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Abstract

The splitting of separatrices for Hamiltonians with 1% degrees of freedom
h(z,t/e) = h%(x) + pePh!(z,t/c)

is measured. We assume that h®(z) = hO(z1,z2) = 23/2 + V(1) has a separatrix
20(t), h'(z,H) is 2m-periodic in @, y and & > 0 are independent small parameters,
and p > 0. Under suitable conditions of meromorphicity for #9(u) and the pertur-
bation h'(z%(u),6), the order £ of the perturbation on the separatrix is introduced,
and it is proved that, for p > /¢, the splitting is exponentially small in ¢, and is
given in first order by the Melnikov function.
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1 Introduction and main results

In his celebrated memoir on the three-body problem [P0i90], Poincaré introduced the
phenomenon of the splitting of the separatrices (transversal intersection of invariant
manifolds that are coincident for the unperturbed problem), as the main obstruction
for the integrability of the differential equations. To measure the size of such splitting,
he developed a perturbative method in the parameter of perturbation, which was redis-
covered 70 years later, and is now well-known as the Melnikov method. At that time,
he was already aware that the size of the splitting of the separatrices predicted by his
perturbative method was exponentially small with respect to the parameter of pertur-
bation e [Poi90, page 223], a fact which prevented him to provide rigorous results, since
the remainder of his perturbative expansion was, in principle, Q(g?).

It was not until the last decade that an effective measure of such exponentially small
splitting of separatrices was addressed by several authors [HMS88, GLT91, Ang93], and
complete proofs of its asymptotic behavior were finally obtained for the rapidly forced
pendulum in some papers [DS92, Gel93, EKS93, Tre97, Sau95|, for different kind of
hypotheses on the size of the perturbative forcing.

For more general systems, upper estimates were obtained in several papers [Nei84,
Fon93, Sim94, Fon95, FS96], and only very recently, asymptotic expressions or lower es-
timates have been justified for some relevant examples [Gal94, Gel95, DGJS97, RW97b].

The aim of this paper is to expound a general method to validate the exponentially
small expressions provided by the Melnikov function for general Hamiltonian systems
with 1% degrees of freedom and a rapidly oscillatory dependence in time. In particular,
we are not going to restrict ourselves, like most of the cited authors, to the simpler
reversible second order equations, for which the results contained in [DS92] for the
rapidly forced pendulum—the standard paradigm—are readily adaptable.

To deal with systems of this generality, we introduce suitable flow-box canonical
coordinates, in such a way that the perturbed invariant manifolds take a simple form,
as well as their associated dynamics. These canonical flow-box coordinates provide an
invariant measure for the splitting of separatrices, and can also be applied in a broader
setting. We also rely on an extension theorem, a tool already introduced by the authors
in [DS92], which permits to get a priori sharp estimates for the allowed size of the
perturbation.

The main ideas of this paper were already announced in [DS93, DS94]. However,
these papers were not developed in their outmost generality, and because of this, we
now proceed to explain the method with full details, and all the required hypotheses
will be thoroughly discussed. We hope that this detailed and fully rigorous account of a
fairly general framework will provide a firm starting point for those who want to enter
the field and serve as a solid foundation for future work.

We shall consider a Hamiltonian of the form

h(z,t/c) = h®(x) + uePh' (z,t/e),
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where h%(z) = h%(z1,z9) = 23/2+V (21), p and € > 0 are independent small parameters,
and p > 0.

The Hamiltonian system associated to h is a perturbation of the Hamiltonian system
associated to h°:

.’i‘l = T2, .’i‘z = f(fl?l), (].].)
where f(x1) = —V'(x;), which can be written also as a second order equation
i‘l == f(.]?l)

We will assume the following hypotheses:

H1 The unperturbed system (1.1) has a saddle point at the origin with characteristic
exponents +w? with w® > 0, and there exists a homoclinic solution x°(t) =
(29(t), z3(t)) to this point: z°(¢) — 0 for ¢ — +oo. This solution is commonly
referred as a separatriz.

H2 The function f(z;) is real entire, and z9(u) = #9(u) is analytic on a strip |Su| < a,

with a pole of order r at u = +ai as its only singularity on each line Su = +ai.

H3 The function h'(z, #) is 2m-periodic and C' in 6, with zero mean: [Z™ h'(z,6)df =
0. With respect to z, it can take either of the following forms:

(a) if f is 27w-periodic, h! is a trigonometric polynomial in z; and a polynomial
in xy; h'(z,0) = z19() is also allowed,

(b) h'is a polynomial in z, in the case that f is not 27-periodic.

As a consequence of Hypothesis H3, h'(z,6) can be written as a sum of monomials
in the variable x, each of which has a pole at v = +ai, when = = 2%(u), for every 6.
We will denote by ¢ the greatest order of this pole among these monomials, and we will
call it the order of the perturbation on the separatriz.

To state our results, let us begin by writing the Hamiltonian system associated to h:

j?l = Is+ usp(?zhl(x,t/s),

(1.2)
1.'2 == f(xl)—uspalhl(x,t/s).

Due to the fact that system (1.2) is 2me-periodic in time, we can consider the associated
Poincaré map defined by:
P(zp) = z(2me), (1.3)

where z(t) is the solution of system (1.2) that begins at zo when ¢ = 0.

For i = 0, system (1.2) becomes autonomous and therefore the phase portraits of the
Poincaré map P and system (1.1) are identical. In fact, this phase portrait is foliated
by the level curves of the Hamiltonian h°. If we assume, without loss of generality,
V(0) = 0, the homoclinic orbit z° is contained in the level curve h°(z) = 0.
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For 11 # 0 but small enough, the dynamics of system (1.2) becomes more intricate
and the phase portrait of the Poincaré map P changes. There exists a hyperbolic fixed
point near (0,0) whose stable and unstable curves intersect—P is an area preserving
map—but generically they do not coincide. We denote z" := (z? z%) the homoclinic
point that is closest to the unperturbed one z°(0).

The main goal of this paper is to give an asymptotic formula for the area A of the
lobe that remains between the two invariant curves from 2" to their next intersection,
as well as the angle o between the invariant curves at 2. Our results are summarized

in the next theorem.

Theorem 1.1 (Main Theorem) Under hypotheses H1-H3, assume that v :=p—{ >
0. Then, for e — 0", u — 0, the following formulae hold:

A = pef [/ OM(O',{:‘) da] + O(u2e® ", uePt?) e /e,
S0

/e

M!
(507 )2+O( 2 2'y+r 2,N€p)efa ,

[[2°(s0)

where sy < §y are the two zeros of the Melnikov function

sina = pueP

—+0o0
M(s,s):/ (B0 R (aO(t + ), t/e) dt = 3 M(e) e™e/e, (1.4)
> k0
closest to zero.

This theorem gives upper estimates of exponentially small order for the area A and
the angle o. We now introduce an additional hypothesis on the Poisson bracket of h°
and h' over z°(u):

H4 J1y(2°(u)) has a pole of order exactly £+ 1 at u = +ai, where

J(z,0) = {h° W' }(z,0) = Y Jp(z)e'*®.
k0

In other words, if one considers the Laurent expansion Ji1(z°(u)) = <oy Jo1p(uF
ai)™* of Jyi(2%(w)) at u = #ai, hypothesis H4 is equivalent to assume that the coef-
ficient Jy 41 = J_1¢4+1 is not zero. Under this generic additional hypothesis, a direct
computation of the Melnikov function shows that Theorem 1.1 provides asymptotic
expressions:

Corollary 1.2 If moreover hypothesis H4 holds, the first terms of A and sin « in Theo-
rem 1.1—those containing the Melnikov function (1.4)—are not zero and are dominant
with respect to the second ones, for ¢ — 0%, u — 0:

A = 4T pe’tt e /¢ [1 + O(ue" ", 5”1)} ,
2|J
sina = 1 e+1|u6 Lo a/e [1 +O(uet 1, 5)] :

e
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Let us now discuss some examples satisfying hypotheses H1-H4:

1. A forced pendulum equation, with Hamiltonian
x2 .t
h = 5 (coszy + 1) + pePrycosay sin — . (1.5)
€

For . = 0, this system has homoclinic orbits T'y. = {(2?(¢), £23(¢))}, where 20 (¢) =
2arctan(sinh t), x9(u) = 2%(u) has poles of order r = 1 at u = +7i/2, and £ = 3.

2. A perturbed Duffing equation, with Hamiltonian

2 2 4 2 t 2t
h:%—%Jr%Jruep(%congr:Elszin; . (1-6)

For p = 0, the homoclinic orbits are I'y = {(&2%(¢),z5(t))}, where 2%(t) =
v'2/ cosht, 29(u) = ©9(u) has poles of order r = 2 at u = £mi/2, and £ = 4.
3. A perturbed cubic potential equation, with Hamiltonian

2 2 3
t
h:%—%+%+u€pxlcosg. (1.7)

For = 0, this system has the homoclinic orbit T' = {(29(¢), 23(¢))}, where 20(t) =
(v/3/2) (cosh(t/2)) %, z9(u) = @9(u) has poles of order r = 3 at u = i, and
(=2

Applying Theorem 1.1 and Corollary 1.2 to the examples (1.5), (1.6) and (1.7), we get
the following corollary.

Corollary 1.3 For e — 0%, u — 0, the following estimates hold:
1. A= Brper? e ™21+ O(ueP3,¢e*)], for the pendulum equation (1.5), if p > 3;
2. A=tmpeP e /%1 + O(ueP3,e%)], for the Duffing equation (1.6), if p > 4;

3. A = 24rusP~ e ™/ [14+O(ueP, €3)], for the cubic potential equation (1.7), if p > 2.

Remarks on the hypotheses and the results

R1 Hypothesis HI is clear: it requires a separatrix for the unperturbed solution to a
saddle point, i.e., f(0) =0, f(0) > 0, and w° := 1/ f'(0) > 0.

R2 In hypothesis H2, the analyticity of 9(u) on a complex strip |Su| < a is assumed.
This is not a restriction for an analytic unperturbed system, since the separatrix
behaves regularly for 8¢ — 4oo. The real restriction is the assumption that the
only singularity of 23(u) on each component of the boundary of this strip is a pole
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of some order r > 1, which implies a severe restriction on the behavior of f(z;)
for z; big enough. More precisely, if r > 2, the equation f(z?(u)) = 29(u) implies
that f(2%(u)) has a pole of order r + 1 at w = +ai. As f(z;) is an entire function
and z¥(u) has a pole of order r — 1 at u = +ai, it is easy to check that f(z;) has
to be a polynomial of degree 2 or 3, for r = 3 or r = 2, respectively. Analogously,
r = 1 can only take place if f(x;) is a trigonometric polynomial of degree 1 or 2,
and then z%(u) ~ iklog(u Fai) (u — Zai), with k equal to 2 or 1, respectively.
All the other values of r and of the degree of the (trigonometric) polynomial f(z1)

give rise to branching points (“poles of fractional order”) as singularities of z3(u).

Actually, our method also applies to #J with branching points (and even to mero-
morphic f and h'), but in this paper we only consider a meromorphic z9 for
simplicity and to be able to compute explicitly the Melnikov function. However,
it is worth mentioning that in the case of an essential singularity for x9, it seems
difficult to control the behavior of the perturbed invariant manifolds, and even it
is not clear at all which kind of asymptotics for splitting of separatrices could take
place (see [SMHO1] for a related discussion).

Through all this paper, the parameter ¢ introduced as a consequence of the hy-
pothesis H3 will be called the order of the perturbation on the separatriz or, even
more precisely, the order of the perturbation on the singularity of the homoclinic
solution. It is worth noting that Theorem 1.1 holds under the assumption p :=
power of € > ¢ = order of the perturbation on the separatrix.

By its definition, it is not difficult to observe that ¢ satisfies £ > r — 1. In
general, ¢ will be the order of the pole of h'(z%(u),0) at u = +ai, if there is no
cancellation between the different monomials of h', when evaluated on z°(u). An
example where these cancellations take place is provided by h' = h°(z). In such
case, h®(x°(u)) is constant (and hence with no pole at all), but for instance the
monomial z3/2 has a pole of order 2r. The same happens if h' is functionally
dependent on A°.

Let us note that in the case h'(z,8) = x19(6), system (1.2) is equivalent to the
scalar equation &; = f(z1)+puePg(t/e), i.e., the perturbation only depends on time.
In the trigonometric case, z0(u) has logarithmic singularities, but the results of

Theorem 1.1 are still valid if we take, by convention, ¢ = 0.

Hypothesis H3 is more restrictive than necessary. The hypothesis which is actually
used by our method is a little bit more technical and is given in Lemmas 4.2 and 5.1,
which simply establish the size of the perturbation h'(x,6) and its derivatives for
z near z°(u) and u close to ai in terms of the order .

Namely, the only important fact is to control the derivatives of h! over the sepa-
ratrix z°(u) near the singularity u = ai. For instance, if h' has only a monomial
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and h'(z%(u),0) has a pole of order £, then its derivative with respect to

W), 0) = (10, h}(w), 0)

du
= O ht(2°(u), 0)x)(u) + Ouht (2°(u), 0) 25 (u) (1.8)

has a pole of order £ + 1, and hence 9;h'(z°(u),6) has a pole of order £+ 1 —r
and 0;h'(2°(u),6) has a pole of order £ — r. The same happens if h' satisfies
hypothesis H3 and ¢ is the order of the perturbation on the singularity of the
homoclinic solution, i.e., £ is taken as the greatest order of the different monomials
of hl.

R5 We note that if h'(2%(u),6) has a pole of order £ < ¢, then its derivative with
respect to u (1.8) has a pole of order ¢ + 1. Hypothesis H4 requires that this pole
is realized in the first harmonic with respect the parameter #, and that ¢ = ¢,
i.e., that there are no cancellations between the different monomials of h', when
evaluated on x°(u). It is clear that hypothesis H4 is a generic condition. The case
¢' < ¢ would require a larger p in order to prove Theorem 1.1 by our methods.

R6 Our measure of the splitting of the separatrices is given by the so-called splitting
function 1, which is defined in (2.24), after introducing some suitable “fow-box”
canonical coordinates (S, F). In these coordinates, S is a common parameter for
both the stable and the unstable manifolds, £ = 0 is the equation of the stable
manifold, and £ = ¢(5) is the equation for the unstable one. It is important to no-
tice that the splitting function is 2we-periodic and independent of time, and hence
it gives an tnvariant measure of the distance between the invariant manifolds. In
particular, its zeros give rise to homoclinic orbits, and all the splitting quantities
are obtained from it. Thus, the area A and the angle o given in Theorem 1.1 are
expressed in terms of the integral and the derivative of the splitting function .
Other related quantities that measure the splitting of separatrices could also be
computed. Among them, let us mention the maximum distance d between the
invariant curves at the lobe and the Lazutkin homoclinic invariant [GLT91] which
is simply ¢'(h®) in the notation of Proposition 2.7.

R7 Two remarkable recent works related with this paper are [Gel95] and [Gal94].
V. Gelfreich [Gel95] considers a Hamiltonian of the form

H = Hy(z,y) + pHi(z,y,t/e; e, 1)

and establishes sufficient conditions for the validity of the Melnikov method pro-
vided |p| < poe? for some constant p. His method resembles ours, but the constant
p relies on the validity of an extension theorem like our Theorem 2.4, which is in-
troduced as an extra hypothesis. Consequently, [Gel95] cannot give explicitly p in
concrete examples.
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G. Gallavotti [Gal94] considers the rotator-pendulum model (also called the reso-
nance model) given by a Hamiltonian

— 4+ —+—+g°Jo(cosp—1)+p E fn cos(av + np),
g 2J 2J(] |n‘+‘;|§1v
v#0

where (p,I) € R? and (a, A) are canonically conjugated variables and wy, Jy, J,
g are positive parameters with Jy < J < oo. Under the assumption |u| < &%,
q > 3Ny + 5, where Ny is the degree in ¢ of the trigonometric polynomial above,
he proves that the splitting distance is given by the Melnikov function. His proof
is based on an algorithm derived in [CG94] for the computation of the p-expansion
coefficients of the invariant manifolds and the exponential smallness is obtained
explicitly checking cancellation mechanisms, operating to all orders.

We emphasize that his method can be applied to a broader setting, i.e., n-degrees
of freedom Hamiltonians, and that his condition above on ¢ for n = 2 reads as
p > 6N + 10 = 3£+ 10 in our notation (or p > £+ 9, following some ideas given
in the appendix of [Gal94]), whereas in this paper, we only require p > /.

R8 Concerning optimality of p, our estimates are valid for p > ¢, which is the condition
required for the Extension Theorem 2.4 in the complex strip (2.16). We believe
that this Extension Theorem is not true if p < ¢ (this has to do with the fact
that the term pePM(s,e) of the Melnikov method is not small in the complex
strip |Ss| < a — ¢ for p < £). Of course, we do not claim that p > ¢ is the
optimal lower bound, but it is clear that new methods are needed for lower ranges
of p. For instance, D. Treschev [Tre97], using a continuous averaging method,
proves for an specific trigonometric example with £ = 2, that the splitting is given
by the Melnikov method for p > 0 = ¢ — 2. Also in the trigonometric case,
G. Gallavotti [Gal94] gives p > ¢ — 1 as a probably optimal lower bound, and
recent papers by C. Sim¢ [Sim94] and V. Gelfreich [Gel97], as well as numerical
experiments, seem to indicate that the lower bound can be p > ¢ — 2.

The structure of this paper is devoted to give full and comprehensible details of the
proof of the Main Theorem 1.1, and more concretely, of the construction of the splitting
function. In section 2, all the main ideas are introduced, as well as the main tools:
first, the Normal Form Theorem and its Corollaries, which provide good (complex)
parameterizations for the local invariant manifolds associated to the periodic orbit of
system (1.2), as well as Flow Box Coordinates near the local stable manifold; second,
the Extension Theorem, which justifies the prolongation of the unstable manifold until
it passes again near the periodic orbit; and third, Propositions 2.6 and 2.7, which allow
us to define the splitting function v, to relate it to the Melnikov function and give, as
a direct consequence, the proof of the Main Theorem. To avoid a premature incursion
into technicalities, the proofs of these tools, as well as Corollary 1.2, are deferred to
successive sections.
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2 Proof of the Main Theorem

From now on, hypotheses HI-H3 and the condition v = p — ¢ > 0 will be implicitly
assumed, and £ > 0 and p will denote small enough independent parameters. To avoid
a cumbersome notation, the dependence of all the functions on pu, € is not explicitly
written, but is always assumed continuous and bounded.

First of all, the next theorem deals with the local behavior of system (1.2) and states
that the Birkhoff normal form is convergent in a neighborhood of the origin.

Theorem 2.1 (Normal Form Theorem) The following properties are satisfied for
the system (1.2):

1. There exists a 2me-periodic orbit near the origin y,(t/e), with

Y (0) = (11(8),72(0)) = e G(0,0) 4+ O(ue?*?),

where G = (G, Gy) is related to h' through

09G(x,0) = (920 (2,0), —O1h' (,6)), /02” G(z,0)dd =0.  (2.1)

2. There exists a canonical change of variables
(X,0=t/ec) — (z =V(X,6),0) (2.2)
with
U(X,0)=¥(X,0,u,¢e) =¥ (X)+ uePG(V(X),0) + O(ueP™?), (2.3)

analytic in X and 2m-periodic and C? in 0 for | X1|* + | Xof> < R2, 6 € R, with Ry
independent of €, p, such that transforms system (1.2) into its normal form:
X1 = F'(X1Xo, 11,6) X1,  Xo= —F'(X1 Xy, 11,€) Xo. (2.4)
This system is a Hamiltonian system with associated Hamiltonian
H(X,0,u,¢) = F(X1 X, p,e) = FO(X1Xy) + ueP P FY (X1 Xo, 1, €), (2.5)
with
F(I,ue) =wl+0O(I?), F'(I,ue)=w+0(), w=w’+0ue?), (2.6)
where F'(I, u, ) denotes the derivative of F' with respect to its first variable I.

3. The change of variables x = W°(X) transforms system (1.1) into its normal form,
which is the Hamiltonian system associated to F°(X;X,) = w'X; X5 + O(X7X3).
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From a quantitative point of view, Theorem 2.1 states that: (i) the region of con-
vergence of the normal form is independent of ¢, p; (ii) the periodic orbit v, and the
change of variables ¥ are O(ueP*!)-close to the unperturbed ones: 0 and ¥ respec-
tively; and (iii) the normal form F' and the characteristic exponent w are Q(ue?*?)-close
to F? and w°, respectively (this extra e is due to the zero mean of h'). Its proof is
based on a parameterized version of a well known theorem due to Moser [Mos56], and
is deferred to section 3. More recent proofs, valid for more degrees of freedom, can be
found in [CG94, DGJS96, RW9Ta).

Since system (2.4) can be explicitly solved, Theorem 2.1 supplies us with the basic
tools to control the local behavior of the orbits. In particular, good parameterizations
z"(t,s) and 2°(t, s) for the local invariant manifolds, Wi (v,) and W (v,), are easily
found and their properties are summarized in the next corollary.

Corollary 2.2 (Local Invariant Manifolds) There exist parameterizations x"(t, s),
z5(t, s) of the unstable and stable invariant local manifolds of system (1.2), defined in
D", D3, respectively, with:

D" = {(t,s) e RxC:t+Rs < -T/2}, (2.7)
D* = {(t,s) e RxC:t+Rs>T/2}, (2.8)

with T some constant independent of u, €, which satisfy the following properties (x
stands for s and u):

1. t— z*(t,s) is a solution of system (1.2) and s+ x*(t,s) is real analytic.

2. z*(t + 2me, s) = x*(t, s + 2me), and thus the local stable and local unstable curves
for the Poincaré map (1.3) are given by Cf. = {*(2mne, s)}, for any n € N such
that (2mne, s) € D*.

3. For u =0, z*(t, s) coincides with the homoclinic solution z°(t + s), and for p # 0
the following estimate holds:

z*(t,s) = 2°(t + 5) + ueP PG (2% (t + 5),t/e) + O(uelt?). (2.9)

4. Near the periodic orbit vy,, the following asymptotics are satisfied:

'(t,s) = (t/e) +2°(t+ )+ O(uePtt e ) 4 O(ueP 2 eltt)2),

25(t,8) = (t/e) + 2Ot + 5) + O(uePtt e “(ts)) + O(uePt? e~ (t+2)/2),
(2.10)

w being the positive constant defined in formula (2.6) as the characteristic exponent

of the periodic orbit 7y,,.
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The parameterizations z"(t,s), (¢, s), can be considered “natural” [DR96], since
they are formed by solutions of system (1.2) in the real variable ¢, and the action of the
Poincaré map is simply a shift of amount 27¢ in the complex variable s. It is worth
mentioning that they are not uniquely determined, because a new parameterization
*(t,S) = x*(t, S+ ¢(95)) (i.e., a change of parameter s = .S + ¢(S5)), for a 2me-periodic
function ¢ of size O(ueP™!), does not change the properties above, but it may change
the domain of analyticity of S — #*(¢,S). We will use this freedom of choice later on.

Another consequence of the explicit solution of system (2.4) is that performing the
change of variables S = —log X»/F'(X1X5), E = F(X1X3), and composing it with the
change of variables (2.2) to normal form, one obtains the existence of local flow box
coordinates outside of the local unstable invariant manifold W}, (7,).

Corollary 2.3 (Flow Box Theorem) There exists a canonical change of variables
(z,0 =t/e) eU — (S, E,0) = (S(z,0),E(x,0),0) €V, (2.11)

analytic in x, 2n-periodic and C* in 0 on U = {(z,0) € C* x R : [lz —,(0)]] <
r2} \ Wi.(vp), with ro independent of u, €, such that transforms system (1.2) in a flow
box system

S=1, E=0, (2.12)
and satisfies:

1.
S(0.6) = 8@) + Ow™),  E0) = )+ Or™),  (213)
where z — (8°(x),E%(x) = h°(x)) is the corresponding change for system (1.1).

2. Denoting (S,E,0) € V — (X(S,E,0),0) € U the inverse change to (2.11), the
following estimate holds

X(S,E,0) = X°(S, E) + O(us”*), (2.14)
where x = X°(S, E) is the inverse change to x +— (S, E) = (S°(z), E%(z)).
3. Along the local stable manifold x°(t, s), the flow-box functions (2.11) satisfy

S(z%(t, s),t/e) =t + s, E(z(t,s),t/e) = 0. (2.15)

Up to now, the parameterization z"(¢,s) of the unstable manifold has been only
defined for (¢, s) € D" given by (2.7). To extend it for other values of (¢, s), we would like
to use an analog of estimate (2.9), which relates z"(¢, s) to the unperturbed separatrix
2°(t + s). However, 2°(u) has a singularity in the complex field at v = +ai; more
precisely, since z3(u) = 2%(u) has a pole of order r at these points, it has the form

FCi

zo(u) = m

(1+0(uFai)),
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with C a non-zero constant, for © near +ai. This means that we will not be able to
control the growth of the parameterization for ¢t + s = +ai, i.e., for s = +a, since
the time ¢ is always assumed to be real. We will restrict ourselves, as in [DS92], to a
complex strip D} of imaginary width equal to a — e:

Dl={(t,s) eRxC: |[¥s|<a—¢e, |t+Rs|<T}. (2.16)

The following Extension Theorem ensures us that the parameterization z"(¢,s) of the
unstable invariant manifold W"(+y,) is still defined and close enough to the unperturbed
separatrix. We state it first, for the sake of generality, for arbitrary solutions z(t, s)
of (1.2).

Theorem 2.4 (Extension Theorem) Let z°(t + s) be the unperturbed separatriz of
system (1.1), and z(t,s) a family of solutions of (1.2) such that

z(ty, s) — 2%ty + 5) — ueP'G (2 (tg + 5), to/e) = O(ue?™?), (2.17)

where s € C, |Ss| <a—¢, and tp+Rs = —T.
Then, if y =p— £ >0, z(t, s) is defined on DY given in (2.16) and satisfies there:

z(t,s) — 2’(t +5) = O(ue").

The proof of this theorem involves several technicalities, such as a good choice of the
solutions of the variational equations associated to the separatrix and the partition of
the strip D! in different regions. Apart from this, it relies on straightforward estimates,
following the same arguments as those in [DS92, DGJS96, RW97b|, and is deferred to
section 4.

By estimate (2.9), it is clear that the parameterization z" (¢, s) of W2 (v,) satisfies
the hypotheses of the Extension Theorem for ¢t = —Rs — T, and consequently the
following estimate holds

2" (t,8) — 2°(t +s) = O(ue"), (t,s) € D" (2.18)

Remark 2.5 It has to be noticed here that for fixed T" and s € R, this Extension
Theorem becomes a well-known result and estimate (2.18) is of the same order as the
one at initial condition (2.17), i.e.,

zi(t,5) — 2°(t +5) = peP G (2(t + ), t/e) + O(ue?*?), (2.19)
for —-T <t+s<T,and t,s € R.

By hypothesis H1, and more precisely by estimate (2.10), z°(¢ + s) arrives and stays
at the open set U for t+Rs > T/2. By estimate (2.18), the same happens to z"(t, s) for
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T/2<t+Rs <T,and |Is| <a—e. OnlU, the flow-box functions (2.11) are defined,
and therefore can be evaluated on the unstable manifold giving rise to two functions:

S%(s) = S(z"(t, s),t/e) — t, E(s) := E(x"(¢t, s),t/e), (2.20)

defined for |Ss| < a —e. In equation (2.20), the time ¢ on the right terms has been
chosen in 7/2 < t+Rs < T, but S* and £" do not depend on ¢ since, by Corollary 2.3,
S(z,t/e) —t and E(x,t/e) are real analytic first integrals of system (1.2). Besides, by
properties (1) and (2) of Corollary 2.2, it turns out that S"(s) —s and £%(s) are analytic
for |Ss| < a — ¢ and 2me-periodic in s.

The next Proposition asserts that £"(s) is well-approximated by the Melnikov func-
tion for |Ss| < a —¢, and as a consequence, that the difference between £%(s) — &' and
psP M (s, €) is O(e~%/#) for real s, where £ is the zero order Fourier coefficient of £

Proposition 2.6 Fory=p—{ >0, S" and £ satisfy the following estimates:

1. For s € C such that |Ss| < a —¢,

E%(s) = ueP M (s, &) + O(p2e® 1 ueb™h). (2.21)

2. For s € R, and £ = 5+ [7™ £%(s) ds,

2me

EY(s) — EY = puePM(s,e) + O(pu2e+ 1 puePtl)e=o/e, (2.22)

3. For s € R, S = 8"(s) is real analytic and invertible, and its inverse s = s*(S)
satisfies that s*(S) — S is O(ueP™) and 2we-periodic in S.

From Corollary 2.3, and in particular from equations (2.15), it follows that the local
stable manifold z°(¢, s) has a very simple expression in the (S, F) coordinates:

(S,E) = (S(2°(t, s),t/e), E(x°(t, s),t/e)) = (t + s,0),

i.e., E = 0. Using equations (2.20), the arriving unstable manifold z"(¢, s) has in these
coordinates the expression

(S, E) = (S(z"(t, s),t/e), E(x (¢, 8),t/e)) = (t + SU(s),E(s))

and, in particular, the unstable curve C" of the Poincaré map P defined in (1.3), is
given by (S, E) = (2mne + §"(s), £"(s)), using property (2) of Corollary 2.2.

Therefore, it is very natural to introduce the splitting function 1 given implicitly by
Y(2mne +8%(s)) = £%(s), or simply by ¥(S"(s)) = £"(s), using that S(s) —s and £"(s)
are 2me-periodic in s. By Proposition 2.6, S = §"(s) can be inverted for real values of
s, giving rise to the inverse function s = s"(.S). Consequently, 1(S) is explicitly defined,
for real values of S, as

$(§) = E(s"(9))- (2.23)
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Since s%(S) — S is O(ueP™) and 2me-periodic in s, we can introduce a new natu-
ral parameterization for the unstable invariant manifold (see the comments following
Corollary 2.2)

(¢, S) = z"(t, s"(5)),

and by (2.15) we can simply write for the stable invariant manifold
*(t,S) =2%(¢, 9),

in such a way that ¢ (S) can be also written as

P(S) = E(2"(t, s"(9)).t/e)
= £(2"(t, s°(S)), t/¢) — E(a°(t, S), /<)
= £(3(t,8),t/e) — E(&(t, S), t/e)
= (3t 8),t/e). (2.24)

It only remains to confirm that 1) measures the splitting, and this is done in the next
Proposition.

Proposition 2.7 The function ¢ is a 2we-periodic, real analytic function that satisfies
the following properties.

1. There exists h* € R such that z"(t,h") = x5(t, h®) (giving an homoclinic connec-
tion), with h® = S"(h"). Consequently, ¥ (hy,) = 0, for h, = h® + 2men, n € N.
Moreover, ¢'(hy) is independent of n, and

where A denotes the exterior product on R?, and a(t, hy,) is the angle between
2V (t, k" + 2men) = T4(t, hy,) and 25(t, hy,).

oz®
oS

ozt
oS

ors oz
8S(th) 8S(th) ‘

(¢, hn) | -

=g (& hn)

Y (hy) = sin a(t, hy,),

2. The area of the lobe between the invariant curves is given by A = ‘fh_; P(S)dS

where h,, and h, are the two consecutive zeros of ¥(S) closest to zero.
3. o = [im 2™ 4(S)dS = 0.
4. ¥(9) satisfies for S € R the estimate

Y(S) = pePM(S,e) 4+ O(u?e® 1, uePtt) e /e (2.25)

Now all the statements of Theorem 1.1 follow from Proposition (2.7) and specially
from the approximations given in (2.25).
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3 Proof of the Normal Form Theorem and its Cor-
ollaries

Proof of Theorem 2.1

First of all, it is better to make the change of time § = t/¢ to system (1.2). Denoting
by ' the derivative with respect to 6, we obtain

Ty = exy+ pePtosht(, ),

vy = ef(xy) — pePt o hl(x,0), (3-1)

which is a Hamiltonian system with Hamiltonian
eh(z,0, p,e) = eh®(x) + peP A (z, 6).

System (3.1) will be put into its normal form with the aid of several lemmas. As a
first step, we deal with its averaged system.

Lemma 3.1 There exists a canonical change
Tz =1I1(Z,0,u¢c) =7+ usP"'G(z,0) + O(uef*?), (3.2)

2m-periodic and C? in 0, and analytic in T, with G defined in (2.1), such that it trans-
forms system (8.1) into a Hamiltonian system with Hamiltonian eH, where

H(Z,0,p,¢) = h°(Z) + pue"*R(Z, 0, p, ), (3:3)
R being analytic with respect to T, and 2m-periodic and C* in 6.

Proof. We only have to check that the generating function
S(xl, o, 0, M, 5) =172 + M€p+151($1, o, 9) + M€p+252($1, o, 0)
defined as the solution of the equations:

0pS' (21,2,0) = —h'(z1,22,0), J3" S'(x1,22,60)d0 =0, (3.4)

0932(331, Zi'g, 9) = V,(Zl?l)agsl(.’lfl, Zi'g, 9) — :Z“2015’1(a:1, Zi'g, 9), '
provides implicitly, through Z; = 055(z1, Zo, 0, i, €), ©2 = 01S(x1, T2, 8, u, €), a canonical
change IT satisfying (3.2) and (3.3). Along this proof, 0> denotes 9/0Z,.

We first note that by hypothesis H3, h' has zero mean. Consequently, there exist
functions S*, S?, 2r-periodic in #, that are solutions of the equations 3.4, giving rise to
a canonical change II of the form (3.2). Under this change, the new Hamiltonian ¢
satisfies

5%(825, Zo, 9, M, 6') = €h(x1, 815, 9, M, 8) + 805,
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for S = S(x1, %2, 0, u, ), and the right side of this equality can be expanded, using the
definitions of S, S2, to

e (23/2+ V(x1)) + ue” ™ (B! (21, 22, 0) + 055" (21, 72, 0))
+ u€p+2(528151($1, To, 0) + 8952($1, o, 9)) + Rl(ﬂfl, Zo, 0, M, 8), (35)
= ¢ (3—7%/2 + V(xl)) + u€p+2V'(x1)0251(a:1, .7_72, 9) + Rl(ﬂfl, 5‘2, 0, M, 8),

with Ry (21, Zo, 0, 1, €) = p2e®20,h* (21, T2, 0)01.S* (21, T2) + O(ueP™™). Now, inverting
Ty = 0,S(x1, %9, 0) = x1 + peP 10,5 (21, To, ) + el 20,5%(xy, T, 6),
we get an expression for x;
Ty = T — pueP 10,81 (21, To, 0) + O(ue?t?),
which substituted together with (3.5) in the equation for ¢, reads as
(7,0, p,6) = £ (T3/2+ V(31)) + Ra(F1, 72,6, 1, ©),

with Ry = pu2e?20,h10,8* + O(uePt?).

It only remains to see that u?c*20,h'9,S* = O(ueP™®). We distinguish two cases:
¢>1orl=0.If¢>1, then y = p— ¢ > 0 implies p > £ > 1, and u2c?*20,h'0,S* =
O(u?eP™®) = O(ueP*?). If £ = 0, this means that we are dealing with the special case
h'(z,0) = z19(6) of the trigonometric case of hypothesis H3, (see remark R3), i.e., h'
does not depend on x, and then p2e2P*29,h'0, 5 = 0. O

Remark 3.2 It could seem a good idea to average the original Hamiltonian h in order
to increase the order of the perturbation term (in fact it was O(ueP), and after the
averaging it becomes Q(ueP*?)). The question now is when to stop this process. The
Hamiltonian we have obtained after two steps of averaging has the same integrable
part, but the perturbation term R does not have zero mean. If we average again, the
new Hamiltonian will have another integrable part with a different separatrix that will
depend on e. This separatrix can have a different kind of singularity and hypotheses H1-
H3 can change drastically.

The averaged Hamiltonian A has the same integrable part h® as h, but the perturba-
tion term is now Q(peP™?). We will see that this order of perturbation is preserved when
one considers the Birkhoff normal form of . First of all let us look for the periodic
orbit of H.

Lemma 3.3 The Hamiltonian system with Hamailtonian eH has a hyperbolic 2m-periodic
orbit 7p(8) = (71(6), 72(8)), which is O(ue?*2).
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Proof. In order to prove this lemma, we only need to consider the Poincaré map associ-
ated to the 2m-periodic Hamiltonian system associated to eH. For ueP™2 = 0 the origin
is a hyperbolic fixed point that is preserved for peP*? small enough. This new fixed
point gives rise to the hyperbolic 27-periodic orbit 4,. For an explicit construction of
¥, see [DS92, page 439]. O

In order to study the local behavior of the orbits near ¥, we perform the canonical
change of variables

y = —(0), (3.6)
that sends the periodic orbit to the origin, and we obtain again a Hamiltonian system
with Hamiltonian €k, with

0 +2 vs  (Wy)? 3 +2
k(yaea,u7€) =h (y) +M€p ]C(yaea,u7€) = E o T + O(y 7”81) ),

which is transformed into its normal form up to order two in the following lemma.

Lemma 3.4 There exists a canonical change of variables
Y —y=A0,u,ce)Y (3.7)

linear in' Y and 27-periodic and C? in 0, with A = A® + O(ueP™?), where

o1 ( 2/c  —c/u° ) | (3.8)

2\ 2W0c c

¢ # 0 being an arbitrary constant, such that it transforms the Hamiltonian system
associated to ek into a Hamiltonian system whose Hamiltonian €K s in normal form
up to order 2:

K(Y,0,p,6) = K°(Y) + peP 2K (Y, 0, 1, €) = wY1Ys + O(Y?),
with w = w® + O(ueP™?).

Proof. Tt follows directly from Floquet theory applied to the linear part of the Hamil-
tonian system associated to ck. In fact, the unperturbed change of variables y = A°Y,
with A° given in (3.8), transforms the unperturbed Hamiltonian h°(y) in its normal
form up to order two, i.e.,

RO (y) = K°(Y) = V1 Y2 + O(Y?).
]

The Hamiltonian K is now ready to be subject to the nonlinear normal form, which
in this case is convergent in a neighborhood of the origin ¥ = 0 with a radius that does
not depend on pu, €.
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Proposition 3.5 There exist Ry > 0, independent of u, €, and a canonical change of

variables:
Y = ®(X,0,p,¢) = ®°(X) + peP 01X, 0, , €), (3.9)

analytic with respect to X for | X||* < R? and 2m-periodic and C? in 0, and that satisfies
®(X,0,p,¢) =X +0(X?), P°(X) = X + 0O(X?), (3.10)

such that transforms the Hamiltonian system associated to €K into the Hamiltonian
system generated by a Hamiltonian ¢ H in normal form

H(X,0,u,e) = F(X1 X, pu,e) = FY(X1 Xy) + peP PP X, Xy, s €),
with F(I) = wl + O(I?).

Proof. For fixed ¢ and p, the existence of such a canonical change of variables is a very
well known result, due to Moser [Mos56]. It is not difficult to check in that proof that the
dependence of the Hamiltonian on ¢ and y is smooth and in particular that the radius of
convergence of the normal form can be bounded from below by a constant independent
of both parameters. A complete proof for a fast quasiperiodic forced pendulum can be
found in [DGJS96).

Notice also that the unperturbed change ®°(X) transforms the system associated to
K°(Y) into its normal form, which is the system associated to F°(X;X5). 0

Now the proof of Theorem 2.1 is clear if we compose all the changes given by (3.2),
(3.6), (3.7) and (3.9), and the change of time § = t/¢. 0

Proof of Corollary 2.2

By Theorem 2.1, the canonical change of variables (2.2) transforms the original sys-
tem (1.2) into its normal form given by system (2.4). Then all the results we can get
near the origin of system (2.4) can be transported to (1.2) using this change. More
specifically we will work in W = {X € C? : | X|]* < R2}, and then we will obtain
results in {(z,0) € C* x R : ||z — v,(8)|| < r3}, with r independent of p, ¢,

For the proof of this corollary we only need to consider the branch of the stable
manifold of system (2.4) given by (0, e™**X35), where X5 > 0. Introducing s + ¢ =
—% log X3, it can be parameterized by

X5(t,s) = (0, e (ot (3.11)
The unstable manifold can be parameterized analogously by
XU(t,s) = (ew(t+s+c“)’ 0) _ (3.12)

In fact all the parameters that appear in these formulae are not independent but we
will fix them later on. In order to transport all these parameterizations to the original
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system (1.2), we only need to compose them with the change of variables (2.2), and thus
we obtain

2t s) = Yttt 0 t/e), Rt +s+c) < -T°, (3.13)
25(t,s) = W(0, e tHF) t/e) Rt + 5+ ) > T°, (3.14)

with 7° = In Ry/w chosen in such a way that X"(¢,s), X®(¢,s) belong to W for the
range of parameters (¢, s) of (3.13) and (3.14).
It is straightforward to see that parameterizations (3.13) and (3.14) satisfy:

z*(t + 2me, s) = x*(t,s + 2me)  * = s, u.

as a consequence of the 2re-periodicity of the change (2.2).

Now, we will choose the constants ¢®, ¢ in order to establish estimate (2.9). In fact,
by hypothesis H1, 2°(u) is a homoclinic connection for the integrable case (u = 0). It
seems natural to choose the constants in such a way that the parameterizations (3.13)
and (3.14) are both equal to this one when p = 0.

By the proof of Theorem 2.1, and more precisely by (3.8) and (3.10), the change (2.2)
for 1 = 0 can be written in vector notation as

r=T(X) = A°8°(X) = A°(X + 0(X?)) = A°X + O(X?),

so that using (3.12) for p = 0, the unstable manifold for (¢,s) as in (3.13) is given in
components by

WO (t+s+ct t+s+c"
U"O(t S)_<e ( ),w e ( )>+O( t+S+Cu)),

Cc C

where c is the constant that appears in the matrix A° given in (3.8), whereas using (3.11)
for ;1 = 0, the stable manifold for the set (¢, s) as in (3.14) is given in components by

xs,O(t, s) — (_2_60 e_w0(t+s+cS), % e_wO(H-s-i—c ) 4 O( —2w0 (t+s+c8 ))
w

On the other hand, since the origin of the unperturbed system is hyperbolic, the
asymptotics of the separatrix z°(¢ + s) near the origin are given by

(t+s) = (K et WOk e t9)) 4 (e t+s)), t+RNs — —o0,
t+s) = (k° e""o(t“), —wkP e ")) L (e 2 )Y ¢+ Rs — oo,

so we fix the constants ¢, c®, ¢", to satisfy the conditions:

C 0.s ]. 0,u
—w-ct __ S w CcT ___ u
- k®, —€ = k"

2,0 N c
We have some freedom in order to choose the constants. We will fix ¢® = 0, and the rest
are then fixed. Introducing 7/2 > max{T° + ¢",7°}, the manifolds defined in (3.13)
and (3.14) are also defined for (¢, s) in (2.7) and (2.8).
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Coming back to the case p # 0, we can use the form (2.3) of the change (2.2) to
write the local unstable manifold for (¢, s) satisfying (2.7) as

xu(t, S) — \I}( ew(t+s+cu), 0’ t/&‘)
_ \IIO(ew(tJrerc“), 0) 4 u€p+1G(\IIO(ew(t+s+cu), 0),,5/6) 4 O(M€p+2),

and an analogous expression for the local stable one for (¢, s) satisfying (2.8).
Since w = w® + O(ueP™?), we can assume that |w — w®| < 1/2, restricting pq if
necessary, and hence

wO(t+s) ew(t+s) t+Rs)/2

<c

E v o] o

for t + ®s < —T/2, with ¢’ depending only on 7. In this way we now obtain the
estimate (2.9) for the local unstable manifold. The estimate (2.9) for the local stable
one is obtained analogously.

The asymptotics (2.10) for Wyt (v,) are obtained in the same way, using that 7,(6) =
U(0,0), as well as Taylor’s Theorem. O

Proof of Corollary 2.3

First of all, solving explicitly system (2.4), it is easy to check that the following change
of variables

Q:U — C?

X =(X1,X2) — (S, F)=(-log X5/F'(X1X5), F(X1X3)), (3.15)

defined on the open set U = {(X,X3) € W : X, > 0}, provides the flow-box
coordinates, which are Q(ueP*?)-close, by (2.5), to the flow box coordinates of the
unperturbed case p = 0:

Lemma 3.6 1. The change (3.15) transforms system (2.4) into system (2.12).
2. The inverse change E is defined in V = Q(U), and is given by

Y — U

(5,B) — (X1,X,) = (eF’(F*(E))S . F-(E), e—F’(F*I(E))s) ‘ (3.16)

3. Both changes of variables given by (3.15) and (8.16) are canonical.

4. Let Q° =° be the changes (3.15) and (8.16) corresponding to the unperturbed
system associated to (2.5). Then

Q(X) = Q%X) + O(ue?t?), 2(S,E) = E°(S, E) + O(ue™?), (3.17)

for X €U and (S,E) € V.
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The change (2.11) is constructed simply by composing the change (3.15) with the
inverse ¥ ! of the change ¥ given by (2.2), restricting V, if necessary. Namely,

(S(z,t/¢), E(z,1/2)) = QU (z, /¢)).

With these changes, equalities (2.13) are a consequence of (3.17) and (2.3).
The inverse change is obtained composing the change ¥ with the change (3.16):

X(S,E,t/s) = W(Z(S, E), t/e),

and satisfies (2.14), also as a consequence of (3.17) and (2.3).

Finally, from the parameterization (3.14) of the 2-dimensional local stable manifold
of ~y, for (¢,s) in (2.8), and taking into account that we have chosen ¢® = 0 along the
proof of Corollary 2.2, it is clear that

(S(z5(t, 5),t/e), E(x5(t, 5),t/e)) = Q0, e™EF9)) = (t + 5,0),

i.e., we have obtained formulae (2.15). 0

4 Proof of the Extension Theorem

4.1 Notation

Along this proof, s is a complex parameter ranging over the strip |J's| < a—e, t is the real
time ranging over |t +Rs| < T, and 0 < 7 = |t + s — ai| = ((t + Rs)? + (s — a)?)"/?,
70 = |to + s — ai|, 1 = |[t; + s — ai|. For v(t) € C?, we introduce

[0(t)]; = lv(®)] + [v2(2)] - (4.1)
We will denote by ¢ and p small independent parameters: 0 < & < &g, |p| < po, and

K = K(a,T,ty) will denote a generic positive constant independent of £ and .

4.2 Set up

To compare the solution (¢, s) of the full system with the homoclinic solution z°(t + s)
of the unperturbed system (1.1) we introduce:

E(t) = &(t, s) == x(t, 5) — 2°(t + 5).

The system of differential equations satisfied by £(¢) with respect to the variable ¢ is
written in components as:

& = §2+u5p62h1( Ot +5) + &, t/e),
& = f (a:(l)(t+s) +§1) - (a:l (t+s ) pePht (a:o(t—l— s) —i—E,t/s),
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and it is standard to write it as:
§= A(t+ )€+ pePg (2%t +5),t/c) + F (&, + 5, t/c), (4.2)

where g = (8,0}, —01h')", A(u) is the matrix

4= paty o) (43

and the function F'(§,u,t/e), which depends also on ue?, is given by:

0
F&utfe) = (f(x?(U)Jr&)—f(ﬂf?(U))—f’(x?(U))'&)
+ pe? [g (xo(u) + §,t/5) —g (:po(u),t/a)} :

We first look for an equivalent integral equation for the solutions £(t) of system (4.2)
with initial condition

E(to) = pePt'G (.’EO(t(} + 3),t0/€) + O(ueft?), (4.4)

which is the translation of hypothesis (2.17) on z(ty, s). For this purpose, we first seek
a fundamental matrix of the corresponding homogeneous linear system

€ _
du
A solution of (4.5) is simply #°(u). Another independent solution can be obtained in
the form: &;(u) = z3(u) - W(u), & = & = d€;/ du with
u do
W (u) = / _cv 4.6
W= o (46)

with b € C an arbitrary constant, to be chosen later on to satisfy further properties.
Introducing:

A()e. (4.5)

V() = adu) = #(u),
B(u) = ad(u)

it is easy to see that U(u)®'(u) — ®(u)¥'(u) = (23)*(w)W'(u) = 1, and that a funda-
mental matrix of (4.5) is M (u), where:

M(u) = ( o) iw) ) (4.7)

and hence the fundamental solution ¢(u, o) of (4.5) satisfying ¢(u,u) =Id is given by
o(u,0) = M(u)M (o)™, where
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Using this fundamental solution of the linear equation (4.5), we can easily write the
solution &(t) of system (4.2) with initial condition &(ty) as:

E(t) =EHt) + M(t + s) /tM(a +8) 'F (&(0),0 + 5,0/¢) do, (4.8)

to

with

t
EH(t) :== M(t + s) [M(tg +5) TE(t) + usp/ M(o +35) 'g(z°(0 + 5),0/¢) do|.
to
By hypothesis H3, g has zero mean (with respect to ), and consequently there exists
G(z,6) with zero mean such that yG = g (G is already introduced in formulae (2.1)),
and therefore G(z, 6) such that 9,G = G. Introducing

m(u,8) = M(u) 'G(z°(u), ), (4.9)

the expression above for £!(t) takes the form
¢
') = M(t+s) | M(to + ) "€(to) + usp/ dgm(o +s,0/e) da] .
to
Using the identity
2 2,1 d 2, 1
Ogm(o + s,0/e) —e*m/ (0 + s,0/¢) = = [a%m(a +s,0/e) —e*m'(o + s, 0/5)} :

where m' denotes dm/0u, as well as dpm(u,8) = M(u) *G(z°(u),0), we can finally
write £1(t) as

gt) = nePTG(a"(t +5),t/e)
+ M(t+s) [M(to +5) 7 (£(to) — pe" G (2"(to + 5),to/2)) (4.10)

t

— pePt? (m'(t +s,t/e) —m'(to + s,to/e) — [ m" (o + s,0/¢) da)] :

to

4.3 Preliminary bounds

Now we have a suitable expression (4.8), (4.10) for £ to carry out an iterative process.
Before proceeding with it, we need to bound the fundamental matrix M (u), as well as
the functions f, g and F'.

To get a well behaved fundamental matrix M (u) near the singularity of z°(u), it is
very important to choose appropriately the parameter b that is still free in the defini-
tion (4.6) of W (u).

We will consider first the case 0 < Su < a. On the upper boundary of this strip, by
hypothesis H2, z3(u) has a pole of order 7 (r > 1) at the point u = ai:

C

za(u) = @7(u) = m(“ro(“—ai)), C#0,
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and because of this, we will choose precisely b = ai. In this way, W (u) has a zero of
multiplicity 2r + 1 at u = ai, yo(u) - W(u) has a zero of multiplicity r + 1 at u = afi,
and hence

C
v = —(1 — ai
W) = gL+ Ol —ai)),
1
P(u) = m(u —ai)""H1 + O(u — ai)),
and as a consequence, the fundamental matrix (4.7) behaves near the pole as:
C 1 F\r+1
My~ | @a) G gt el

— 1

rC (r+1) (u — ai)

(u —ai)tt  (2r+1)C
From the expressions above, next lemma follows directly.

Lemma 4.1 For |t + Rs|,|t1 + Rs| < T, 0 < s < a, the following bounds hold:

[T® (¢ +5)| < @®(t+5)| < Kk, k=0,1,2,

|M(t+s)v(t)], < K <|U;ﬂ + 7t |vz(t)|> , (4.11)
‘M(t + S)M(tl + 3)_1v(t1) . < K |U(t1)|n (Z—l: + :;11) R (412)

for every v(t),v(t;) € C?, where |v(t)]. = |vi(t)| + |va(t)| T, T := |t +s —ail, and
[o(t1)],, = [vi(t)| + [va(ts)| 71, 71 := [ts + s — ail, as introduced in (4.1).

To bound f, g and F on = = z°(t + s), we rely strongly on hypotheses H2 and H3.
By the (trigonometric) polynomial character of f (see remark R2), and due to the fact
that f(z%(u)) = 29(u) has a pole of order r + 1 at u = ai, we get for |t + Rs| < T,
0<Ss<a:

K K

(N) (.0 —
‘f (27 (¢ + S))‘ < TrHIN(r—1) | 2 (N-1)(r—1)’ N =0. (4.13)

By hypothesis H3, h! is a (trigonometric) polynomial in z; and a polynomial in 5,
and all the monomials in = of h'(z,8) when evaluated on z = 2°(u) have at most a pole
of order ¢ at u = ai. Consequently, on |t +Rs| < T, 0 < Is < q,

K

Tl—Nl (r—1)—Nar’

0N ) (a0 (t + ), /2)| < Ni, N, > 0. (4.14)
From the bounds above on the derivatives of f and h!, we get readily the following

required bounds for f, g and F, simply applying Taylor’s Theorem, and using nota-
tion (4.1).
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Lemma 4.2 For & = &i(t), j = 1,2, such that |&|_ < n(r) < &/771, with § < 1, the
following bounds hold on [t +Rs| <T,0<Ss<a, withe <7=t+s—ai| <T:

f(@+s)+6) - f (@ +9)+8)| < Lgi{fﬂ,
‘g(xo(t—i—s)—l—{l,t/e)—g(a:o(t+s)+§2,t/€)‘T < % (4.15)

et ntre) - Feers)| < x (B0l e

Finally, we state now the last technical lemma that will be needed later on.

Lemma 4.3 Fort, ty, 3 real, s complex, such that
0<Ss<a, -T<ty+Rs<t+RNs<T,

let us denote

1 .
» sup—————=, i BAQ,
p[to,t](s) = o+ s — ai
sup [ln(jo +s —ail)|, 4 5=0,

where the supremum is taken on o € [ty, t].
Then, there exists K = K (a,to, T, ) > 0 such that the following inequalities hold:

‘. do ~(8-1)
— < K- s), 4.16
/to |a—|—s—ai|ﬂ > Plto, ] (s) ( )

‘M(t Y " M(o + 5)"v(0) do

to

to,t
. 7_7‘ a]

Ao (5)
< KC (L + T’"“p[—(ﬁ*")(s)) ,(4.17)
where T = |t + s — ai| and v(t) € C? is such that

lo(t)], = |v1(t)] + |v2(2)| T < C/TP. (4.18)

The proof of (4.16) is straightforward (and can be found in [DS92, Lemma 7.1] for
B =3 and a = 7/2). Bound (4.17) for functions v(t) € C? satisfying (4.18) follows
readily from (4.12) and (4.16).

4.4 Partition of the domain

The proof of the Extension Theorem, for the moment for 0 < Ss < a — ¢, is based on
the following two propositions. In the first one, the solutions of system (4.2) with initial
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s
e I“ al
R R5P el —¢
8(1
down down
Ry R
T T t+Rs

Figure 1: Domains D; = R{® U R{*"™® D, = Ry® U R3°™™.

conditions (4.4) will be extended for (t,s) € D; := R{® U R{*"® where R|?, R{°"™ are
the rectangles given by the equations (see figure 1)

RP?Y: -T<t+%Rs<e? a—¢c?1<QJs<a-—c¢,
RI™ . T <t4+Rs<0, 0<QIs<a— e,

where —T :=to+Rs and ¢ = (r+1)/(2r +1). Since r > 1, then 1/2 < ¢ < 2/3. In the
second proposition, we take the separation point t = #;(s):

el for a—c?1<Ss<a-—c¢,

0, for 0<S%s<a—el, (4.19)

t1+%82:{

as the initial time, and these solutions of system (4.2) will be extended for (¢, s) € Dy :=
R3P U R{"™  where RyP, RI™™ are the rectangles given by the equations

RP: e91<t+Rs<T, a—¢e?<Ss<a-—c¢,
RP™: 0<t+Rs<T, 0<Qs<a—el

4.5 First domain

Proposition 4.4 Given s € C such that 0 < Ss < a—¢, let £(t) = (¢, s) be a solution
of system (4.2) with initial condition (4.4) onto = =T — Rs. Then, if y:=p—£ >0,
the solution £(t) can be extended for t € [ty,t1(s)], with t1(s) given in (4.19), satisfying
there the following estimates:

A
=

€(8) — uP T G2 + ), t/2)|
@), < Kpeh (4.21)
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Proof. We shall use the method of successive approximations. We begin the iteration
process with £°(¢) = 0, and consider for n > 0 and ¢ € [ty, t1(s)] the recurrence suggested
by equation (4.8):

() = €Ht) + M(t + s) /tM(a +8) 'F(€"(0),0 + s,0/¢) do.

to

The first iterate is £'(t), as given by (4.10). The main idea is to check that &' satisfies
the required bound (4.20), and that the successive iterates are small enough to preserve
it for the limit &.

There are several terms in the expression (4.10) of £'(¢). From the initial condi-
tion (4.4) and the fact that ty + s = =T + S is far from the singularity ai, we get

Mty +s)7" (g(to) — peP G (20 (ty + s), to/s)) = O(ueP™?),

and consequently, using (4.11), we can bound one term of (4.10):
1
‘M(t + S)M(to + s)_l (g(to) — N8p+1G($0(t0 4 S),tO/E))‘ < Ku8p+2 [_ + Tr—l—l] '
T TT'

For the terms involving m, we use definition (4.9): m = M G, where for simplicity
G denotes G(z°(u), ), as well as the fact that (M ') = —M 1A, where’ denotes 9/9u,
to get:

m =M YG — AG) = M'G,, m"=M1YG —AG)= M'G. (422

Now, one has to take into account that G and G have the same kind of bounds (4.14)
as g = (O2h!, —Blhl)T, as well as the definitions of G; and G, and the form (4.3) of the
matrix A to get the bounds:

K K K K

S 9= o Gl S e 16l < e

lef

(4.23)

for [t + Rs| < T, 0 < Ss < a. Here, |G|_ denotes |G1(z°(t + ), )|+ |G2(2°(t + 5),6)| T,
according to notation (4.1). Analogously for |G| , |Gi|,, and |G|, .

Using expressions (4.22) for m’, m"”, we now proceed to estimate £' () given in (4.10).
We simply use bounds (4.23), as well as bounds (4.12) and (4.17), with § = £ —r + 2
and C = peP™?, to get

€(t) — pe" GO (t + 5),t/2)|

1 1 p*(572r+1)
< KpePt? | = 4771 4 L=ty Po +7'r+1,03(l+2) ,
T" TZ*T‘FI T T
where py Y pr ) denote, respectively, p[_to(ft]_z’"“)( ), p[—to(,f;]ﬂ)(s) Depending on

the sign of £ — 2r + 1 and t + Rs, the term pa(l_%ﬂ) has different estimates. Thus, for
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(t,s) € Dy and t + Rs < 0
=2t 2 41 >0

oD <t T < Sinr|, f—2r41=0
K, (-2 4+1<0
whereas for (t,s) € Dy and t +Rs > 0
g2t g2 41 >0
po D) < gmtr2) - plE2rtl) o llnel, (—=2r+1=0 ,
K, 0—2r+1<0
and 7271 < "1 Hence, in all the domain D; we have
or il —(£+2) 1 —(e—2r+1) Inel
" po = cl—r+1’ Po <K (€Z2r+1 : (4.24)

Using these bounds above, jointly with the fact that £ > r — 1 (see remark R3), we
obtain the following estimate for £!(¢):

‘ﬁl(t) — peP G (20 (t + s), t/s)‘r 7"

1 —\£—4r —
S Ku€p+2 |:1 4 7_21“+1 + + 00 (L—2r+1) + 7_2r+1p0 (1+2)

2l
< Kper 1 e L) et
S hAp el—2r+1 gl-r+l1| — K ’
Introducing the norm ||£||, := sup|{(t)|, 7", where the supremum is taken on t €

[to,t1(s)], the estimate above for £! can be expressed as
Héq _ NSpHGHr < K,U57+T+1-
We now proceed by induction. Assuming that for K =1,...,n,
¢ - ], < o

estimate (4.23) on G gives

€4 (t)
Since y =p— ¢ > 0 and € < 7 on D;, we can bound n(7) as n(7) < Kue?/r"~1, and
hence we can apply estimate (4.15) to F(£"(¢),t + s,t/e) — F(E"(t),t + s,t/e):
F(€"(t),t+ 5,t/2) = F(€" ()t + 5,1/2)|

gp €p+1 6~’Y+T+1
<
< Kp T + Fl—2rt2 + 2

. <n(r) =K ran + K pra

é—n - é—nfl

T

cP €p+1 87+r+1 L
< H n __ ¢n—
— KM l-r+1 + Tt—r+2 + Tr+2 g 5

r
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Applying thrice Lemma 4.3 with 3 =/¢—r+1and C=¢P, 3 ={¢—7r+2 and C = eP*
B=r+2and C =" respectively, we obtain

‘M(t +5) /t M(o+5) "t (F(§"(0),0 + 5,0/e) = F(§" }(0),0 +5,0/c)) do

to

T

p—(l—?r) p—(l—2r+1)
< |KpeP (OT +T1~+1p0—(£+1)) + KpePt? (OT +Tr+1pa(z+2))

r

—-(1)
R (—”‘;r +Tr+1pg<2r+2>)] e — e

Finally, multiplying by 7" and taking supremum, and using inequalities like those
of (4.24), we arrive at

1 1 1 1
< Kule”<1+|n€|+—>+5p+l(1+ el )
r 9

anJrl _ fn

gt—2r gt-r £—2r+1 gt—r+1
1 1
y+r+1 [ — H n __ n—lH
e (5 * 6’““)] S
é-n - gnfl

If we choose now g small enough, and v > 0, (and hence p > 0) it follows that for
n Z ]-7 |M| S Ko,

< Kpu(eP +¢7)

r

o werc], < 2l - perna], < s
Hgn—l—l g % Hgn g

and consequently (£"),>o converges uniformly on ¢ € [to,t1(s)] to the solution &(t) of
system (4.2), satisfying there

IN

IN

Y
r r

Hg _ ungGHr < K’us'errJrl,

and hence estimate (4.20). Estimate (4.21) is then an easy consequence of estimate (4.23)
on (G and the fact that ¢ < 7 and ¢ > 0:

p+1 Yy+r+1 p+1,r
§0)], < K + K < K+ K™ < K™,
T T
[l
4.6 Second domain
On the final point t;(s), estimate (4.20) provided by Proposition 4.4 reads as:
€’Y+1+T‘
6(t1) = pe" G @t + ), 0 /o) < g m (4.25)

were 71 = |[t; + s — ail.
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Proposition 4.5 Given s € C such that 0 < Ss < a—¢, let £(t) = £(t, s) be a solution
of system (4.2) with initial condition (4.25) on t; = t1(s) as given in (4.19). Then, if
v:=p—L>0, the solution £(t) can be extended for t € [t1(s), T — Rs|, satisfying there
the following estimate:

E(t)], < Kue'r™* (4.26)

Proof. We shall use exactly the same method of successive approximations as in Propo-
sition 4.4, but replacing the initial condition ¢y by ¢;:

@“@%zﬁ@y+Mﬁ+m):AF%0+@F@WbLJ+&Jkﬁb,

for t € [t,(s),T — Rs]. The first iterate is £'(t) as given by expression (4.10), but with
t; instead of #.

From initial condition (4.25) and estimate (4.12), we can bound one term of the
expression (4.10) of &*(¢):

1 r41
‘M(t + )M (ty + 5) 7 (€' (t1) — peP T G (20t + s),tl/s))‘ < Kpgrtrt <— + %) :
T T T
We use the expressions (4.22) of m’, m", for the terms involving them. With the
help of bounds (4.23), we apply (4.12) for the terms involving m’ in expression (4.10)
of £'(t), and estimate (4.17) with 3 = ¢ — r + 2 and C = peP*? for the term involving
m" to get

1 7_1“-}-1 N€p+2
1 p+1 ytr+1 (=, 1
‘5 — uE G‘T < Kue (7”" + 7_12r+1> + KT€7T+1

r r —(£—2r+1)
peP*? (ot p+2 | P1 r+1 —(€+2)
+ KTZ—TH - + 7_{“ + Kpue Ea— + 7y ,

where p, 2 5 ) denote, respectively, p[;(ifrﬂ)(s), p&fiﬁ%s). Now, for (t,s) €

Dy, these terms can be bounded as

™, G6>0
Pl <{ [nm|, B=0, (4.27)
Tlﬂ, 6<0

and consequently, we obtain the following estimate for £!(#):

€t — peP G| 1 1 peP+?
T < Kpu"t —— + = |+ K
i = Ap Farl Al L2

P2 , 1 —(e—2r+1)
Iy e < S ) + K peP*? (7& + py Y

TllfrJrl F2r+l 7'{“ 2r+1

< Kupue,
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where we have used that ¢ < ¢9 <7 <7, and ¢ = (r+1)/(2r +1). Bound (4.23) on
G, jointly with 7 > ¢, gives at last

P+1

‘51 ) < Kpe” + K'u < Kug’.

In view of this bound, we define the norm ||§||7(T+1) = sup |€(t)], 7~V where the
supremum is taken on ¢ € [t;(s),T — Rs|. With this new terminology we have proved
that

13 I
We now proceed by induction. Assumlng that for k =1,...,n,
€]y = e

and consequently
€4(0)], < m(7) = Kpuerr

then obviously n(7) < Kue”/7"!, and we apply estimate (4.15) to get
P (& (t),t +5,t/e) = F (€71 (1), + s,t/g)\

eP 577-’”“1

7-15—2r+1
3r> H&-n B gn—lHi( e gn- 1H

Applying estimate (4.17) of Lemma 4.3 with § = —3r and C = pe?, we obtain

< Kue' "

pe”
s K (7'43

r+1) (r+1)

‘M(t +5) /t M(o+s5) " (F(§"(0),0 + 5,0/e) = F(§" H(0),0 +5,0/¢)) do ]

t1

péfrJrl
vy Pl r+1 2r n_ ¢n—1
o 1 | i I
and using inequalities (4.27), we arrive at
p411r+1
I 1 2 1
10 0]~ < W( ) -],

< Kpe”||gh — ¢ 1H

Since v > 0, choosing now pg small enough, it follows by induction that for n > 1,
|,u/| S Ko,

(r4+1)

1€ iny = Kne?,
N 1

and thus (£"),>¢ converges unlformly ont € [ti(s),T — Rs| to the solution &(¢) of
system (4.2), satisfying there the required estimate (4.26). O

AN

(r+1)’
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4.7 Proof of Theorem 2.4

First consider 0 < Js < a—e. Putting Propositions 4.4 and 4.5 together, from [£(¢)|, =
|€1(t)| + |€2(t)| 7, we immediately obtain £(t) = O(ue”), and the Extension Theorem 2.4
is proved.

For —a + ¢ < &s < 0 we only have to choose b = —ai in the definition of W (u), in
order to get a second solution ®(u) of the linear system (4.5) having a zero of multiplicity
r+1 at u = —ai. Propositions 4.4 and 4.5 follow exactly in the same way for —a +¢ <
$s < 0, as well as the Extension Theorem. O

Remark 4.6 The proof given here can be generalized for perturbations h'(z,#) not
necessarily polynomials, but satisfying (4.14). In this case, v has to be chosen as y =
min(p —r + 1,p — £), and the condition v > 0 is also required.

5 Proof of Propositions 2.6 and 2.7

Proof of Proposition 2.6
1. Using (2.15) and (2.13) in the definition (2.20) of £%(s), it follows that
gu(s) = g(xu(t, 8)7 t/&‘) o g(xs(t, S), t/é‘) = ho(xu(t7 S)) o ho(xs(t7 S)) + O(N€p+l)7 (51)

for t such that 7/2 < t + Rs < T, in such a way that both manifolds z"(¢,s) and
25(t, s) belong to U. Since £%(s) does not depend on ¢, from now on we take for example
t =T,/2, with Ty :=T — Rs.

For x = s, u, let us introduce the functions

A*(t,s) = h° (27 (t, 8)) — h° (p(t/¢)).-
It is straightforward to check that:
lim AS(¢,s) =0, tLiznooA (t,s) =0,

815A*(tv S) = ’ugp ({ho) hl} ($*(t) S)) t/‘g) - {ho) hl} (7p(t/8)) t/‘g)) )
RO (z"(t,s)) — R® (25(t,8)) = A"(t,s) — A%(t, s),

and thus
T, /2
RO (2(T/2,8)) = WO ((T/2,8)) = we® | [ (R0, W} (e, 1/2) — (R, W1}y t/e))

o0

+ / ({ho,hl}(xs,t/s)—{h",hl}(yp,t/s)) dt| |

Ts/2



Splitting of separatrices in Hamiltonian systems with 1% degrees of freedom 33

where 2", 2°® and 7, denote, respectively, z"(¢,s), z°(¢,s) and 7,(t/¢). Adding and
subtracting the Melnikov integral, we get:

RO((L1/2, ) — hO(a* (1,2, 5)
= e | [ 2 (00 ) - Y ) - (Y017
- /T;:; ({r%, B!} (2", t/2) — {h®, h'}(yp, t/e) — {B°, B!} (2", t/e)) dt
+ /;: ((h%, R} (a5, t/2) — {R®, W (o) — {10, R} (2, t/2)) dt
[t ]

where x° denotes z°(¢ + s) inside the four integrals in this expression. The last one is
the Melnikov function (1.4) and we have to bound the other three integrals. The first
and the third ones are O(ue?™) by (2.10). For the second one we need the following
lemma:

Lemma 5.1 For s € C, |Ss| <a—¢ and Ty :=T — Rs,

T,/2
/ ‘{ho’ hl}(xu, t/e) — {ho? hl}(')/p, t/e) — {ho, hl}(xo, t/s)‘ dt < K,ugyieﬂul,

T, /2
where z°, 2 and v, denote, respectively, z(t,s), z°(t + s) and y,(t/e).
Proof. Since {h° h'}(z,t/e) = — f(x1)0sh*(x,t/e) — z201h' (z,t/c), we can write
{n°, h'} (2", t/e) — {B°, h'} (2", t/e)
= = f(a) (0! (2" t/e) — Bk (2%, t/e)) — (F(a}) — F(2})) Dah*(2°, /)
— 2§ (01! (", t/e) — Orh!(a°,t/2)) — (25 — 25) Ouh'(a°, t/e).

With the help of bounds (4.13), (4.14) and Lemma 4.2, we now proceed to estimate
this expression. Using also the bound |£(¢)|, < Kpe?, which comes from the estimate
=" — 2% = O(ue), we get

(R0, B} (@ (¢, 5), /) — (RO, B} (¢ + 5), t/))|
K

pe” pe” pe’ K K L\ keE” , K
< (Tr+1 + ?) —t—2r+1 + -~ + (; + pe > t—2r 12 + pe Tl
pe?
Téfr+2'

<K

Applying (4.16) with 8 = ¢ — r + 2, it turns out that the integral of the expression
above is O(ue? #*""1). The integral involving 7, is O(ueP*?), as v, = O(ueP*t) (see
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the Normal Form Theorem), and f(0) = 0, hence {h°, h'}(7,,t/e) = O(ueP*t), and the
same will happen to its integral over [—T/2, T, /2]. O

Collecting the bounds for the three integrals, we obtain
hO(2"(Ty/2,)) — hO(2%(Ty/2, 5)) = pe? M (s, &) + O(uePpe?™ 471 p2e 1),

and thus (2.21) follows from (5.1).

2. We can take advantage of estimate (2.21) on complex values of s to simply estimate
the Fourier coefficients £ of £%(s) = i, 2 e'**/¢ | as is standard in Cauchy bounds. For
k #£ 0, we shift along complex lines Su = +r., with r. = a — € to obtain:

—lklre/e  p2me )
& = © 5 / E%o + ir.) e*/e do = peP My (e) + O(p2e® 771, uePtt) e~ lkla/e,
e 0

where Mj(¢) are the Fourier coefficients of the Melnikov function. Now, estimate (2.22)
follows readily.

3. We recall that S"(s) — s is a 2me-periodic, analytic function, defined on |Js| < a—¢
by S%(s) — s = S(z"(t,s),t/e) —t — s, for any ¢t € R such that T/2 < t+ Rs < T.
By (2.13), S is O(ueP™)-close to S°, which in its turn satisfies S°(z%(t + 5)) = t + s
as an special case of (2.15). Using also the estimate (2.18) provided by the Extension
Theorem, we arrive at

SU(s)—s = S(z"(t,s),t/e) —t —s =S (2"(t,s)) —t — s + O(ue™)
= St +s)) —t — s+ 0(ue", p"t) = O(pe"),

for |¥s| < a —e. Estimating now the Fourier coefficients of S"(s) — s and also those of
its derivative (which has zero mean), we get, for real values of s,

SUs)—s = S +0(u")e

ds" — —a/e
() =1 = O(ue" e, (5.2)

and therefore S"(s) can be inverted for real s. (In fact, it can also be inverted for
|Ss| <a—c¢el|lnel.)

For real s, we can bound S%(s) — s repeating the computations above, but using
estimate (2.19) provided by the real version of the Extension Theorem, instead of (2.18).
This gives

S8"(s) = s+ O(ue"™), (5.3)

and in particular S§ = O(ueP™) for the zero order Fourier coefficient S¥ of SU(s) — s
that appears in formula (5.3).

Using formulae (5.2) and (5.3), we obtain for the inverse function s = s%(S) of
S = 8Y(s) that s*(S) — S is O(ueP™) and a 2mwe-periodic, analytic function. O
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Proof of Proposition 2.7

It is clear that v is an analytic and periodic function because so are £* and S" — s given
in (2.20).

1. For real s, according to property (2) of Corollary 2.2, the invariant stable and
unstable curves C*, * = s,u for the Poincaré map P defined in (1.3) are given by
C* = {z*(0, s)}, and the dynamics on them is simply given by a shift in the variable s:
P(z*(0,s)) = x*(2me, s) = 2*(0, s + 27e). Since the Poincaré map P is area preserving,
C® and C" must intersect at least in a homoclinic point 2" = z%(0, h*) = 2°(0, h®), giving
rise to a homoclinic orbit: 2" (¢, h") = 25(¢, h®), Vt € R. To see that h® = S"(h"), we take
t big enough (¢ + s > T'/2) in such a way that 2°(¢, h®) € D®, and then equations (2.15)
for s = h® read as

S(z*(t, h®),t/e) —t = h°, E(x%(t, h®),t/e) =0, (5.4)
and from the first equality above and definition (2.20) of S", we get
h® = S(a°(t, h®),t/e) — t = S(z"(¢, h"),t/e) — t = S*(h"),
as wanted. Now, from the definition (2.23) of ¢, as well as (2.20) and (5.4),
D(P*) = p(SU(hY)) = EU(hY) = E(2"(t, h%), t/e) = E(&°(¢, %), t/e) = O

and by the 2me-periodicity of ¥, ¥(h,) = 0 also holds.
To compute ' (h,) = ¢'(h*) we differentiate (2.24) at the point h®, obtaining
GRS = BE(E(t, h), t/e) - ZEL (1, BS) + BrE(F (8, h), £ e) - O
— U1 ) ) as ) 2 ) ) as
Finally, differentiating both equations (2.15) with respect to s = S, and taking into
account that change (2.11) is canonical we get

U
2

(t, h®).

%(t, ) = BE(2(t, 1), t/e) = BuE(F(t, 1), t/e),
%“:; (t,1°) = —OE(2*(t,h°),t/e) = —DE(E(t, ), t/e),
and inserting these equalities in the formula of ¢'(h,), we get the required expression:
oy 0wy 0Ty 0xy o 0Ty

Since the formula above for ¢'(h,) is independent of n, it can be used to compute the
angle at any homoclinic point z°(0, h,) = 2°(2men, h®).

2. The points z" = 2°(0, h°) and P(z") = 25(0, h*+ 27¢) are homoclinic points of P, but
since P is orientation preserving there is another first homoclinic point between them:
2%(0, h%) = z"(0, h") = (0, h®), where h® and h® are two consecutive zeros of ¥(.5).
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Since P is area preserving, the area A of the lobe D in coordinates z is the same as
the area of the lobe D' in coordinates (.5, F'), and can be computed at any image of the
homoclinic points, giving rise to the desired formula

A:/ A4S dE =
DI

/h »(S) dS‘ .

3. In order to see that ¢y = 0, we only need to check that the area of the inner lobes and
the outer lobes is the same. This can be easily seen making one iterate of the map P and
using the fact that the total area between the global invariant manifolds is invariant.

4. By the definition of v, and applying (2.22), we have for real S
Y(S) = EX + uePM(s%(S), e) + O(p2e 1 ety emo/=,
An straightforward computation of the Melnikov function shows that
peP M'(S,e) = O(pue? e /), (5.6)

for real S. Applying Taylor’s Theorem to us? M (s%(S),e) = ueP M (S + O(uePt), ), we
get

peP M(s(S),e) = pePM(S,e) + O(ue ™" ™/ pue?™)
= pPM(S, ) + O ) e e,

and then, since £ > r — 1, we have that v +p > 2y +r — 1, and

Y(S) = EY + pueP M (S, ) + O(u2e L, pePtt) e/,

Now, since ¢y = 0, we obtain that £ = O(u2e®*"~!, ueP*1)e~*/¢ which gives equa-

tion (2.25).

To check estimate (5.6), we simply apply residues theory to compute the Fourier
coefficients M,, () of the Melnikov function M(s,e) = ¥, .o My, (g) e™"/¢ defined in (1.4)
in terms of the Poisson bracket J(z,t/e) = {h° h'}(z,t/e), which is a 2me-periodic in
t function with zero mean. We now relate its Fourier series in the # variable J(z,8) =
Ym0 Jn(z) €, with the Fourier series of the Melnikov function

J (xo(u), 4= 8) du

€
— Mgp Z e—ins/s/ Jn($0(u)) einu/s du = ugp Z e—ins/aM_n(g),

n#0 - n#0

o0

pePM(s,e) = ua”/_o:o J(2°(t + s),t/e) dt:,usp/

obtaining thus M, () = [ J_n(2°(w)) e~ ™*/¢ du.

Let us recall here that by hypothesis H2, z°(u) is analytic on the strip |Su| < a,
with only one isolated singularity on each line Su = +a. To compute M, we change
the integration path down to Su = —b, if n > 0, and up to Su = b, if n < 0; with
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b > a such that z°(u) has no more singularities on |Su| < b. Then, taking into account
that u — J(z°(u), ) has a pole of order < ¢+ 1 at u = +ai, it follows that J,(z°(u))
has at most a pole of this order at u = Zai, i.e., its Laurent series has the form
Jn(2°(w)) = Sperir Jnk(u — ai) ™. Applying residues theory, we obtain

peP My, + O( e /%) = e e_"“/s[(—in)zJ_n,Hl + 0(e)],

for instance for n > 0. The O(e"%/¢) term comes from the integral through the path
parallel to the real axis, with Su = —b < —a. We can conclude that, for n > 0,

peP M, = peYe /e [(—in)ZJ_n,Hl + O(s)]
= pe e e M, (5.7)
and an analogous formula for n < 0
peP M, = peYe /e [(—in)ZJ_n,Hl + O(s)]
= pe e e M, (5.8)
with M, = O(1). In conclusion, from formulae (5.7), (5.8), we obtain uePM;(c) =

O(ue? e *l2/2) "and thus estimate (5.6) follows. O

Proof of Corollary 1.2
First of all, formulae (5.8), and (5.7), give us

,U/&'pM(S,é') — ug"/ Z e—na/E (M—n e—ins/e + Mn eins/g)
n>0

= pueP e—0/c [M_1(8) p—is/e + Ml(s) eis/e] + O(e_za/s)
= pueP [M,l(s) e~is/e 4 M (¢) eis/s] + O(e—2a/s),

and it only remains to check pueP?My; ~ ps? e=%/¢. Again from formulae (5.7) and (5.8)
for n = £1, we get

pe? [M—l e /e + M, eis/s] = pe” e /" (ilJ1,£+1 e /e 4 (=) Ty et 4 0(5))) :

From hypothesis H4, we know that Jy .41 = J_i,41 are not zero. Writing Ji 11 =
|J1,g_|_1| ei‘P, J_l,g_H = |J1’g+1| e’i‘P, with |J1’g+1| > 0, we obtain that

HePM(s,€) = 2| Ty en] (—1)ue” e /% cos(s/e — ) + O(e2%),

and putting this expression into the formulae of the area and the angle given by Theo-
rem 1.1 we obtain the desired result. O
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