κ .

(1) Equation (3.9) has two solutions ϕ0,⋆ : D⋆,in
θ,κ × T → C, ⋆ = u, s, given by

(3.11) ϕ0,⋆(z, τ) = −2
√
2i

z
sin τ + ψ⋆(z, τ),

which are analytic in the variable z. Moreover, Π2l

[
ϕ0,⋆

]
≡ 0 for every l ∈ N, and there exists a

constant M2 > 0 independent of κ such that, for every z ∈ D⋆,in
θ,κ and z′ ∈ D⋆,in

2θ,4κ

(3.12)
∥∥∂2τψ⋆

∥∥
ℓ1
(z) ≤ M2

|z|3
,
∥∥∂2τ∂zψ⋆

∥∥
ℓ1
(z′) ≤ M2

|z′|4
.

(2) The difference ∆ϕ0(z, τ) = ϕ0,u(z, τ)− ϕ0,s(z, τ) is given by (see Figure 7),

(3.13) ∆ϕ0(z, τ) = e−iµ3z (Cin sin(3τ) + χ(z, τ)) , z ∈ Rin,+
θ,κ = Du,in

θ,κ ∩Ds,in
θ,κ ∩ {z; Re(z) = 0, Im(z) < 0}

where µ3 = 2
√
2, Cin ∈ C is a constant, and χ is analytic in z and satisfies that, for z ∈ Rin,+

θ,κ ,

∥∂τχ∥ℓ1(z) ≤
M2

|z|
and ∥∂zχ∥ℓ1(z) ≤

M2

|z|2
.

(3) The constant Cin = Cin(f) ∈ C depends analytically on f ∈ Fr.

Remark 3.4. It is interesting to see that the stable and unstable solutions ϕ0,⋆, ⋆ = u, s, are identified by the
O(|z|−1) decay as Re z → ±∞, where the same Lyapunov-Perron approach works. The freedom of translation
in z, which causes a variation of the order O(|z|−2) is fixed by the O(|z|−3) restriction of the error terms.
The splitting ∆ϕ0 between ϕ0,u and ϕ0,s would turn out to be the principal part of the splitting between vu

and vs. The leading order form of ∆ϕ0 can be understood in two different perspectives. On the one hand, it
is related to the Borel summation of divergent power series and the readers are referred to Section 11.2 for
related discussions and our conjecture on how to compute Cin. On the other hand, along the real direction of
z, the inner equation (3.9) is hyperbolic in the PDE sense and oscillatory. However, when we view it along
the imaginary axis, it becomes strongly hyperbolic in the dynamical systems sense and elliptic in the PDE
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Figure 8. Matching domains Dmch,u
+,κ (on the left) and Dmch,s

+,κ (on the right).

sense (and dynamically ill-posed). All the originally oscillatory directions become hyperbolic in the dynamical
systems sense and thus in particular the stable manifolds become infinite dimensional containing ϕ0,⋆. The
splitting ∆ϕ0 is dominated by the weakest exponential decay rate and the Stokes constant Cin basically comes
from the difference between the weakest stable coordinates of ϕ0,u and ϕ0,s.

Remark 3.5. The constant Cin(f) in Theorem 3.3 is the constant appearing in Theorem 2.1. Theorem
3.3(3) provides its analyticity with respect to f as stated in Theorem 1.4. In Section 11 we prove that,
typically, it does not vanish.

Our next step is to prove that the solutions of the inner equation obtained in Theorem 3.3 are good
approximations of the parameterizations v∗(y, τ), ∗ = u, s, obtained in Theorem 3.1 near the pole y = iπ/2.
To prove this fact we introduce the following matching domains.

Take 0 < γ < 1, 0 < β1 < β < β2 < π/4 constants independent of ε and κ. Then, we consider the points
yj ∈ C, j = 1, 2 satisfying

(1) Im(yj) = − tanβj Re(yj) + π/2− κε;
(2) |yj − i(π/2− κε)| = εγ ;
(3) Re(y1) < 0 and Re(y2) > 0.
(4) e5(π−β1) − e−5β2 ̸= 0.

Note that Im(y2) <
π
2 − κε < Im(y1). Then, consider the following matching domains (see Figure 8),

(3.14)

Dmch,u
+,κ = {y ∈ C; Im(y) ≤ − tanβ1 Re(y) + π/2− κε, Im(y) ≤ − tanβ2 Re(y) + π/2− κε,

Im(y) ≥ Im(y1)− tan

(
β1 + β2

2

)
(Re(y)− Re(y1))

}
,

Dmch,s
+,κ =

{
y ∈ C;−y ∈ Dmch,u

+,κ

}
.

Notice that there exist constants M1,M2 > 0 independent of ε and κ such that

M1ε
γ ≤ |yj − iπ/2| ≤M2ε

γ , j = 1, 2,

M1κε ≤ |y − iπ/2| ≤M2ε
γ , for y ∈ Dmch,u

+,κ .

In terms of the inner variable z (see (3.6)), the matching domains are given by

Dmch,⋆
+,κ = {z ∈ C; εz + iπ/2 ∈ Dmch,⋆

+,κ }, ⋆ = u, s.

Notice that,

M1ε
γ−1 ≤ |zj | ≤M2ε

γ−1, j = 1, 2,

M1κ ≤ |z| ≤M2ε
γ−1 for, z ∈ Dmch,u

+,κ .

where z1 and z2 are the vertices of the inner domain y1 and y2, respectively, expressed in the inner variable.
Next theorem estimates the difference in the matching domains (3.14) between the functions ϕ∗, ∗ = u, s

in (3.7) and the functions ϕ0,∗, ∗ = u, s, given by Theorem 3.3. The theorem is proven in Section 6.

Theorem 3.6 (Matching). Fix γ ∈ (1/3, 1). Let ϕ⋆(z, τ) = εv⋆(iπ/2 + εz, τ), ⋆ = u, s, where v⋆ is the
parameterization obtained in Theorem 3.1. Then, there exist ε0, δ0 > 0 sufficiently small such that, for each

0 < ε ≤ ε0 and κ satisfying κε1−γ + | log ε|
κ2 ≤ δ0, and z ∈ Dmch,⋆

+,κ ,

ϕ⋆(z, τ) = ϕ0,⋆(z, τ) + φ⋆(z, τ),
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where ϕ0,⋆ is the solution of the inner equation (3.9) obtained in Theorem 3.3, and φ⋆ satisfies that for

(z, τ) ∈ Dmch,⋆
+,κ

∥∂2τφ⋆∥ℓ1(z) ≤
M3(ε

1−γ + ε3γ−1)| log ε|
|z|2

and ∥∂2τ∂zφ⋆∥ℓ1(z) ≤
M3(ε

1−γ + ε3γ−1)| log ε|
κ|z|2

,

where M3 > 0 is a constant independent of ε and κ.

Remark 3.7. Notice that γ = 1/2 minimizes the size of ∥φ⋆∥ℓ1,2, ⋆ = u, s, in Theorem 3.6. In this case,

∥∂2τφ⋆∥ℓ1,2 ≤M | log ε|ε1/2|z|−2.

Remark 3.8. The idea to obtain the above matching estimate is that y1 and y2 are connected by a segment
with nontrivial slope in the complex plane, where the linear part of the problem becomes somewhat elliptic in
the 1-dim variable z (in the PDE sense) except in the direction of the mode sin τ . Therefore φ⋆, ⋆ = u, s, is
nicely determined by the values at y1 and y2 which simply come from the asymptotic form ϕ0,⋆ and φ⋆. The
order O(|z|−2) is largely determined by the mode sin τ .

3.3. The distance between the invariant manifolds. Our next step is to give an asymptotic formula
for the difference

(3.15) ∆(y, τ) = vu(y, τ)− vs(y, τ) = ξu(y, τ)− ξs(y, τ),

where ξu,s are the functions obtained in Theorem 3.1 (recall that Π2l[∆v] = 0 for every l ≥ 0), in the domain
(see Figure 9).

Rκ = Dout,u
κ ∩Dout,s

κ ∩ iR,
Next lemma shows that the difference ∆ satisfies a linear equation.

Lemma 3.9. The function ∆ introduced in (3.15) satisfies the linear equation

L(∆) = Π1

[
η1(y, τ)Π1[∆] sin τ + η2(y, τ)Π̃[∆]

]
sin τ + Π̃[η3(y, τ)∆],

where L is the operator given in (3.1) and ηj : Rκ×T → C, j = 1, 2, 3, are functions analytic in y. Moreover,
there exists a constant M > 0 independent of κ and ε such that

∥η1∥ℓ1(y) ≤
Mε2

|y2 + π2/4|4
, and ∥η2∥ℓ1(y), ∥η3∥ℓ1(y) ≤

M

|y2 + π2/4|2
.

Proof. From (3.3) and Theorem 3.1, we have that

L(∆) = F(ξu)−F(ξs),



24 O. M. L. GOMIDE, M. GUARDIA, T. M. SEARA, AND C. ZENG

where F is the operator given in (3.2). Using the expression of F (see also (4.5)), we obtain that

F(ξu)−F(ξs) =− 1

ε3ω3
Π̃
[
g(εω(ξu + vh sin τ))− g(εω(ξs + vh sin τ))

]
−Π1

[
(ξu1 + vh)2 sin2 τ Π̃(ξu)− (ξs1 + vh)2 sin2 τ Π̃(ξs)

]
sin τ

−Π1

[
(ξu1 + vh) sin τ(Π̃[ξu])2 − (ξs1 + vh) sin τ(Π̃[ξs])2

+
1

3

(
(Π̃[ξu])3 − (Π̃[ξs])3

)]
sin τ

+

(
− 1

ε3ω3
Π1

[
f(εω(ξu + vh sin τ))− f(εω(ξs + vh sin τ))

]
−
3vh

(
(ξu1 )

2 − (ξs1)
2
)

4
− (ξu1 )

3 − (ξs1)
3

4

)
sin τ.

The proof follows from calculations based in the power series expansion of g and f and the estimates∣∣vh(y)∣∣ ≤ M

|y2 + π2/4|
, ∥ξu,s∥ℓ1 (y) ≤

Mε2

|y2 + π2/4|3

obtained in Theorem 3.1. □

The idea to obtain the exponentially small splitting estimate is that y± = ±i(π2 − κε) (see Figure 9)
are connected by a vertical segment where the linear operator L becomes elliptic (in the PDE sense) in the
1-dim variable y except in the direction of the mode sin τ . This has two implications: a.) the solution is
determined by the values at the two boundary points y± and b.) the Green’s function principally in the
form of exponential functions leads to the desired splitting estimate at y = 0. The mode sin τ seems to be
an exception. Recalling ∂yΠ1[∆]|y=0 = 0, the splitting in the direction Π1[∆]|y=0 will be handled by the
conservation of energy due to the Hamiltonian structure.

As explained in Section 2.1, to prove that the distance between the stable and unstable manifold is
exponentially small is crucial the fact that the model considered has a conserved quantity. Indeed, if the
system would not have a first integral, the distance between the invariant manifolds would be “tipically” of
order of some power of ε. Therefore, in this section we must rely on the conservation of energy to analyze
∆.

Let us rewrite equation (1.23) as
∂yv = w,

∂yw =
1

ε2
∂2τv +

1

ε2ω2
v − 1

3
v3 − 1

ε3ω3
f (εωv) ,

which is Hamiltonian with respect to

H(v, w) =
1

π

∫
T

(
w2

2
+

(∂τv)
2

2ε2
− v2

2ε2ω2
+
v4

12
+
F (εωv)

ε4ω4

)
dτ,

where F is an analytic function such that F ′(z) = f(z) and F (z) = O(z6).
Notice that the solutions v⋆(y, τ) of (1.23), ⋆ = u, s, obtained in Theorem 3.1 are contained in the energy

level {H = 0}. We use the Hamiltonian H to obtain the variable Π1[∆] in terms of the variables Π̃[∆], Π1[Ξ]

and Π̃[Ξ] where Ξ = ∂y∆ = wu − ws = ∂yv
u − ∂yv

s.

Lemma 3.10. The functions ∆, Ξ satisfy

(3.16) Π1[∆](y) =
v̇h(y)

v̈h(y)
Π1[Ξ](y) +A(Ξ)(y) +B(Π̃[∆])(y),

where A and B are linear operators such that, for y ∈ Rκ,

(1) |A(Ξ)(y)| ≤ Mε2

|y2 + π2/4|
∥Ξ∥ℓ1(y)

(2) |B(Π̃[∆])(y)| ≤M∥Π̃[∆]∥ℓ1(y).
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Proof. As the projections Π1 and Π̃ are orthogonal (see (2.3) and (2.7)), H is given by

H(v, w) =
(Π1[w])

2

2
− (Π1[v])

2

2
+

1

π

∫
T

(
(Π̃[w])2

2
+

(∂τ Π̃[v])2

2ε2
− (Π̃[v])2

2ε2ω2
+
v4

12
+
F (εωv)

ε4ω4

)
dτ.

Using that H(v⋆, w⋆) = 0, ⋆ = u, s, integrating by parts the ∂τ term and the Mean Value Theorem, we have
that

0 =H(vu, wu)−H(vs, ws)

=
Π1[w

u] + Π1[w
s]

2
Π1[Ξ]−

Π1[v
u] + Π1[v

s]

2
Π1[∆]

+
1

π

∫
T

[
Π̃[wu] + Π̃[ws]

2
Π̃[Ξ]− 1

ε2
∂2τ Π̃[vu] + ∂2τ Π̃[vs]

2
Π̃[∆]− Π̃[vu] + Π̃[vs]

2ε2ω2
Π̃[∆]

]
dτ

+
1

π

∫
T

[
(vu)3 + (vu)2(vs) + (vu)(vs)2 + (vs)3

12
∆ +

(
1

ε3ω3

∫ 1

0

f(εω(σvu + (1− σ)σvs))dσ

)
∆

]
dτ.

Using

v⋆ = vh sin(τ) + ξ⋆(y, τ), v̈h = vh − (vh)3/4 =
√
2(cosh(2y)− 3) sech3(y),

and observing that v̈h(y) is strictly negative, for every y = iỹ with ỹ ∈ (−π/2, π/2), one has

0 = −v̈h(1 + a(y))Π1[∆] + v̇hΠ1[Ξ] + Ã(Ξ) + B̃(Π̃[∆])

By the estimates in Theorem 3.1 and using that v̈h(y) has a third order pole at y = ±iπ/2, we have

(3.17) |a(y)| ≤ Mε2

|y2 + π2/4|2
≤ M

κ2
, for y ∈ Rκ

and, also for y ∈ Rκ,∣∣∣Ã(Ξ)∣∣∣ (y) ≤ Mε2

|y2 + π2/4|4
∥Ξ∥ℓ1(y) and

∣∣∣B̃(Π̃[∆])
∣∣∣ (y) ≤ M

|y2 + π2/4|3
∥Π̃[∆]∥ℓ1(y).

Moreover, using the estimate (3.17) and taking κ big enough, we have

|D(y)−1| ≤M |y2 + π2/4|3, y ∈ Rκ, where D(y) = v̈h(y) (1 + a(y)) .

Hence, it follows that

Π1[∆] =
v̇hΠ1[Ξ] + Ã(Ξ) + B̃(Π̃[∆])

v̈h(1 + a)
=
v̇h

v̈h
Π1[Ξ] +A(Ξ) +B(Π̃[∆]),

where A and B are the linear operators

A(Ξ)(y) =
Ã(Ξ)(y)

v̈h(y)(1 + a(y))
− v̇h(y)

v̈h(y)(1 + a(y))
a(y)Π1[Ξ](y)

B(Π̃[∆]) =
B̃(Π̃[∆])

v̈h(y)(1 + a(y))
.

The proof of the proposition follows directly from the estimates of Ã(Ξ), B̃(Π̃[∆]), a and the fact that v̈h

and v̇h have a third and second order pole at the points y = ±iπ/2, respectively. □

Lemma 3.10 allows to study the difference between the invariant manifolds without keeping track of the

component ∆1. In other words, we use coordinates (Π1w, Π̃v, Π̃w) to analyze the level of energy H = 0 and

therefore we measure the difference between the functions vu and vs through the components (Ξ1, Π̃∆, Π̃Ξ).
The inconvience of the energy reduction is that the equation loses the second order structure since it also
depends on Ξ = ∂y∆.
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To capture the exponentially small behavior of (Π̃∆, Π̃Ξ) it is convenient to write the second order equation
as a first order system in diagonal form. Thus, we define

Γ =
∑
k≥1

Γ2k+1(y) sin((2k + 1)τ), Γ2k+1 = λ2k+1∆2k+1 + iεΞ2k+1

Θ =
∑
k≥1

Θ2k+1(y) sin((2k + 1)τ), Θ2k+1 = λ2k+1∆2k+1 − iεΞ2k+1.
(3.18)

From now on we measure the difference between the invariant manifolds (within the energy level H = 0) by
the difference “vector”

(3.19) ∆̃ = (Ξ1,Γ,Θ).

Notice that the estimates of Theorem 3.1 imply that ∆ satisfies∑
k≥1

λ22k+1|∆2k+1(y)| ≤M∥∂2τ ξu∥ℓ1(y) +M∥∂2τ ξs∥ℓ1(y) ≤
Mε2

|y2 + π4/4|3
,

along with a similar estimate on Ξ, therefore the functions Γ and Θ are well defined for y ∈ Rκ and satisfy∑
k≥1

λ2k+1|Γ2k+1(y)| ≤
Mε2

|y2 + π4/4|3
and

∑
k≥1

λ2k+1|Θ2k+1(y)| ≤
Mε2

|y2 + π4/4|3
.

Proposition 3.11. The function ∆̃ = (Ξ1,Γ,Θ) satisfies the equation

L̃(∆̃) = M(∆̃),

where L̃ is the differential operator

(3.20)

L̃(Ξ1,Γ,Θ) =

Ξ̇1 −
...
v h

v̈h
Ξ1,
∑
k≥1

(
Γ̇2k+1 + i

λ2k+1

ε
Γ2k+1

)
sin((2k + 1)τ),

∑
k≥1

(
Θ̇2k+1 − i

λ2k+1

ε
Θ2k+1

)
sin((2k + 1)τ)


and M is a linear operator which can be written as

(3.21) M(Ξ1,Γ,Θ) =


mW (y)Ξ1 +MW (Γ,Θ)

mosc(y, τ)Ξ1 +Mosc(Γ,Θ)

−mosc(y, τ)Ξ1 −Mosc(Γ,Θ)

 ,

where mW : Rκ → C, mosc : Rκ × T → C are functions analytic in y satisfying

|mW (y)| ≤ Mε2

|y2 + π2/4|3
and ∥mosc∥ℓ1(y) ≤

Mε

|y2 + π2/4|
and MW , Mosc are linear operators such that, for y ∈ Rκ,

|MW (Γ,Θ)(y)| ≤ M

|y2 + π2/4|2
(∥Γ∥ℓ1(y) + ∥Θ∥ℓ1(y))

∥Mosc(Γ,Θ)∥ℓ1 (y) ≤
Mε

|y2 + π2/4|2
(∥Γ∥ℓ1(y) + ∥Θ∥ℓ1(y)) ,

where M > 0 is a constant independent of ε and κ .

Proof. From (3.18) and Proposition 3.9, we have that, for each k ≥ 1,

(3.22)

Γ̇2k+1 = λ2k+1Ξ2k+1 + iε∆̈2k+1

= λ2k+1Ξ2k+1 + iε

(
−
λ22k+1

ε2
∆2k+1 +Π2k+1 [η3(y, τ)∆]

)
= −iλ2k+1

ε
Γ2k+1 + iεΠ2k+1 [η3(y, τ)∆] .
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Analogously, for each k ≥ 1,

(3.23) Θ̇2k+1 = i
λ2k+1

ε
Θ2k+1 − iεΠ2k+1 [η3(y, τ)∆] .

Moreover, for the variable Ξ1, by (3.1) and Proposition 3.9, we have that

Ξ̇1 =

(
1− 3(vh)2

4

)
∆1 +Π1

[
η1(y, τ)∆1 sin(τ) + η2(y, τ)Π̃[∆]

]
.

Using (3.16) for ∆1 and

(
1− 3(vh)2

4

)
v̇h =

...
v h, we obtain

Ξ̇1 =

...
v h

v̈h
Ξ1 +

(
1− 3(vh)2

4

)(
A(Ξ) +B(Π̃[∆])

)
+Π1

[
η1(y, τ)

(
v̇h

v̈h
Ξ1 +A(Ξ) +B(Π̃[∆])

)
sin(τ) + η2(y, τ)Π̃[∆]

]
=

...
v h

v̈h
Ξ1 +

(
1− 3(vh)2

4

)
A(Ξ1 sin(τ)) + Π1

[
η1(y, τ)

(
v̇h

v̈h
Ξ1 +A(Ξ1 sin(τ))

)
sin τ

]
+

(
1− 3(vh)2

4

)(
A(Π̃[Ξ]) +B(Π̃[∆])

)
+Π1

[
η1(y, τ)

(
A(Π̃[Ξ]) +B(Π̃[∆])

)
sin τ + η2(y, τ)Π̃[∆]

]
.

Finally, using (3.18),

Ξ̇1 =

...
v h

v̈h
Ξ1 +

(
1− 3(vh)2

4

)
A(Ξ1 sin τ) + Π1

[
η1(y, τ)

(
v̇h

v̈h
Ξ1 +A(Ξ1 sin τ)

)
sin τ

]

+

(
1− 3(vh)2

4

) 1

2iε
A(Γ−Θ) +B

∑
k≥1

Γ2k+1 +Θ2k+1

2λ2k+1
sin((2k + 1)τ)


+Π1

[
η1(y, τ)

(
1

2iε
A(Γ−Θ)

)
sin(τ) +η1(y, τ)B

∑
k≥1

Γ2k+1 +Θ2k+1

2λ2k+1
sin((2k + 1)τ)

 sin τ

+η2(y, τ)

∑
n≥2

Γ2k+1 +Θ2k+1

2λ2k+1
sin((2k + 1)τ)

 .
For the other components, as

iεΠ̃ [η3(y, τ)∆] = iεΠ̃

[
η3(y, τ)

((
v̇h

v̈h
Ξ1 +A(Ξ) +B(Π̃[∆])

)
sin(τ) + Π̃[∆]

)]
= iεΠ̃

[
η3(y, τ)

(
v̇h

v̈h
Ξ1 +A(Ξ1 sin(τ))

)
sin(τ)

]
+iεΠ̃

[
η3(y, τ)

(
A(Π̃[Ξ]) sin(τ) +B(Π̃[∆]) sin(τ) + Π̃[∆])

)]
= iεΠ̃

[
η3(y, τ)

(
v̇h

v̈h
Ξ1 +A(Ξ1 sin(τ))

)
sin(τ)

]

+iεΠ̃

[
η3(y, τ)

2iε
A(Γ−Θ) sin(τ) + η3(y, τ)B

∑
k≥1

Γ2k+1 +Θ2k+1

2λ2k+1
sin((2k + 1)τ)

 sin(τ)

+η3(y, τ)
∑
k≥1

Γ2k+1 +Θ2k+1

2λ2k+1
sin((2k + 1)τ)

]
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the proof is concluded by using (3.22) and (3.23) and taking

mW (y)Ξ1 =

(
1− 3(vh)2

4

)
A(Ξ1 sin τ) + Π1

[
η1(y, τ)

(
v̇h

v̈h
Ξ1 +A(Ξ1 sin τ)

)
sin τ

]

MW (Γ,Θ) =

(
1− 3(vh)2

4

) 1

2iε
A(Γ−Θ) +B

∑
k≥1

Γ2k+1 +Θ2k+1

2λ2k+1
sin((2k + 1)τ)


+Π1

η1(y, τ)
2iε

A(Γ−Θ) sin(τ) + η1(y, τ)B

∑
k≥1

Γ2k+1 +Θ2k+1

2λ2k+1
sin((2k + 1)τ)

 sin τ

+η2(y, τ)

∑
k≥1

Γ2k+1 +Θ2k+1

2λ2k+1
sin((2k + 1)τ)


mosc(y, τ)Ξ1 =iεΠ̃

[
η3(y, τ)

(
v̇h

v̈h
Ξ1 +A(Ξ1 sin τ)

)
sin τ

]

Mosc(Γ,Θ) =iεΠ̃

η3(y, τ)
 1

2iε
A(Γ−Θ) sin τ +B

∑
k≥1

Γ2k+1 +Θ2k+1

2λ2k+1
sin((2k + 1)τ)

 sin τ

+
∑
k≥1

Γ2k+1 +Θ2k+1

2λ2k+1
sin((2k + 1)τ)

 ,
and using the bounds for the functions ηj , j = 1, 2, 3 and the operators A and B provided in Propositions
3.9 and 3.10. □

We characterize the function ∆̃ as the unique solution of a certain integral equation. To this end, we
introduce some notation. Given a sequence a = (a2k+1)k≥1, we define the functions

IΓ(a)(y, τ) =
∑
k≥1

a2k+1e
−i

λ2k+1
ε y sin((2k + 1)τ)

IΘ(a)(y, τ) =
∑
k≥1

a2k+1e
i
λ2k+1

ε y sin((2k + 1)τ).
(3.24)

We also define the following linear operator, which is a right inverse of the operator L̃ in (3.20),

(3.25) P(f, g, h) =
(
PW (f),PΓ(g),PΘ(h)

)
,

where

PW (f) = v̈h(y)

∫ y

0

f(s)

v̈h(s)
ds

PΓ(g) =
∑
k≥1

PΓ
2k+1(g) sin((2k + 1)τ), PΓ

2k+1(g)(y) =

∫ y

y+

ei
λ2k+1

ε (s−y)Π2k+1[g](s)ds

PΘ(h) =
∑
k≥1

PΘ
2k+1(h) sin((2k + 1)τ), PΘ

2k+1(h)(y) =

∫ y

y−
e−i

λ2k+1
ε (s−y)Π2k+1[h](s)ds

and

y± = ±i
(π
2
− κε

)
.

Using the just introduced functions and operators and recalling that by, Theorem 3.1, Ξ1(0) = ∂yξ
u
1 (0)−

∂yξ
s
1(0) = 0, it can be easily checked that the function ∆̃ must satisfy the integral equation

(3.26) ∆̃ = (0, IΓ(c), IΘ(d)) + M̃(∆̃), with M̃(∆̃) = P ◦M(∆̃),

where M is given by (3.21) and IΓ(c), IΘ(d) are given in (3.24) with

(3.27) c2k+1 = Γ2k+1(y
+)ei

λ2k+1
ε y+

and d2k+1 = Θ2k+1(y
−)e−i

λ2k+1
ε y−

,
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(note that Γ(y+, τ) = IΓ(c)(y+, τ) and Θ(y−, τ) = IΘ(d)(y−, τ)).
Now we are ready to define the leading order of the function ∆̃. We first give some heuristic explanation.

In Section 7, we shall first show that M̃ is small and thus we expect that the main term of ∆̃ for the (Γ,Θ)
is given by (IΓ(c), IΘ(d)). Let us analyze how these functions behave. We do the reasoning for Γ since the
one for Θ is analogous.

IΓ(c)(y, τ) =
∑
k≥1

Γ2k+1(y
+)e−i

λ2k+1
ε (y−y+) sin((2k + 1)τ)

Recalling λ3 =
√
8− ε2, µ3 = 2

√
2, (3.18), that Γ2k+1(y

+) = λ2k+1∆2k+1(y
+) + iεΞ2k+1(y

+) and using
Theorem 3.6 to approximate the functions vu,s at the point y = y+ by the corresponding solutions of the
inner equation (see Theorem 3.3) and the asymptotic formula for the difference between ϕ0,u and ϕ0,s at
z+ = (y+ − iπ/2)/ε, also in Theorem 3.3, one has

Γ3(y
+) = 2

λ3
ε
e−iµ3

y+−i π
2

ε

(
Cin +O

(
1

κ

))
+ h.o.t

Γ2k+1(y
+) =

1

ε
e−iµ3

y+−i π
2

ε O
(
1

κ

)
+ h.o.t.

Therefore,

IΓ(c)(y) =
2λ3
ε
e−i2

√
2

y−i π
2

ε

(
Cin sin 3τ +O

(
1

κ

))
+ h.o.t

To prove Theorem 2.1, it suffices to justify the above leading order expansion of ∆̃.

Proposition 3.12. Take κ = 1
2λ3

| log ε|. There exists M > 0 independent of small ε such that, for any
y ∈ Rκ, it holds

|Ξ1(y)| ≤
M

|y2 + π2/4|2
e−

λ3
ε (π

2 −| Im(y)|),∥∥∥∥Γ(y, τ)− 2λ3
ε
Cine

−i2
√
2

y−i π
2

ε sin 3τ

∥∥∥∥
ℓ1

≤ M

ε| log ε|
e−

λ3
ε (π

2 −| Im(y)|),

for some constant M independent of ε. Moreover Θ(ȳ, τ) = Γ(y, τ) satisfies a similar estimate.

The proof of this proposition is deferred to Section 7. Recall that Ξ1(0) = ∂yv
u(0) − ∂yv

s(0) = 0 (see
Theorem 3.1). However, we also need to estimate this component for y ∈ Rκ to obtain the estimate of (Γ,Θ)
due to the coupling (see Section 7). The definition of Γ and the above inequality imply inequality (2.5)
except for the missing sin τ mode, which easily follows from Ξ1(0) = 0 and the estimate on Π1[∆] given by
Lemma 3.10.

4. Estimates of the invariant manifolds: Proof of Theorem 3.1

4.1. Banach Spaces and Linear Operators. In this section we prove Theorem 3.1 through a fixed point
argument in some appropriate Banach spaces. We consider only the unstable case, since the stable one is
completely analogous.

Given κ ≥ 1 and a real-analytic function h : Dout,u
κ → C (see (3.5)), we define

(4.1) ∥h∥m,α = sup
y∈Dout,u

κ ∩{Re(y)≤−1}
| cosh(y)mh(y)|+ sup

y∈Dout,u
κ ∩{Re(y)≥−1}

|(y2 + π2/4)αh(y)|,

and given a function ξ : Dout,u
κ × T → C which is real analytic in y ∈ Dout,u

κ , we define

∥ξ∥ℓ1,m,α =
∑
n≥1

∥Πn[ξ]∥m,α

and the Banach spaces

Em,α = {ξ : Dout,u
κ → C; ξ is real-analytic in y, and ∥ξ∥m,α <∞}

Eℓ1,m,α = {ξ : Dout,u
κ × T → C; ξ(y, τ) is real-analytic in y and ∥ξ∥ℓ1,m,α <∞}.

Lemma 4.1. There exists M > 0 depending only on β such that, for any g, h : Dout,u
κ × T → C, it holds
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(1) If α2 ≥ α1 ≥ 0, then

∥h∥ℓ1,m,α2
≤M∥h∥ℓ1,m,α1

and ∥h∥ℓ1,m,α1
≤ M

(κε)α2−α1
∥h∥ℓ1,m,α2

.

(2) If α1, α2 ≥ 0, and ∥g∥ℓ1,m1,α1
, ∥h∥ℓ1,m2,α2

<∞, then

∥gh∥ℓ1,m1+m2,α1+α2 ≤ ∥g∥ℓ1,m1,α1∥h∥ℓ1,m2,α2 .

This lemma actually applies to general functions 2π-periodic in τ , not just to odd functions. The proof
of this lemma is straightforward and we omit it.

Firstly to solve the linear equation Lξ = h, we introduce the operator G(h) acting on the Fourier coefficients
of h as

G(h) =
∑
n≥1

Gn(hn) sin(nτ), G̃(h) =
∑
n≥2

Gn(hn) sin(nτ) = Π̃[G(h)],

with

G1(h1) = −ζ1(y)
∫ y

0

ζ2(s)h1(s)ds+ ζ2(y)

∫ y

−∞
ζ1(s)h1(s)ds(4.2)

Gn(hn) = − iε

2λn
ei

λn
ε y

∫ y

−∞
e−iλn

ε shn(s)ds+
iε

2λn
e−iλn

ε y

∫ y

−∞
ei

λn
ε shn(s)ds, n ≥ 2.(4.3)

where

(4.4) ζ1(y) = −2
√
2
sinh(y)

cosh2(y)
and ζ2(y) = −

√
2

16

sinh(y)

cosh2(y)
(6y − 4 coth(y) + sinh(2y)),

are linearly independent solutions of

ζ̈ − ζ +
3(vh)2

4
ζ = 0 (see (3.1)).

Remark 4.2. When −∞ is involved in the above integrals, it should be understood that the integral is along
horizontal lines. As the integrands are analytic functions, integral paths may be modified to yield better
estimates in certain cases.

Proposition 4.3. The following statements hold.

(1) ∂yΠ1(G(ξ))(0) = 0.
(2) G ◦ L(ξ) = L ◦ G(ξ) = ξ.
(3) For any m > 1 and α ≥ 5, there exists a constant M > 0 independent of ε and κ such that, for every

h ∈ Em,α,

∥G1(h)∥1,α−2 + ∥∂yG1(h)∥1,α−1 ≤M∥h∥m,α.

(4) For any m ≥ 1, α ≥ 0, there exists M > 0 such that for every n ≥ 2 and h ∈ Em,α,

∥Gn(h)∥m,α ≤M
ε2

λ2n
∥h∥m,α, ∥∂yGn(h)∥m,α ≤M

ε

λn
∥h∥m,α, ∥∂yGn(h)∥m,α ≤M

ε2

λ2n
∥∂yh∥m,α.

The proof of this proposition is deferred to Appendix A. In particular, the last item indicates a gain of
an extra order regularity in τ for G(ξ) compared to general solutions to wave equations and an improvement
in the estimate of ∂yGn(h) when ∂yh ∈ Em,α, which is a typical trading between the smoothness and the
smallness in problems involving rapid oscillations.

4.2. Fixed Point Argument. Now, we use Proposition 4.3 to rewrite (3.3) as ξ = G ◦ F(ξ), where F is
given in (3.2). We analyze the operator

F ♯ = G ◦ F
defined on the closed ball

B0(Rε
2) =

{
ξ ∈ Eℓ1,1,3 | ∥ξ∥ℓ1,1,3 + ∥∂yξ∥ℓ1,1,4 ≤ Rε2

}
for some R > 0.
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Proposition 4.4. There exists M,κ0, ε0 > 0, such that, if ε ∈ (0, ε0), R > 0, and κ > κ0R
1
2 , then the

operator

F ♯ : Eℓ1,1,3 ⊃ B0(Rε
2) → Eℓ1,1,3

is well defined and satisfies

∥∂2τF ♯(0)∥ℓ1,1,3 + ∥∂2τ∂yF ♯(0)∥ℓ1,1,4 ≤Mε2,

∥∂2τ Π̃[F ♯(ξ)−F ♯(ξ′)]∥ℓ1,1,3 + ∥∂2τ∂yΠ̃[F ♯(ξ)−F ♯(ξ′)]∥ℓ1,1,4 ≤ M

κ2
(
∥ξ − ξ′∥ℓ1,1,3 + ∥∂yξ − ∂yξ

′∥ℓ1,1,4
)
,

∥Π1[F ♯(ξ)−F ♯(ξ′)]∥1,3 + ∥∂yΠ1

[
F ♯(ξ)− F̃(ξ′)

]
∥1,4

≤M
1 +R

κ2
(∥ξ − ξ′∥ℓ1,1,3 + ∥∂yξ − ∂yξ

′∥ℓ1,1,4) +M
(
∥Π̃[ξ − ξ′]∥ℓ1,1,3 + ∥∂yΠ̃[ξ − ξ′]∥ℓ1,1,4

)
.

Notice that the above bounds on ∂2τF ♯(ξ) immediately implies those on F ♯(ξ) as the zeroth mode is not
included.

Proof. First, we rewrite the operator F given in (3.2), in order to make explicit some cancellations. Recall
that g(u) = u3/3 + f(u) is given by (1.19). Then,

F(ξ) = − 1

ε3ω3
g(εω(ξ + vh sin τ)) +

(
(ξ1 + vh)3

4
− 3vhξ21

4
− ξ31

4

)
sin τ

= − 1

ε3ω3
Π̃
[
g(εω(ξ + vh sin τ))

]
+

{
−1

3
Π1

[(
(ξ1 + vh) sin(τ) + Π̃(ξ)

)3]
− 1

ε3ω3
Π1

[
f(εω(ξ + vh sin τ))

]
+

(ξ1 + vh)3

4
− 3vhξ21

4
− ξ31

4

}
sin τ

= − 1

ε3ω3
Π̃
[
g(εω(ξ + vh sin τ))

]
+

{
−1

3
Π1

[
(ξ1 + vh)3 sin3 τ + 3(ξ1 + vh)2 sin2 τ Π̃[ξ]

+3(ξ1 + vh) sin τ(Π̃[ξ])2 + (Π̃[ξ])3
]
− 1

ε3ω3
Π1

[
f(εω(ξ + vh sin τ))

]
+
(ξ1 + vh)3

4
− 3vhξ21

4
− ξ31

4

}
sin τ.

Therefore,

F(ξ) = − 1

ε3ω3
Π̃
[
g(εω(ξ + vh sin τ))

]
+

{
Π1

[
− (ξ1 + vh)2(sin2 τ)Π̃[ξ]− (ξ1 + vh)(sin τ)(Π̃[ξ])2

− 1

3
(Π̃[ξ])3

]
− 1

ε3ω3
Π1

[
f(εω(ξ + vh sin τ))

]
− 3vhξ21

4
− ξ31

4

}
sin τ.

(4.5)

which implies

F(0) = − 1

ε3ω3
Π̃
[
g(εω(vh sin τ))

]
− 1

ε3ω3
Π1

[
f(εω(vh sin τ))

]
sin τ.

Let g and f have the power series expansion

g(u) =

∞∑
d=1

g2d+1u
2d+1, f(u) =

∞∑
d=2

g2d+1u
2d+1, g3 =

1

3
,

with a positive radius of convergence. Using Lemma 4.1 and Proposition 4.3, one may estimate

∥∂2τ G̃F(0)∥ℓ1,1,3 ≲ ε2∥Π̃F(0)∥ℓ1,1,3 ≲ ε2
∞∑
d=1

(εω)2d−2|g2d+1|∥(vh sin τ)2d+1∥ℓ1,1,3

≲ ε2
∞∑
d=1

(ω
κ

)2d−2

|g2d+1|∥(vh sin τ)2d+1∥ℓ1,2d+1,2d+1 ≲ ε2
∞∑
d=1

(ω
κ

)2d−2

|g2d+1|∥vh∥2d+1
1,1 ≲ ε2,
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for reasonably large κ. In particular, in the above the operator ∂2τ creates a Fourier multiplier of n2 to the
mode of sinnτ , which is cancelled by the λ−2

n in the estimate of Gn in Proposition 4.3. In order to obtain

the desired estimate on ∥∂yG̃F(0)∥ℓ1,1,4, we also need

∂yF(0) = − 1

ε2ω2
g′(εω(vh sin τ))(vh)′ sin τ = −

∞∑
d=1

(2d+ 1)(εω)2d−2g2d+1(v
h)2d∂yv

h sin2d+1 τ

which implies

∥∂yF(0)∥ℓ1,1,4 ≲
∞∑
d=1

(2d+ 1)(εω)2d−2|g2d+1|∥(vh)2d∂yvh sin2d+1 τ∥ℓ1,1,4

≲
∞∑
d=1

(2d+ 1)
(ω
κ

)2d−2

|g2d+1|∥(vh)2d∂yvh sin2d+1 τ∥ℓ1,2d+1,2d+2

≲
∞∑
d=1

(2d+ 1)
(ω
κ

)2d−2

|g2d+1|∥vh∥2d1,1∥∂yvh∥1,2 ≲ 1,

for reasonably large κ. Hence the estimates related to ∥ · ∥ℓ1,1,4 estimate related to ∂yG̃F(0) follows from
Proposition 4.3. Again, using Lemma 4.1 and Proposition 4.3, one may also estimate

∥G1Π1F(0)∥1,3 ≲ ∥Π1F(0)∥3,5 ≲
∞∑
d=2

(εω)2d−2|g2d+1|∥(vh)2d+1∥3,5

≲ (εω)2
∞∑
d=2

(ω
κ

)2d−4

|g2d+1|∥(vh)2d+1∥2d+1,2d+1 ≲ (εω)2
∞∑
d=2

(ω
κ

)2d−4

|g2d+1|∥vh∥2d+1
1,1 ≲ ε2,

for reasonably large κ. The estimate on ∂yGΠ1[F(0)] is obtained in a similar fashion. The sum of these
inequalities imply the estimate on F ♯(0).

To estimate the Lipschitz constant of F ♯, let ξ, ξ′ ∈ B0(Rε
2), we have

F(ξ)−F(ξ′) = − 1

(εω)3
Π̃
[
g(εω(ξ + vh sin τ))− g(εω(ξ′ + vh sin τ))

]
+

{
−Π1

[
(ξ1 + vh)2(sin2 τ)(Π̃[ξ]− Π̃[ξ′])−

(
(ξ1 + vh)2 − (ξ′1 + vh)2

)
(sin2 τ)Π̃[ξ′]

]
−Π1

[
(ξ1 + vh)(sin τ)(Π̃[ξ]2 − Π̃[ξ′]2)− (ξ1 − ξ′1)(sin τ)Π̃[ξ′]2

]
− 1

3
Π1

[
Π̃[ξ]3 − Π̃[ξ′]3

]
− 1

(εω)3
Π1

[
f(εω(ξ + vh sin τ))− f(εω(ξ′ + vh sin τ))

]
− 3vh(ξ21 − (ξ′1)

2)

4
− ξ31 − (ξ′1)

3

4

}
sin τ.

For any d ≥ 2, m ≥ 0, α ≥ 0, and ζ, ζ ′ ∈ Eℓ1,m,α, it is straight forward to estimate

∥ζd − (ζ ′)d∥ℓ1,dm,dα ≲ d(∥ζ∥d−1
ℓ1,m,α + ∥ζ ′∥d−1

ℓ1,m,α)∥ζ − ζ ′∥ℓ1,m,α

where the constant is independent of d. Another useful inequality is

∥ξ∥ℓ1,1,1 + ∥∂yξ∥ℓ1,1,2 ≲ (κε)−2(∥ξ∥ℓ1,1,3 + ∥∂yξ∥ℓ1,1,4) ≲
R

κ2
≲ 1, ξ ∈ B0(Rε

2).
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Hence one may use Lemma 4.1 and Proposition 4.3 to estimate

∥∂2τ G̃[F(ξ)−F(ξ′)]∥ℓ1,1,3 ≲ ε2∥Π̃[F(ξ)−F(ξ′)]∥ℓ1,1,3

≲ ε2
∞∑
d=1

(εω)2d−2|g2d+1|∥(ξ + vh sin τ)2d+1 − (ξ′ + vh sin τ)2d+1∥ℓ1,1,3

≲ ε2
∞∑
d=1

(ω
κ

)2d−2

|g2d+1|∥(ξ + vh sin τ)2d+1 − (ξ′ + vh sin τ)2d+1∥ℓ1,2d+1,2d+1

≲ ε2
∞∑
d=1

d
(ω
κ

)2d−2

|g2d+1|(1 + ∥ξ∥2dℓ1,1,1 + ∥ξ′∥2dℓ1,1,1)∥ξ − ξ′∥ℓ1,1,1

≲κ−2
∞∑
d=1

d
(ω
κ

)2d−2

|g2d+1|∥ξ − ξ′∥ℓ1,1,3 ≲ κ−2∥ξ − ξ′∥ℓ1,1,3

for κ ≥ R reasonably large. To estimates ∂yG̃[F(ξ)−F(ξ′)], in a similar fashion one needs to compute

∥∂y
(
F(ξ)−F(ξ′)

)
∥ℓ1,1,4

≲
∞∑
d=1

d(εω)2d−2|g2d+1|
∥∥∥(ξ + vh sin τ)2d(∂yξ + ∂y sin τ)− (ξ′ + vh sin τ)2d(∂yξ

′ + ∂y sin τ)
∥∥∥
ℓ1,1,4

≲
∞∑
d=1

d
(ω
κ

)2d−2

|g2d+1|
∥∥∥(ξ + vh sin τ)2d(∂yξ + ∂yv

h sin τ)

− (ξ′ + vh sin τ)2d(∂yξ
′ + ∂yv

h sin τ)
∥∥∥
ℓ1,2d+1,2d+2

≲∥ξ − ξ′∥ℓ1,1,1 + ∥∂yξ − ∂yξ
′∥ℓ1,1,2 ≲ (κε)−2(∥ξ − ξ′∥ℓ1,1,3 + ∥∂yξ − ∂yξ

′∥ℓ1,1,4),

where in the derivation of the third≲ we applied ∥·∥ℓ1,1,1 norm to all ξ, ξ′, and vh and ∥·∥ℓ1,1,2 norm to all ∂yξ,

∂yξ
′, and ∂yv

h. Along with Proposition 4.3 this inequality yields the desired estimate on ∂yG̃[F(ξ)−F(ξ′)].
The G1 component can be estimated much as in the above. In fact,

∥G1Π1[F(ξ)−F(ξ′)]∥1,3 + ∥∂yG1Π1[F(ξ)−F(ξ′)]∥1,4 ≲ ∥Π1[F(ξ)−F(ξ′)]∥3,5

≲
1

(εω)3
∥f(εω(ξ + vh sin τ))− f(εω(ξ′ + vh sin τ))∥ℓ1,3,5 + ∥Π̃[ξ]− Π̃[ξ′]∥ℓ1,1,3

+ (∥ξ∥ℓ1,1,1 + ∥ξ∥2ℓ1,1,1 + ∥ξ′∥ℓ1,1,1 + ∥ξ′∥2ℓ1,1,1)∥ξ − ξ′∥ℓ1,1,3

where all the ξ, ξ′, and vh sin τ in front of ξ−ξ′ were taken the ∥·∥ℓ1,1,1 norm. The f terms can be estimated
much as in the above

1

(εω)3
∥f(εω(ξ + vh sin τ))− f(εω(ξ′ + vh sin τ))∥ℓ1,3,5

≲
∞∑
d=2

(εω)2d−2|g2d+1|(κε)−(2d−4)∥(ξ + vh sin τ)2d+1 − (ξ′ + vh sin τ)2d+1∥ℓ1,2d+1,2d+1

≲κ−2
∞∑
d=1

d(
ω

κ
)2d−4|g2d+1|∥ξ − ξ′∥ℓ1,1,3 ≲ κ−2∥ξ − ξ′∥ℓ1,1,3

for κ ≥ R reasonably large. Summarizing the above estimates, the proposition follows. □

With the above preparations, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. We claim that, if κ is sufficiently large, then F ♯ is a contraction on the set

S = {ξ ∈ Eℓ1,1,3 |∥Π1[ξ]∥1,3 + ∥∂yΠ1[ξ]∥1,4 ≤ (1 +M)2ε2,

∥Π̃[ξ]∥ℓ1,1,3 + ∥∂yΠ̃[ξ]∥ℓ1,1,4 ≤ (1 +M)ε2} ⊂ B0(Rε
2), R = (1 +M)(2 +M),
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equipped with the metric

|ξ|M := ∥Π1[ξ]∥1,3 + ∥∂yΠ1[ξ]∥1,4 + (1 +M)
(
∥Π̃[ξ]∥ℓ1,1,3 + ∥∂yΠ̃[ξ]∥ℓ1,1,4),

whereM is the constant from Proposition 4.4. In fact, using Proposition 4.4 it is straight forward to estimate
that, for any ξ ∈ S,

∥Π1[F ♯(ξ)]∥1,3 + ∥∂yΠ1[F ♯(ξ)]∥1,4 ≤∥F ♯(0)∥ℓ1,1,3 + ∥∂yF ♯(0)∥ℓ1,1,4 +M
1 +R

κ2
Rε2 +M(1 +M)ε2

≤
(
M +M

1 +R

κ2
R+M(1 +M)

)
ε2 ≤ (1 +M)2ε2,

∥Π̃[F ♯(ξ)]∥ℓ1,1,3 + ∥∂yΠ̃[F ♯(ξ)]∥ℓ1,1,4 ≤∥F ♯(0)∥ℓ1,1,3 + ∥∂yF ♯(0)∥ℓ1,1,4 +
M

κ2
Rε2

≤
(
M +

M

κ2
R

)
ε2 ≤ (1 +M)ε2,

and for any ξ, ξ′ ∈ S,

|F ♯(ξ)−F ♯(ξ′)|M ≤
(
M

1 +R

κ2
+ (1 +M)

M

κ2

)(
∥Π1[ξ − ξ′]∥1,3 + ∥Π̃[ξ − ξ′]∥ℓ1,1,3 + ∥∂yΠ1[ξ − ξ′]∥1,4

+ ∥∂yΠ̃[ξ − ξ′]∥ℓ1,1,4
)
+M(∥Π̃[ξ − ξ′]∥ℓ1,1,3 + ∥∂yΠ̃[ξ − ξ′]∥ℓ1,1,4)

≤
(
M

1 +R

κ2
+ (1 +M)

M

κ2
+

M

1 +M

)
|ξ − ξ′|M .

Therefore our above claim holds if κ is large and F ♯ has a unique fixed point ξu ∈ S ⊂ B0(Rε
2). It

clearly satisfies all desired properties in Theorem 3.1. Using that g given in (1.19) is an odd function, a
straightforward computation shows that the operator F in (3.2) leaves invariant the subspace of functions
ξ : Dout,u

κ × T → C satisfying Π2l[ξ] = 0, ∀l ≥ 0. Consequently, ξu satisfies that Π2l[ξ
u] = 0, ∀l ≥ 0 which

completes the proof of Theorem 3.1.

5. The Inner equation: Proof of Theorem 3.3

We look for solutions odd in τ of the inner equation (3.9) as

(5.1) ϕ0 =
∑
n≥1

ϕ0n sin(nτ).

Substituting (5.1) into (3.9), we obtain that

(5.2) (∂2z + (n2 − 1))ϕ0n +Πn

[
1

3
(ϕ0)3 + f(ϕ0)

]
= 0, n ≥ 1.

As explained in Section 3, we look for solutions of the form

(5.3) ϕ0(z, τ) =
−2

√
2i

z
sin(τ) + ψ(z, τ) with ψ = O

(
1

z3

)
.

Then, by (5.2), ψ(z, τ) =
∑

n≥1 ψn(z) sin(nτ) must satisfy

(5.4)


∂2zψ1 −

6

z2
ψ1 = −Π1

[
− 8

z2
sin2(τ)Π̃ [ψ]− 2

√
2i

z
sin(τ)ψ2 +

1

3
ψ3 + f

(
−2

√
2i

z
sin(τ) + ψ

)]
,

∂2zψn + µ2
nψn = −Πn

1
3

(
−2

√
2i

z
sin(τ) + ψ

)3

+ f

(
−2

√
2i

z
sin(τ) + ψ

) , n ≥ 2,

where ′ = d/dz, and µn =
√
n2 − 1.

We observe that the nonlinearity f(u) = O(|u|5) in (5.2) does not have to be a real analytic function, so
we complexify the space Fr, r > 0, in (1.7), into a complex Banach space

Fc
r =

{
f : {u ∈ C : |u| < r} → C, f is odd, analytic, and f(u) =

∑
k≥2

fku
2k+1, ∥f∥r <∞

}
,(5.5)
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where

(5.6) ∥f∥r :=

∞∑
k=0

|fk|rk, for f(u) =

∞∑
k=0

fku
k.

We define the operators

I(ψ) =
(
∂2zψ1 −

6

z2
ψ1

)
sin(τ) +

∑
n≥2

(
∂2zψn + µ2

nψn

)
sin(nτ)(5.7)

W(f, ψ) =−Π1

[
− 8

z2
sin2(τ)Π̃ [ψ]− 2

√
2i

z
sin(τ)ψ2 +

1

3
ψ3

]
sin(τ)(5.8)

− Π̃

1
3

(
−2

√
2i

z
sin(τ) + ψ

)3
− f

(
−2

√
2i

z
sin(τ) + ψ

)

and notice that, for ⋆ = u, s, to find a solution ϕ0,⋆ of (3.9) satisfying (5.3) is equivalent to find a solution
ψ⋆ of the functional equation

(5.9) I(ψ) = W(f, ψ),

which satisfies ψ⋆ ∼ O(z−3) for z ∈ D⋆,in
θ,κ , ⋆ = u, s, as defined in (3.10). In the remainder of this section,

we look for solutions of (5.9) with such asymptotics through a fixed point argument and analyze their
dependence on f ∈ Fc

r . As before, we consider only the unstable case, since the stable one is completely
analogous.

5.1. Banach Spaces and Linear Operators. Given α ≥ 0 and an analytic function h : Du,in
θ,κ → C, where

Du,in
θ,κ is given in (3.10), consider the norm

∥h∥α = sup
z∈Du,in

θ,κ

|zαh(z)|,

and the Banach space

Xα = {h : Du,in
θ,κ → C; h is an analytic function and ∥h∥α <∞}.

Moreover, for h : Du,in
θ,κ × T → C, analytic in the variable z, we define

∥h∥ℓ1,α =
∑
n≥1

∥hn∥α,

and the Banach space

Xℓ1,α =
{
h : Du,in

θ,κ × T → C; h is an analytic function in the variable z and ∥h∥ℓ1,α <∞
}
.

Lemma 5.1. Let r > 0. Given an analytic function f : {u ∈ C : |u| < r} → C and g, h : Du,in
θ,κ ×T → C, the

following statements hold for some M depending only on θ and r,

(1) If α ≥ β ≥ 0, then

∥h∥ℓ1,α−β ≤ M

κβ
∥h∥ℓ1,α.

(2) If α, β ≥ 0, and ∥g∥ℓ1,α, ∥h∥ℓ1,β <∞, then

∥gh∥ℓ1,α+β ≤ ∥g∥ℓ1,α∥h∥ℓ1,β .

(3) If α ≥ 0, g, h ∈ Xℓ1,α and ∥g∥ℓ1,0, ∥h∥ℓ1,0 < r/2, then

∥f(g)− f(h)∥ℓ1,α ≤M∥f∥r∥g − h∥ℓ1,α.

(4) Given n ≥ 0, if f (k)(0) = 0, for every 0 ≤ k ≤ n− 1, and ∥g∥ℓ1,0 < r/2, then

∥f(g)∥ℓ1,nα ≤M∥f∥r(∥g∥ℓ1,α)n.

M also depends on n.
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(5) If h ∈ Xℓ1,α (with respect to the inner domain Du,in
θ,κ ), then ∂zh ∈ Xℓ1,α+1 (with respect to the inner

domain Du,in
2θ,4κ), and

∥∂zh∥ℓ1,α+1 ≤M∥h∥ℓ1,α.

Proof. Items (1)(2)(5) of this lemma are proved as Lemma 4.3 in [3]. To prove (3) and (4), let f(u) =∑∞
k=0 fku

k. One may estimate using item (2),

∥f(g)− f(h)∥ℓ1,α =
∥∥∥(g − h)

∞∑
k=0

fk+1

k∑
j=0

gk−jhj
∥∥∥
ℓ1,α

≤
∞∑
k=0

|fk+1|
k∑

j=0

∥g∥k−j
ℓ1,0

∥h∥jℓ1,0∥g − h∥ℓ1,α

≤
∞∑
k=0

(k + 1)|fk+1|
(r
2

)k
∥g − h∥ℓ1,α =

∞∑
k=0

k + 1

2kr
|fk+1|rk+1∥g − h∥ℓ1,α,

which implies item (3). Again based on item (2), the proof of item (4) is similar

∥f(g)∥ℓ1,nα =
∥∥∥ ∞∑

k=n

fkg
k
∥∥∥
ℓ1,nα

≤
∞∑

k=n

|fk|∥g∥k−n
ℓ1,0

∥g∥nℓ1,α ≤
∞∑

k=n

|fk|rkr−n∥g∥nℓ1,α

and thus item (4) follows. □

Now, define the linear operator acting on the Fourier coefficients of ψ

J (ψ) =
∑
n≥1

Jn(ψn) sin(nτ),

where

J1(ψ1)(z) =
z3

5

∫ z

−∞

ψ1(s)

s2
ds− 1

5z2

∫ z

−∞
s3ψ1(s)ds

Jn(ψn)(z) =
1

2iµn

∫ z

−∞
e−iµn(s−z)ψn(s)ds−

1

2iµn

∫ z

−∞
eiµn(s−z)ψn(s)ds, n ≥ 2.

(5.10)

See Remark 4.2 regarding the integral paths.

Proposition 5.2. Consider κ ≥ 1 big enough. Given α > 2, the operator (∂2τ ) ◦ J : Xℓ1,α+2 → Xℓ1,α is well
defined and the following statements hold.

(1) J ◦ I(ψ) = I ◦ J (ψ) = ψ.
(2) For any α > 2, there exists a constant M > 0 independent of κ such that, for every h ∈ Xα+2,

∥J1(h)∥α ≤M∥h∥α+2.

(3) For any α > 1, there exists a constant M > 0 independent of κ and n such that, for every h ∈ Xα,

∥Jn(h)∥α ≤ M

µ2
n

∥h∥α.

Again the above estimates represent the gain of one more order of derivative in τ . The assumption α > 1
in the above last inequality ensures the convergence of the integral in the definition of Jn and also allows
one to adjust the path of the integral in certain ways.

Proof. The proof of item (1) is straightforward. For Jn, n ≥ 2 and α > 1, one can use the same trick as in
the proof of Lemma 4.6 in [3], by using the Cauchy Integral Theorem to move the integral paths to the rays

{z − se±iθ : s > 0} for the two integrals respectively, to obtain that for h ∈ Xα and z ∈ Du,in
θ,κ ,

|zαJn(h)(z)| =
∣∣∣∣zαeiθ2iµn

∫ ∞

0

eiµnse
iθ

h(z − seiθ)ds− zαe−iθ

2iµn

∫ ∞

0

e−iµnse
−iθ

h(z − se−iθ)ds

∣∣∣∣
≤ 1

2µn

(∫ ∞

0

e−µn(sin θ)s|z|α|h(z − seiθ)|ds+
∫ ∞

0

e−µn(sin θ)s|z|α|h(z − se−iθ)|ds
)

≤ M

µ2
n

∥h∥α.
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For J1, taking h ∈ Xα+2, α > 2 and z ∈ Du,in
θ,κ ,

|zαJ1(h)(z)| =
∣∣∣∣zα+3

5

∫ z

−∞

h(s)

s2
ds− zα−2

5

∫ z

−∞
s3h1(s)ds

∣∣∣∣
≤M∥h∥α+2

(∫ z

−∞

|z|α+3

|s|α+4
ds+

∫ z

−∞

|z|α−2

|s|α−1
ds

)
≤M∥h∥α+2.

The proof of the proposition is complete. □

5.2. The fixed point argument. By Proposition 5.2, we rewrite (5.9) as

ψ = W♯(f, ψ), W♯ = J ◦W, f ∈ Fc
r , ∥ψ∥ℓ1,0 ≤ r,

where W is given by (5.8). In the following proposition we study some properties of the operator W♯.

Proposition 5.3. Given r > 0, for big enough κ ≥ max{1, 100/r} and R < min{κ2, rκ3/100}, the operator
W♯ : Fc

r × B0(R) → Xℓ1,3 (where B0(R) ⊂ Xℓ1,3 is the ball of radius R) is analytic in both f and ψ and the
following statements hold.

(1) There exists a constantM1 > 0 depending only on θ and r such that ∥∂2τW♯(f, 0)∥ℓ1,3 ≤M1(1+∥f∥r).
(2) There exists a constantM2 > 1 depending only on θ and r such that, for every ψ,ψ′ ∈ B0(R) ⊂ Xℓ1,3,∥∥W♯(f, ψ)−W♯(f, ψ′)

∥∥
ℓ1,3

≤M2

(
1

κ2
(1 +R+ ∥f∥r)∥ψ − ψ′∥ℓ1,3 + ∥Π̃[ψ]− Π̃[ψ′]∥ℓ1,3

)
.

Furthermore,∥∥∥∂2τ (Π̃[W♯(f, ψ)]− Π̃[W♯(f, ψ′)]
)∥∥∥

ℓ1,3
≤ M2

κ2
(1 +R+ ∥f∥r) ∥ψ − ψ′∥ℓ1,3.

Proof. W(f, 0) is given by

W(f, 0) = −Π̃

1
3

(
−2

√
2i

z
sin(τ)

)3
− f

(
−2

√
2i

z
sin(τ)

)
.

Thus, since f(z) = O(z5), it follows from Lemma 5.1(4) that

∥Π1[W(f, 0)]∥5 ≤M∥f∥r

∥∥∥∥∥−2
√
2i

z
sin(τ)

∥∥∥∥∥
5

ℓ1,1

≤M∥f∥r,

∥∥∥Π̃[W(f, 0)]
∥∥∥
ℓ1,3

≤M

∥∥∥∥∥−2
√
2i

z
sin(τ)

∥∥∥∥∥
3

ℓ1,1

+
∥f∥r
κ2

∥∥∥∥∥−2
√
2i

z
sin(τ)

∥∥∥∥∥
5

ℓ1,1

 ≤M
(
1 + κ−2∥f∥r

)
.

Hence, from Lemma 5.1 and Proposition 5.2, there exists M1 > 0 such that∥∥∂2τW ♯(f, 0)
∥∥
ℓ1,3

≤
∥∥∂2τJ (Π1[W(f, 0)] sin(τ))

∥∥
ℓ1,3

+
∥∥∥∂2τJ (Π̃[W(f, 0)]

)∥∥∥
ℓ1,3

≤M

(
∥Π1[W(f, 0)]∥5 +

∥∥∥Π̃[W(f, 0)]
∥∥∥
ℓ1,3

)
≤M1 (1 + ∥f∥r) .

To prove item (2) on the Lipschitz property, assume that ∥ψ∥ℓ1,3, ∥ψ′∥ℓ1,3 ≤ R, and notice that

W(f, ψ)−W(f, ψ′) =−Π1

[
− 8

z2
sin2(τ)

(
Π̃ [ψ − ψ′]

)
− 2

√
2i

z
sin(τ)

(
ψ2 − (ψ′)2

)
+
1

3

(
ψ3 − (ψ′)3

)]
sin(τ)− 1

3
Π̃

(−2
√
2i

z
sin(τ) + ψ

)3

−

(
−2

√
2i

z
sin(τ) + ψ′

)3


− f

(
−2

√
2i

z
sin(τ) + ψ

)
+ f

(
−2

√
2i

z
sin(τ) + ψ′

)
.
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Thus, again from Lemma 5.1,

∥Π1 [W(f, ψ)−W(f, ψ′)]∥5 ≤
∥∥∥∥ 8

z2
sin2(τ)

∥∥∥∥
ℓ1,2

∥∥∥Π̃ [ψ − ψ′]
∥∥∥
ℓ1,3

+

∥∥∥∥∥2
√
2i

z
sin(τ)

∥∥∥∥∥
ℓ1,1

∥ψ + ψ′∥ℓ1,1 +
∥∥ψ2 + ψψ′ + (ψ′)2

∥∥
ℓ1,2

 ∥ψ − ψ′∥ℓ1,3

+

∥∥∥∥∥
∫ 1

0

f ′

(
−2

√
2i

z
sin(τ) + sψ + (1− s)ψ′

)
ds

∥∥∥∥∥
ℓ1,2

∥ψ − ψ′∥ℓ1,3

≤M
(∥∥∥Π̃ [ψ − ψ′]

∥∥∥
ℓ1,3

+
1

κ2
(R+ ∥f ′∥ r

2
) ∥ψ − ψ′∥ℓ1,3

)
≤M

(∥∥∥Π̃ [ψ − ψ′]
∥∥∥
ℓ1,3

+
1

κ2
(R+ ∥f∥r) ∥ψ − ψ′∥ℓ1,3

)
,

and, recalling from (1.19) that g(z) = z3

3 + f(z) = O(z3), we have that∥∥∥Π̃ [W(f, ψ)−W(f, ψ′)]
∥∥∥
ℓ1,3

≤

∥∥∥∥∥
∫ 1

0

g′

(
−2

√
2i

z
sin(τ) + sψ + (1− s)ψ′

)
ds

∥∥∥∥∥
ℓ1,0

∥ψ − ψ′∥ℓ1,3

≤M
κ2

∥g′∥ r
2
∥ψ − ψ′∥ℓ1,3 ≤ M

κ2
(1 + ∥f∥r) ∥ψ − ψ′∥ℓ1,3 .

Item (2) follows from the estimates above and Proposition 5.2.
Finally we prove the analyticity of W♯(f, ψ). Since J is linear, it suffices to show that W(f, ψ) is analytic

in f ∈ Fc
r and ψ ∈ B0(R) ⊂ Xℓ1,3, which is equivalent to the analyticity of (f, ψ) → f

(−2
√
2i

z sin(τ) + ψ
)
as

the analyticity of the other terms is obvious. For any ψ0 ∈ B0(R), let us denote

φ0 =
−2

√
2i

z
sin(τ) + ψ0,

which, due to Lemma 5.1, satisfies

∥φ0∥ℓ1,1 ≤ 3 + κ−2∥ψ0∥ℓ1,3 ≤ 3 + κ−2R ≤ 4.

Consider also f ∈ Fc
r ,

f(u) =

∞∑
k=0

fku
k, fk ∈ C, fk = 0, ∀k ∈ {j ∈ N : 2|j or j < 5}, ∥f∥r <∞,

where the coefficient sequence (fk) can be viewed as the coordinates of f . Near ψ0, one may compute

f
(−2

√
2i

z
sin(τ) + ψ0 + ψ

)
=f(φ0 + ψ) =

∞∑
k=0

fk(φ0 + ψ)k =

∞∑
k=0

fk

k∑
j=0

k!

j!(k − j)!
φk−j
0 ψj

=

∞∑
j=0

( ∞∑
k=j

k!

j!(k − j)!
fkφ

k−j
0

)
ψj ≜

∞∑
j=0

Aj(φ0)(f, ψ),

where

Aj(φ0)(f, ψ) =

∞∑
k=j

k!

j!(k − j)!
fkφ

k−j
0 ψj .

The (j + 1)-linear transformation Aj(φ0) of f and ψ can be estimated by Lemma 5.1 as, for j = 0,

∥A0(φ0)(f, ψ)∥ℓ1,3 ≤
∞∑
k=5

|fk|∥φk
0∥ℓ1,3 ≤

∞∑
k=5

|fk|rkr−k∥φ0∥k−3
ℓ1,0

∥φ0∥3ℓ1,1 ≤M

∞∑
k=5

|fk|rk
(rκ
4

)3−k ≤M∥f∥r,
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and for j ≥ 1,

∥Aj(φ0)(f, ψ)∥ℓ1,3 ≤
∞∑

k=max{j,5}

k!

j!(k − j)!
|fk|∥φk−j

0 ψj∥ℓ1,3

≤ ∥ψ∥ℓ1,3
∞∑

k=max{j,5}

|fk|rk
k!

j!(k − j)!
r−k∥φ0∥k−j

ℓ1,0
∥ψ∥j−1

ℓ1,0

≤ ∥ψ∥jℓ1,3
∞∑

k=max{j,5}

|fk|rk
k!4k−j

j!(k − j)!
r−kκ−k−2j+3.

Since, using k!
(k−j)! ≤ kj , for any k ≥ max{j, 5},

k!4k−j

j!(k − j)!
r−kκ−k−2j+3 ≤ 1

j!4jκ2j−3
kj
( 4

rκ

)k
=

jj

j!4jκ2j−3

(
log

rκ

4

)−j((k
j
log

rκ

4

)
e−

k
j log rκ

4

)j
≤j

jκ3

j!ej

(
4κ2 log

rκ

4

)−j

≤Mj−
1
2κ3
(
4κ2 log

rκ

4

)−j

,

where the Stirling’s approximation was used in the last step. Hence, Aj(φ0) is a bounded multi-linear
transformation, which satisfies

∥Aj(φ0)(f, ψ)∥ℓ1,3 ≤Mj−
1
2κ3
(
4κ2 log

rκ

4

)−j

∥f∥r∥ψ∥jℓ1,3.

This estimate also implies the analyticity of f
(−2

√
2i

z sin(τ) + ψ
)
in f and ψ. □

Proof of Theorem 3.3(1). Much as in the proof of Theorem 3.1, we use an equivalent norm on Xℓ1,3

∥ψ∥∗ := ∥ψ1∥3 + 2M2∥Π̃[ψ]∥ℓ1,3,

where M2 is the constant resulted in Proposition 5.3(2). Let R0 > 0 and consider f ∈ Fc
r with ∥f∥r ≤ R0.

Using Proposition 5.3, it is straight forward to verify that, with in the above norm ∥ · ∥∗ for sufficiently large
κ > 0, W♯ is a contraction on the closed ball of Xℓ1,3 with radius R = 3M1(1+ 2M2)(1+R0) with Lipschitz
constant κ−2(1 +R+R0)M2(1 + 2M2) +

1
2 <

2
3 . The unique fixed point ψu depends on f ∈ Fc

r analytically

and gives the unstable solution ϕ0,u in the form of (5.3) which satisfies the desired estimates. Using the
same arguments in the proof of Theorem 3.1, one can conclude Π2l[ψ

u] ≡ 0, ∀l ≥ 0. □

5.3. The difference between the solutions of the Inner Equation. This section is devoted to prove
the second and third statement of Theorem 3.3. We consider the two solutions ϕu,s0 of the inner equation
(3.9) which are given by (3.11) and we study the difference

∆ψ(z, τ) = ϕ0,u(z, τ)− ϕ0,s(z, τ) = ψu(z, τ)− ψs(z, τ),

for z ∈ Rin,+
θ,κ = Du,in

θ,κ ∩Ds,in
θ,κ ∩ {z : z ∈ iR and Im(z) < 0} and τ ∈ T. For this purpose, we actually work

on (3.9) as an ill-posed dynamical system of real independent variable along Rin,+
θ,κ .

Remark 5.4. We are interested in the behavior of the difference in the connected component Rin,+
θ,κ of

Du,in
θ,κ ∩Ds,in

θ,κ ∩ iR because the change z = ε−1(y − iπ/2) brings the origin y = 0 into z = −iε−1π/2 ∈ Rin,+
θ,κ .

Let r ≫ 1. We define the change of variables

(5.11) z = −ir, Ψ1(r) = ϕ01(−ir), Ψn±(r) = ∂r
(
ϕ0n(−ir)

)
±
√
n2 − 1ϕ0n(−ir), n ≥ 3.

That is

ϕ0(−ir, τ) = Ψ1(r) sin τ +
∑
n≥3

1

2
√
n2 − 1

(Ψn+(r)−Ψn−(r)) sinnτ,(5.12)

∂r
(
ϕ0(−ir, τ)

)
= ∂rΨ1(r) sin τ +

∑
n≥3

1

2
(Ψn+(r) + Ψn−(r)) sinnτ.(5.13)
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Then, equation (3.9) takes the form

(5.14)

{
∂2rΨ1 − 1

4Ψ
3
1 = F1(Ψ)

∂rΨn± = ±
√
n2 − 1Ψn± + Fn(Ψ),

where

F = (Fn)
∞
n=1, F1(Ψ) =Π1

[ 1
3
(ϕ0)3 + f(ϕ0)

]
− 1

4
Ψ3

1, Fn(Ψ) = Πn

[1
3
(ϕ0)3 + f(ϕ0)

]
, n ≥ 3.

Since 1
4Ψ

3
1 in the nonlinearity is isolated into the left side of (5.14), the cubic terms in F1 do not include Ψ3

1.
Note that, by item (1) of Theorem 3.3, we can restrict to the space of odd n’s.

Let Ψ∗(r), ∗ = u, s, be the functions ϕ0,∗, ∗ = u, s, expressed in the coordinates introduced in (5.11). We
are interested in Ψs−Ψu as r → +∞ where, since we shall consider certain local invariant manifolds/foliation
which are not necessarily analytic submanifolds, we work in the space ℓ2 with the smooth norm

∥Ψ∥2ℓ2 := |Ψ1|2 + |∂rΨ1|2 +
∞∑

n=3,odd

n2(|Ψn+|2 + |Ψn−|2)

and treat Ψ1, ∂rΨ1,Ψn± as 2-dim real vectors. We also define

Ψc = (Ψ1, ∂rΨ1), Ψ± = (Ψn±)
∞
n=3.

Part (1) of Theorem 3.3 implies that Ψu,s do belong to the ℓ2 space.
It is easy to see that F defines a smooth mapping on the ℓ2 space. Due to both positively and negatively

unbounded exponential growth rates caused by the linear parts, (5.14) is ill-posed both forward and backward
in r. However, after multiplying a smooth cut-off function based on ∥·∥ℓ2 to the nonlinearities F , the standard
Lyapunov-Perron approach still yields smooth local invariant manifolds and foliations near Ψ = 0, including
an infinite dimensional center-stable manifold W cs where (5.14) is well-posed for r > 0 (see e. g. Theorem
4.4 in [16]), the 4-dim center manifold W c ⊂ W cs (again see Theorem 4.4 in [16]), and stable fibers inside
W cs transverse to W c (see e. g. Theorem 4.3 in [15]).5 We shall outline a framework to derive of W cs and
W c and the stable foliation inside W cs for (5.14).

Following the standard cut-off technique, take γ ∈ C∞(R,R) satisfying supp(γ) ⊂ (−2, 2) and γ|[−1,1] = 1.
Let δ > 0 and

F#(Ψ) =
(
F#
n (Ψ)

)∞
n=1

, F#
1 = γ

(
∥Ψ∥2ℓ2
δ2

)(
F1(Ψ) +

1

4
Ψ3

1

)
, F#

n = γ

(
∥Ψ∥2ℓ2
δ2

)
(Fn(Ψ)), n ≥ 3.

Consider

∂2rΨ1 = F#
1 (Ψ)

∂rΨn± = ±
√
n2 − 1Ψn± + F#

n (Ψ),
(5.15)

whose nonlinearity has small Lipschitz constants for δ ≪ 1. We shall work on the global center-stable and
center manifolds and stable foliations of (5.15). It is clear that solutions of (5.14) and (5.15) coincide in the
δ-ball of ℓ2 and thus we obtain local invariant manifolds and foliations of (5.14) containing Ψu,s(r).

Center-stable manifold. The center-stable mainfold W cs = {Ψ+ = hcs(Ψc,Ψ−)} of (5.15) is represented
as a graph of a mapping hcs satisfying

• hcs ∈ C4, Djhcs(0) = 0, j = 0, 1, 2, and hcs is odd, i. e. hcs(−Ψc,−Ψ−) = −hcs(Ψc,Ψ−).
• Invariance: if Ψ∗ ∈W cs, then there exists a unique solution Ψ(r) ∈W cs, r ≥ 0, to (5.15) such that

Ψ(0) = Ψ∗ and

Ψ(·) ⊂ Ecs :=
{
ψ ∈ C0

(
[0,∞), ℓ2

)
| sup
r≥0

e−r∥ψ(r)∥ℓ2 <∞
}
.

• Any solution Ψ(·) ∈ Ecs to (5.15) satisfies Ψ(r) ∈W cs for any r ≥ 0.

5Even though the linear operators in [15, 16] are assumed to be sectorial operators generating analytic semigroups, which
is not satisfied by wave type PDEs, the same proofs and results still hold when the nonlinearity are smooth mappings on the

phase spaces (i. e. without loss of regularity), which is the case of (5.14) when posed in ℓ2 space.
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To outline its construction, one observes that a solution Ψ(r), r ≥ 0, to (5.15)belongs to Ecs iff

Ψ1(r) = Ψ1(0) + r∂rΨ1(0) +

∫ r

0

(r − τ)F#
1 (Ψ(τ)dτ,

Ψn−(r) = e−
√
n2−1rΨn−(0) +

∫ r

0

e−
√
n2−1(r−τ)F#

n (Ψ(τ))dτ,

Ψn+(r) = −
∫ +∞

r

e
√
n2−1(r−τ)F#

n (Ψ(τ))dτ.

Denote the above righthand side as T
(
Ψc(0),Ψ−(0),Ψ(·)

)
. Following the proof of Theorem 4.4 (mostly

consisting of Lemma 3.1 – 3.4) in [16] (or that of Theorem 4.2 in [15]), one may prove that, for δ ≪ 1,

a.) T is a contraction in Ψ(·) ∈ Ecs possessing a unique fixed point Ψ
(
·,Ψc(0),Ψ−(0)

)
∈ Ecs depending

on parameters Ψc(0) and Ψ−(0);
b.) the mapping hcs, defined by

hcs(Ψc(0),Ψ−(0)) = Ψ+

(
r,Ψc(0),Ψ−(0)

)∣∣
r=0

from this fixed point, gives the smooth center-stable manifold W cs invariant under (5.15).

The oddness of hcs is obtained from the fact Ψ(·) ∈ Ecs is a solution iff so is −Ψ(·) ∈ Ecs due to the oddness
of (5.15).

The property Dhcs(0) = 0 always holds and corresponds to the tangency of W cs to the center-stable
subspace. Here the extra D2hcs(0) = 0 is a natural consequence of the oddness of hcs from that of (5.15).
More essentially, it is implied by the lack of the quadratic nonlinearity in (5.15).

Inside W cs: the center manifold W c. Inside the center-stable invariant manifold there is the 4-
dimensional center manifold W c = {Ψ ∈ W cs | Ψ− = hc(Ψc)} of (5.15), which is represented as a graph of
a mapping hc satisfying

• hc ∈ C4 is odd, Djhc(0) = 0, j = 0, 1, 2.
• Invariance: if Ψ∗ ∈ W c, then there exists a unique solution Ψ(r) ∈ W c, r ∈ R, to (5.15) such that

Ψ(0) = Ψ∗ and

Ψ(·) ⊂ Ec :=
{
ψ ∈ C0

(
R, ℓ2

)
| sup
r∈R

e−|r|∥ψ(r)∥ℓ2 <∞
}
.

• Any solution Ψ(·) ∈ Ec to (5.15) satisfies Ψ(r) ∈W c for any r ∈ R.
Due to the invariance of W cs, when restricted to W cs, (5.15) is equivalent to

(5.16)

{
∂2rΨ1 = F cs

1 (Ψc,Ψ−)

∂rΨn− = −
√
n2 − 1Ψn− + F cs

n (Ψc,Ψ−),

where

F cs(Ψc,Ψ−) =
(
F cs
n (Ψc,Ψ−)

)∞
n=1

:= F#
(
Ψc,Ψ−, h

cs(Ψc,Ψ−)
)
.

The construction of W c is essentially that of an unstable manifold in W cs and thus again can follow from
Theorem 4.4 in [16] as illustrated in the above framework for W cs.

Inside W cs: stable foliation and fiber coordinates. The invariant foliation theorem (e. g. Theorem 4.3

in [15]) implies that, for δ ≪ 1, there exist hs(Ψ̃c, Ψ̃−) ∈ R4 (which we call the stable foliation mapping)

and Ψ = Γ(Ψ̃c, Ψ̃−) on W
cs (which we call the stable fiber coordinate system) such that

• hs ∈ C4 is odd, Djhs(0) = 0, j = 0, 1, 2, and hs(Ψ̃c, 0) = 0 for any Ψ̃c.

• Ψ = (Ψc,Ψ−,Ψ+) = Γ(Ψ̃c, Ψ̃−) is defined as

(5.17) Ψc = Ψ̃c + hs(Ψ̃c, Ψ̃−), Ψ− = hc(Ψ̃c) + Ψ̃−, Ψ+ = hcs(Ψc,Ψ−).

• Let Ψj(r) = Γ(Ψ̃c,j(r), Ψ̃−,j(r)), j = 1, 2, r > 0, be solutions to (5.15) and Ψ̃c,1(0) = Ψ̃c,2(0), then

– Ψ̃c,1(r) = Ψ̃c,2(r) for all r ≥ 0 (invariance), and
– there exists M > 0 depending only on f such that

∥Ψ̃−,1(r)− Ψ̃−,2(r)∥ℓ2 ≤Me−2r∥Ψ̃−,1(0)− Ψ̃−,2(0)∥ℓ2 , ∀r ≥ 0.
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• Consequently W c = {Γ(Ψ̃c, 0) : Ψ̃c ∈ R4} and, if Ψ(r) = Γ(Ψ̃c(r), Ψ̃−(r)) ∈W cs, r > 0, is a solution

to (5.15), then Ψb(r) = Γ(Ψ̃c(r), 0) ∈W c is also a solution to (5.15), called the base solution of Ψ(r).

For each Ψ̃c, the submanifold given by the image Γ(Ψ̃c, ·) is often referred to as a stable fiber.
Note that the functions hcs and hc have been already obtained. Therefore, to construct Γ we only need to

show the existence of hs. To this end, we only need to work with (5.16). Let (Ψc
c(r),Ψ

c
−(r) = hc(Ψc

c(r)) ∈W c

be solution to (5.16). One may compute that (Ψc
c(r),Ψ

c
−(r)) + (Ψ̃c(r), Ψ̃−(r)) where

(Ψ̃c(·), Ψ̃−(·)) ∈ Ess =
{
(ψ̃c, ψ̃−) ∈ C0([0,+∞), ℓ2) | sup

r≥0
e2r∥(ψ̃c, ψ̃−)∥ℓ2 <∞},

is also a solution to (5.16) iff, for all r ≥ 0,

Ψ̃1(r) = −
∫ +∞

r

(r − τ)
(
F cs
1 (Ψc

c(τ) + Ψ̃c(r),Ψ
c
−(τ) + Ψ̃−(r))− F cs

1 (Ψc
c(τ),Ψ

c
−(τ))

)
dτ,

Ψ̃n−(r) = e−
√
n2−1rΨ̃−(0) +

∫ r

0

e−
√
n2−1(r−τ)

(
F cs
n (Ψc

c(τ) + Ψ̃c(r),Ψ
c
−(τ) + Ψ̃−(r))− F cs

n (Ψc
c(τ),Ψ

c
−(τ))

)
dτ.

Following the proof of Theorem 4.3 (mostly contained in Section 3) in [15]), for δ ≪ 1,

a.) the above right side is a contraction in Ess possessing a unique fixed point
(
Ψ̃c

(
·, Ψ̃−(0)

)
, Ψ̃−

(
·, Ψ̃−(0)

)
∈

Ess depending on the parameter Ψ̃−(0);

b.) the desired mapping hs is given by hs(Ψ̃−(0)) = Ψ̃c

(
r, Ψ̃−(0)

)
|r=0. The oddness of h

s is also obtained
from the oddness of (5.16).

Splitting estimates. By item (1) of Theorem 3.3 and (5.11), the stable/unstable solutions Ψu,s to (5.14)
satisfy limr→+∞ Ψu,s(r, τ) = 0 and therefore they belong to the center-stable manifold W cs. Thus, we can
express them in the stable fiber coordinates,

(5.18) Ψu,s(r) = Γ
(
Ψ̃u,s

c (r), Ψ̃u,s
− (r)

)
, Ψ̃u,s

c (r) =
(
Ψ̃u,s

1 (r), ∂rΨ̃
u,s
1 (r)

)
,

and let Ψu,s
b be their base points

Ψu,s
b (r) = Γ(Ψ̃u,s

c (r), 0) =
(
Ψ̃u,s

c (r), hc
(
Ψ̃u,s

c (r)
)
, hcs

(
Ψ̃u,s

c (r), hc
(
Ψ̃u,s

c (r)
)))

∈W c,

which are solutions to (5.14) themselves and satisfy

∥Ψu,s(r)−Ψu,s
b (r)∥ℓ2 ≤ O(e−2r), as r → +∞.

Lemma 5.5. Ψ̃u
c (r) = Ψ̃s

c(r).

Proof. From item (1) of Theorem 3.3 and Lemma 5.1, ∂τΨ
u,s(r) have exactly the same leading order term

proportional to r−1 sin τ with remainders of O(r−3) in ℓ2 metric and ∂rΨ
u,s(r) with remainders of O(r−4).

Since Dhc(0) = 0 and Dhcs(0) = 0, we have, for r ≫ 1,

O(r−3) ≥∥Ψu(r)−Ψs(r)∥ℓ2 ≥ ∥Ψ̃u
b (r)− Ψ̃s

b(r)∥ℓ2 −O(e−2r) ≥ 1

2
|Ψ̃u

c (r)− Ψ̃s
c(r)| − O(e−2r),

and thus

(5.19) |Ψ̃u
c (r)− Ψ̃s

c(r)| ≤ O(r−3).

Let (
β̃1(r), ∂rβ̃1(r)

)
= Ψ̃u

c (r)− Ψ̃s
c(r), B(r) = sup

r′≥r
(r′)3|Ψ̃u

c (r
′)− Ψ̃s

c(r
′)| <∞,

where (5.19) is also used. Recall that Ψu,s
b (r) are solutions to (5.14) contained in the center manifold W c,

governed by the dynamics of their center coordinates Ψ̃u,s
c (r). Substituting hc and hcs into the term F1(Ψ) in

(5.14), using Dhc(0) = 0 and Dhcs(0) = 0 along with the leading order expansion of Ψu,s(r) corresponding to
(3.11), and observing that the cubic nonlinearity F1(Ψ) does not contain the term Ψ3

1 in its Taylor expansion,
we have

∂2r β̃1 −
6

r2
β̃1 = G̃(r) = O

(
1

r3
(|β̃1|+ |∂rβ̃1|)

)
≤ O

(
B(r)

r6

)
.
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As in the definition of J1 in (5.10), a fundamental set of solutions of ∂2r β̃1 − 6
r2 β̃1 = 0 are given by r−2 and

r3. Therefore the general solutions of the above equation is

β̃1(r) = c1r
−2 + c2r

3 +
r3

5

∫ r

+∞

G̃(s)

s2
ds− 1

5r2

∫ r

+∞
s3G̃(s)ds,

which implies

|β̃1(r)− c1r
−2 − c2r

3| ≤ O
(
r−4B(r)

)
.

In the view of (5.19), we conclude c1 = c2 = 0 and thus |β̃1(r)| ≤ O
(
r−4B(r)

)
. In turn it also implies

|∂rβ̃1(r)| ≤ O
(
r−5B(r)

)
and leads to a contradiction to the definition of B(r) for r ≫ 1, unless B ≡ 0. The

lemma is proved. □

Finally we are ready to prove the estimate on the difference between Ψu,s(r).

Proof of item (2) Theorem 3.3. Due to Lemma 5.5, to complete the proof of the theorem, we need to estimate

β̃− = (β̃n−)
+∞
n=3 := Ψu

−(r)−Ψs
−(r) = Ψ̃u

−(r)− Ψ̃s
−(r) =

(
Ψ̃u

n−(r)− Ψ̃s
n−(r)

)+∞
n=3

,

where the second equal sign is due to the definition (5.17) of the stable fiber coordinate system Γ. From
(5.14) and using ∥DF (Ψ)∥L(ℓ2) = O(∥Ψ∥2ℓ2) for ∥Ψ∥ℓ2 ≪ 1 and ∥Ψu,s(r)∥ℓ2 = O( 1r ) for r ≫ 1, we have

∂rβ̃− = Aβ̃− + Π̃
[
F
(
Γ(Ψ̃u,s

c (r), Ψ̃u
−(r))

)
− F

(
Γ(Ψ̃u,s

c (r), Ψ̃s
−(r))

)]
≜ Aβ̃− + Ã−(r)β̃−,

where

AΨ− =
(
−
√
n2 − 1Ψn−

)+∞
n=3(

Ã−(r)Ψ−
)
n
=
(∫ 1

0

Π̃
[
((DFn) ◦ Γ)DΨ̃−

Γ
](
Ψ̃u,s

c (r), (1− τ)Ψ̃s
−(r) + τΨ̃u

−(r)
)
dτ
)
Ψ−,

which satisfies

∥Ã−(r)∥L(ℓ2) = O
(
r−2
)
.

Consequently,

∂r
(
e
√
8rβ̃−

)
= (A+

√
8)e

√
8rβ̃− + Ã−(r)e

√
8rβ̃−.

As A+
√
8 ≤ 0, ∥Ã−(r)∥L(ℓ2) = O(r−2) implies

sup
r≥0

{
e
√
8r∥β̃−(r)∥ℓ2

}
< +∞.

Write e
√
8rβ̃− using the variation of constants formula,

e
√
8rβ̃−(r) = er(A+

√
8)β̃−(0) +

∫ r

0

e(r−r′)(A+
√
8)Ã−(r

′)e
√
8r′ β̃−(r

′)dr′.

Now, since Π3(A+
√
8) = 0 and (I −Π3)(A+

√
8) ≤ −

√
24 +

√
8 < −2, one may estimate, for r ≫ 1,

∥(I −Π3)e
√
8rβ̃−(r)∥ℓ2 ≤ e−2r∥β̃−(0)∥ℓ2 + sup

r′′≥0
∥e

√
8r′′ β̃−(r

′′)∥ℓ2
∫ r

0

e−2(r−r′)∥Ã−(r
′)∥L(ℓ2)dr

′

≤ e−2r∥β̃−(0)∥ℓ2 +
∫ r

2

0

O(e−2(r−r′))dr′ +

∫ r

r
2

O

(
e−2(r−r′)

r2

)
dr′

≤O
(

1

r2

)
.

Defining

C̃in = β̃3−(0) +

∫ +∞

0

Π3

[
Ã−(r

′)e
√
8r′ β̃−(r

′)
]
dr′,

which converges since ∥Ã−(r)∥L(ℓ2) = O(r−2), then we obtain

∥e
√
8rβ̃3−(r)− C̃in∥ℓ2 ≤ sup

r′′≥0
∥e

√
8r′′ β̃−(r

′′)∥ℓ2
∫ +∞

r

∥A−(r
′)∥L(ℓ2)dr

′ ≤ O
(
1

r

)
.
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To complete the proof of Theorem 3.3, we need to estimate e
√
8r(ϕ0,u − ϕ0,s) and ∂r

(
e
√
8r(ϕ0,u − ϕ0,s)

)
.

From (5.12) and Lemma 5.5,

e
√
8r∆ϕ0(−ir) =e

√
8r(ϕ0,u(−ir)− ϕ0,s(−ir))

=e
√
8r(Ψu

1 (r)−Ψs
1(r)) sin τ +

∑
n≥3

e
√
8r

2
√
n2 − 1

(
Ψu

n+(r)−Ψs
n+(r)− β̃n−(r)

)
sinnτ.

Therefore, for Cin = −
√
2
8 C̃in, from the definition of β̃−(r) and the cubic leading order of hc,s,cs in the stable

fiber coordinates Γ(Ψ̃c, Ψ̃−), we have

∥∂τ
(
e
√
8r∆ϕ0(−ir)− Cin sin 3τ

)
∥ℓ1 ≤e

√
8r
∣∣(hs(Ψ̃u,s

c (r), Ψ̃u
−(r))− hs(Ψ̃u,s

c (r), Ψ̃s
−(r)

)∣∣
+ ∥e

√
8r
(
Ψu

+(r)−Ψs
+(r)

)
∥ℓ1 + ∥e

√
8r(β̃n−)n>3∥ℓ1 + |e

√
8rβ̃3−(r)− C̃in|

≤M
(
r−2e

√
8r∥β̃−(r)∥ℓ2 + ∥e

√
8r(β̃n−)n>3∥ℓ2

)
+O(r−1) ≤ O(r−1).

Similarly from (5.13)

∥∂r
(
e
√
8r∆ϕ0(−ir))∥ℓ1 =

∥∥∥e√8r
∑
n≥3

(√n2 − 1 +
√
8

2
√
n2 − 1

(Ψu
n+(r)−Ψs

n+(r)) +

√
n2 − 1−

√
8

2
√
n2 − 1

β̃n−(r)
)
sinnτ

+ ∂r
(
e
√
8r(Ψu

1 (r)−Ψs
1(r))

)
sin τ

∥∥∥
ℓ1

≤M
(
r−2e

√
8r∥β̃−(r)∥ℓ2 + ∥e

√
8r(β̃n−)n>3∥ℓ2

)
≤ O(r−2).

Since ∆ϕ0(z) is analytic, the estimate on ∂r
(
e
√
8r∆ϕ0(−ir)

)
implies the same estimate on ∂z

(
ei

√
8z∆ϕ0(z)

)
and this completes the proof of Theorem 3.3. □

Finally, we prove that the Stokes constant is analytic with respect to f ∈ Fc
r

Proof of item (3) of Theorem 3.3. This proof is based on the analytic dependence of ϕ0,⋆(z, τ), ⋆ = u, s, on
f ∈ Fc

r in Theorem 3.3(1) and the asymptotics (3.13) in Theorem 3.3(2) just proven. For s ∈ (−∞,−κ), let

C̃(s, f) =
1

π

∫ π

−π

e−µ3s∆ϕ0(is, τ) sin 3τdτ,

which is complex analytic in f ∈ Fc
r . From (3.13) we have Cin(f) = lims→−∞ C̃(s, f) uniformly in f with

∥f∥r ≤ R0. So we obtain the analyticity of Cin(f) in f ∈ Fc
r , which also implies its analyticity in f ∈ Fr. □

6. Complex matching estimates: Proof of Theorem 3.6

As usual, we consider only the unstable case, and in order to simplify the notation, we omit the superscript

“u” of the solutions. Moreover, in this section, we use the domain Dmch,u
+,κ instead of Du,in

θ,κ (see (3.10) and

(3.14)) but we work on the same notation for the norms and Banach spaces introduced in Section 5.1.

Proposition 6.1. Let ϕ(z, τ) and ϕ0(z, τ) be solutions to (3.8) and (3.9), respectively. The function φ :

Dmch,u
+,κ × T → C defined as

(6.1) φ(z, τ) = ϕ(z, τ)− ϕ0(z, τ).

satisfies the following differential equation

(6.2) I(φ)(z, τ) =
(
L(φ)(z) + L̂(Π̃[φ])(z)

)
sin(τ) +K(φ)(z, τ) + Cmch(z, τ),

where I is the operator given by (5.7), L : Xℓ1,α → Xα+4, L̂ : Xℓ1,α → Xα+2, and K : Xℓ1,α → Xℓ1,α+2 are

linear operators and Cmch : Dmch,u
+,κ ×T → C is an analytic function in the variable z. Moreover, Π1 ◦K ≡ 0

and there exists a constant M > 0 independent of ε and κ such that, for 0 < γ < 1, ε sufficiently small and
κ big enough

(1) ∥Π1[Cmch]∥4 ≤Mε3γ−1 and
∥∥∥∂2τ Π̃[Cmch]

∥∥∥
ℓ1,3

≤Mε2;

(2) ∥L(φ)∥α+4 ≤M∥φ∥ℓ1,α;
(3) ∥L̂(φ)∥α+2 ≤M∥φ∥ℓ1,α;
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(4) ∥K(φ)∥ℓ1,α+2 ≤M∥φ∥ℓ1,α, j = 0, 1, 2.

Proof. Since ϕ and ϕ0 satisfy (3.8) and (3.9), respectively, we have that φ(z, τ) satisfies

(6.3) ∂2zφ− ∂2τφ− φ = ε2ϕ− 1

3
(ϕ3 − (ϕ0)3)− 1

ω3
f(ωϕ) + f(ϕ0), ω = (1 + ε2)−

1
2 .

Now, recall that ϕ(z, τ) = εv(iπ/2 + εz, τ), where v(y, τ) = vh(y) sin(τ) + ξ(y, τ), vh is given by (1.30) and
ξ is given by Theorem 3.1. An easy computation shows that

εvh(iπ/2 + εz) = −2
√
2i

z
+ l1(z),

where l1 is an analytic function such that |l1(z)| ≤Mε2|z|, for each z ∈ Dmch,u
+,κ . Thus,

(6.4) ϕ(z, τ) = −2
√
2i

z
sin(τ) + l1(z) sin(τ) + εξ(iπ/2 + εz, τ).

Using Theorem 3.1 and y = iπ/2 + εz, we have

∥ε∂2τ ξ(iπ/2 + εz, τ)∥ℓ1,3 ≤ 1

ε2
∥∂2τ ξ(y, τ)∥ℓ1,1,3 ≤M,

where ∥ · ∥ℓ1,1,3 is the norm introduced in Section 4.1.

Since Mκ ≤ |z| ≤Mεγ−1 for every z ∈ Dmch,u
+,κ , it holds

(6.5)

∥∥∥∥∥∂2τ
(
ϕ0(z, τ) +

2
√
2i

z
sin(τ)

)∥∥∥∥∥
ℓ1,3

≤M,

and using that ∥ϕ∥ℓ1,1, ∥ϕ0∥ℓ1,1 ≤M , f(z) = O(z5), we obtain from the Mean Value Theorem that

(6.6)
−1

3

(
ϕ3 − (ϕ0)3

)
− f(ϕ) + f(ϕ0) = −1

3

(
ϕ2 + ϕϕ0 + (ϕ0)2

)
φ− φ

∫ 1

0

f ′(sϕ+ (1− s)ϕ0)ds

=
6

z2
Π1[φ] sin(τ)−

2

z2
Π1[φ] sin(3τ) + l2(φ) + l3(Π̃ [φ]),

where l2 : Xℓ1,α → Xℓ1,α+4 and l3 : Xℓ1,α → Xℓ1,α+2 are linear operators such that,

∥l2(φ)∥ℓ1,α+4 ≤M∥φ∥ℓ1,α and ∥l3(φ)∥ℓ1,α+2 ≤M∥φ∥ℓ1,α.

The proof of the proposition follows from (6.3), (6.4), and (6.6) and by taking,

• Cmch = ε2ϕ+ f(ϕ)− ω−3f(ωϕ),

• L(φ) = Π1 [l2(φ)],

• L̂(φ) = Π1

[
l3(Π̃ [φ])

]
,

• K(φ) = Π̃

[
− 2

z2
Π1[φ] sin(3τ) + l2(φ) + l3(Π̃ [φ])

]
.

□

Let zj = ε−1(yj − iπ/2), j = 1, 2, where y1 and y2 are the vertices of the matching domain Dmch,u
+,κ

given by (3.14). Consider the following linear operator acting on the Fourier coefficients of h(z, τ) =∑
k≥0 h2k+1(z) sin((2k + 1)τ).

(6.7) T (h) =
∑
k≥0

T2k+1(h2k+1) sin((2k + 1)τ),
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where

T1(h1) =
z3

5

∫ z

z1

h1(s)

s2
ds− 1

5z2

∫ z

z2

h1(s)s
3ds

− 1

5(z52 − z51)

[(
z3 − z52

z2

)∫ z1

z2

h1(s)s
3ds+

(
z3z52 − (z1z2)

5

z2

)∫ z2

z1

h1(s)

s2
ds

]
T2k+1(h2k+1) =

∫ z

z2

h2k+1(s)e
−iµ2k+1(s−z)

2iµ2k+1
ds−

∫ z

z1

h2k+1(s)e
iµ2k+1(s−z)

2iµ2k+1
ds,

+
sin(µ2k+1(z2 − z))

sin(µ2k+1(z1 − z2))

∫ z1

z2

h2k+1(s)e
−iµ2k+1(s−z1)

2iµ2k+1
ds

+
sin(µ2k+1(z1 − z))

sin(µ2k+1(z1 − z2))

∫ z2

z1

h2k+1(s)e
−iµ2k+1(s−z2)

2iµ2k+1
ds, for k ≥ 1.

Observe that T is chosen such that I ◦ T = Id and T (h)(zj , τ) = 0, j = 1, 2.

Moreover, consider the analytic in z function Q : Dmch,u
+,κ × T → C given by

(6.8) Q(z, τ) =
∑
k≥0

Q2k+1(z) sin((2k + 1)τ),

which is defined using φ in (6.1) as follows, where k ≥ 1,

Q1(z) =
1

z52 − z51

(
z3(z22φ1(z2)− z21φ1(z1))−

1

z2
(
z51z

2
2φ1(z2)− z21z

5
2φ1(z1)

))
,

Q2k+1(z) =
sin(µ2k+1(z − z2))

sin(µ2k+1(z1 − z2))
φ2k+1(z1)−

sin(µ2k+1(z − z1))

sin(µ2k+1(z1 − z2))
φ2k+1(z2).

Observe that Q satisfies IQ = 0 and Q2k+1(zj) = φ2k+1(zj), j = 1, 2.

In conclusion, observe that if h, φ̂ : Dmch,u
+,κ × C → C are analytic in z functions such that

I(φ̂) = h, φ̂(zj) = φ(zj), j = 1, 2,

where φ is given in (6.1), then, we have that

φ̂(z, τ) = Q(z, τ) + T (h)(z, τ),

where T and Q are given by (6.7) and (6.8). In particular, as the function φ satisfies (6.2) by Proposition
6.1, it can be written as

(6.9) φ(z, τ) = Q(z1, z2)(z, τ) + T
(
Cmch(z, τ) +

(
L(φ)(z) + L̂(Π̃[φ])(z)

)
sin(τ) +K(φ)(z, τ)

)
.

We use this expression for φ to obtain estimates of this function for z ∈ Dmch,u
+,κ .

The next lemma gives estimates for the operators T and Q given in (6.7) and (6.8).

Lemma 6.2. There exists δ > 0 depending only on β1,2 (see (3.14)), such that, for κε1−γ ≤ δ, the following
statements hold.

(1) The linear operator T1 : Xα → Xα−2 is well defined and

∥T1(h)∥α−2 ≤M ∥h∥α , α > 4; ∥T1(h)∥2 ≤M | log ε| ∥h∥4 , α = 4.

(2) For k ≥ 1 and h ∈ Xα, with α ≥ 0,

∥T2k+1(h)∥α ≤ M

k2
∥h∥α .

(3) Q satisfies

∥Q1∥α ≤M
(
ε(α−3)(γ−1) + ε2+(α+1)(γ−1)

)
, α ≥ 2;

∥∥∥∂2τ Π̃[Q]
∥∥∥
α
≤Mε(α−3)(γ−1), α ≥ 0.

Proof. Due to the assumption e5(π−β1) − e−5β2 ̸= 0, when δ is small, it holds

(6.10)
1

M
εγ−1 ≤ |z1|, |z2|, |z51 − z52 |

1
5 ≤Mεγ−1; κ ≤ |z| ≤Mεγ−1, ∀z ∈ Dmch,u

+,κ .
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Therefore, ∣∣∣∣ 1

5z2

∫ z

z2

h(s)s3ds

∣∣∣∣ ≤M∥h∥α
|z|2

∫ z

z2

|s|3−αds ≤

{
M∥h∥α|z|2−α, α > 4,

M | log ε|∥h∥α|z|2−α, α = 4,

and, for α ≥ 4,∣∣∣∣z35
∫ z

z1

h(s)

s2
ds

∣∣∣∣ ≤ M∥h∥α|z|3
∫ z

z1

1

|s|2+α
ds ≤M∥h∥α|z|2−α

∣∣∣∣ 1

5(z52 − z51)

(
z3 − z52

z2

)∫ z1

z2

h(s)s3ds

∣∣∣∣ ≤ M∥h∥α
|z|2

∫ z1

z2

|s|3−αds ≤ M∥h∥αε(γ−1)(4−α)

|z|2
≤M∥h∥α|z|2−α∣∣∣∣ 1

5(z52 − z51)

(
z3z52 − (z1z2)

5

z2

)∫ z2

z1

h(s)

s2
ds

∣∣∣∣ ≤ M∥h∥α
(
|z|3 + |z2|5

|z|2

)∫ z2

z1

1

|s|2+α
ds

≤M∥h∥α
(
|z|3 + |z2|5

|z|2

)
ε(γ−1)(−1−α) ≤M∥h∥α|z|2−α,

where the integral
∫ z2
z1

was simply taken along the arc of the circle centered at −iκε. Hence, we finish the

proof of item (1) of the theorem.
To deal with the higher modes, we will see that

(6.11)

∣∣∣∣ sin(µ2k+1(zj − z))

sin(µ2k+1(z1 − z2))

∣∣∣∣ ≤M, j = 1, 2, ∀ z ∈ Dmch,u
+,κ , ∀ k ≥ 1.

In fact, recalling that | sin2(z)| = 1
2 (cosh(2 Im(z))− cos(2Re(z))), we have∣∣∣∣ sin(µ2k+1(zj − z))

sin(µ2k+1(z1 − z2))

∣∣∣∣2 ≤ cosh(2µ2k+1 Im(zj − z)) + 1

cosh(2µ2k+1 Im(z1 − z2))− 1
.

Since Im(z1 − z2) = Kεγ−1 and | Im(zj − z)| ≤ | Im(z1 − z2)|, we obtain (6.11).

Assume that α ≥ 0. For each z ∈ Dmch,u
+,κ , there exist β∗

1 , β
∗
2 (depending on z) between β1 and β2 and

t∗2, t
∗
1 > 0 (depending on z) such that z2 = z + e−iβ∗

2 t∗2 and z1 = z + ei(π−β∗
1 )t∗1. Thus, we have that∣∣∣∣∫ z

z2

h2k+1(s)e
−iµ2k+1(s−z)ds

∣∣∣∣ ≤ ∫ t∗2

0

∣∣∣h2k+1

(
z + e−iβ∗

2 t
)∣∣∣ e−µ2k+1 sin(β∗

2 t)dt

≤∥h2k+1∥α
∫ t∗2

0

e−µ2k+1 sin(β∗
2 t)

|z + e−iβ∗
2 t|α

dt ≤ ∥h2k+1∥α
|z|α

∫ ∞

0

e−µ2k+1 sin(β∗
2 t)dt

≤M∥h2k+1∥α
µ2k+1|z|α

.

Analogously, we prove that ∣∣∣∣∫ z

z1

h2k+1(s)e
iµ2k+1(s−z)ds

∣∣∣∣ ≤ M∥h2k+1∥α
µ2k+1|z|α

,

and in particular, using that |zj | ≥M |z|, j = 1, 2,∣∣∣∣∫ z1

z2

h2k+1(s)e
−iµ2k+1(s−z1)ds

∣∣∣∣ ≤M∥h2k+1∥α
µ2k+1|z1|α

≤ M∥h2k+1∥α
µ2k+1|z|α∣∣∣∣∫ z2

z1

h2k+1(s)e
iµ2k+1(s−z2)ds

∣∣∣∣ ≤M∥h2k+1∥α
µ2k+1|z2|α

≤ M∥h2k+1∥α
µ2k+1|z|α

.

Hence,

(6.12) ∥T2k+1(h2k+1)∥α ≤ M

µ2
2k+1

∥h2k+1∥α, k ≥ 1, α ≥ 0.

Items (2) follows (6.12).
To estimate Q, observe that using (6.4) and (6.5), one has

φ(z, τ) = l1(z) sin τ + b(z, τ), with b(z, τ) = εξ(iπ/2 + εz, τ)−

(
ϕ0(z, τ) +

2
√
2i

z
sin τ

)
,
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where l1 is given in (6.4). Then, ∥∂2τ b∥ℓ1,3 ≤M and |l1(z)| ≤Mε2|z|, for each z ∈ Dmch,u
+,κ . Thus, from (6.10),

we can see that

|Q1(z1, z2)(z)| =

∣∣∣∣ 1

z52 − z51

(
z3(z22φ1(z2)− z21φ1(z1))−

1

z2
(
z51z

2
2φ1(z2)− z21z

5
2φ1(z1)

))∣∣∣∣
≤ M

(
|φ1(z1)|+ |φ1(z2)|+

|z21 |
|z|2

|φ1(z1)|+
|z22 |
|z|2

|φ1(z2)|
)

≤ M

(
1

|z2||z|2
+ ε2|z2|+

ε2|z2|3

|z|2

)
.

Therefore for α ≥ 2,

∥Q1(z1, z2)∥α ≤M
(
ε(α−3)(γ−1) + ε2+(α+1)(γ−1)

)
.

Finally, from (6.11) and (6.8), we can see that, for α ≥ 0 and k ≥ 1,

|zα∂2τQ2k+1(z1, z2)(z)| =
∣∣∣∣ sin(µ2k+1(z − z2))

sin(µ2k+1(z1 − z2))
zα∂2τφ2k+1(z1)−

sin(µ2k+1(z − z1))

sin(µ2k+1(z1 − z2))
zα∂2τφ2k+1(z2)

∣∣∣∣
≤Mk2∥Π2k+1[b]∥3

|z|α

|z2|3
≤Mk2∥Π2k+1[b]∥3ε(α−3)(γ−1),

and thus
∥∂2τQ2k+1(z1, z2)∥α ≤Mε(α−3)(γ−1), α ≥ 0, k ≥ 1,

which completes the proof of item (3). □

End of the proof of Theorem 3.6. To obtain the estimates for φ stated in the theorem, we just need to
estimate ∥φ∥ℓ1,2. From (6.9), and Propositions 6.1 and 6.2, we have that

∥φ1∥2 =
∥∥∥Q1(z1, z2) + T1

(
Π1 [Cmch] + L(φ) + L̂(Π̃[φ])

)∥∥∥
2

≤ ∥Q1(z1, z2)∥2 +M | log ε|
(
∥Π1 [Cmch]∥4 + ∥L(φ)∥4 +

∥∥∥L̂(Π̃[φ])
∥∥∥
4

)
≤ M(ε1−γ + ε2+3(γ−1)) +M | log ε|

(
ε3γ−1 + ∥φ∥ℓ1,0 +

∥∥∥Π̃[φ]
∥∥∥
ℓ1,2

)
≤ M

(
ε1−γ + ε3γ−1| log ε|+ | log ε|

κ2
∥φ∥ℓ1,2 + | log ε|

∥∥∥Π̃[φ]
∥∥∥
ℓ1,2

)
.

Moreover, since Π1 ◦K ≡ 0, we have that∥∥∥∂2τ Π̃[φ]
∥∥∥
ℓ1,2

=
∥∥∥∂2τ Π̃ ◦ Q(z1, z2, φ) + ∂2τT

(
Π̃ [Cmch] +K(φ)

)∥∥∥
ℓ1,2

≤
∥∥∥∂2τ Π̃ ◦ Q(z1, z2, φ)

∥∥∥
ℓ1,2

+M

(∥∥∥Π̃ [Cmch]
∥∥∥
ℓ1,2

+ ∥K(φ)∥ℓ1,2

)
≤ M(ε1−γ + ε2+3(γ−1)) +M

(
ε2

κ
+ ∥φ∥ℓ1,0

)
≤ M

(
ε1−γ + ε3γ−1 +

1

κ2
∥φ∥ℓ1,2

)
.

Since κ−2| log ε| is assumed to be small, it follows from multiplying the second inequality by 2M | log ε| and
adding it to the first one that

∥φ1∥2 +M | log ε|∥∂2τ Π̃[φ]∥ℓ1,2 ≤ 2M | log ε|
(
ε1−γ + ε3γ−1

)
.

Finally, the estimate on ∂zφ could be derived by differentiating the formula of φ with respect to z. Al-

ternatively, from Lemma 8.1 of [8], reducing the domain Dmch,u
+,κ (see (3.14)), with vertices y1 and y2

such that |yj − i(π/2 − κε)| = εγ , j = 1, 2, to Dmch,u
+,2κ ⊂ Dmch,u

+,κ having vertices ỹ1 and ỹ2 such that

|ỹj − i(π/2− 2κε)| = c̃εγ , j = 1, 2, and 0 < c̃ < 1, we obtain that

∥∂2τ∂zφ∥ℓ1,2 ≤ M

κ
| log ε|(ε1−γ + ε3γ−1).
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It completes the proof of this theorem. In order to simplify the notation, we make no distinction between

Dmch,u
+,κ and Dmch,u

+,2κ . □

7. The distance between the manifolds: Proof of Proposition 3.12

7.1. Banach Space and Operators. We devote this section to prove Proposition 3.12. We start by
defining the functional setting. Given an analytic function f : Rκ → C (see Figure 9), we define the norm

∥f∥α,exp = sup
y∈Rκ

∣∣∣(y2 + π2/4)αe
λ3
ε (π

2 −| Im(y)|)f(y)
∣∣∣ ,

and the Banach space
Xα,exp = {f : Rκ → C; f analytic, ∥f∥α,exp <∞}.

Moreover, given an analytic function f : Rκ × T → C odd in τ ∈ T, we define the corresponding norm and
the associated Banach space

∥f∥ℓ1,α,exp =
∑
k≥1

∥Π2k+1[f ]∥α,exp

Xℓ1,α,exp = {f : Rκ × T → C; f is an analytic function in the variable y such that

Π1[f ] = Π2l[f ] = 0,∀l ≥ 0 and ∥f∥ℓ1,α,exp <∞} .
Finally, we consider the product Banach space

Yℓ1,2,exp = X2,exp ×Xℓ1,0,exp ×Xℓ1,0,exp,

endowed with the weighted norm

J(f, g, h)Kℓ1,2,exp =
1

ε
∥f∥2,exp + κ∥g∥ℓ1,0,exp + κ∥h∥ℓ1,0,exp.

The next lemmas give estimates for the operators and functions given in Section 3.3.

Lemma 7.1. The components of the operator P in (3.25) have the following properties.

(1) For α = 2, 5, the operator PW : Xα,exp → X2,exp is well defined. Moreover, there exists a constant
M > 0 independent of ε and κ such that,

• For h ∈ X2,exp, ∥PW (h)∥2,exp ≤Mε∥h∥2,exp.

• For h ∈ X5,exp, ∥PW (h)∥2,exp ≤ M

ε2κ3
∥h∥5,exp.

(2) For α > 1, the operators PΓ,PΘ : Xℓ1,α,exp → Xℓ1,0,exp are well-defined. Moreover, there exists a
constant M > 0 independent of ε and κ such that, for every h ∈ Xℓ1,α,exp,

∥PΓ(h)∥ℓ1,0,exp, ∥PΘ(h)∥ℓ1,0,exp ≤ M

(κε)α−1
∥h∥ℓ1,α,exp.

Proof. We first prove item (1). We take h ∈ Xℓ1,2,exp and, recalling that v̈h has a a pole of order 3, we obtain
the following estimate for Im(y) > 0,∣∣∣∣eλ3

ε (π
2 −| Im(y)|)|y2 + π2/4|2v̈h(y)

∫ y

0

h(s)

v̈h(s)
ds

∣∣∣∣ ≤ e
λ3
ε (π

2 −| Im(y)|)

|y2 + π2/4|

∫ y

0

∣∣∣∣ h(s)v̈h(s)

∣∣∣∣ ds
≤M∥h∥2,exp

e
λ3
ε (π

2 −| Im(y)|)

|y2 + π2/4|

∫ y

0

e−
λ3
ε (π

2 −| Im(s)|)|s2 + π2/4|ds

≤M∥h∥2,exp
e

λ3
ε (π

2 −Im(y))

|y − iπ/2|

∫ Im(y)

0

|σ − π/2|e−
λ3
ε (π

2 −σ)dσ

≤M∥h∥2,exp
e

λ3
ε (π

2 −Im(y))

|y − iπ/2|

∫ π
2ε

π
2

−Im(y)

ε

εre−λ3rεdr

≤Mε∥h∥2,exp
|y − iπ/2|

(
ε

λ3
+
π

2
− Im(y)− e−

λ3
ε Im(y)

(
ε

λ3
+
π

2

))
≤Mε∥h∥2,exp

(
1

κ
+ 1

)
≤ Mε∥h∥2,exp.
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Analogously, one can obtain the same estimate for Im(y) < 0.
For h ∈ Xℓ1,5,exp, one obtains,∣∣∣∣eλ3

ε (π
2 −| Im(y)|)|y2 + π2/4|2v̈h(y)

∫ y

0

h(s)

v̈h(s)
ds

∣∣∣∣ ≤ e
λ3
ε (π

2 −| Im(y)|)

|y2 + π2/4|

∫ y

0

∣∣∣∣ h(s)v̈h(s)

∣∣∣∣ ds
≤M∥h∥5,exp

e
λ3
ε (π

2 −| Im(y)|)

|y2 + π2/4|

∫ y

0

e−
λ3
ε (π

2 −| Im(s)|)

|s2 + π2/4|2
ds

≤M∥h∥5,exp
κ3ε3

e−
λ3
ε | Im(y)|

∫ y

0

e
λ3
ε | Im(s)|ds

≤M∥h∥5,exp
κ3ε2

.

We prove item (2) only for the operator PΓ, since the result for PΘ follows analogously. Let h(y, τ) =∑
k≥1 h2k+1(y) sin((2k + 1)τ). We bound each component of the operator PΓ as∣∣∣PΓ

2k+1(h2k+1)e
λ3
ε (π

2 −| Im(y)|)
∣∣∣ ≤ ∥h2k+1∥α,exp

∫ y+

y

∣∣∣∣∣eλ3
ε (π

2 −| Im(y)|) e
−λ3

ε (π
2 −| Im(s)|)

|s2 + π2/4|α
ei

λ2k+1
ε (s−y)

∣∣∣∣∣ ds
≤ ∥h2k+1∥α,exp

∫ π
2 −κε

Im(y)

e
1
ε (λ3|σ|−λ2k+1σ−(λ3| Im(y)|−λ2k+1 Im(y)))

|σ2 − π2/4|α
dσ.

Now, since the functions fk(t) = λ3|t| − λ2k+1t are decreasing for t ∈ R and k ≥ 1, σ > Im(y), and recalling
that α > 1, we obtain∣∣∣PΓ

2k+1(h2k+1)e
λ3
ε (π

2 −| Im(y)|)
∣∣∣ ≤ ∥h2k+1∥α,exp

∫ π
2 −κε

Im(y)

1

|σ2 − π2/4|α
dσ ≤ M

(κε)α−1
∥h2k+1∥α,exp.

□

In next proposition, we obtain estimates for the right hand side of equation (3.26).

Proposition 7.2. There exists a constant M independent of ε and κ such that the following statements
hold.

(1) The operator M̃ : Yℓ1,2,exp → Yℓ1,2,exp introduced in (3.26) is well-defined and
r
M̃ (Ξ1,Γ,Θ)

z

ℓ1,2,exp
≤ M

κ
J(Ξ1,Γ,Θ)Kℓ1,2,exp .

Moreover, denoting M̃ = (M̃1,M̃2,M̃3), we have that∥∥∥M̃1 (Ξ1,Γ,Θ)
∥∥∥
2,exp

≤M

κ3
∥Ξ1∥2,exp +Mε

(
∥Γ∥ℓ1,0,exp + ∥Θ∥ℓ1,0,exp

)
,∥∥∥M̃j (Ξ1,Γ,Θ)

∥∥∥
ℓ1,0,exp

≤ M

κ2ε
∥Ξ1∥2,exp +

M

κ

(
∥Γ∥ℓ1,0,exp + ∥Θ∥ℓ1,0,exp

)
, j = 2, 3.

(2) The function ∆̃ defined in (3.19) satisfies

∆̃ = (I − M̃)−1
(
0, IΓ(c), IΘ(d)

)
and J∆̃−

(
0, IΓ(c), IΘ(d)

)
Kℓ1,2,exp ≤ M

κ
J
(
0, IΓ(c), IΘ(d)

)
Kℓ1,2,exp,

where IΓ(c), IΘ(d) are the functions defined in (3.24) and (3.27).

Proof. Assume that (Ξ1,Γ,Θ) ∈ Yℓ1,2,exp. To estimate the first component of M, using the estimates for
mW and MW in Proposition 3.11 and Lemma 7.1 for the estimates on PW ,∥∥∥M̃1 (Ξ1,Γ,Θ)

∥∥∥
2,exp

≤
∥∥PW (mWΞ1)

∥∥
2,exp

+
∥∥PW (MW (Γ,Θ)

∥∥
2,exp

≤ M

ε2κ3
∥mWΞ1∥5,exp +Mε ∥MW (Γ,Θ)∥2,exp

≤M

κ3
∥Ξ1∥2,exp +Mε

(
∥Γ∥ℓ1,0,exp + ∥Θ∥ℓ1,0,exp

)
.
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Now we estimate M̃2. The estimates for M̃3 can be done analogously. Using as before Proposition 3.11 and
Lemma 7.1, ∥∥∥M̃2 (Ξ1,Γ,Θ)

∥∥∥
ℓ1,0,exp

≤
∥∥PΓ (moscΞ1)

∥∥
ℓ1,0,exp

+
∥∥PΓ (Mosc(Γ,Θ)

∥∥
ℓ1,0,exp

≤ M

κ2ε2
∥moscΞ1∥ℓ1,3,exp +

M

κε
∥Mosc(Γ,Θ)∥ℓ1,2,exp

≤ M

κ2ε
∥Ξ1∥ℓ1,2,exp +

M

κ

(
∥Γ∥ℓ1,0,exp + ∥Θ∥ℓ1,0,exp

)
.

Item (2) of the proposition is simply a direct consequence of item (1) and (3.26). □

The rest of this section is devoted to estimating
(
0, IΓ(c), IΘ(d)

)
.

Lemma 7.3. Take κ =
1

2µ3
| log ε|. There exist ε0 > 0 and a constant M > 0 independent of ε such that,

for each ε ∈ (0, ε0),∥∥∥∥IΓ(c)− 2µ3

ε
Cine

−i
λ3
ε (y−iπ/2) sin(3τ)

∥∥∥∥
ℓ1,0,exp

,

∥∥∥∥IΘ(d)− 2µ3

ε
Cine

i
λ3
ε (y+iπ/2) sin(3τ)

∥∥∥∥
ℓ1,0,exp

≤ M

ε| log ε|
.

Proof. From Theorems 3.3 and 3.6 (see also (3.7)), the function ∆ given in (3.15) can be written as

∆(y, τ) =
1

ε
ϕu
(
y − iπ/2

ε
, τ

)
− 1

ε
ϕs
(
y − iπ/2

ε
, τ

)
=

1

ε
∆ϕ0

(
y − iπ/2

ε
, τ

)
+

1

ε
φu

(
y − iπ/2

ε
, τ

)
− 1

ε
φs

(
y − iπ/2

ε
, τ

)
=

1

ε
e−iµ3

y−iπ/2
ε

(
Cin sin(3τ) + χ

(
y − iπ/2

ε
, τ

))
+
1

ε
φu

(
y − iπ/2

ε
, τ

)
− 1

ε
φs

(
y − iπ/2

ε
, τ

)
=

1

ε
Cine

−iµ3
y−iπ/2

ε sin(3τ) + E+
1 (y, τ) + E+

2 (y, τ),

for every y ∈ R+
mch,κ = Dmch,u

+,κ ∩Dmch,s
+,κ ∩ iR and κ satisfying assumptions in Theorems 3.3 and 3.6, where

E+
1 , E

+
2 : Rmch,κ × T → C are analytic functions in the variable y. It follows from Theorem 3.3 that

(7.1) ∥∂τE+
1 ∥ℓ1(y) ≤

M |e−iµ3
y−iπ/2

ε |
|y − iπ/2|

and ∥∂yE+
1 ∥ℓ1(y) ≤

M |e−iµ3
y−iπ/2

ε |
|y − iπ/2|2

,

and from Theorem 3.6, choosing γ = 1/2, we obtain

(7.2) ∥∂2τE+
2 ∥ℓ1(y) ≤

Mε3/2| log ε|
|y − iπ/2|2

and ∥∂2τ∂yE+
2 ∥ℓ1(y) ≤

Mε1/2| log ε|
κ|y − iπ/2|2

.

Analogously, since ∆ is real-analytic one can deduce that for y ∈ R−
mch,κ = {z : z̄ ∈ R+

mch,κ},

∆(y, τ) =
1

ε
Cine

iµ3
y+iπ/2

ε sin(3τ) + E−
1 (y, τ) + E−

2 (y, τ),

where E−
j (y, τ) = E+

j (ȳ, τ), which satisfy

∥∂τE−
1 ∥ℓ1(y) ≤

M |eiµ3
y+iπ/2

ε |
|y + iπ/2|

and ∥∂yE−
1 ∥ℓ1(y) ≤

M |eiµ3
y+iπ/2

ε |
|y + iπ/2|2

,

∥∂2τE−
2 ∥ℓ1(y) ≤

Mε3/2| log ε|
|y + iπ/2|2

and ∥∂yE−
2 ∥ℓ1(y) ≤

Mε1/2| log ε|
κ|y + iπ/2|2

.
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Using (3.18) and recalling that λ3 = µ3 +O(ε2), we obtain that for (y, τ) ∈ R+
mch,κ × T,

Γ(y, τ) =
∑
k≥1

(λ2k+1∆2k+1(y) + iε∂y∆2k+1(y)) sin((2k + 1)τ)

=
2µ3

ε
Cine

−iµ3
y−iπ/2

ε (1 +O(ε2)) sin(3τ)

+
∑
k≥1

λ2k+1Π2k+1

[
E+

1 + E+
2

]
sin((2k + 1)τ) + iεΠ̃

[
∂yE

+
1 + ∂yE

+
2

]
(y, τ).

Moreover, using (7.1) and (7.2), we have that∥∥∥∥∥∥
∑
k≥0

λ2k+1Π2k+1

[
E+

1 + E+
2

]
sin((2k + 1)τ)

∥∥∥∥∥∥
ℓ1

(y) ≤M
(
∥∂τE+

1 ∥ℓ1(y) + ∥∂τE+
2 ∥ℓ1(y)

)

≤M

(
|e−iµ3

y−iπ/2
ε |

|y − iπ/2|
+
ε3/2| log ε|
|y − iπ/2|2

)
∥∥∥iεΠ̃ [∂yE+

1 + ∂yE
+
2

]∥∥∥
ℓ1
(y) ≤M

(
ε|e−iµ3

y−iπ/2
ε |

|y − iπ/2|2
+

ε3/2| log ε|
κ|y − iπ/2|2

)
.

Then, for (y, τ) ∈ R+
mch,κ × T, Γ satisfies

Γ(y, τ) =
2µ3

ε
Cine

−iµ3
y−iπ/2

ε sin(3τ) + E+
Γ (y, τ),

where E+
Γ : R+

mch,κ × T → C is an analytic function in the variable τ such that

∥∥E+
Γ

∥∥
ℓ1
(y) ≤M

(
|e−iµ3

y−iπ/2
ε |

|y − iπ/2|
+
ε3/2| log ε|
|y − iπ/2|2

)
.

Proceeding in the same way for the function

Θ(y, τ) =
∑
k≥0

(λ2k+1∆2k+1(y)− iε∂y∆2k+1(y)) sin((2k + 1)τ),

we conclude that there exists a function E−
Θ : R−

mch,κ ×T → C analytic in the variable y such that Θ can be
written as

Θ(y, τ) =
2µ3

ε
Cine

iµ3
y+iπ/2

ε sin(3τ) + E−
Θ (y, τ), for (y, τ) ∈ R−

mch,κ × T

and ∥∥E−
Θ

∥∥
ℓ1
(y) ≤ M

(
|eiµ3

y+iπ/2
ε |

|y + iπ/2|
+
ε3/2| log ε|
|y + iπ/2|2

)
, for y ∈ R−

mch,κ.

Now that we have good estimates for the functions Γ and Θ in the domains R±
mch,κ, we analyze the

functions IΓ(c), IΘ(d). Recall that IΓ(c)(y+) = Γ(y+). Therefore∥∥∥∥IΓ(c)− 2µ3

ε
Cine

−i
λ3
ε (y−iπ/2) sin(3τ)

∥∥∥∥
ℓ1

(y+) =

∥∥∥∥Γ− 2µ3

ε
Cine

−i
λ3
ε (y−iπ/2) sin(3τ)

∥∥∥∥
ℓ1

(y+)

=
∥∥E+

Γ

∥∥
ℓ1
(y+)

≤ M

 |e−iµ3
y+−iπ/2

ε |
|y+ − iπ/2|

+
ε3/2| log ε|
|y+ − iπ/2|2


≤ M

(
e−µ3κ

κε
+
ε3/2| log ε|
κ2ε2

)
,

and notice that, from (3.24), we have that∥∥∥∥IΓ(c)− 2µ3

ε
Cine

−i
λ3
ε (y−iπ/2) sin(3τ)

∥∥∥∥
ℓ1,0,exp

= eλ3κ

∥∥∥∥IΓ(c)− 2µ3

ε
Cine

−i
λ3
ε (y−iπ/2) sin(3τ)

∥∥∥∥
ℓ1

(y+),
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and thus, taking κ =
1

2λ3
log(ε−1), we have that∥∥∥∥IΓ(c)− 2µ3

ε
Cine

−i
λ3
ε (y−iπ/2) sin(3τ)

∥∥∥∥
ℓ1,0,exp

≤M

(
e(λ3−µ3)κ

κε
+
ε3/2| log ε|eλ3κ

κ2ε2

)
≤ M

ε| log ε|
.

The estimate on IΘ(d) follows analogously and it completes the proof of the lemma. □

Proposition 3.12 follows directly from Proposition 7.2 and Lemma 7.3.

8. Breathers with exponentially small tails: Proof of Proposition 2.2

To prove Proposition 2.2 we analyze the intersection of the center-stable manifold W cs(0) and center-
unstable manifold W cu(0) of the zero solution which form a tube homoclinic to the center manifold W c(0)
in the phase space. In the original coordinates, they correspond to an infinite dimensional family of waves
of (1.2) which are ω-periodic in t (with ω given in (1.21) with k = 1) and of the order

u(x, t) = O(εe−ε|x|) +O(e−
√

2π
ε ).

In particular, the exponentially small oscillating tails do not decay as |x| → ∞. The construction of such
generalized breathers is largely based on the approach in [61, 44, 43], so we shall adapt the problem into the
framework in [44].

We shall adopt a slightly different coordinate system and phase space in this section compared to that in
Section 3. Let

(8.1) q = (q1, q2)
T := (v1, ∂yv1)

T , Q =
(
ε−1Π̃[v], (−∂2τ − ω−2)−

1
2 Π̃[∂yv]

)T
.

In the above, the operator (−∂2τ − ω−2)−
1
2 is bounded uniformly in ε on kerΠ1. In the (q,Q) variables,

equation (1.2), or equivalently (1.23), takes the form

(8.2)

{
∂yq = Aq + F (q,Q, ε)

∂yQ = J
εQ+G(q,Q, ε),

where

A =

(
0 1
1 0

)
, J = (−∂2τ − ω−2)

1
2

(
0 1
−1 0

)
: H1(S1) ∩ kerΠ1 → L2(S1) ∩ kerΠ1,

and with v = q1 sin τ + Π̃[v],

F (q,Q, ε) =

(
0, −1

4
q31 +

(
− 1

ε3ω3
Π1 [g(εωv)] +

q31
4

))T

,

G(q,Q, ε) =

(
0, − 1

ε3ω3
(−∂2τ − ω−2)−

1
2 Π̃ [g(εωv)]

)T

.

While q ∈ X := R2, we take Y = L2(S1) ∩ kerΠ1. Apparently

J : Y ⊃ D(J) = Y1 → Y, Y1 := H1(S1) ∩ kerΠ1, J∗ = −J,
where L2 and H1 stand for the standard Sobolev space of square integrable functions and the subspace of
L2 functions with square integrable first order derivatives. It is straight forward to verify that X1 = X, Y ,
Y1, A, J , F , and G fit into the framework of [44] and satisfy all assumptions (A1–A5) in Section 2, (B1–B5)
and (C1–C2) in Section 4, and (D1–D5) in Section 6 there. (In fact G satisfies a stronger estimates

∥G∥H1 ≤M, ∥Dl1
q D

l2
QG∥L

(
(R2×L2)⊗(⊗l1+l2−1(R2×H1)),R2×L2

) ≤Mε3l2 ,

for someM > 0 independent of small ε > 0, on any bounded set in X×Y1.) Therefore smooth local invariant
manifolds of 0, including the 1-dim stable and unstable manifolds analyzed in details in this current paper,
exist with sizes and bounds (in (q,Q) variables) uniform in ε (Theorems 4.2, 4.9–4.11 in [44]).

In the following, we consider the homoclinic tube formed by the intersection of the center-stable manifold
W cs(0) and the center-unstable manifold W cu(0). We also include the estimate of the minimal value of the
Hamiltonian H on the homoclinic tube which in turn yields an estimate on the minimal amplitude of the
oscillating tails of the corresponding generalized breathers.
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• Notation. In this section all differentiation D are only with respect to the variables (q,Q) in the phase
space, but never with respect to ε.

• The local invariant manifolds and the restriction of the Hamiltonian H there. Let qu and qs be
the coordinates of q in the eigenvector expansion

q = qu(1, 1)
T + qs(1,−1)T

in term of the stable and unstable eigenvectors. According to Theorem 4.2 in [44], locally the center-unstable
(or center-stable, center) manifold W cu(0) ∈ X × Y1 (or W cs(0), W c(0)) can be represented as the graph of
a smooth mapping hcu(·, ε) : {|qu|, ∥Q∥Y1

≤ δ} ⊂ Y1 × R → R (or hcs, hc):

W cu(0) ∩ {|qu|, |qs|, ∥Q∥Y1
≤ δ} = {qs = hcu(qu, Q, ε)},

W cs(0) ∩ {|qu|, |qs|, ∥Q∥Y1 ≤ δ} = {qu = hcs(qs, Q, ε)},
W c(0) ∩ {|qu|, |qs|, ∥Q∥Y1

≤ δ} = {(qu, qs) = hc(Q, ε)},

for some δ > 0 independent of sufficiently small ε > 0. Moreover hc⋆(q⋆, Q = 0, 0), ⋆ = u, s, is well-defined
and correspond to the 1-dim stable and unstable manifold of (1.29) with k = 1. They satisfy the following
estimates6. For l ≥ 1 and some M > 0 independent of ε, for ⋆ = u, s,

|hc⋆(q⋆, 0, ε)− hc⋆(q⋆, 0, 0)|+ |Dq⋆h
c⋆(q⋆, 0, ε)−Dq⋆h

c⋆(q⋆, 0, 0)|+ ∥DQh
c⋆(q⋆, 0, ε)∥(H1)∗ ≤Mε,

Dhc⋆(0, 0, ε) = 0, Dhc(0, ε) = 0, ∥Dlhc⋆∥+ ∥Dlhc∥ ≤M.

In the (qu, qs, w) variables the Hamiltonian H defined in (1.24) takes the form

H(qu, qs, Q, ε) = −2πquqs +
1

2

∥∥∥(−∂2τ − ω−2)
1
2Q
∥∥∥2
L2

+

∫
T

(
v4

12
+
F (εωv)

ε4ω4

)
dτ,

which is smooth in (q,Q) ∈ R2 × Y1 and ε due to F (u) = O(u6) near u = 0. Since

D2
QH(0, 0, 0, ε)(Q,Q) = ∥(−∂2τ − ω−2)

1
2Q∥2L2 ≥ 1

2
∥Q∥2H1 ,

it is straight forward to obtain the uniform quadratic positivity of H restricted on the center manifoldW c(0)

(8.3) D2
Q

(
H
(
hc(Q, ε), Q, ε

))
(Q̃, Q̃) ≥ 1

3
∥Q̃∥2H1 , H

(
hc(Q, ε), Q, ε

)
≥ 1

6
∥Q∥2H1 , ∀Q ∈ Y1, ∥Q∥H1

≤ δ.

The quadratic positivity implies that the center manifold W c(0) is unique and 0 is stable both forward and
backward in y on W c(0) for (1.23) (with k = 1). By the conservation of energy and the invariant foliation
structure (Theorems 5.1, 5.3, and 5.4 in [44]), we have that H ≥ 0 on W c⋆(0) and it achieves 0 exactly at
W ⋆(0), ⋆ = u, s. Therefore, at any U ∈W ⋆(0), ∥U∥H1 ≤ δ, ⋆ = u, s,

TUW
c⋆(0) = kerDH(U, ε), ker

(
D2H(U, ε)|TUW c⋆(0)

)
= TUW

⋆(0).

Here kerDH(U, ε) is viewed as a linear functional on R2 × Y1 and D2H(U, ε)|TUW c⋆(0) a bounded linear
operator on TUW

c⋆(0) induced by the symmetric quadratic form on TUW
c⋆(0). Moreover, for any hyperplane

P in the tangent space TUW
c⋆(0) ⊂ R2 × Y1 transversal to TUW

⋆(0), there exists σ > 0 such that

(8.4) ∥D2H(U, ε)|P ∥L(P⊗P,R) ≥ σ.

• Analyzing W cs(0) ∩W cu(0). In terms of the (q,Q) = (q1, q2, Q) coordinates, let

Λ = {q2 = 0} ⊂ R2 × Y1

be the hyperplane perpendicular to the unperturbed homoclinic orbit

Γh :=
{
(vh(y), ∂yv

h(y), 0) | y ∈ R
}
⊂ R2 × Y1, (see (1.30)),

at U0 = (vh(0), 0, 0).
By Theorem 2.2 and 2.3 in [44], for any fixed time T > 0 the time–T map of (8.2) is smooth in the phase

space R2 × Y1 with its derivative bounded uniformly in ε. (Even though only the first differentiation was
carefully estimated in [44], the uniform in ε bounds of the higher order derivatives simply follow from a
similar argument inductively.) Due to the uniform in ε sizes and bounds on W cs(0) and W cu(0), they can

6Actually some better estimates have been obtained in this current paper.
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be extended to stripes along Γh. For ⋆ = u, s, consider the following intersections with Λ for the first time
after W c⋆(0) are extended from a neighborhood of 0 by the flow of (8.2),

W̃ c⋆(0) =W c⋆(0) ∩ Λ, U⋆ = (q1,⋆, 0, Q⋆) =W ⋆(0) ∩ Λ ∈ W̃ c⋆(0).

Clearly, here U⋆ corresponds to the values of the stable and unstable solutions
(
v⋆(0), ∂yv

⋆(0)
)
analyzed in

Theorem 2.1.
We shall start with the decomposition Λ =

(
R(1, 0)T

)
⊕ Y1 to set up a coordinate system to analyze

W̃ c⋆(0), ⋆ = u, s. Here in particular we notice

(8.5) {q = 0} × Y1 = kerDH(U0, 0) ∩ Λ, (q1, q2, Q) = ∇H(U0, 0) =
10

√
2

3

(
1, 0, 0).

Clearly W̃ c⋆(0) is a hypersurface in Λ. Due to the conservation of the Hamiltonian H by the flow map, it
holds

H(U⋆, ε) = 0, TU⋆W
c⋆(0) = kerDH(U⋆, ε), TU⋆W̃

c⋆(0) = kerDH(U⋆, ε) ∩ Λ,

which implies that locally {H(·, ε) = 0} ∩Λ and W̃ c⋆(0) can be expressed as the graphs of smooth mapping
from Y1 → R. In fact, due to the smoothness of H in ε and the uniform in ε bounds of W c⋆(0) near 0 and

the flow map, there exist δ > 0 independent of ε and h̃0, h̃c⋆ : Y1 → R, ⋆ = u, s, such that inside the box
{|q1 − vh(0)|, ∥Q−Q⋆∥H1 ≤ δ} in Λ,

{H(·, ε) = 0} ∩ Λ = {q1 = h̃0(Q, ε)}, h̃0(Q⋆, ε) = q1,⋆, ⋆ = u, s

W̃ c⋆(0) = {q1 = h̃c⋆(Q, ε)}, h̃c⋆(Q⋆, ε) = q1,⋆, ⋆ = u, s,

where h̃0 and h̃c⋆ along with their derivatives are bounded uniformly in small ε.
Due to (8.5), it is clear

(q1, 0, Q) ∈ W̃ cu(0)∩W̃ cs(0) ⇐⇒ q1 = h̃cu(Q, ε) = h̃cs(Q, ε) ⇐⇒ H
(
h̃cu(Q, ε), 0, Q, ε

)
= H

(
h̃cs(Q, ε), 0, Q, ε

)
,

By (8.3) and (8.5), there exists C > 0 such that

(8.6) 0 ≤ H
(
h̃c⋆(Q, ε), 0, Q, ε

)
= H

(
h̃c⋆(Q, ε), 0, Q, ε

)
−H

(
h̃0(Q, ε), 0, Q, ε

)
≤ C(h̃c⋆(Q, ε)− h̃0(Q, ε)),

which implies

(8.7) h̃c⋆(Q, ε) ≥ h̃0(Q, ε), and “ = ” holds iff Q = Q⋆, ⋆ = u, s.

Moreover, from (8.4), the conservation of H, and the uniform in ε bound on the flow map, we have

(8.8) C∥Q−Q⋆∥2H1 ≥ H
(
h̃c⋆(Q, ε), 0, Q, ε

)
≥ 1

C
∥Q−Q⋆∥2H1 , ⋆ = u, s,

Therefore if Qu = Qs, clearly Uu = Us and W s(0) = Wu(0) which gives rises to a homoclinic orbit to 0.
In the case of Qu ̸= Qs, (8.7) implies

h̃cu(Qs, ε) > h̃0(Qs, ε) = h̃cs(Qs, ε) and h̃cs(Qu, ε) > h̃0(Qu, e) = h̃cu(Qu, ε).

Therefore, there exists Q̃, e.g. on the segment connecting Qu and Qs, such that h̃cu(Q̃, ε) = h̃cs(Q̃, ε) and
thus

(q1, q2, Q) =
(
h̃cu(Q̃, ε), 0, Q̃

)
∈ W̃ cs(0) ∩ W̃ cu(0) ⊂W cu(0) ∩W cs(0).

This completes the proof of W cs(0) ∩W cu(0) ̸= ∅, which had been also obtained in [43]. Moreover, (8.6)
and (8.8) imply that such that

Dh̃c⋆(Q⋆, ε) = 0, D2h̃c⋆(Q⋆, ε) ≥ 1
C > 0, ⋆ = u, s.

Since Qu and Qs are exponentially close and the derivatives of hc⋆ are bounded uniformly in ε, we obtain the

transversality of the intersection of W cs(0)∩W cu(0) near the above mentioned Q̃ on the segment connecting
Qu and Qs if Qu ̸= Qs. See Figure 10. This completes the proof of Proposition 2.2(3).
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W s(0) Wu(0)

W cs(0) W cu(0)

H = 0

Figure 10. Intersection between W cs(0) and W cu(0) giving rise to a breather with an exponentially small tail.

Remark 8.1. The above argument is carried out in the energy space (v, ∂xv) ∈ H1
τ (S1)×L2

τ (S1) which heavily
depends on the coercivity of the conserved energy. Hence W cs(0)∩W cu(0) is obtained in the energy space. In
fact, locally it contains a dense a subset consisting of smooth functions of τ in the case of Qu ̸= Qs. To see
this, one observes that the transversality of the intersection implies that each nearby point inW cs(0)∩W cu(0)
can be realized as a transversal intersection of W cs(0)∩W cu(0) and a smooth curve C connecting Us and Uu.
It is easy to see that the proof of Theorem 3.1 can be carried out in any Sobolev space of higher regularity in
τ , hence Us and Us are smooth in τ as well. Approximating C by a curve in any higher order Sobolev space,
we obtain a nearby point in W cs(0) ∩W cu(0) of higher regularity in τ .

Each orbit
(
q(y), Q(y)

)
starting in W̃ cs(0)∩W̃ cu(0) is homoclinic toW c(0). Due to the invariant foliation

structure withinW c⋆(0) (Theorems 5.1, 5.3, and 5.4 in [44]), as y → ±∞ it converges to two orbits inW c(0),
which in the original coordinates (see (8.1)) can be written as

(
v±c (y), ∂yv

±
c (y)

)
⊂W c(0). Moreover, by (8.3),

1
CH(q,Q) = 1

CH(v±c , ∂yv
±
c ) ≤ ε−2∥v±c ∥2H1 + ∥∂yv±c ∥2L2 ≤ CH(v±c , ∂yv

±
c ) = CH(q,Q).

According to (8.8), H
(
q(0), Q(0)

)
can be used as an equivalent measure between the

(
q(0), Q(0)

)
and(

v⋆(0), ∂yv
⋆(0)

)
, ⋆ = u, s. For y on any finite interval, the square of the distance between

(
q(y), Q(y)

)
and

(
v⋆(y), ∂yv

⋆(y)
)
is proportional to H

(
q(0), Q(0)

)
simply due to the uniform-in-ε boundedness on the

derivatives of the flow maps. When
(
q(y), Q(y)

)
is close to 0 (within a small O(1) distance), the distance

between
(
q(y), Q(y)

)
and

(
v⋆(y), ∂yv

⋆(y)
)
, where ⋆ = u for y ≪ 0 and ⋆ = s for y ≫ 1, can be estimate using

the stable/unstable foliations which along with their derivatives are bounded uniformly in ε (see Section 5
of [44]). Combined with

∥Q∥2H1 + |q|2 ∼
∥∥ε−1| − ∂2τ − ω−2| 12 v

∥∥2
L2 + ∥∂yv∥2L2

uniformly in ε, this finishes the proof of (2.6) and thus of Proposition 2.2(2).

Finally, we estimate infH on W̃ cs(0) ∩ W̃ cu(0). Let Q ∈ Y1 such that ∥Q − Q⋆∥H1 ≤ δ and
(
q1 =

h̃cu(Q, ε), 0, Q
)
∈ W̃ cs ∩ W̃ cu, then (8.8) implies

∥Q−Qu∥H1 ≤ C∥Q−Qs∥H1 and ∥Q−Qs∥H1 ≤ C∥Q−Qu∥H1 ,

which further yields

C∥Q−Q⋆∥H1 ≥ ∥Qu −Qs∥H1 , ⋆ = u, s.

Taking into account (8.8) again, one obtains

H
(
h̃c⋆(Q, ε), 0, Q, ε

)
≥ 1

C
∥Qu −Qs∥2H1 .

Moreover, if such Q is on the segment connecting Qu and Qs, one has

H
(
h̃c⋆(Q, ε), 0, Q, ε

)
≤ C∥Qu −Qs∥2H1

Therefore we obtain

C∥Qu −Qs∥2H1 ≥ inf
W̃ cu(0)∩W̃ cs(0)

H ≥ 1

C
∥Qu −Qs∥2H1 ,

and Proposition 2.2(1) follows from the above argument.
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9. Non-existence of small breathers: strongly hyperbolic case ω ∈ Jk(ε0)

This section is devoted to proving statement (1) of Theorem 1.3, that is the results for the case ω ∈ Jk(ε0),
k ≥ 0. The other case ω ∈ Ik(ε0) will be proved in Section 10. The oddness of u in t is not assumed to start
with in these two sections.

For any ω ∈ Jk(ε0), k > 0, we adopt the rescaling τ = ωt and the nonlinear Klein-Gordon equation (1.2)
turns into the form of (1.17). Treating x as the dynamic variable and recalling that u is 2π-periodic in τ ,
the unknown u(x, τ) can be expanded in Fourier series

u(x, τ) =

∞∑
n=−∞

un(x)e
inτ , u−n = un.

(Note this Fourier series is different from the rest of the paper by a ratio of − i
2 . The latter was adapted so

that un is the real coefficient of the Fourier sine series when u is odd in t.) The eigenvalues of the linearization
of (1.17) at 0, that is

∂2xu− ω2∂2τu− u = 0,

are ±νn, where

(9.1) νn =
√

1− n2ω2,

and their eigenfunctions can be calculated using the Fourier series. The hyperbolic eigenvalues correspond
to 0 ≤ n ≤ k and

(9.2) ν0 ≥ . . . ≥ νk ∈

(
ε0√
k + ε20

,

√
2k + 1

k + 1

]
,

while the center eigenvalues correspond to n ≥ k + 1 and

(9.3) νn = iϑn, 0 ≤ ϑk+1 ≤ ϑk+2 ≤ . . . .

Let W ⋆
ω(0), ⋆ = c, s, u, denote the locally invariant center, stable, and unstable manifolds of 0 for the

equation (1.17) in the energy space H1
τ × L2

τ . Their existence and smoothness follow from standard argu-
ments (see Theorem 4.4 in [16], for example) since the nonlinearity g(u) : H1

τ → H2
τ ↪→ L2

τ is analytic in u.
Due to the uniqueness, W ⋆

ω(0), ⋆ = s, u, are also obviously the local stable and unstable manifolds of 0 in
the ℓ1 based phase space (u, ∂xu) ∈ X defined in (2.1). On such finite dimensional submanifolds, different
metrics including H1

τ ×L2
τ and ∥ · ∥X, all induce the same equivalent topology. Clearly dimW ⋆

ω(0) = 2k+1,
⋆ = s, u, while W c

ω(0) is of codim-(4k + 2). Statement (1) of Theorem 1.3 for the case of ω ∈ Jk(ε0), k ≥ 0,
will be proved by showing a.) some uniform-in-k-and-ω estimates on the size of W ⋆

ω(0) in ℓ1, ⋆ = s, u, where
the norm is dominated by the energy norm, and b.) no solutions converging to 0 along W c

ω(0) ⊂ H1
τ × L2

τ .

• Estimates on the local stable/unstable manifolds for ω ∈ Jk(ε0). Usually the sizes of the local
stable/unstable manifolds in phase spaces are determined by the power nonlinearity and the minimal absolute
value of the real parts of the stable/unstable eigenvalues, which is νk >

ε0√
k+ε20

according to (9.2). We prove

the following proposition on a lower bound of the sizes of W ⋆
ω(0) in X.

Proposition 9.1. There exists ρ,M > 0 such that, for any ε0 ∈ (0, 1/2), ω ∈ Jk(ε0), k ≥ 0, there exist
Ωu,Ωs : BR2k+1(0, ρνk) → X, where BR2k+1(0, ρνk) is the ball in R2k+1 centered at 0 and with radius ρνk,
such that, the image Ω⋆

(
BR2k+1(0, ρνk)

)
is an open subset of W ⋆

ω(0), ⋆ = s, u, and

Ω⋆(0, τ) = 0, ∥Ω⋆
1(a, ·)− Ω⋆

1(ã, ·)∥ℓ1 + ν−1
k ∥Ω⋆

2(a, ·)− Ω⋆
2(ã, ·)∥ℓ1 ≤Mν−2

k (|a|21 + |ã|21)|a− ã|1
where

Ω⋆(a, τ) =

(
k∑

n=−k

ane
inτ +Ω⋆

1(a, τ),

k∑
n=−k

(∓νn)aneinτ +Ω⋆
2(a, τ)

)
,

and a and ã are parameters of (2k + 1)-dim (real) satisfying

(9.4) a = (a−k, . . . , ak), an ∈ C, a−n = an, −k ≤ n ≤ k, |a|1 :=

k∑
n=−k

|an| < ρνk.
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BR2k+1 (0, ρνk) ⊂ R2k+1

W s
ω(0)

Ωs(a)

a ∈ ∂BR2k+1 (0, ρνk)

ℓ1 ∩ {u−k = · · · = u−1 = u0 = u1 = · · · = uk = 0}

Figure 11. Parameterization of the local stable manifold W s
ω(0) by Ωs.

Here we identified complex numbers an with 2-dim real vectors. These Ω⋆ can be viewed as coordinate
mappings of W ⋆

ω(0) (see Figure 11). They can actually be proved to be analytic in a, but our main focus
here is the sizes of their domains and the error estimates.

We use the classical Perron method and will only outline the argument to prove the proposition for the
stable manifold. Consider the following Banach space

ES = {h : [0,+∞)× T → R; h is analytic in x, and ∥h∥νk,ℓ1 <∞},

where

∥h∥νk,ℓ1 =
∑
n≥1

∥hn∥νk
and ∥hn∥νk

= sup
x≥0

|eνkxhn(x)|,

and define the linear operator S acting on the Fourier modes of a function h(x, τ)

(9.5) S (h) =
∑
n≥1

Sn(hn) sin(nτ),

with

Sn(h) =
1

2νn

(∫ x

+∞
eνn(x−s)h(s)ds−

∫ x

0

e−νn(x−s)h(s)ds

)
for 1 ≤ n ≤ k,

Sn(h) =

∫ x

+∞

sin(ϑn(x− s))

ϑn
h(s)ds for n > k.

where we recall νn = iϑn.
Note that we are including in Jk(ε0) the case ω = 1/(k + 1). For this value of ω, one has that ϑk+1 = 0.

In this case, one can take the limit ϑk+1 → 0 in Sk+1(h) to obtain

Sk+1(h) =

∫ x

+∞
(x− s)h(s)ds.

We also define the function

Ξ(a, x, τ) =

k∑
n=−k

ane
−νnx+inτ ,

where a = (a−k, . . . , ak) are parameters satisfying (9.4). One can check that a solution u(x, τ) of (1.17)
belongs to the stable manifold of u = 0 if, and only if, it is a fixed point of the operator

S̃(a, u) = Ξ(a) + S(g(u)),

for some a as in (9.4), where g is the nonlinearity introduced in (1.19).
The following lemma is a direct consequence of the particular form of the operator S in (9.5) and the fact

that the function g is of order 3 near u = 0.
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Lemma 9.2. There exists M, r1 > 0 independent of k ≥ 0 and ω ∈ Jk(ε0) such that, for any 0 < r ≤ r1
and a ∈ R2k+1, the operator S̃ : B(0, r) ⊂ ES → ES is a well-defined Lipschitz operator which satisfies∥∥∥S̃(a, u)∥∥∥

νk,ℓ1
≤ |a|1 +

Mr3

ν2k
,
∥∥∥∂xS̃(a, u)∥∥∥

νk,ℓ1
≤ |a|1 +

Mr3

νk
, ∀u ∈ B(0, r) ⊂ ES

and its Lipschitz constant on B(0, r) satisfies

Lipu(S̃) ≤
Mr2

ν2k
, Lipu(∂xS̃) ≤

Mr2

νk
.

Consequently, there exists ρ > 0 independent of k ≥ 0 and ω ∈ Jk(ε0) such that, for any a ∈ BR2k+1(0, ρνk),

by taking r = 2|a|1, there exists a unique fixed point h∗(a) ∈ B(0, r) ⊂ ES of S̃(a, ·) which also satisfies
h∗(a = 0) = 0 and∥∥(h∗(a)− Ξ(a)

)
−
(
h∗(ã)− Ξ(ã)

)∥∥
νk,ℓ1

≤Mν−2
k (|a|21 + |ã|21)|a− ã|1∥∥∂x(h∗(a)− Ξ(a)

)
− ∂x

(
h∗(ã)− Ξ(ã)

)∥∥
νk,ℓ1

≤Mν−1
k (|a|21 + |ã|21)|a− ã|1.

Let

Ωs(a, τ) =
(
h∗(a, 0, τ), ∂xh∗(a, 0, τ)

)
.

The conclusions of Proposition 9.1 follow from standard and straight forward arguments.

• Nonexistence of decaying solutions on the center manifold. Recall that, when x is viewed as the
dynamic variable, the nonlinear Klein-Gordon equation (1.17) conserves the Hamiltonian H(u, ∂xu) where

H(u1, u2) =

∫ π

−π

(
1

2
u22 +

ω2

2
(∂τu1)

2 − 1

2
u21 +

1

12
u41 + F (u1)

)
dτ

is smoothly defined on the energy space H1
τ × L2

τ . Let W c
ω(0) be a center manifold of (0, 0) for (1.17). The

following lemma holds for all ω > 0, not just those in Ik(ε0) or Jk(ε0).

Lemma 9.3. For any ω > 0, (0, 0) is a strict local minimum of H restricted on its local center manifold .

Proof. There exists unique k ≥ 0 such that ω ∈ [1/(k + 1), 1/k). Let Yc,Yh ⊂ H1
τ × L2

τ denote the center
and hyperbolic subspaces of the linearization of (1.17) at (0, 0)

Yc = {(u1, u2) ∈ H1
τ × L2

τ | uj(τ) =
∑

|n|≥k+1

uj,ne
inτ , uj,−n = uj,n, j = 1, 2},

Yh = {(u1, u2) | uj(τ) =
∑
|n|≤k

uj,ne
inτ , uj,−n = uj,n. j = 1, 2}.

Locally W c
ω(0) can be represented as the graph of a smooth mapping γc(u1, u2) from a small neighborhood

of (0, 0) in Yc to Yh. Due to the lack of quadratic nonlinear terms in (1.17), γc satisfies

γc(u1, u2) = O
(
∥u1∥3H1

τ
+ ∥u2∥3L2

τ

)
.

Due to F (u) = O(|u|6) for small u and the orthogonality between Yc and Yh, for small (u1, u2) ∈ Yc,

H
(
(u1, u2) + γc(u1, u2)

)
=

∫ π

−π

1

2
u22 +

ω2

2
(∂τu1)

2 − 1

2
u21 +

1

12
u41dτ +O

(
∥u1∥6H1

τ
+ ∥u2∥6L2

τ

)
≥1

2
∥u2∥2L2

τ
+ π

∞∑
|n|≥k+1

ϑ2nu
2
1,n +

1

24π
∥u1∥4L2

τ
−O

(
∥u1∥6H1

τ
+ ∥u2∥6L2

τ

)
.

If ω ̸= 1
k+1 , then there exists δ > 0 such that

ϑ2n
1 + n2

≥ δ, ∀|n| ≥ k + 1 =⇒
∞∑

n=k+1

ϑ2nu
2
1,n ≥ δ

2π
∥u1∥2H1

τ
.
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Therefore in this case (0, 0) is clearly a non-degenerate local minimum of H on W c
ω(0). If ω = 1

k+1 , then
ϑ±(k+1) = 0 and there exists δ > 0 such that

ϑ2n
1 + n2

≥ δ, ∀|n| ≥ k + 2.

Let

ũ1 =
∑

|n|≥k+2

u1,ne
inτ

and then we have

H
(
(u1, u2) + γc(u1, u2)

)
≥1

2
∥u2∥2L2

τ
+
δ

2
∥ũ1∥2H1

τ
+

1

24π
|u1,±(k+1)|4 −O

(
∥ũ1∥6H1

τ
+ |u1,±(k+1)|6 + ∥u2∥6L2

τ

)
.

Again (0, 0) is clearly a strict local minimum of H on W c
ω(0). □

Due the conservation of H, we immediately obtain

Corollary 9.4. For any ω > 0, (0, 0) has a locally unique center manifold W c
ω(0) and is stable on W c

ω(0)
both forward and backward in x. Moreover, except (0, 0) no solution on W c

ω(0) converges to (0, 0) as x→ +∞
or −∞.

Finally we are ready to complete the proof of statement (1) of Theorem 1.3.

Proof of statement (1) of Theorem 1.3. Let ε0 ∈ (0, 1/2), k ≥ 0, and ω ∈ Jk(ε0). Since the ∥ · ∥ℓ1 norm
is invariant under a rescaling in τ , we can work on (1.17) equivalently. Without loss of generality, assume
u(x, τ) is a solution such that (u, ∂xu) converging to (0, 0) in H1

τ × L2
τ as x → +∞. Such a solution must

belong to the local center-stable manifold of (0, 0) for x ≫ 1 (see Theorem 4.4 in [16] or the outline of
the arguments in Section 5.3). It is well-known that the center-stable manifold is foliated into stable fibers
based on the local center manifold W s

ω(0) (for example, see Theorem 4.3 in [15]). The dynamics of all
initial data on each fiber is shadowed by that of the based point on W c

ω(0). According to Corollary 9.4,
no non-trivial solutions on W c

ω(0) converges to (0, 0) as x → +∞, the based point of the decaying solution
u(x, τ) must be (0, 0) ∈ W s

ω(0) and thus it belongs to the stable manifold W s
ω(0). From Proposition 9.1,

locally the stable manifold W s
ω(0) = Ωs

(
BR2k+1(0, ρνk)

)
and Ωs is a small perturbation of the isomorphism(

Ξ(a),diag(ν−k, . . . , νk)Ξ(a)
)
. In the coordinates (a−k, . . . , ak), the dynamics on W s

ω(0) is governed by

da

dx
=
(
DΞ +DaΩ

s
1(a, ·)

)−1(− diag(ν−k, . . . , νk)Ξ(a) + Ωs
2(a, ·)

)
= −diag(ν−k, . . . , νk)a+O(νkρ

2|a|1),

where the estimates on Ωs
1 and Ωs

2 given in Proposition 9.1 were used. It is straightforward to prove that,
as x evolves backwards, every solution on W s

ω(0) must exit through its boundary where the u1 component
(corresponding to u(x, ·) itself) satisfies ∥u1∥ℓ1 ≥ 1

2ρνk. Finally statement (1) of Theorem 1.3 follows from

νk

ω
1
2

=

(
1

ω
− k2ω

) 1
2

≥

(√
k(k + ε20)−

k
3
2√

k + ε20

) 1
4

≥ ε0

(
k

k + ε20

) 1
2

≥ ε0
2
, if k ≥ 1,

and ν0 = 1 if k = 0. □

10. Bifurcation analysis for ω ∈ Ik(ε0)

We devote this section to the completion of the proof of Statement 2 of Theorem 1.3 and Proposition
1.5, that are the statements concerning ω ∈ Ik(ε0). For such ω, there are two pair of (weakly) hyperbolic
eigenvalues along with 2k − 1 pairs of stronger ones (see (10.2)). Our strategy is to reduce the problem to
ω ∈ I1(ε0) and u(x, t) odd in t.

We analyze the birth of small homoclinic loops taking

ω =

√
1

k(k + ε2)
with k ≥ 1, 0 < ε ≤ ε0 ≤ 1

2
.
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We expand the (real) solution u(x, τ) to the nonlinear Klein-Gordon equation (1.17) in Fourier series in τ as

u(x, τ) =

+∞∑
n=−∞

(
− i

2

)
un(y)e

inτ , u−n = −un,

where the −i/2 factor is simply for the technical convenience that, if u(x, τ) is odd in τ , then un(y), n > 0,
coincides with the coefficient in its Fourier sine series expansion. Subsequently (1.17) is equivalent to a
coupled system of equations in the form of

(10.1) ∂2xun = ν2nun −Πn [g(u)] , n ∈ Z,

where Πn is the projection from u(τ) to the n-th mode un as in the above expansion and

(10.2) νn =
√
1− n2ω2, 1 = ν0 > . . . > νk = ε(k + ε2)−

1
2 , νn = iϑn, ϑk+1 < ϑk+2 < . . . , n ≥ k + 1,

are same as those in (9.1) and (9.3). In particular,

(10.3) νk−1 =

√
(2 + ε2)k − 1

k(k + ε2)
≥
√

1

k
, ϑk+1 =

√
(2− ε2)k + 1

k(k + ε2)
≥
√

1

k
.

Linearizing at u ≡ 0, clearly |n| ≤ k corresponds to 2k + 1 pairs of hyperbolic directions, and |n| ≥ k + 1
to codim-(4k + 2) center directions. From the same argument as in the proof of statement (1) of Theorem
1.3 (see Section 9) based on Lemma 9.3, a solution u(x, τ) satisfies ∥(u, ∂xu)∥X → 0 as x→ ±∞ if and only
if (u, ∂xu) ∈ W ⋆

ω(0), ⋆ = s, u. Hence we shall focus on the estimates of the sizes and the splitting distance
between Wu

ω (0) and W
s
ω(0).

10.1. Estimates on the local stable/unstable manifolds for ω ∈ Ik(ε0). For a semilinear PDE like
(10.1), the standard theorems (see, for example, Theorem 4.4 in [16]) yield the existence of smooth local
invariant manifolds W ⋆

ω(0), ⋆ = s, u, c, cs, cu, in the phase space X defined in (2.1). There are two issues,
however. On the one hand, usually the sizes of the local invariant manifolds are generally determined by the
gap between the real parts of the eigenvalues. While νn ≥ k−

1
2 for |n| ≤ k − 1, the weakest stable/unstable

eigenvalues ±νk = O(εk−
1
2 ) of (10.1) are too small for the analysis of possible breathers of amplitude

∥u∥ℓ1 = O(k−
1
2 ). On the other hand, the “angles” between the stable and unstable eigenfunctions in X

of (10.1) can be rather small for n ∼ k. In this subsection, we shall outline the construction of W ⋆
ω(0),

⋆ = s, u, with desired estimates based on the specific structure of (1.17), or equivalently (10.1). Essentially
our strategy is to construct W s

ω(0) as the union of strong stable fibers based on a weak stable manifold.
Observe

Zo =

{
(u1, u2) ∈ X | uj(τ) =

∑
n∈Z

(
− i

2

)
uj,kne

iknτ =
∑
n∈N

uj,kn sin(knτ), uj,kn ∈ R, j = 1, 2

}
,

is an invariant subspace under (1.17), or equivalently (10.1). Any such solution u(x, ·) ∈ Z is odd and
actually 2π

kω -periodic in τ . Let

ε̃ = k−
1
2 ε ≤ ε0, τ̃ = kτ, ω̃ = kω = (1 + ε̃2)−

1
2 , y = ε̃ω̃x, u = ε̃ω̃v,

then v(y, τ̃) is 2π-periodic and odd in τ̃ and satisfies

∂2yv −
1

ε̃2
∂2τ̃v −

1

ε̃2ω̃2
v +

1

3
v3 +

1

ε̃3ω̃3
f (ε̃ω̃v) = 0.

Note that this is in the form of (1.23) with k = 1 (and note that 0 < ε̃ ≤ ε ≤ ε0). Therefore for any
y0 ∈ R, there exists ε0,M > 0 (independent of k) such that, for ε ∈ (0, ε0], Theorem 2.1 applies to imply the
existence of the unique odd-in-τ̃ stable and unstable solutions v⋆wk(y, τ̃) of (1.17) such that (v⋆wk, ∂yv

⋆
wk) ∈ Xo

(see (2.2)) and

(10.4)

∥∥∥∥(1− ∂2τ̃ )

((
v⋆wk(y, τ̃)
∂yv

⋆
wk(y, τ̃)

)
−
(
vh(y)

(vh)′(y)

)
sin τ̃

)∥∥∥∥
ℓ1

≤Mε̃2vh(y), where vh(y) =
2
√
2

cosh y
,
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Wu
ω (0)

W s
ω(0)

uuwk uswk

Figure 12. We construct the stable manifold W s
ω(0) as the union of the strong stable fibers based on the weak

stable manifold formed by the solution us
wk (and its τ -translations), which lives in the invariant subspace of 2π/k-

periodic-in-τ functions. We proceed analogously for the unstable manifold Wu
ω (0).

for y ≥ −y0 for ⋆ = s or y ≤ y0 for ⋆ = u. One notices that we replaced ∂2τ̃ in Theorem 2.1 which does
not change the estimates as v⋆wk(y, τ̃) are odd in τ̃ . Moreover ∂yΠ1[v

⋆
wk(0, ·)] = 0 and they satisfy the

exponentially small splitting estimate at y = 0∥∥∥(| − ∂2τ̃ − 1
ω̃2 |

1
2 (vuwk − vswk) + iε̃∂y(v

u
wk − vswk)

)
(0, ·)− 4

√
2

ε̃ Cine
−

√
2π
ε̃ sin 3τ̃

∥∥∥
ℓ1

≤ Me−
√

2π
ε̃

ε̃ log(ε̃)−1
.

Proposition 2.2 there exist solutions v(y, τ̃) in Xo homoclinic to either 0 or its center manifolds, which have
bounds in terms of the values of their Hamiltonian H. From the estimates on the splitting and the infH in
Theorem 2.1, these orbits satisfy

(10.5) ε̃−1
∥∥| − ∂2τ̃ − 1

ω̃2 |
1
2 (v − v⋆wk)

∥∥
L2

τ̃ (−π,π)
+ ∥∂y(v − v⋆wk)∥L2

τ̃ (−π,π) ≤Mε̃−2e−
√

2π
ε̃ ,

for y ≥ −y0 with ⋆ = s and y ≤ y0 with ⋆ = u. When Cin ̸= 0, a lower bound of the same order also holds.
We rescale and obtain the unique stable and unstable solutions

u⋆wk(x, τ) =
√
kεωv⋆wk(

√
kεωx, kτ),

of (1.17) such that (u⋆wk, ∂xu
⋆
wk) ∈ Zo for any x ∈ R. For any x0 ∈ R, there exists ε0,M > 0 independent of

k such that, for ε ∈ (0, ε0],

(10.6)

∥∥∥∥∥(1− 1
k2 ∂

2
τ )

((
u⋆wk(x, τ)
∂xu

⋆
wk(x,τ)√
kεω

)
−
√
kεω

(
vh(ε

√
kωx)

(vh)′(ε
√
kωx)

)
sin kτ

)∥∥∥∥∥
ℓ1

≤Mk−
1
2 ε3ωvh(ε

√
kωx),

for x ≥ − x0√
kεω

for ⋆ = s or x ≤ x0√
kεω

for ⋆ = u. Moreover ∂xΠk[u
⋆
wk(0, ·)] = 0 and they satisfy the

exponentially small splitting estimate∥∥∥ 1
(kω)2

(
| − ω2∂2τ − 1| 12 (uuwk − uswk) + i(∂xu

u
wk − ∂xu

s
wk)
)
(0, ·)− 4

√
2Cine

−
√

2kπ
ε sin 3kτ

∥∥∥
ℓ1

≤ Me−
√

2kπ
ε

1
2 log k − log ε

.

Since 0 < 1 − (kω)2 < ε2

k , the stable and unstable solutions prove statements (2a-b) of Theorem 1.3. The
existence and estimates of breathers with exponentially small tails (in Zo) follow from the same rescaling
and thus Proposition 1.5 is also proved.

We shall prove statement (2c) of Theorem 1.3 in the rest of the section. The translations (in τ) of
these solutions (u⋆wk(x, · + θ), ∂xu

⋆
wk(x, · + θ)) form locally invariant 2-dim surfaces, parametrized by x and

θ ∈ R/( 2πk Z), of the nonlinear Klein-Gordon equation (1.17), or equivalently (10.1), where solutions grow or
decay at weak exponential rates. It is worth pointing out that (u⋆wk(x, ·), ∂xu⋆wk(x, ·)), x ∈ R, corresponds to
only one of the two branches of the 1-dim stable/unstable manifold of (1.17) in Zo, while the other branch
corresponds to (−u⋆wk(x, ·),−∂xu⋆wk(x, ·)). When x = ±∞ is included, the 2-dim surface generated by the
translation in τ does include 0 in the interior and the other branch (corresponding to θ = π

k ). Obviously they
are submanifolds of the (2k + 1)-dim stable/unstable manifolds and actually we shall construct the latter
based on these weak ones (see Figure 12).

Proposition 10.1. There exist M > 1, ε0, ρ1 independent of k ≥ 1 and ω, and unique mappings for any
ε ∈ (0, ε0) and ω given in (1.13),

ζ⋆ =
(
ζ⋆1 (r, θ, δ), ζ

⋆
2 (r, θ, δ)

)
∈ X, θ ∈ R/( 2πk Z), δ = (δ1−k, . . . , δk−1) ∈ C2k−1, δ−n = −δn, |δ|1 < ρ1√

k
,
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for r ∈
[
− ys

0

ε
√
kω
,+∞

]
, if ⋆ = s and r ∈

[
−∞,

yu
0

ε
√
kω

]
if ⋆ = u, where y⋆0 are any values satisfying

∥uuwk∥C0
yu
0

≜ ∥uuwk∥
C0
(
r∈
[
−∞,

yu
0

ε
√
kω

]
,|τ |≤π

) ≤ ρ1√
k
, ∥uswk∥C0

ys
0

≜ ∥uswk∥
C0
(
r∈
[
−

ys
0

ε
√
kω

,+∞
]
,|τ |≤π

) ≤ ρ1√
k
,

such that

Πn[ζ
⋆
2 ]± νnΠn[ζ

⋆
1 ] = 0, ∀ |n| ≤ k − 1, ⋆ = u, s; Π−n[ζ

⋆] = Πn[ζ⋆], ∀n ∈ Z; ζ⋆(r, θ, 0) = 0,

∥ζ⋆1 (r, θ, δ)− ζ⋆1 (r, θ, δ̃)∥ℓ1 +
√
k∥ζ⋆2 (r, θ, δ)− ζ⋆2 (r, θ, δ̃)∥ℓ1 ≤ kM(∥u⋆wk∥2C0

y⋆
0

+ |δ|21 + |δ̃|21)|δ − δ̃|1,

and the images of ξ⋆(r, θ, δ) is an open subset of W ⋆
ω(0) ⊂ X where

ξ⋆(r, θ, δ) =
(
ξ⋆1(r, θ, δ), ξ

⋆
2(r, θ, δ)

)
=
(
u⋆wk(r, ·+ θ), ∂xu

⋆
wk(r, ·+ θ)

)
+ Ξ⋆(δ) + ζ⋆(r, θ, δ),

Ξ⋆(δ) =
∑

|n|≤k−1

(
− i

2

)
δne

inτ (1,±νn), ⋆ = u, s.

Moreover, the orbits (of the dynamic variable x) on W ⋆
ω(0) takes the form ξ⋆

(
x+ r, θ, δ(x)

)
with∑

|n|≤k−1

∣∣∂xδn ∓ νnδn
∣∣ ≤Mν−1

k−1(∥u
⋆
wk∥2C0

y⋆
0

+ |δ|21)|δ|1, ⋆ = u, s.

Remark 10.2. By including r = ±∞, where u⋆wk(±∞, ·) = ∂xu
⋆
wk(±∞, ·) = 0 for ⋆ = s, u, the images of

ξ⋆ do contain a whole open neighborhood of the zero solution in the stable/unstable manifolds W ⋆
ω(0) ⊂ X.

In fact, ξ⋆(±∞, θ, δ) become independent of θ and give the (2k − 1)–dimensional strong stable/unstable
manifolds corresponding to the eigenvalues ±νn, |n| ≤ k − 1. In the (r, δ) coordinates on the invariant
manifolds W ⋆

ω(0), the PDE (1.17) corresponds to a vector field whose r component is always 1 and the δ
components depend on r and δ which is a small perturbation to ±νnδn. The following proof could be carried
out in the spaces with high regularity in τ such as (1 + |∂τ |)−NX for any N ≥ 0 and thus the local invariant
manifolds W ⋆

ω(0) ⊂ (1 + |∂τ |)−NX enjoy the same properties. The smoothness of ζ⋆ in r and θ is also true,
for which we refer the readers to, for example, Theorem 4.3 in [15] for details, while we focus on the needed
quantitative estimates on the sizes and the Lipschitz constant in δ. Alternatively, one may also work on the
rescaled variables as in (1.22) and obtain equivalent estimates.

Proof of Proposition 10.1. The proof follows the standard Lyapunov-Perron method which we shall only
outline for the unstable case. Given parameters r and θ, we see solutions to (1.17) (or equivalently (10.1))
in the form of

u(x, τ) = uuwk(r + x, τ + θ) + U(x, τ), x ≤ 0,

which decay to 0 as x→ −∞. The equation satisfied by U takes the form

(10.7) LkU = Fk(U)

where

LkU =
∑
n∈Z

(
(∂2x − ν2n)Un

)
einτ , Fk(r, θ, U) = g(uuwk + U)− g(uuwk), for U(x, τ) =

∑
n∈Z

Un(x)e
inτ .

Here we used the fact uswk = uuwk(r+x, τ +θ) is an exact solution. The decay property of u(x, τ) as x→ +∞
is built into the Banach space which U belongs to

P =
{
U ∈ C0

(
(−∞, 0), ℓ1

)
| ∥U∥P := sup

x≤0
e−

2
3νk−1x∥U(x)∥ℓ1 <∞

}
.

To set up the Lyapunov-Perron integral equation, define the linear transformation(
Gk(h)

)
(x, τ) =

∑
n∈Z

(
Gk,n(hn)

)
(x)einτ , where h(x, τ) =

∑
n∈Z

hn(x)e
inτ , x ≤ 0,

with (
Gk,n(hn)

)
(x) =

1

2νn
eνnx

∫ x

0

e−νnx
′
hn(x

′)dx′ − 1

2νn
e−νnx

∫ x

−∞
eνnx

′
hn(x

′)dx′, |n| ≤ k − 1,

(
Gk,n(hn)

(
x)
)
=

1

νn

∫ x

−∞
sinh

(
νn(x− x′)

)
hn(x

′)dx′, |n| ≥ k,
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which serves as an inverse of Lk. Here we note that for |n| > k, νn = iϑn and ϑn ≥ k−
1
2 and thus

sinh
(
νn(x− x′)

)
= i sin

(
ϑn(x− x′)

)
. We also define

Ξ̃(δ, x, τ) =
∑

|n|≤k−1

(
− i

2

)
δne

νnx+inτ .

The desired solution U satisfies the fixed point equation

U = F̃(r, θ, δ, U) := Ξ̃(δ) + Gk

(
Fk(r, θ, U)

)
.

Using (10.2) and (10.3), it is straightforward to verify

∥Ξ̃∥P ≤ 1

2
|δ|1, ∥Gk(h)∥P ≤ 100

ν2k−1

∥h∥P ,

∥Fk(r, θ, U)−Fk(r, θ, Ũ)∥P ≤M(∥uuwk∥2C0
yu
0

+ ∥U∥2P + ∥Ũ∥2P)∥U − Ũ∥P .

Therefore there exists ρ1 > 0 independent of ε and k ≥ 1, such that, for |δ|1 ≤ ρ1√
k
, F̃ is a contraction on

the ball of radius 2ρ1√
k
in P. Let Uu(r, θ, δ, x, τ) be the unique fixed point of F̃ ,

ζu1 (r, θ, δ) = Uu(r, θ, δ, 0, ·)− Ξ̃(δ, 0, ·), ζu2 (r, θ, δ) = ∂xU
u(r, θ, δ, 0, ·)− ∂xΞ̃(δ, 0, ·),

and ξu accordingly. The desired estimates on ζu follow from straightforward calculations. The invariance of
Wu

ω (0) = image(ξs) is a direct consequence of the uniqueness of the decaying solutions in P, which implies
that solutions on Wu

ω (0) are parametrized by δ(x) and take the following two forms

u(x, ·) =uuwk(r + x, ·+ θ) + Uu
(
r, θ, δ(0), x, ·

)
=ξu1

(
r + x, θ, δ(x)

)
= uuwk(r + x, ·+ θ) + Uu

(
r + x, θ, δ(x), 0, ·

)
.

The invariance also allows us to obtain a more general identity along this solution u(x) is

Uu
(
r, θ, δ(0), x+ x′, ·

)
= u(x+ x′, ·)− uuwk(r + x+ x′, ·+ θ) = Uu

(
r + x, θ, δ(x), x′, ·

)
.

From the definition of Gk, one may compute, for |n| ≤ k − 1,

δn(x) =iΠn

[(
I + ν−1

n ∂x′
)
Uu
(
r + x, θ, δ(x), x′, ·

)]∣∣
x′=0

= iΠn

[(
I + ν−1

n ∂x′
)
Uu
(
r, θ, δ(0), x+ x′, ·

)]∣∣
x′=0

.

Therefore, differentiating this identity and using (10.7),

∂xδn(x) = νnδn(x) + iν−1
n Πn[Fk(U

u)]
∣∣(

r,θ,δ(0),x
) = νnδn(x) + iν−1

n Πn[Fk(U
u)]
∣∣(

r+x,θ,δ(x),0
).

Letting x = 0, we obtain the estimate on ∂xδ straightforwardly and complete the proof of the proposition. □

The following corollary is direct consequence of the proposition and (10.6).

Corollary 10.3. For any y0 ≥ 0, there exist ε0, ρ1,M > 0 independent of k and ω, and unique mappings
ζ⋆, ⋆ = u, s, for any ε ∈ (0, ε0) such that the results in Proposition 10.1 along with ∥u⋆wk∥C0

y0
≤ M ε√

k
hold

for r ∈
[
− y0

ε
√
kω
,+∞

]
, if ⋆ = s and r ∈

[
−∞, y0

ε
√
kω

]
if ⋆ = u.

10.2. Small homoclinic solutions. We first show that, regarding small breathers, u⋆wk, ⋆ = u, s, is the
only object that matters.

Proposition 10.4. There exist ε0 > 0, ρ2 > 0 independent of k ≥ 1 and ω, such that, for any ε ∈ (0, ε0)
and ω given in (1.13), a 2π-periodic-in-τ solution u(x, τ) to (1.17) exists satisfying

sup
x∈R

∥u(x, ·)∥ℓ1 ≤ ρ2√
k
, and lim

x→−∞
∥u(x, ·)∥H1

τ
+ ∥u(x, ·)∥L2

τ
= 0,

if and only if

sup
x∈R

∥uuwk(x, ·)∥ℓ1 ≤ ρ2√
k

and u(x, τ) = uuwk(x+ r, τ + θ)

for some r, θ ∈ R. Similarly u(x, τ) = uswk(x+ x0, τ + θ) for some x0, θ ∈ R if instead the above limit holds
as x→ +∞.
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Proof. The “⇐=” direction is obvious by (10.6). We shall only consider the “ =⇒ ” direction. Let M ≥
1, ε0 ≥ 0, ρ1 ≥ 0, ξ⋆ = (ξ⋆1 , ξ

⋆
2), ζ

⋆ = (ζ⋆1 , ζ
⋆
2 ),Ξ

⋆ = (Ξ⋆
1,Ξ

⋆
2), ⋆ = u, s, be given by Proposition 10.1, and

ρ2 = min{ρ1,M−1}/20.

We shall work on the case of ⋆ = u only as the proof for the other case is verbatim. The convergence of
u(x, τ) as x→ −∞ implies that u(x, ·) ∈Wu

ω (0) which is also the unstable manifold of 0 in the ∥ · ∥ℓ1 -based
phase space X. Hence, for all x ≪ −1, there exists r, θ ∈ R such that u(x, ·) = ξu1

(
r + x, θ, δ(x)

)
for some

δ(x) ∈ C2k−1 satisfying δ−n(x) = −δn(x).
Let

x1 = sup
{
x ∈ R | ∀x′ ≤ x, u(x′, ·) = ξu1

(
r + x′, θ, δ(x′)

)
, & |δ(x′)|1, ∥uuwk

(
r + x′, ·

)
∥ℓ1 ≤ 10ρ2√

k

}
≤ +∞.

Clearly x1 > −∞ since the image of ξu is a neighborhood of 0 in Wu
ω (0). The estimates on ζu given in

Proposition 10.1 and the 2π
k -periodicity-in-τ of uuwk(x, τ) imply that, for any x ≤ x1,

ρ2√
k
≥
∥∥∥ ∑

|n|≤k−1

Πn[u(x, ·)]
∥∥∥
ℓ1

=
∥∥∥Ξu

1

(
δ(x)

)
+

∑
|n|≤k−1

Πn

[
ζu1
(
r + x, θ, δ(x)

)]∥∥∥
ℓ1

≥ 1

2
|δ(x)|1.

In turn, along with Proposition 10.1 it yields

∥uuwk(r + x, ·)∥ℓ1 = ∥u(x, ·)− Ξu
1

(
δ(x)

)
− ζu1 (x+ r, θ, δ(x))∥ℓ1 ≤ ρ2√

k
+ 3

2 |δ(x)|1 ≤ 4ρ2√
k
, ∀x ≤ x1.

The definition of x1 immediately implies x1 = +∞ and, in particular, ∥uuwk(x, ·)∥ℓ1 ≤ 4ρ2√
k
< ρ1√

k
for all x ∈ R.

Again according to Proposition 10.1, ξ⋆ and ζ⋆, ⋆ = u, s, are well-defined near all r ∈ R. Finally, from the
estimate on the evolution ∂xδ of δ(x), we have, for any x ∈ R and |n| ≤ k − 1,

|∂xδn(x)− νnδn(x)|1 ≤ 20Mρ2
2

kνk−1
|δ(x)|1 ≤ 20Mρ22νk−1|δ(x)|1 ≤ (νn/2)|δ(x)|1.

Therefore

|δn(x)|1 ≤ e−
νn
2 N |δn(x+N)|1 ≤ 2e−

νn
2 Nk−

1
2 ρ2,

which implies δn(x) = 0 by taking N → +∞, and thus u(x, τ) = uuwk(r + x, τ + θ). □

As an immediate corollary, there exists a small breather solution u(x, τ) to the nonlinear Klein-Gordon
equation (1.17) satisfying (1.8) as |x| → ∞ and supx∈R ∥u(x, ·)∥ℓ1 ≤ ρ2√

k
iff uuwk(x+r, τ) = uswk(x, τ) for some

r ∈ R, namely u⋆wk(x, ·), ⋆ = u, s, are small and have the same orbits. The translation in τ is not needed
since u⋆wk are both primarily supported in the k-th mode if τ and odd in τ . This proves Theorem 1.3(2c).

11. The Stokes constant

We devote this section to analyze the Stokes constant Cin appearing in Theorems 1.3 and 1.4. As proved
in Theorem 3.3, Cin depends on the nonlinearity f ∈ Fr analytically. In Section 11.1, we complete the proof
of Theorem 1.4 by showing that Cin ̸= 0 in an open and dense set in Fr. In Section 11.2, we give some more
discussions on Cin and conjecture a formula for Cin in terms of a power series.

11.1. Proof of Theorem 1.4. To complete the proof of Theorem 1.4, first we recall the inner equation
introduced in Section 2.2

(11.1) ∂2zϕ
0 − ∂2τϕ

0 − ϕ0 +
1

3
(ϕ0)3 + f(ϕ0) = 0,

where f is a real-analytic odd function such that f(u) = O(u5) for |u| ≪ 1. More concretely f ∈ Fr, where
Fr is given in (1.7). Observe that Fr is a Banach space with the norm ∥ · ∥r.

Notice that (11.1) can be rewritten as

(11.2) ∂2τϕ0 − ∂2zϕ0 +
1√
2
sin(

√
2ϕ0) + ∆(ϕ0) = 0,

where ∆ and f are related through

(11.3) ∆(u) = −
( 1√

2
sin(

√
2u)− u+

1

3
u3 + f(u)

)
.
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From Theorem 3.3, equation (11.1), and therefore equation (11.2), admit two solutions ϕ0,⋆ : D⋆,in
θ,κ ×T →

C, ⋆ = u, s, such that

lim
|z|→∞

ϕ0,⋆(z, τ) = 0, ∀(z, τ) ∈ D⋆,in
θ,κ × T.

In order to make explicit the dependence of these solutions on ∆, we shall denote ϕ0,⋆ by ϕ0,⋆∆ .
We also recall, that in Theorem 3.3, we have proved that for

z ∈ Rin,+
θ,κ = Du,in

θ,κ ∩Ds,in
θ,κ ∩ {z; z ∈ iR and Im(z) < 0},

we have

(11.4) ϕ0,u∆ (z, τ)− ϕ0,s∆ (z, τ) = e−iµ3z (Cin(∆) sin(3τ) + χ(z, τ ; ∆)) , µ3 = 2
√
2,

where we have denoted Cin(∆) = Cin(f), the Stokes constant, and χ∆(z, τ) = χ(z, τ ; ∆) are analytic functions
in the variables z satisfying

∥χ∆∥ℓ1(z), ∥∂τχ∆∥ℓ1(z) ≤
M2

|z|
and ∥∂zχ∆∥ℓ1(z) ≤

M2

|z|2
, ∀z ∈ Rin,+

θ,κ .

For ∆ ≡ 0, which corresponds to the sine-Gordon equation, from the explicit formula (1.1) and the asymp-
totics (3.11) of ϕ0,⋆, a direct computation allows us to verify that the inner equation (11.2) admits the
solutions

(11.5) ϕ0,u(z, τ) = ϕ0,s(z, τ) = ϕ0b(z, τ) =
4√
2
arctan

(
− i sin(τ)

z

)
,

which implies that Cin(0) = Cin(f
sg) = 0, where f sg(ϕ0) = − 1√

2
sin(

√
2ϕ0) + ϕ0 −

1

3
(ϕ0)

3.

To prove Theorem 1.4, we also consider the parameterized inner equation:

(11.6) ∂2τϕ0 − ∂2zϕ0 +
1√
2
sin(

√
2ϕ0) + µ∆(ϕ0) = 0.

where µ ∈ R is a parameter.
Observe that equation (11.6) corresponds to taking in equation (11.1), the µ-dependent function:

f(ϕ0, µ) = − 1√
2
sin(

√
2ϕ0) + ϕ0 −

ϕ30
3

− µ∆(ϕ0).

As equation (11.1), with f(ϕ0, µ), depends analytically (in fact linearly) on µ, by Theorem 3.3 so do the
solutions ϕu,s and the Stokes constant Cin(f(·, µ)) = Cin(µ∆).

For a given function ∆ ∈ Fr, let us denote by

c∆in(µ) = Cin(µ∆)

which is an analytic function of µ. Consider the directional derivative

cdin : Fr → C

∆ 7→ cdin(∆) =
dc∆in
dµ

(0).
(11.7)

By the analyticity of Cin, c
d
in : Fr → C is a bounded linear operator. We first state the following propositions.

Proposition 11.1. For any ∆ /∈ ker(cdin), the set

{µ ∈ R : Cin(µ∆) = 0}
is a discrete subset of R.

This proposition follows directly from 1.) the analyticity of Cin(µ∆) in µ as given in Theorem 3.3(3) and
2.) Cin(µ∆) does not vanish identically due to the assumption ∆ /∈ ker(cdin).

Proposition 11.2. The operator cdin satisfies cdin ̸= 0.

We shall prove this proposition after we show that

V = {∆ ∈ Fr, Cin(∆) ̸= 0}
is open and dense, which completes the proof of Theorem 1.4. In fact
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• V ⊂ Fr is open due to the continuity of Cin(∆) in ∆ as given in Theorem 3.3.
• cdin ̸= 0 implies that there exists ∆1 ∈ Fr \ ker(cdin). Therefore for any ∆ ∈ Fr, there exists
(µ1, µ2) ∈ R2 arbitrarily close to (1, 0) such that ∆ + µ2∆1 /∈ ker(cdin) and Cin(µ1(∆ + µ2∆1)) ̸= 0,
which implies the density of V ⊂ Fr.

• In fact, since the real dimension of ker(cdin) is at most 2, the implication of the above propositions is
much stronger than that V is open and dense.

The rest of the section is devoted to prove Proposition 11.2. We shall first derive a formula for cdin(∆)
defined in (11.7) for ∆ ∈ Fr. In order to do this, we consider the parameterized inner equation (11.6) and
we shall compute cdin(∆) through a Melnikov-like analysis. Thus, we write the solutions of equation (11.6)
as

(11.8) ϕ0,⋆µ∆(z, τ) = ϕ0b(z, τ) + µψ⋆
1(z, τ) + µ2R⋆(z, τ ; ∆, µ), ψ⋆

1 =
( d

dµ
ϕ0,⋆µ∆

)∣∣∣
µ=0

, ⋆ = u, s,

where ϕ0b is given in (11.5) and R⋆(z, τ ; ∆, µ) is analytic in the variable z and also in the parameter µ. Note
that the functions ψ⋆

1 satisfy the same estimates as ψ⋆ in (3.12) in Theorem 3.3. A direct computation shows
that ψ⋆

1 satisfies the non-homogeneous linear equation

(11.9) ∂2τψ
⋆
1 − ∂2zψ

⋆
1 + cos(

√
2ϕ0b)ψ

⋆
1 −∆(ϕ0b) = 0.

As in the standard Melnikov analysis, each solution to the corresponding homogeneous equation – the
variational equation of (11.6) around ϕ0b at µ = 0 – can be used to measure the splitting between ψu

1 and

ψs
1 in a certain direction, which yields the splitting of ϕ0,uµ∆(z, τ) and ϕ

0,s
µ∆(z, τ) in the leading order of µ for

|µ| ≪ 1. Next lemma gives the solutions of the variational equations around ϕ0b .

Lemma 11.3. The homogeneous linear partial differential equation

(11.10) ∂2τ ξ − ∂2zξ + cos(
√
2ϕ0b)ξ = 0

has a family of solutions given by

(11.11) ξ±n (z, τ) =
2

µ2
n

(
χ±
n (z, τ)− χ±

−n(z, τ)
)
,

where n ∈ N, n ≥ 2, µn =
√
n2 − 1 and, for each l ∈ Z, χ±

l are the functions given by

(11.12)

χ±
l (z, τ) = e±iµlz+ilτ

(
1− sin2(τ)

z2

)−1

×
{
±µl

2z
− l

2

cos(τ) sin(τ)

z2
− i

4
µ2
l + i

(l2 + 1)

4

sin2(τ)

z2

}
.

The proof of this lemma is obtained through a direct verification. In fact, the result is a consequence of
a particular case of Lemma 4 in [20].

Next proposition gives a Melnikov integral type expression of the desired function cdin(∆):

Proposition 11.4. For any function ∆ ∈ Fr, c
d
in(∆) ∈ C satisfies

(11.13) cdin(∆) =
d

dµ
(Cin(µ∆))

∣∣∣∣
µ=0

=
1

2πiµ3

∫ ∞

−∞

∫ 2π

0

∆(ϕ0b(z + s, τ))ξ+3 (z + s, τ)dτds,

which is independent of z ∈ Rin,+
θ,κ , where ξ+3 is given in (11.11).

Proof. Consider ξ+3 given in (11.11). Since ψu
1 satisfies (11.9), multiplying it by ξ+3 , we obtain

(11.14) ξ+3

(
∂2τψ

u
1 − ∂2zψ

u
1 + cos(

√
2ϕ0b)ψ

u
1

)
= ξ+3 ∆(ϕ0b).

Thus, for z ∈ Du,in
θ,κ , we have

(11.15)

∫ 0

−∞

∫ 2π

0

ξ+3

(
∂2τψ

u
1 − ∂2zψ

u
1 + cos(

√
2ϕ0b)ψ

u
1

)
(s+ z, τ)dτds =

∫ 0

−∞

∫ 2π

0

ξ+3 ∆(ϕ0b)(s+ z, τ)dτds.
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This integrals are well defined since ψu
1 satisfies the estimates (3.12) in Theorem 3.3. Integrating by parts

with respect to τ twice and using that the functions are 2π-periodic in τ we have that

(11.16)

∫ 0

−∞

∫ 2π

0

ξ+3 (s+ z, τ)∂2τψ
u
1 (s+ z, τ)dτds =

∫ 0

−∞

∫ 2π

0

ψu
1 (s+ z, τ)∂2τ ξ

+
3 (s+ z, τ)dτds.

Now, integrating by parts with respect to s twice and using the expression of ξ+3 , we have that∫ 0

−∞

∫ 2π

0

ξ+3 (s+ z, τ)∂2zψ
u
1 (s+ z, τ)dτds =

∫ 0

−∞

∫ 2π

0

ψu
1 (s+ z, τ)∂2zξ

+
3 (s+ z, τ)dτds

−
∫ 2π

0

(
ψu
1 (z, τ)∂zξ

+
3 (z, τ)− ∂zψ

u
1 (z, τ)ξ

+
3 (z, τ)

)
dτ.

(11.17)

Replacing (11.16),(11.17) in (11.15) and using that ξ+3 satisfies (11.10), we have

(11.18)

∫ 0

−∞

∫ 2π

0

∆(ϕ0b(s+ z, τ))ξ+3 (s+ z, τ)dτds =

∫ 2π

0

[
ψu
1 (z, τ)∂zξ

+
3 (z, τ)− ∂zψ

u
1 (z, τ)ξ

+
3 (z, τ)

]
dτ.

Analogously, if z ∈ Ds,in
θ,κ , we obtain

(11.19)

∫ 0

+∞

∫ 2π

0

∆(ϕ0b(s+ z, τ))ξ+3 (s+ z, τ)dτds =

∫ 2π

0

[
ψs
1(z, τ)∂zξ

+
3 (z, τ)− ∂zψ

s
1(z, τ)ξ

+
3 (z, τ)

]
dτ.

Hence, subtracting (11.18), (11.19) we obtain∫ +∞

−∞

∫ 2π

0

∆(ϕ0b(s+ z, τ))ξ+3 (s+ z, τ)dτds =

∫ 2π

0

(ψu
1 − ψs

1)(z, τ)∂zξ
+
3 (z, τ)dτ

−
∫ 2π

0

∂z(ψ
u
1 − ψs

1)(z, τ)ξ
+
3 (z, τ)dτ.

(11.20)

Recall that, if µ = 0, then Cin(0) = 0 and χ(z, τ ; 0) ≡ 0 in (11.4). Now, using (11.8) and (11.4), expanding
Cin(µ∆) and χ around µ = 0 and taking µ→ 0, it follows that

ψu
1 (z, τ)− ψs

1(z, τ) = e−iµ3z

(
d

dµ
Cin(µ∆)

∣∣∣∣
µ=0

sin(3τ) + ∂µχ(z, τ ; 0)

)
= e−iµ3z

(
cdin(∆) sin(3τ) +Oℓ1(z

−1)
)
.

(11.21)

Since (11.11) and (11.12) yield

ξ+3 (z, τ) = eiµ3z
(
sin(3τ) +Oℓ1(z

−1)
)
, ∂zξ

+
3 (z, τ) = iµ3e

iµ3z
(
sin(3τ) +Oℓ1(z

−1)
)
, as |z| → ∞,

a straightforward computation of the right-hand side of (11.20) shows that, for each z ∈ Rin,+
θ,κ ,

(11.22)

∫ +∞

−∞

∫ 2π

0

∆(ϕ0b(s+ z, τ))ξ+3 (s+ z, τ)dτds = 2πiµ3c
d
in(∆) +Q(z, τ),

where Q(z, τ) = Oℓ1(z
−1). Since the left-hand side of (11.22) does not depend on z (one can just make the

change of variables σ = s+ z), the decay of Q implies that Q ≡ 0, and thus (11.13) holds. □

With a formula for cdin(∆), ∆ ∈ Fr, the following lemma finishes the proof of Proposition 11.2.

Lemma 11.5. If ∆0(u) =

(
−i tan

(√
2

4
u

))5(
1 + tan2

(√
2

4
u

))
, then

cdin(∆0) =

∫ ∞

−∞

∫ 2π

0

∆0(ϕ
0
b(z + s, τ))ξ+3 (z + s, τ)dτds =

26π2

15
i.

Proof. First, notice that

∆0(ϕ
0
b(s+ z, τ)) = − sin5(τ)

(s+ z)5

(
1− sin2(τ)

(s+ z)2

)
,
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and

ξ+3 (s+ z, τ) =
ei2

√
2(s+z)

8(s+ z)2
(
1− sin2(τ)

(s+ z)2

) (4 sin(τ) + (8(s+ z)2 + i4
√
2(s+ z)− 5) sin(3τ) + sin(5τ)

)
.

Therefore, ∫ ∞

−∞

∫ 2π

0

∆0(ϕ
0
b(z + s, τ))ξ+3 (z + s, τ)dτds =

∫ ∞

−∞
F (z, s)ds,

where

F (z, s) =
πei2

√
2(s+z)

64(s+ z)7

(
−33 + i10

√
2(s+ z) + 20(s+ z)2

)
.

Recall that this integral is independent of z ∈ Rin,+
θ,κ . Since z = −iκ, for some κ > 0 sufficiently big, we have

that F (−iκ, s) has a pole at s = iκ.
For R > κ sufficiently big, consider CR = {z; |z| = R, ℑ(z) ≥ 0} and LR be the line segment between the

points −R and R. Let γR(θ) = Reiθ, 0 ≤ θ ≤ π, be a parameterization of CR and notice that

F (−iκ, γR(θ)) =
πei2

√
2(Reiθ−iκ)

64(Reiθ − iκ)7

(
−33 + i10

√
2(Reiθ − iκ) + 20(Reiθ − iκ)2

)
,

which means, for some M > 0 independent of R,

|F (−iκ, γR(θ))| ≤M
e−2

√
2R sin(θ)

|Reiθ − iκ|5
.

Since 0 ≤ θ ≤ π, we have

lim
R→∞

∫
CR

F (−iκ, s)ds = 0.

From Residue Theorem, it follows that∮
CR∪LR

F (−iκ, s)ds = 2πiRes(F (−iκ, s), iκ) = 26π2

15
i,

which implies ∫ ∞

−∞
F (−iκ, s)ds = 26π2

15
i.

□

11.2. A conjecture on the Stokes constant. As stated in Theorem 1.4, generically Cin does not vanish.
We heuristically explain this fact from points of views different compared to those given in Sections 5 and
11.1. Consider first a toy model of (11.1) near the breather (11.5) decomposed into Fourier modes in the
form of (2.12). A “simplified” equation for the third mode can be taken the form

γ′′3 (z) + µ2
3γ3(z) = g(z) =

∞∑
l=3

al
zl
,

where we may start with the assumption that the power series on the righthand side is convergent outside
a disk centered at the origin. The same proof as in Section 5 yields two solutions γs, γu such that

γ⋆(z) = O(z−3), z ∈ D⋆,in
θ,κ , ⋆ = u, s,

where D⋆,in
θ,κ are the sectorial complex domains with vertex at z = ±∞ defined in (3.10). However, in general,

γu,s cannot be extended to analytic functions defined in a neighborhood of ∞. In fact, γu,s have the same
formal asymptotic expansion γ̃, as |z| → ∞,

γu,s(z) ∼ γ̃(z) =

∞∑
l=3

γl
zl
, γl =

[ l−3
2 ]∑

j=0

(−1)jµ
−2(j+1)
3

(l − 1)!

(l − 2j − 1)!
al−2j , l ≥ 3,
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where [b] denotes the greatest integer no greater than b. We observe that γ̃ is generally a divergent series,
but in the Gevrey-1 class, namely

sup
l

(
|γl|
l!

) 1
l

<∞.

Hence, one may expect γu ̸= γs in general. There are several ways to see that and to provide an algorithm
to compute their difference.

Borel resummation. One possibility is using the Borel resummation method as well as the Resurgence
theory of Écalle. The main idea is to consider the formal Borel transform γ̂ (the inverse of the Laplace
transform) term by term of the series γ̃

γ̂(ξ) =

∞∑
l=3

γl
l!
ξl−1, l ≥ 3.

If γ̃ is of Gevrey-1 class, then γ̂ is a convergent series in a disk around ξ = 0 which gives an analytic function
that we also denote γ̂. As a first step, one can study the analytic extension of this function γ̂ to the complex
plane and its singularities.

In our toy model, one can easily compute the equation satisfied by γ̂,

(ξ2 + µ2
3)γ̂(ξ) = ĝ(ξ)

where ĝ(ξ) =
∑∞

l=3
al

l! ξ
l−1 is an entire function. Clearly, in this model, the only singularities of γ̂ are simple

poles located at ξ = ±µ3i.
The second step to recover the original functions is to compute the Laplace transform of the function γ̂

along “rays” to infinity. The existence of singularities of γ̂ makes the Laplace transforms to be different when
choosing different paths according to their decay requirements, obtaining two different functions γs,u, whose
difference can be computed by means of the residuum theorem. Again, using our toy model and assuming
growth conditions on γ̂ of the form |γ̂(z)| ≲ eC|ξ|, one can recover γs,u by choosing Laplace transforms of γ̂
along positive or negative real axis

γs(z) =

∫ ∞

0

e−zξγ̂(ξ)dξ, for Re z > C,

γu(z) =

∫ −∞

0

e−zξγ̂(ξ)dξ, for Re z < −C.

One can easily study the analytic continuation of these functions by changing the paths of integration. In
this way we extend the functions to sectorial domains similar to D⋆,in

θ,κ and study its difference. For instance,

for z = −iκ, κ > 0, for γs, we change the path to Γ+ = {arg(ξ) = θ}, θ ∈ (0, π/2). For γu, we change the
path to Γ− = {arg(ξ) = π − θ}. Hence, we have

γu(−iκ)− γs(−iκ) =
∫
Γ−

eiκξγ̂(ξ)dξ −
∫
Γ+

eiκξγ̂(ξ)dξ

= −2πiRes(eiκξγ̂(ξ), ξ = µ3i) = −πe−µ3κ
ĝ(µ3i)

µ3
,

(11.23)

as we have assumed that γ̂ has moderate growth at infinity and, since γ̂(ξ) = ĝ(ξ)
ξ2+µ2

3
, it has a simple pole at

ξ = µ3i with residuum ĝ(µ3i)
2µ3i

.

Resurgence theory gives rigor to this argument when one construct the solutions ϕ0,⋆, ⋆ = u, s, for the full
nonlinear equation (11.1). Roughly speaking, the constant Cin appears in the computation of residue of the
extension of such γ̂ in the singularity closest to the origin. Using these ideas, one can develop an algorithm
to compute Cin.

A more direct approach through Perron integrals. Let us end this section by proposing another
approach to illustrate γs ̸= γu and also giving an algorithm to compute Cin. We can write an integral
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representation of the functions γs, γu using their decay at infinity:

γu(z) =
1

2iµ3

∫ z

−∞
e−iµ3(s−z)g(s)ds− 1

2iµ3

∫ z

−∞
eiµ3(s−z)g(s)ds,

γs(z) =
1

2iµ3

∫ z

+∞
e−iµ3(s−z)g(s)ds− 1

2iµ3

∫ z

+∞
eiµ3(s−z)g(s)ds.

For κ > 0, let Bκ ⊂ C be the disk centered at 0 with radius κ and S be the path going from −∞ to −κ
along the negative real axis, then to κ along the lower half of ∂Bκ, then to +∞ along the real axis. By the
Cauchy integral theorem we obtain

γu(−iκ)− γs(−iκ) = 1

2iµ3

∫
S

e−iµ3(s+iκ)g(s)ds− 1

2iµ3

∫
S

eiµ3(s+iκ)g(s)ds

=− e−µ3κ

2iµ3

∮
∂Bκ

eiµ3sg(s)ds = −πe−µ3κ
∞∑
l=3

il−1µl−2
3

(l − 1)!
al.

The above right side are related to ĝ, the Borel transform of g, evaluated at iµ3 and gives the difference
between γu and γs. In fact, this formula is exactly the same as (11.23). This means that in the derivation
of the stable/unstable solutions ϕ0,⋆, ⋆ = u, s, through the Lyapunov-Perron approach, a nonzero splitting
appears even after the first iteration.

An algorithm to compute Cin. As mentioned above, by the Borel-Laplace summation theory, ϕ0,u and
ϕ0,s, while analytic on their own domains and non-equal in the intersection of the domains, share the same
formal series as z → ∞ in suitable sectors

ϕ0,⋆ ∼
∞∑
j=3

bj
zj
,

which is generally divergent, but belongs to the Gevrey-1 class, Moreover, the right hand sides Fn of (2.12)
are also associated to formal series

Fn (ϕ
u,s) (z) ∼

∞∑
j=3

βn,j
zj

,

in the Gevrey-1 class. The above considerations motivate us to make the following conjecture.

Conjecture. The constant Cin introduced in Theorem 1.3 can be expressed as

Cin = −π
∞∑
l=3

il−1µl−2
3

(l − 1)!
β3,l.

Even though the formula of the splitting constant Cin in this conjecture is still very complicated, if proved,
it would give an algorithm to compute Cin which may be implemented by numerical computations. The
proof of this conjecture is beyond this paper.

Appendix A. Proof of Proposition 4.3

Unless stated otherwise, M denotes any constant independent of κ and ε. The proof of items (1) and
(2) are straightforward using that (3.1) acts on the Fourier coefficients of ξ. To prove item (3), we consider
h ∈ Em,α and we estimate G1(h1) and Gn(hn) (see (4.2) and (4.3)). For Gn, using Lemma 5.5 in [33], one can
see that

(A.1) ∥Gn(h)∥m,α ≤ Mε2

λ2n
∥h∥m,α, n ≥ 2.

Now we estimate G1 given by

G1(h)(y) = −ζ1(y)
∫ y

0

ζ2(s)h(s)ds+ ζ2(y)

∫ y

−∞
ζ1(s)h(s)ds.

First, we bound G1(h)(y) for values of y in Dout,u
κ ∩ {Re(y) ≤ −1}. Notice that the functions ζ1(y), ζ2(y)

given in (4.4) satisfy

(A.2) |ζ1(y)| ≤
M

| cosh(y)|
and |ζ2(y)| ≤M | cosh(y)|,



72 O. M. L. GOMIDE, M. GUARDIA, T. M. SEARA, AND C. ZENG

for every

y ∈ Dout,u
κ ∩ {y ∈ C; | Im(y)| ≤ −K Re(y)} where K =

(
tan(β) +

π

2
− κε

)
.

The second integral in G1 satisfies that, for every y ∈ Dout,u
κ ∩ {Re(y) ≤ −1},∣∣∣∣∫ y

−∞
ζ1(s)h(s)ds

∣∣∣∣ ≤M∥h∥m,α

∫ 0

−∞

1

| coshm+1(s+ y)|
ds ≤M

∥h∥m,α

| coshm+1(y)|
.

Therefore

(A.3)

∣∣∣∣ζ2(y)∫ y

−∞
ζ1(s)h(s)ds

∣∣∣∣ ≤ M∥h∥m,α

| coshm(y)|
.

Now, to estimate the first integral in G1, let y
∗ be the unique point in the segment of line between 0 and y

such that Re(y∗) = −1. Hence, it follows from (A.2) that,

(1) If s is in the line between 0 and y∗, then

|ζ2(s)h(s)| ≤
M∥h∥m,α| cosh(s)|

|s2 + π2/4|α
≤ M∥h∥m,α.

(2) If s is in the line between y∗ and y, then

|ζ2(s)h(s)| ≤
M∥h∥m,α

| coshm−1(s)|
.

Thus since m > 1, using the previous estimates, we have that∣∣∣∣∫ y

0

ζ2(s)h(s)ds

∣∣∣∣ ≤ ∣∣∣∣∫ 0

y∗
ζ2(s)h(s)ds

∣∣∣∣+
∣∣∣∣∣
∫ y∗

y

ζ2(s)h(s)ds

∣∣∣∣∣ ≤M∥h∥m,α,

and consequently

(A.4)

∣∣∣∣ζ1(y)∫ y

0

ζ2(s)h(s)ds

∣∣∣∣ ≤ M∥h∥m,α

| cosh(y)|
.

Now, from (4.2), (A.3) and (A.4), we obtain that

(A.5) sup
y∈Dout,u

κ ∩{Re(y)≤−1}
|cosh(y)G1(h)(y)| ≤M∥h∥m,α.

For the region Dout,u
κ ∩{Re(y) ≥ −1}, we consider a new set of fundamental solutions {ζ+, ζ−} of L1(ζ) = 0

which has good properties at ±iπ/2. We rewrite the solutions ζ1(y) and ζ2(y) as linear combinations of ζ+(y)
and ζ−(y) and use them to obtain a new expression of the operator G1. We emphasize that the operator G1

is already defined. We only express it in a different way.

Lemma A.1. The functions

ζ±(y) = ζ1(y)

∫ y

±iπ
2

1

ζ21 (s)
ds = −

√
2

4

1

cosh2(y)

(
3y sinh(y)

2
− cosh(y) +

1

4
sinh(y) sinh(2y)∓ i

3π

4
sinh(y)

)
are solutions of equation L1(ζ) = 0 and have the following properties.

• The Wronksian satisfies

W (ζ+, ζ−) = ζ+ζ̇− − ζ−ζ̇+ = −i3π
16
.

and therefore ζ± are linearly independent.
• They can be written as

(A.6) ζ±(y) =
(y ∓ iπ/2)3

(y ± iπ/2)2
η±(y),

where η± are analytic functions in Dout,u
κ ∩ {Re(y) ≥ −1} uniformly bounded (with respect to ε and

κ).
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• The operator G1 given by (4.2) can be rewritten as

G1(h) = i
16

3π

(
−ζ+(y)

∫ y

0

ζ−(s)h(s)ds+ ζ−(y)

∫ y

0

ζ+(s)h(s)ds

)
+ ζ2(y)

∫ 0

−∞
ζ1(s)h(s)ds,

where ζ1, ζ2 are given in (4.4).

The proof of this lemma is a straightforward computation using the relation between ζ± and ζ1, ζ2.
Using this lemma, we bound G1(h) for y ∈ Dout,u

κ satisfying Re(y) ≥ −1. First, notice that we can use
(A.2) to see that∣∣∣∣∫ 0

−∞
ζ1(s)h(s)ds

∣∣∣∣ ≤ M∥h∥m,α

(∫ −1

−∞

1

| coshm+1(s)|
ds+

∫ 0

−1

1

| cosh(s)(s2 + π2/4)α|
ds

)
≤ M∥h∥m,α.

From the expression of ζ2(y) in (4.4), we have that ζ2(y) has poles of order 2 at ±iπ/2 + i2kπ. Since α ≥ 5,

sup
y∈Dout,u

κ ∩{Re(y)≥−1}

∣∣∣∣(y2 + π2/4)α−2ζ2(y)

∫ 0

−∞
ζ1(s)h(s)ds

∣∣∣∣ ≤M∥h∥m,α.

Now, we use that α ≥ 5 and equation (A.6) to see that∣∣∣∣ζ+(y)∫ y

0

ζ−(s)h(s)ds

∣∣∣∣ ≤ M
|y − iπ/2|3

|y + iπ/2|2

∫ y

0

|s+ iπ/2|3

|s− iπ/2|2
|h(s)|ds

≤ M∥h∥m,α
|y − iπ/2|3

|y + iπ/2|2

∫ y

0

1

|s+ iπ/2|α−3|s− iπ/2|α+2
ds

≤ M∥h∥m,α

|y2 + π2/4|α−2
.

We conclude that

sup
y∈Dout,u

κ ∩{Re(y)≥−1}

∣∣∣∣(y2 + π2/4)α−2ζ+(y)

∫ y

0

ζ−(s)h(s)ds

∣∣∣∣ ≤M∥h∥m,α.

In a similar way, we can prove that

sup
y∈Dout,u

κ ∩{Re(y)≥−1}

∣∣∣∣(y2 + π2/4)α−2ζ−(y)

∫ y

0

ζ+(s)h(s)ds

∣∣∣∣ ≤M∥h∥m,α.

Therefore

(A.7) sup
y∈Dout,u

κ ∩{Re(y)≥−1}

∣∣(y2 + π2/4)α−2G1(h)(y)
∣∣ ≤M∥h∥m,α.

Hence, using (4.1), (A.1), (A.5) and (A.7) , one obtains item (3) of Proposition 4.3.
To prove the estimates on ∂τG(h) and ∂2τG(h) it is sufficient to use (A.1) and

Πn[∂
2
τG(h)] = −n2Πn[G(h)].

Finally, for item (5), notice that

∂y ◦ Gn(h) =
1

2
ei

λn
ε y

∫ y

−∞
e−iλn

ε sh(s)ds+
1

2
e−iλn

ε y

∫ y

−∞
ei

λn
ε sh(s)ds, n ≥ 2,

and thus, one can easily obtain

∥∂y ◦ Gn(h)∥m,α ≤ Mε

λn
∥h∥m,α, n ≥ 2.

The decay of ∂y ◦ Gn(h) for n ≥ 2 also implies that ∂y ◦ Gn(h) = G(∂yh) and thus we also have

∥∂y ◦ Gn(h)∥m,α ≤ Mε2

λ2n
∥∂yh∥m,α, n ≥ 2.
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For the first mode, since

∂y ◦ G1(h) =i
16

3π

(
−ζ ′+(y)

∫ y

0

ζ−(s)h(s)ds+ ζ ′−(y)

∫ y

0

ζ+(s)h(s)ds

)
+ ζ ′2(y)

∫ 0

−∞
ζ1(s)h(s)ds

=− ζ ′1(y)

∫ y

0

ζ2(s)h(s)ds+ ζ ′2(y)

∫ y

−∞
ζ1(s)h(s)ds,

one has ∥∂y ◦ G1(h)∥1,α−1 ≤M∥h∥m,α.
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[54] C. Olivé, D. Sauzin, and T. M. Seara. Resurgence in a Hamilton-Jacobi equation. InAnnales de l’institut Fourier, volume 53,

pages 1185–1235, 2003.

[55] O. Oxtoby, D. Pelinovsky, and I. Barashenkov. Travelling kinks in discrete ϕ4 models. Nonlinearity, 19(1):217–235, 2006.
[56] D. Pelinovsky, T. Penati, and S. Paleari. Approximation of small-amplitude weakly coupled oscillators by discrete nonlinear

Schrödinger equations. Rev. Math. Phys., 28(7):1650015, 25, 2016.



76 O. M. L. GOMIDE, M. GUARDIA, T. M. SEARA, AND C. ZENG

[57] D. Pelinovsky, T. Penati, and S. Paleari. Existence and stability of klein-gordon breathers in the small-amplitude limit.
Mathematics of Wave Phenomena, Trends in Mathematics (Birkhäuser Basel), pages 251–278, 2020.
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