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We consider models given by Hamiltonians of the form

H(I, ϕ, p, q, t; ε)

= h(I) +
n∑

j=1
±

(
1
2
p2
j + Vj(qj)

)
+ εQ(I, ϕ, p, q, t; ε)

where I ∈ I ⊂ Rd, ϕ ∈ Td, p, q ∈ Rn, t ∈ T1. These 
are higher dimensional analogues, both in the center and 
hyperbolic directions, of the models studied in [28,29,43] and 
are usually called “a-priori unstable Hamiltonian systems”. All 
these models present the large gap problem.
We show that, for 0 < ε � 1, under regularity and explicit 
non-degeneracy conditions on the model, there are orbits 
whose action variables I perform rather arbitrary excursions 
in a domain of size O(1). This domain includes resonance lines 
and, hence, large gaps among d-dimensional KAM tori. This 
phenomenon is known as Arnold diffusion.
The method of proof follows closely the strategy of [28,29]. 
The main new phenomenon that appears when the dimension 
d of the center directions is larger than one is the existence of 
multiple resonances in the space of actions I ∈ I ⊂ Rd. We 
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show that, since these multiple resonances happen in sets of 
codimension greater than one in the space of actions I, they 
can be contoured. This corresponds to the mechanism called 
diffusion across resonances in the Physics literature.
The present paper, however, differs substantially from [28,
29]. On the technical details of the proofs, we have taken 
advantage of the theory of the scattering map developed 
in [31]—notably the symplectic properties—which were not 
available when the above papers were written. We have 
analyzed the conditions imposed on the resonances in more 
detail.
More precisely, we have found that there is a simple condition 
on the Melnikov potential which allows us to conclude that 
the resonances are crossed. In particular, this condition does 
not depend on the resonances. So that the results are new 
even when applied to the models in [28,29].

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

The goal of this paper is to present some explicit sufficient conditions for the existence 
of instability in models of the form

H(I, ϕ, p, q, t; ε) = h(I) + P (p, q) + εQ(I, ϕ, p, q, t; ε), (1)

where

P (p, q) =
n∑

j=1
Pj(pj , qj), Pj(pj , qj) = ±

(
1
2p

2
j + Vj(qj)

)
.

We will assume that I ∈ I ⊂ Rd, ϕ ∈ Td, I an open set, p, q ∈ Rn. The symplectic 
form of the phase space is Ω =

∑
i dIi ∧ dϕi +

∑
j dpj ∧ dqj . We will assume that the 

dependence of Q on t is 1-periodic, so that t ∈ T = R/Z. Moreover, for simplicity, we 
will assume that Q is a trigonometric polynomial in the variables (ϕ, t). This is not a 
crucial assumption and can be eliminated, see Remark 4.

We will show (see Theorem 6 for precise statements) that, under suitable regularity 
and non-degeneracy assumptions—that can be checked by studying the 3 jet in the ε
variable of the perturbation εQ—there are orbits of the system in which the I variables 
can perform largely arbitrary excursions in a set I∗ ⊂ I of size of order 1 (that is, 
independent of ε as ε → 0). An explicit example is shown in Section 4.

Observe that the model considered does not present this instability phenomenon when 
ε = 0 because in this case the actions I are conserved quantities. The phenomenon 
that for all 0 < ε � 1 there are orbits whose action variables exhibit big changes is 
usually known as Arnold diffusion since Arnold [3] presented the first model where this 
phenomenon occurs.

The main issue in obtaining orbits whose actions I travel in the set I∗ is that this 
set can include simple resonant surfaces, that is, resonances of multiplicity one. This 
makes the models considered here present the large gap problem. This problem, which 
will be discussed in more detail in Section 3.5, consists in the fact that the customary 
perturbation theory does not produce chains of whiskered KAM tori with transverse 
heteroclinic intersections and therefore the mechanism presented in [3] does no work 
in this model. The reason is that, on one hand, a perturbation of size ε causes gaps 
in the set of whiskered KAM tori of order ε1/2 near the (first order in ε) resonance 
surfaces of order 1. On the other hand, the effect of the perturbation on the stable and 
unstable manifolds of these whiskered tori is only of O(ε). Hence, a naive perturbation 
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theory cannot establish the existence of chains of transition tori traversing the resonance 
surface.

In this paper we describe a geometric mechanism, based on showing that the system 
has a normally hyperbolic invariant manifold Λ̃ε, whose stable and unstable manifolds 
intersect transversally, so that we can define and compute a scattering map defined 
on a subset of Λε whose size is O(1). By combining a detailed analysis of the dynamics 
restricted on Λε and the scattering map, we establish the existence of chains of transition 
tori that can traverse these resonance regions devoid of primary KAM tori, that is, tori 
that can be continued from invariant tori of the integrable system. The main idea of the 
mechanism proposed is to include whiskered secondary tori in the transition chain, that 
is, tori generated by the resonances that cannot be continued from invariant tori of the 
integrable system. We will show that these secondary tori generated by the resonances 
fill the gaps created in the set of KAM primary tori (the large gap problem).

The unperturbed Hamiltonian (Hamiltonian (1) for ε = 0) is the product of d rotors 
and n pendula. This structure is usually called “a priori unstable” in the literature to 
distinguish it from the case where the unperturbed system only depends on the actions I.

Results in Arnold diffusion in Hamiltonians with 2 + 1/2 degrees of freedom which 
do not present the big gap problem have already been established in [10,13,27,56,49,
40,62,24] and in arbitrary degrees of freedom under quasi-periodic perturbations in [30]
and several applications to models coming from Celestial Mechanics with three or more 
degrees of freedom can be found in [58,78,14,73,35,33].

The result for our model with d = 1, n = 1 was already established in [28,29]. The 
problem was reexamined in [26], where the hypothesis about Q being a trigonometric 
polynomial in (ϕ, t) was eliminated. The works [43,42] supplemented the methods of 
[28,29] with the use of the method of correctly-aligned windows. This method allowed 
to simplify the proof and to obtain explicit estimates on the time spent by the diffusion 
trajectories as well as to generalize the types of perturbations considered (it is not needed 
that the perturbation was periodic or quasi-periodic, only mildly recurrent).

Of course, we are far from believing that the mechanism discussed in this paper 
is the only one to produce changes of order one in the actions. In [70,69] the author 
defines the so-called the separatrix map near the normally hyperbolic invariant manifold
Λ̃ε to obtain results for the a priori unstable case in lower dimensions. Combinations 
of variational and geometric methods have been recently applied in a-priori unstable 
Hamiltonians with 2 + 1/2 degrees of freedom [19,77,50,6,54,55,11] which require the 
Hamiltonian to be positive definite, which is a non-generically (albeit open) property.

For a-priori stable Hamiltonians, where the unperturbed system only depends on 
the actions and has no hyperbolic structure, variational methods have given results for 
positive definite Hamiltonians in some cusp-residual sets, see [50,7].

The case of a-priori unstable systems like (1) with d ≥ 2 presents a difficulty that was 
not present in the case d = 1, namely, that there are points in the normally hyperbolic 
invariant manifold Λ̃ε where the resonances have higher multiplicity (the multiplicity of 
a resonance is the dimension of its resonance module, see (33)).
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The technique used in [28,29] was to take advantage of the fact that, in the neigh-
borhood of simple resonances, that is, resonances of multiplicity 1, it is possible to 
introduce a normal form which is integrable, and can be analyzed with great accuracy. 
Unfortunately, it is well known that multiple resonances, that is, resonances of multi-
plicity greater or equal than 2, lead to normal forms that are not integrable and need 
other techniques to be analyzed (see [5,45]). Recent progress in the analysis of double 
resonances for a priori stable systems can be found in [54,50,18]. We also note that [71]
establishes diffusion far from strong resonances for the case n = 1, d ≥ 2, using the 
method of the separatrix map.

In this paper we adapt the methods of the previous papers [28,29] to show instability 
under explicit conditions. The basic observation is that multiple resonances happen in 
subsets of codimension greater than 1 in I. We will adapt the methods of [28,29] to 
analyze the behavior of the system in regions of simple resonances and show that the 
diffusing trajectories can contour the multiple resonances.

As we will see in Theorem 6, we can choose largely arbitrary paths in the action 
space I (we just require that they do not pass through some higher codimension subsets 
of multiple resonances) and then, show that there are orbits whose I-projection follows 
these paths up to an error, which becomes arbitrarily small with ε. The sets that can be 
reached are of size O(1) and they include simple resonances.

Similar definitions of diffusion along paths were also used in [20,21], but the meth-
ods of these and related papers [8,9] only established the existence of diffusion in sets 
completely devoid of resonances (the so-called “gap bridging mechanism”). The orbits 
that we produce cross the codimension 1 resonant surfaces of multiplicity one. Simi-
lar phenomena have been observed in the heuristic literature [22,52]. In [67], a similar 
mechanism of diffusion is called diffusion across resonances.

The paper of [67] also suggests several other mechanisms that should be at play. It 
seems to be a very challenging problem to make rigorous the heuristic discussions on 
statistical and quantitative properties of different instability mechanisms in the heuristic 
literature [22,52,67]. Of course, the heuristic literature is convinced that double reso-
nances help diffusion because they are one of the ingredients in some of the heuristic 
mechanisms (but not in others!). It is somewhat paradoxical that the rigorous mathe-
matical theory has difficulty precisely at the places which heuristics considers favorable.

In this paper, we show rigorously that double resonances can be contoured. This can 
enhance the believe that there are several mechanisms.

Since the proof presented here is quite modular and has well defined milestones, we 
think that it is almost certain that other methods can be applied to improve some of 
our arguments. In particular, we expect that the method of correctly aligned windows 
can also give alternative proofs or to improve several steps of the proof. The field of 
instability has experienced a great deal of activity in recent years and there is a large 
variety of results that have been obtained or announced. For a more detailed survey of 
recent results, we refer to [32,63,16,17,6].
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Remark 1. It is customary in some literature to refer to models of the form (1) as 
a-priori-unstable models. We note, however, that this distinction only makes sense in 
considering analytic models depending only on one small parameter. The results we 
present here apply just as well when the potentials Vi in (1) are arbitrarily close to 0. 
In such a case, we just need to choose ε very small (even exponentially small) relatively 
to the hyperbolicity properties of the Vi. Several papers in the literature, notably those 
dealing with generic results, which occur in typical or cusp-residual Hamiltonian, call 
these systems “a priori stable”. In particular, one can use this method to produce systems 
that present instability but which are as close to integrable as desired. This procedure 
was pioneered in [3].

Remark 2. Hamiltonian (1) can be considered as a simplified model of what happens in 
a neighborhood of a resonance of multiplicity n in a near integrable Hamiltonian. The 
averaging method [53,44,45,5] shows that near a resonance of multiplicity j, one can 
reduce a near integrable Hamiltonian to a Hamiltonian of the form

h(I) +
n∑

i=1

p2
i

2 + εV (q1, . . . , qn, I) + O(ε2). (2)

Remark 3. If we consider (1) as a model of what happens in a resonance (the pendulum 
being the resonant variable), then the multiplicity of the resonances in the real system is 
one more than the order that appears in the model. Hence, what we call simple resonances 
in our Hamiltonian (modeling a resonance in a real model) would be double resonances 
in the real Hamiltonian. Also note that then, the phenomena described here correspond
to diffusion along a resonance in the original model.

The assumption that the averaged system is given by uncoupled pendula is made 
often [48,44]. It is a generic assumption for n = 1. Hence we expect that the mechanism 
presented here is typical in a neighborhood of a resonance. Of course, the hyperbolicity 
will be weak in systems close to integrable, but in families with two parameters, it would 
suffice to exclude wedges. See Remark 1.

For n ≥ 2, the above model (2) is, in general, not integrable whereas the pendulum 
part of (1) is. Nevertheless, we point out that the only think we need for our analysis 
is that 

∑n
i=1

p2
i

2 + εV (q1, . . . , qn, I) admits transversal homoclinic orbits to a hyperbolic 
equilibrium point. Systems of the form (1) appear naturally in several physical models. 
A motivation to include this generality is that there is very little difference dealing with 
any n and it allows to emphasize that the geometric methods allow to deal with systems 
that are not positive definite.

In Section 2 we will present some notation and formulate the results. The proof is 
carried out in Section 3. An overview of the main steps of the proof is given in Section 3.1.
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2. Notation, assumptions and results

In this section, we will present an overview of the argument and formulate precisely 
most of the non-degeneracy assumptions we will assume. We will postpone the precise 
formulation of the most technical ones till we have developed the notation for them and 
motivated their explicit expressions.

The proof is divided in well defined steps and each of them can be accomplished using 
standard tools. We hope that the experts in these techniques can fill in the arguments 
better than the authors, so that for many possible readers, the heuristic discussion will 
be enough.

We have found it convenient to present the argument in an order slightly different 
from the one followed in [28,29] so that, even if our hypotheses correspond closely to the 
assumptions of these papers, the numbers do not correspond. In some cases, we have cho-
sen to present the result under slightly different assumptions than in [28,29] to simplify 
the exposition. For the same reason—simplifying and shortening the exposition—some of 
the objects whose expansions were explicitly computed in [29] will now be given through 
existence theorems, so that the final conditions will become slightly less explicit. Never-
theless, since the procedures here are rather constructive, explicit formulas can be given 
through more detailed work. On the other hand, we note that the tool of the scattering 
map and its symplectic properties [31], a tool which was not available when [29] was 
written, simplifies significantly the computations and thus, the conditions we obtain in 
this paper are simpler to verify and more generally applicable than those in [29].

The precise statement of the main result (Theorem 6) requires the definition of the res-
onance web, which depends on assumption H3. The statement of the last non-degeneracy 
conditions, H6, H7, H8, can only be made after the system has been analyzed near res-
onances. We note that these conditions are verifiable in concrete models with a finite 
calculation, as it is performed in the example (120).

2.1. Some elementary notation: the extended flow, the time-one map

We will always consider the extended flow Φ̃ε,t(x̃) which is obtained by supplementing 
the standard Hamilton equations with the equation ṡ = 1:

İ = −ε
∂Q

∂ϕ
(I, ϕ, p, q, s; ε)

ϕ̇ = ∂h

∂I
(I) + ε

∂Q

∂I
(I, ϕ, p, q, s; ε)

ṗ = −∂P

∂q
(p, q) − ε

∂Q

∂q
(I, ϕ, p, q, s; ε)

q̇ = ∂P

∂p
(p, q) + ε

∂Q

∂p
(I, ϕ, p, q, s; ε)

ṡ = 1 (3)
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To the extended differential equations (3) corresponds the extended phase space M̃ :=
I × Td × Rn × Rn × T associated to the variables x̃ = (I, ϕ, p, q, s) respectively.

Some of our calculations are made easier by considering the time-1 map of the flow. 
We will use the notation fε to denote the time one map starting at the initial condition 
t = 0.

2.2. The first elementary assumptions: regularity, hyperbolicity of the pendula and 
non-degeneracy of the integrable part

We will be making the following assumptions:

• H1 We will assume that the functions h, Vj , Q are Cr in their corresponding domains 
with r ≥ r0 sufficiently large.

• H2 We will assume that the potentials Vj have non-degenerate local maxima each of 
which gives rise, at least, to a homoclinic orbit of the pendulum Pj .

Without loss of generality and to simplify the notation, we will assume that the 
maxima of the potentials Vj happen at qj = 0. That is, we will assume that V ′

j (0) = 0, 
V ′′
j (0) = −α2

j with αj ≥ α > 0, j = 1, . . . , n.
We will denote by (p∗j (t), q∗j (t)) a parameterization by the natural time of the homo-

clinic orbit we have chosen. That is,

d

dt
q∗j (t) = p∗j (t);

d

dt
p∗j (t) = −V ′

j (q∗j (t));

lim
t→±∞

(p∗j (t), q∗j (t)) = (0, 0). (4)

When the variables qj have the physical interpretation of angles it is natural to assume 
that the Vj are periodic. In such a case, the limit in (4) is understood modulus the period 
of the potential. The method of proof only requires the existence of the homoclinic orbits 
to hyperbolic saddles. Hence it applies to the coupling of an integrable system in the 
(I, ϕ) variables to a chaotic system in the (p, q) variables.

We note that the choice of a parameterization of the homoclinic orbit in the full space 
involves the choice of n origins of time in each of the homoclinic orbits. Subsequent 
hypotheses will be independent of these choices. The possibility of choosing the origin 
of the parameterizations of each of the homoclinic orbits independently will play an 
important role in our discussion of the Poincaré function in (9).

Once we have chosen a homoclinic orbit to the origin in any pendulum, we obtain 
a homoclinic connection in the space of the pendula. We will denote by U ⊂ Rn × Rn

a neighborhood of the homoclinic connection chosen in the p, q space.
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In this paper, we will assume that the equilibrium points are hyperbolic. It would 
be interesting to extend the result to degenerate maxima (leading to weakly hyperbolic 
points). This case has been proposed in the literature [34].

From now on during the paper, we will consider I∗ ⊂ I, and we consider the compact 
set

D := I∗ × Td × U × T1 (5)

to be the domain of our problem. So, all the hypotheses refer to this domain.

• H3 The mapping I → ω(I) := ∂
∂I h(I) is a diffeomorphism from I∗ to its image.

2.3. Assumption on the structure of the perturbation

We will furthermore assume:

• H4 The function Q in (1) is a trigonometric polynomial on (ϕ, t).

That is, we can write

Q(I, ϕ, p, q, t; ε) =
∑

(k,l)∈NQ

Qk,l(I, p, q; ε)e2πi(k·ϕ+lt) (6)

with NQ ⊂ Zd × Z a finite set, with Qk,l �≡ 0 in I∗ × U , if (k, l) ∈ NQ.
Hypothesis H4 clearly does not belong in the problem and we hope to eliminate it in 

future treatments. Since the main goal of this paper is to deal with the issue of multiple 
resonances, we have thought it convenient to make the result as easy to read as possible, 
even if we do not achieve the largest possible level of generality.

Remark 4. Hypothesis H4 appeared in [29] for the case d = 1, n = 1. In that case, 
the trigonometric polynomial hypothesis has been eliminated in [26,41] under generic 
assumptions. The paper [41] eliminated the trigonometric polynomial hypothesis for 
d = 1, n arbitrary (one can argue that, possibly, the orbits produced are not the same 
as the orbits in the previous papers). Similar improvements are clearly possible in the 
higher dimensional case d > 1.

Remark 5. The methods we will use here can reach the same conclusions under slightly 
weaker hypotheses.

We only need that, for some big enough but finite m ≤ r the sets of integer indexes

{(k, l) ∈ NQ; ∂i

Qk,l(I, p = 0, q = 0; ε = 0) �= 0} (7)

∂εi
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for i ≤ m are finite. This happens, in fact, for some models in Celestial Mechanics [35]. 
Nevertheless, since the writing in this case becomes more cumbersome, we will only claim 
the weaker result.

2.4. Non-degeneracy assumptions

The first non-degeneracy assumption concerns the averaged Hamiltonian near simple 
resonances, and are stated in Section 3.5.3.

• H5 Consider the set of integer indexes N [≤2] = N1 ∪ N2 ⊂ Zd+1 where N1 is the 
support of the Fourier series of the perturbation Q(I, ϕ, p, q, t; 0), N2 = (N1+N1) ∪N̄ , 
where N̄ is the support of the Fourier series of ∂Q∂ε (I, ϕ, p, q, t; 0).
Then we assume that, for any (k, l) �= (0, 0) ∈ N [≤2], the set

{I ∈ I∗, Dh(I)k + l = 0, k�D2h(I)k = 0} (8)

is empty or a manifold of codimension at least two in I∗.
In the case the map h̃(I0, I) = I0 + h(I) is a quasi-convex function the set (8) is an 
empty set for any (k, l) �= (0, 0) ∈ Zd×Z and a fortiori for any (k, l) �= (0, 0) ∈ N [≤2]. 
Therefore hypothesis H5 is true for any perturbation Q in this case.

• H6 Assume that the perturbation Q satisfies some non-degeneracy conditions stated 
in Section 3.5.3 in the connected domain I∗ × Td+1 related to the averaged Hamil-
tonian.

The following non-degeneracy assumptions concern the so-called Poincaré function 
(or Melnikov potential) associated to the homoclinic connection (p∗, q∗) chosen in as-
sumption H2:

L(τ, I, ϕ, s) = −
∞∫

−∞

[
Q(I, ϕ + ω(I)σ, p∗(τ + σ), q∗(τ + σ), s + σ; 0)

−Q(I, ϕ + ω(I)σ, 0, 0, s + σ; 0)
]
dσ (9)

where

τ = (τ1, . . . , τn)

p∗(τ + σ) = (p∗1(τ1 + σ), . . . , p∗n(τn + σ))

q∗(τ + σ) = (q∗1(τ1 + σ), . . . , q∗n(τn + σ))

• H7 Assume that, for any value of I ∈ I∗, there exists a non-empty set JI ⊂ Td+1, 
with the property that when (I, ϕ, s) ∈ H−, where
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H− =
⋃

I∈I∗

{I} × JI ⊂ I∗ × Td+1, (10)

the system of equations

∂

∂τ
L(τ, I, ϕ, s) = 0 (11)

admits a non-degenerate solution τ = τ∗(I, ϕ, s) with τ∗ a smooth function.
• H8 Define the auxiliary functions (related to the scattering map that will be intro-

duced in Section 3.6)

L(I, ϕ, s) = L(τ∗(I, ϕ, s), I, ϕ, s), L∗(I, θ) = L(I, θ, 0) (12)

Assume that the reduced Poincaré function L∗(I, ϕ − ω(I)s) satisfies some non-
degeneracy conditions stated in Section 3.8 in the domain H− (see (98), (114)). 
Nevertheless we anticipate that an informal description of the hypothesis will be 
discussed after the main Theorem 6.

We also note that the hypothesis H8 is simplified by the very simple hypothesis:

• H8′ ∀I ∈ I∗, the reduced Poincaré function L∗(I, θ) defined in (12) has non-
degenerate critical points.

2.5. Statement of the main result

The main result of this paper is the following:

Theorem 6. Let H be a Hamiltonian of the form (1) satisfying the elementary assump-
tions H1, H2, the regularity assumption H3, the simplifying assumption H4 and the 
non-degeneracy assumptions H5, H6, H7, H8.

Then, for every δ > 0, there exists ε0 > 0, such that for every 0 < |ε| < ε0, given 
I± ∈ I∗, there exists an orbit x̃(t) of (1) and T > 0, such that:

|I(x̃(0)) − I−| ≤ Cδ

|I(x̃(T )) − I+| ≤ Cδ. (13)

Actually, we will show that given a largely arbitrary path γ(s) ⊂ I∗, we can find 
orbits x̃(t) such that I(x̃(t)) is δ-close to γ(Ψ(t)) for some reparameterization Ψ. We 
postpone the precise statement till we have developed the notation. See Theorem 28.

The set I∗ will be described precisely in the course of the proof. The set is determined 
by the non-degeneracy assumptions H5, H6, H7 and H8. Given any concrete system, the 
assumptions can be verified from the finite jet in ε of H. Therefore, these conditions hold 
in regions of order 1 of I.
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The main restriction to obtain the set I∗ from the domain of definition I is given 
by assumption H7, which guarantees the transversality of the intersection of the stable 
and unstable manifolds of the perturbed normally hyperbolic manifold Λε obtained in 
Section 3.2. Once H7 is imposed, one needs to eliminate some sets of codimension two 
from it to obtain I∗:

• H8 Eliminates the values of I for which the scattering map is not transversal to the 
inner map. More precisely, the invariant KAM tori of the inner map are transverse 
to their images under the scattering map. See Section 3.8.
In fact, the different conditions given in Section 3.8 which constitute hypothesis H8
can be replaced by the sufficient condition H8′.

• H5 and H6 Eliminate the region in the resonances where the leading term of the 
averaged system is degenerate. That is, given the codimension 1 resonant surfaces, 
we have to eliminate the place when some function vanishes. See Section 3.5.3.

Since I∗ can contain multiple resonances appearing up to finite order averaging theory, 
and our mechanism is based on avoiding these multiple resonances, we choose δ > 0 and 
contour these sets of codimension 2 up to a distance of order O(δ), obtaining a reduced 
domain Iδ ⊂ I∗. The precise definition of the sets to eliminate is deferred to Section 3.4. 
Roughly, we eliminate the double resonances in which one of the resonances are of order 
1 or 2 (double resonances in which both resonances are of order higher than 2 are allowed 
in Iδ).

Note that, since by H4, the perturbation is a trigonometric polynomial and we assume 
hypothesis H3, we only need to eliminate the intersection of finite number of manifolds 
of codimension 1.

We note that all the conditions H5–H8 are generic: C2 open in the space of Hamil-
tonians and hold except in sets of infinite codimension. Note that all these hypotheses
are transversality conditions among objects that are independent. That is, we require 
transversality conditions among objects that depend on the perturbation restricted to 
different places. See the details later.

The only hypothesis that is not generic in the set-up is assumption H4. It seems clear 
that this assumption H4 can be eliminated using the techniques developed in [26]. How-
ever, we have preferred to maintain it to simplify the exposition. Roughly, the idea is 
that, for every ε > 0 one can approximate the perturbation by a trigonometric poly-
nomial. If the trigonometric polynomial verifies the hypotheses of Theorem 6, one can 
obtain the existence of wandering paths and information about their robustness. As it 
turns out, if the perturbation is smooth enough, one can show that truncation error is 
much smaller than the robustness allowed by the mechanism. Of course, there are quite 
a number of details to be verified and we will not endeavor to do them now.

Once we have defined the set Iδ ⊂ I∗, we will show that KAM tori—either primary 
or secondary—are closely spaced on it. We will show that, given any KAM torus with 
I coordinates in Iδ, it has transversal heteroclinic connections with all the other KAM 
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tori in a small neighborhood. Applying the Shadowing lemma, we can find orbits whose 
actions follow almost arbitrary paths inside Iδ. This is, of course, slightly stronger than 
the conclusion (13) of Theorem 6.

It is important to note that codimension 2 objects do not separate the regions and 
can be contoured so that they do not obstruct the change along the paths.

3. Proof of Theorem 6

3.1. Description of the proof

Since the proof of Theorem 6 is long and involves several technicalities as well as 
some lengthy—but straightforward—computations, we devote this section to describing 
the main ideas. One of our goals was to make the conditions very explicit so that they 
could be verified in concrete systems.

As we have to deal with a non-autonomous Hamiltonian (1), in Section 3.2 we intro-
duce the extended phase space where we will work during the proof.

The first important tool in the proof is the use of the theory of normally hyperbolic 
invariant manifolds. As Hamiltonian (1) has a normally hyperbolic invariant manifold
Λ̃0 for ε = 0, classical perturbation theory (Fenichel Theorem) gives the existence of a 
normally hyperbolic invariant manifold Λ̃ε for ε > 0 small enough. We end Section 3.2
computing the flow reduced to the manifold Λ̃ε, which turns out to be a Hamiltonian 
flow. The expression for the reduced Hamiltonian (16) in terms of the original one (1) is 
computed in Section 3.3, where we see that, thanks to hypothesis H4, it is given up to 
any order in ε, by trigonometric polynomials in the angle variables.

Section 3.4 is devoted to one of the mail tools used in the paper to describe the 
dynamics inside the normally hyperbolic invariant manifold Λ̃ε: the averaging method, 
which is a very standard tool in Hamiltonian mechanics [53,12,72]. The goal of this 
section is to obtain a description of the behavior of the manifold which is accurate to 
order ε3. Ignoring some subtleties, this is just two steps of averaging. The upshot is 
that the invariant manifold is covered by KAM tori, except for the resonances. In the 
multiplicity one resonances we can find secondary tori which dovetail in the gaps of the 
foliation by KAM tori. Resonances of multiplicity 2 are isolated. For technical reasons, 
we will carry out the averaging to higher order since, once the inductive lemma is proved, 
the result is free and this simplifies later arguments. The main goal will be to describe 
the phenomena near resonances. Our non-degeneracy condition H6 is precisely that the 
result of this procedure gives non-degenerate results.

The main novelty with respect to the previous papers [28,29] is that resonances for 
systems with two or more degrees of freedom are manifolds in the action space whereas 
for one degree of freedom, resonances are just points. This will make the averaging of 
Hamiltonian (16) a little more involved that in the case considered in [29]. Section 3.4
is divided in several subsections:
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The general Algorithm 10 of averaging, using the method of Lie transforms, is de-
scribed in general in Section 3.4.1 (this is, of course, very standard).

In Section 3.4.2 we present the averaging results in our problem. One step of averaging, 
relies on a change of a canonical change of variables which eliminates the perturbations 
as much as possible. To find this change of variables, one needs to solve the so-called 
homological equation (22). This motivates Definition 11 of resonances in one averaging 
step Rk,l as the set of actions where one cannot solve the homological equations, hence 
the change of variables cannot eliminate the perturbations completely (even if eliminate 
many of these terms).

To study the Hamiltonian for points whose actions are close to some resonance Rk,l, 
we define two different projections to the resonance: the “classical” orthogonal projec-
tion and the projection along the bundle Rk,l + 〈k〉, which is useful to make apparent 
the property that the averaged Hamiltonian close to some resonances is generically 
“pendulum-like”. To define this projection for secular resonances (resonances which ap-
pear at the first and second step of averaging) one needs to avoid the subset in the 
resonance set Rk,l where the direction given by the vector k is tangent to Rk,l. Thanks 
to hypothesis H5, these are sets of codimension 2. As we just need to deal carefully with 
secular resonances to obtain a “pendulum-like” Hamiltonian near them, we will use this 
projection near the secular resonances and the standard orthogonal one near the rest of 
resonances we encounter in the higher averaging steps. So, we take δ > 0 and define the 
set Jδ ⊂ I∗ as the set of points of I∗ taking out a neighborhood of size δ of these sets of 
codimension 2. In the set Jδ we will have a well defined projection in the k-direction for 
any secular resonance. In the particular case that the function h in (1) is quasi-convex, 
any point of I∗ has a well defined projection in the k-direction for any secular resonance, 
so Jδ = I∗.

After this, we present the main averaging Lemma 12, which, given a Hamiltonian, 
provides the different forms of the averaged Hamiltonian, which depends of the distance 
of a point to resonances.

An important definition is Definition 15 of resonances activated at order N , to em-
phasize that resonances only play a role when they are present in the Fourier transform 
of the Hamiltonian at the step N of the averaging procedure. Then we define secular 
resonances R[≤2] as the ones activated at order one or two. Definition (33) introduces 
the multiplicity of a frequency. This is an essential concept because one of the main 
results of the averaging method is that in a neighborhood of a point I ∈ Jδ such that 
the frequency ω(I) = ∂h

∂I is of multiplicity m = m(ω, N) up to order N , there exists a 
change of variables that reduces the Hamiltonian to a function of I and m angles up to 
an error of order O(εN+1).

Using the method of Lemma 12 in the Algorithm 10 we obtain straightforwardly 
the main iterative step in the averaging procedure: Lemma 17. This lemma takes a 
Hamiltonian averaged up to order q and produces a new one averaged up to a higher 
order q+1 in ε. Applying Lemma 17 a number m of times, we obtain the first averaging
Theorem 18.
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An important observation is that the averaging Theorem 18 is applied in the set Jδ

which contains multiple resonances and therefore it reduces the original system to a 
non-integrable system of a partially simple form: the number of angles that enter in the 
averaged Hamiltonian for a given I depends on the resonances that are close to I, which, 
for I ∈ Jδ, can be more than one.

For values of I close to resonances activated at order larger than 2, the averaged 
system provided by Theorem 18 is simple enough, since we will consider the averaged 
terms, which will be at least of order ε3, as part of the perturbation. But for those 
values of I close to secular resonances R[≤2] which are close to several resonances Rk,l, 
this averaged system contains several angles at lower order in ε which make the system 
non-integrable. Therefore, in Section 3.4.3 we reduce our domain to Iδ ⊂ Jδ omitting 
neighborhoods of order δ > 0 of points in secular resonances which are also part of 
another resonance activated when averaging up to order m.

Theorem 18 in the domain Iδ becomes Theorem 19 which gives, near the double 
resonances which involve a secular one, an averaged Hamiltonian that only depends on 
one resonant angle and therefore is integrable.

Section 3.5 is devoted to study the geometry of the phase space of the Hamiltonian 
System (40) obtained in Theorem 19. First, we consider the Hamiltonian System (40)
truncated up to order N . We find a foliation of invariant tori with different topologies 
that cover the normally hyperbolic invariant manifold Λ̃ε. Second, we apply a suitable 
KAM Theorem to see which invariant tori survive for the whole Hamiltonian (40).

In Section 3.5.1 we define the non-resonant region SL. It is important to stress that it 
includes the intersection of Iδ with all the resonances activated at order higher than 2. 
For the truncated averaged Hamiltonian, this region SL is covered by tori given by the 
level curves of the actions.

The application of the KAM Theorem in Section 3.5.2, gives that SL is covered, up 
to small gaps of order O(ε3/2), by KAM tori.

In Section 3.5.3 we consider the resonant regions of 
(
Iδ × Td+1) \ SL. In these re-

gions, after some suitable changes of variables, one can see that the truncated averaged 
Hamiltonian is the product of some rotators and a pendulum, see (52). To obtain the 
precise form of a pendulum one needs to use hypotheses H5 and H6, which guarantee 
that the averaged Hamiltonian has a saddle with a homoclinic orbit, see (58). For this 
system, the region is foliated by tori which are contractible to tori of lower dimension 
and, therefore, are not homotopic to a torus present in the unperturbed system.

Following [29], we call secondary KAM tori the invariant tori which have different 
topological type from the tori of the unperturbed system. We use the name primary tori 
for the invariant tori which are homotopic to those of the unperturbed system.

The importance of the secondary tori is that they dovetail precisely into the gaps 
between the set of KAM primary tori created by the resonances, so that it is possible to 
construct a web of KAM tori, primary and secondary, which are ε3/2-close.

The rest of the section is devoted to obtaining suitable expressions for these tori in the 
different variables involved in the averaging procedure. See (77), (80), (79), (78), (81).
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In Section 3.5.4 the KAM Theorem is applied in the resonant region to conclude that 
some of the tori of the truncated averaged system, primary and secondary, are indeed 
present in the full Hamiltonian (40), and therefore in the original system (16).

Once we have described the “inner dynamics” in the normally hyperbolic invariant 
manifold Λ̃ε, Section 3.6 is devoted to describe the “outer dynamics”. The first step is 
to control the behavior of the stable and unstable manifolds of Λ̃ε which, by hypothesis
H2, coincide for ε = 0 along the homoclinic manifold Γ̃0 = W s(Λ̃0) = Wu(Λ̃0).

In Proposition 26 we prove that, if system (3) satisfies the non-degeneracy assumption
H7, then, for ε small enough, the stable and unstable manifolds of Λ̃ε have a transversal 
intersection along a homoclinic manifold Γ̃ε, ε-close to Γ̃0. Then, following [31] we use 
this intersection to define the scattering map sε in a suitable domain H− ⊂ Λ̃ε. Roughly 
speaking, for x̃± ∈ Λ̃ε, we define sε(x̃−) = x̃+ if there is a heteroclinic orbit between 
them.

The main goal of Section 3.7 is to study the scattering map in our problem. The 
results in this section follow from [29,31], which show that the scattering map is an 
exact symplectic map and depends smoothly on parameters. Therefore, using regular 
perturbation theory, we give explicit formulas for the scattering map in terms of the 
so-called reduced Melnikov potential L∗(I, θ) given in (12). Most importantly, we obtain 
that the scattering map is given, up to first order in ε, as the time −ε map of the 
Hamiltonian flow of Hamiltonian L∗(I, θ).

Once we have formulas (90) for the scattering map sε, in Section 3.8, using the results 
in [26], we study how this map moves the invariant tori TE obtained in the previous 
sections.

The fundamental property to have instability will be to check that the invariant tori TE
are not invariant by the perturbed scattering map sε. This will provide that the image 
of one torus TE will intersect another TE′ creating a heteroclinic connection between 
them. The instability will be a direct consequence of finding a chain of these tori with 
prescribed values in the action space.

In Section 3.8.1 we give explicit conditions (98) to ensure that the scattering map 
creates heteroclinic intersections between the KAM tori in the non-resonant region SL.

An easier sufficient condition (99) that implies the explicit conditions (98), which 
is part of our non-degeneracy hypothesis H8, is found in Section 3.8.2 searching for 
transversal heteroclinic intersections close to homoclinic ones.

Section 3.8.3 is devoted to formulating some sufficient conditions that imply the ex-
istence of heteroclinic connections between primary or secondary tori in the secular 
resonant region R[≤2]. Using the expressions of these tori given in Section 3.5 and the 
expressions for the scattering map in Section 3.7, one can give an explicit condition 
(114) which constitutes part of hypothesis H8 and guarantees such heteroclinic intersec-
tions in terms of a suitable modified reduced Poincaré map (107). This condition is the 
generalization to higher dimensions of the non-degeneracy conditions H5 ′ and H5 ′′ in 
[29].
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Section 3.8.4 is devoted to formulating an easily checkable condition which guarantees 
the existence of heteroclinic orbits.

We show that the explicit condition (118) implies the existence of heteroclinic orbits 
close to homoclinic ones. We note that the explicit condition is formulated in terms of the 
modified reduced Poincaré function (107), which is an explicit (and rapidly convergent) 
integral which can be studied in detail for a concrete system.

The previous results are more explicit than those in [28] even for the models considered 
there. In particular, we note that all the non-degeneracy conditions formulated in this 
section are implied by (99) which constitutes hypothesis H8′ in our assumptions. This 
assumption is the same for all the resonances, an observation which was not available 
in [28]. In Section 3.9 we prove Theorem 28 which establishes that there are orbits that 
follow, up to a small error, any prescribed path in the space of actions in the set Iδ. 
Clearly, Theorem 28 implies the main result of this paper Theorem 6 which only claims 
some specific paths.

The proof of Theorem 28 consists on constructing a transition chain of whiskered tori 
using the heteroclinic connexions we found in Section 3.8 and then it will suffice to invoke 
an obstruction argument given in [38] that establishes that given a transition chain of 
whiskered tori there is an orbit that follows the path. This orbit satisfies the claim of 
Theorem 28.

Finally, in Section 4 we show an example of a concrete Hamiltonian, close to integrable, 
which satisfies the 8 required hypotheses and therefore exhibits diffusion in the actions I.

3.2. First step: the use of normal hyperbolicity

We note that for ε = 0, the manifold

Λ0 = {p = 0, q = 0, I ∈ I∗, ϕ ∈ Td}

is locally invariant under f0, the time-1 map of the flow.
In this paper, we will not only work with the time one map but also with the flow Φ̃0,t

of system (3), so we will work in the extended phase space M̃ = Rn ×Rn ×I ×Td ×T.
In the extended phase space, we consider the invariant manifold

Λ̃0 = {p = 0, q = 0, I ∈ I∗, ϕ ∈ Td, s ∈ T1}

which is a normally hyperbolic invariant manifold under the flow Φ̃0,t in the sense of 
[36,37,47,61]. That is, for every x̃ ∈ Λ̃0, there is a decomposition

Tx̃M̃ = Es
x̃ ⊕ Eu

x̃ ⊕ Tx̃Λ̃0 (14)

and numbers C > 0, 0 < β < α, such that the decomposition (14) is characterized by:
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v ∈ Es
x̃ ⇐⇒ |DΦ̃0,t(x̃)v| ≤ Ce−αt|v| ∀t ≥ 0

v ∈ Eu
x̃ ⇐⇒ |DΦ̃0,t(x̃)v| ≤ Ce−α|t||v| ∀t ≤ 0

v ∈ Tx̃Λ̃0 ⇐⇒ |DΦ̃0,t(x̃)v| ≤ Ceβ|t||v| ∀t ∈ R (15)

It is clear that the stable and unstable spaces Es,u
x̃ are the direct sum of the stable 

and unstable spaces at the critical point of each of the pendula Pj, and α is given in 
assumption H2. Furthermore, we can take for β any number satisfying 0 < β � α.

Remark 7. We note that the characterization of normal hyperbolicity (15) we have 
adopted is less general than the one used in [36,37,47,61]. We have assumed that the 
rates in the stable and unstable directions are the same and that the forwards and back-
wards rates in the center are the same. In the general theory, one does not need these 
symmetries (for example in [36] an important argument uses that the stable manifold of a 
normally hyperbolic invariant manifolds also a normally hyperbolic invariant manifold). 
Our simple condition α > β breaks up into two conditions in the general theory.

The reason to chose this more restrictive definition is that, as shown in [31] when the 
rates satisfy our rate conditions and the map is symplectic, the manifold inherits sym-
plectic properties automatically. Conversely, the if the invariant manifold is symplectic, 
the rates need to be symmetric. In our applications, the symplectic manifolds will satisfy 
these properties.

The standard theory of persistence of normally hyperbolic invariant manifolds [36,37,
47,61] implies that, for |ε| < ε0 there is a locally invariant normally hyperbolic manifold 
Λ̃ε verifying (14) and (15) for the perturbed flow Φ̃ε,t (with αε, βε, Cε close to α, β, 
C respectively). The theory in [36,37,47,61] guarantees that Λ̃ε is a somewhat smooth 
family of manifolds but the degree of smoothness can be limited by ratios of normal and 
tangential exponents α and β. In our case, since the motion on the manifold for ε = 0
is integrable and therefore the Lyapunov exponents are zero, we can guarantee that for 
|ε| small enough, the family Λ̃ε will be a Cr−1 family if Φ̃ε,t is a Cr family.

Moreover, as it was shown in [31, Theorem 24] there is a naturally defined symplectic 
parametrization kε, such that the perturbed manifold can be written as Λ̃ε = kε(Λ̃0), 
using as the reference manifold the unperturbed manifold Λ̃0, and choosing k0 = Id.

Using this symplectic parameterization, one can show that the reduced flow φ̃ε,t on 
Λ̃0, characterized by kε ◦ φ̃ε,t = Φ̃ε,t ◦kε is a Hamiltonian flow. The following proposition 
makes explicit its Hamiltonian.

Proposition 8. The reduced flow φ̃ε,t on Λ̃0 defined through kε◦φ̃ε,t = Φ̃ε,t◦kε is generated 
by a Cr−1 time dependent Hamiltonian vector field with Hamiltonian of the form

Kε(I, ϕ, s) = h(I) +
N∑
i=1

εiKi(I, ϕ, s) + OCr−N−2(εN+1), (16)

where each of the terms Ki is a trigonometric polynomial in the ϕ, s variables.
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Moreover, Ki is an algebraic expression in terms of ∇	Q(I, ϕ, p = 0, q = 0, s; ε = 0), 
for � = 0, . . . , i − 1. In particular, K1(I, ϕ, s) = Q(I, ϕ, 0, 0, s; 0).

3.3. Analyzing the flow restricted to the invariant manifold

The goal of next sections is to study the objects in Λ̃ε invariant by the flow Φ̃ε,t. 
Using Proposition 8, this is equivalent to studying the objects in Λ̃0 invariant under the 
Hamiltonian flow φ̃ε,t of Hamiltonian Kε(I, ϕ, s) given in (16).

The main tool used to obtain invariant objects in Λ̃ε will be averaging theory [29]
and KAM Theorem applied to the Hamiltonian Kε(I, ϕ, s). We see that, after we add 
some extra variable I0 conjugated to the variable s ∈ T, to make it symplectic and 
autonomous, we are lead to considering a Hamiltonian of the form:

K̃ε = I0 + Kε = h̃(Ĩ) +
N∑
i=1

εiKi(I, ϕ̃) + OCr−2−N (εN+1) (17)

were we have introduced the notation ϕ̃ = (ϕ, s), Ĩ = (I, I0), and h̃(Ĩ) = I0 + h(I). We 
recall that Proposition 8 tells us that, by choosing |ε| small enough and assuming the 
regularity r of the Hamiltonian H(p, q, I, ϕ, s; ε) in (1) large enough, we can take N as 
large as we want and the regularity of the remainder in (17) is as large as we want.

Furthermore, in our case, using the assumption H4 it follows that the Ki are trigono-
metric polynomials in the angle variables ϕ̃ with Fourier coefficients that depend on I, 
but not on I0:

Ki(I, ϕ̃) =
∑

(k,l)∈Ni

Ki
k,l(I)e2πi(kϕ+ls) (18)

Ni being finite sets. Very explicit formulas for the coefficients Ki
k,l(I) are given in [29].

The fact that the perturbation terms do not depend on the I0 variable is a reflection 
of the fact that I0 is just a variable introduced to keep the time rotating at unit speed. 
This is independent of the perturbations.

3.4. The averaging method

In this section we recall the basis of the averaging method for time periodic perturba-
tions. The averaging method is a rather standard tool in Hamiltonian dynamical systems 
and has an extensive literature. Modern surveys are [53,5].

The basic idea of the averaging method is to make symplectic changes of variables 
carefully chosen so that the resulting Hamiltonian presents a particularly simple form. 
There are many averaging theories depending on what is the simple form to be achieved 
and what is the method used to keep track of the simplifying transformations. In this 
paper, we will follow [29] and use the method of Lie transforms. The averaged Hamil-
tonians we will use here are different from those used in [29] to accommodate the fact 
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that resonances for systems with two or more degrees of freedom are manifolds in the 
action space whereas for one degree of freedom, resonances are just points. In this paper, 
we also consider more general unperturbed Hamiltonians h(I)—in [29], the unperturbed 
Hamiltonian was just quadratic—but, under hypothesis H3, this makes little difference.

3.4.1. Some generalities on the averaging method
We will follow the method of Lie transforms [15,57], considering transformations ob-

tained as the time-1 map of a Hamiltonian G(I, ϕ̃) in Rd × Td+1.
Given a Hamiltonian function G(I, ϕ̃) in the extended phase space, we denote by 

exp(G) the time-1 map of the Hamiltonian flow generated by G.
The main technical result we will use about the time-1 map is a direct consequence 

of Taylor’s expansions and the regularity of the solutions of an ordinary differential 
equation as well as the expression of the derivatives of Hamiltonian functions in terms 
of Poisson brackets [68]. So that the following Lemma 9 is just a Taylor expansion along 
trajectories.

Lemma 9. Let A ⊂ B ⊂ Rd+1 be compact sets and � ≥ 2. There exists a constant 
C = C(l, k), such that, given G ∈ C	(B × Td+1) satisfying

||G||C1(B×Td+1) < d(A,Rd+1 \B)

so that the Hamiltonian flow associated to G starting in A × Td+1 stays in the interior 
of B × Td+1, we have:

a) expG ∈ C	−1(A × Td+1)
b) || exp(G) − Id||C�−1(A×Td+1) ≤ C||G||C�(B×Td+1)
c) given H ∈ C	(B × Td+1) then:

||H ◦ exp(G) −H − {H,G}||C�−2(A×Td+1)

≤ C||H||C�(B×Td+1)||G||2C�(B×Td+1)

where {·, ·} denotes the Poisson bracket in Rd+1 × Td+1.
d) More generally, if � > k + 1, there is an asymptotic expansion

||H ◦ exp(G) −H −{H,G} − 1
2{{H,G}, G}

− . . .− 1
k!{{. . . {{H,G}, G}, G} . . .}||C�−k−1(A×Td+1)

≤ C||H||C�(B×Td+1)||(G||C�(B×Td+1))k+1

As a consequence of Lemma 9, we obtain the following algorithm, which is the main 
formal step of the general averaging method and which allows computations to high 
order.
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Algorithm 10. Given a sufficiently smooth Hamiltonian averaged up to order N − 1 ≥ 0

K̃N−1
ε = h̃ +

N−1∑
i=1

εiK̄i + εNKN + O(εN+1) (19)

Assume that we can find sufficiently smooth K̄N , GN solving:

K̄N = KN + {h̃, GN} (20)

Then

K̃N
ε = KN−1

ε ◦ exp(εNGN ) = h̃ +
N−1∑
i=1

εiK̄i + εNK̄N + O(εN+1)

= h̃ +
N∑
i=1

εiK̄i + εN+1KN+1 + O(εN+2)

In general there are many choices for K̄N and GN . In the following subsections, 
we will specify the choices that we make for our case and establish estimates for the 
transformation GN and the new Hamiltonian K̃N

ε . In particular, we will have estimates 
for the averaged Hamiltonian K̄N .

3.4.2. One step of averaging: the infinitesimal equations. Resonances in one averaging 
step

Our Hamiltonian K̃ε given in (17) is of the form

K̃ε = I0 + Kε

where Kε is given in (16) and only depends on (I, ϕ̃). Then, in our case, we will take 
K̃N

ε in (19), with h̃ = I0 +h(I) and K̃N
ε − h̃ only depends on (I, ϕ̃). So that the function 

G will depend only on (I, ϕ̃).
The fact that h̃ in (19) is given by h̃ = I0 + h(I), will allow us to treat the averaging 

equation (20) using Fourier series. We find it convenient to divide the phase space into 
different regions and perform different averaging procedures in each region.

At every step of the Iteration Algorithm 10, given K(I, ϕ̃), we have to solve equation 
(20) for the unknowns K̄(I, ϕ̃), G(I, ϕ̃):

K̄ = K + {h̃, G} (21)

with h̃(Ĩ) = I0 + h(I). Writing

K =
∑

˜ d+1

Kk̃(I)e
2πik̃·ϕ̃ =

∑
d+1

Kk,l(I)e2πi(k·ϕ+ls),
k∈N⊂Z (k,l)∈N⊂Z
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it is clear, because h̃ depends only on Ĩ, that the Poisson bracket with h̃ is diagonal in 
Fourier series. Hence, it is natural to search for K̄, G such that their Fourier series are 
supported in N , the support of the Fourier series of K. Hence we look for:

G =
∑

(k,l)∈N⊂Zd+1

Gk,l(I)e2πi(k·ϕ+ls)

K̄ =
∑

(k,l)∈N⊂Zd+1

K̄k,l(I)e2πi(k·ϕ+ls).

Using that

{h̃, G} = −2πi
∑

(k,l)∈N⊂Zd+1

(ω(I) · k + l)Gk,l(I)e2πi(k·ϕ+ls)

where ω(I) = ∂h
∂I (I) = ∇h(I), equation (21) becomes a set of equations for the Fourier 

coefficients:

K̄k,l(I) −Kk,l(I) = −2πi(ω(I) · k + l)Gk,l(I) (22)

The solution of (22) is obtained by choosing K̄k,l and then, setting

Gk,l(I) = Kk,l(I) − K̄k,l(I)
2πi(ω(I) · k + l) . (23)

It is clear that the solution (23) requires special treatment when

ω(I) · k + l = 0, (k, l) ∈ N . (24)

This motivates next definition.

Definition 11. Given a Hamiltonian h(I) we define a resonance as the set

Rk,l = {I ∈ I, ω(I) · k + l = 0} = ω−1 ({Ω ∈ Rd, Ω · k + l = 0}
)
, (25)

where ω(I) = ∂h
∂I (I) = ∇h(I).

Let us observe that, by hypothesis H3, for I ∈ I∗, the resonances are smooth surfaces 
for k �= 0, as smooth as the map ω = ∂h

∂I .
Moreover, Rmk,m l = Rk,l for any m ∈ Z, therefore any two of these sets Rk,l and 

Rk̄,l̄ either:

• Are identical, if and only if (k, l) = (mk̄, ml̄) for some m ∈ Z

• Do not intersect
• Intersect transversally in a manifold of codimension 2 without boundary
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More generally, if we consider different resonances, the intersection

Rk1,l1 ∩ · · · ∩ Rkj ,lj = ω−1 ({Ω ∈ Rd, ki · Ω + li = 0, i = 1, . . . , j}
)

will be a manifold of dimension m, where m is the dimension of the Z-module 
M[(k1, l1), . . . , (kj , lj)] generated by (k1, l1), . . . , (kj , lj).

Given N ⊂ Zd+1, the support of the Fourier series of K, we introduce the notation

Ñ = {(k, l) ∈ N | � m �= 1 ∈ Z, (k̃, l̃) ∈ N , (k, l) = m(k̃, l̃)} (26)

Notice that, with this notation if Rk1,l1 = Rk2,l2 , with (ki, li) ∈ Ñ , i = 1, 2 one has that 
(k1, l1) = (k2, l2) and then

∪(k,l)∈NRk,l = ∪(k,l)∈ÑRk,l.

Since resonances are sets of codimension 1, it is natural to give in them a system of 
d − 1 coordinates. In the next lemma we will consider the function

Γk,l : I∗ → Rk,l

which is a projection onto the resonance Rk,l along a transversal bundle to it. The 
standard choice is the orthogonal projection, in such a way that the projection Γk,l(I)
is the closest point to I in Rk,l. The orthogonal projection is well defined in a tubular 
neighborhood with respect to the normal bundle of Rk,l.

There is another simpler choice, which appears naturally when one realizes that the 
dynamics close to resonances is generically “pendulum-like” (see equation (51)). It is just 
projecting along the bundle Rk,l + 〈k〉, that is, defining Γk,l(I) as the intersection of the 
straight line {I + tk, t ∈ R} with the resonance Rk,l. This projection will be not well 
defined close to points I ∈ Rk,l ⊂ I∗ such that the direction given by the vector k is 
tangent to Rk,l, that is, close to points I satisfying:

Dh(I) · k + l = 0

k�D2h(I)k = 0 (27)

Nevertheless, under hypothesis H5, for secular resonances, that is, for Rk.l such that 
(k, l) ∈ N [≤2], these points are a codimension two set (as one would expect from naive 
parameter counting because (27) are two conditions). In the averaging procedure used 
in this paper, we just need to deal carefully with secular resonances to obtain a “pen-
dulum like” Hamiltonian near them. So, our strategy will be to use this projection near 
the secular resonances and the standard orthogonal one near the rest of resonances we 
encounter in the higher averaging steps.
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We define Jδ ⊂ I∗ as the set of points of I∗ taking out a neighborhood of size δ of 
the points verifying (27) for some (k, l) ∈ N [≤2]. In the resulting set Jδ we will have a 
well defined projection in the k direction for any secular resonance:

If I∗ ∈ Jδ ∩Rk0,l0 then k�0 D2h(I∗)k0 �= 0 for (k0, l0) ∈ N [≤2] (28)

Of course, if our Hamiltonian h is quasi-convex, since the set satisfying (27) is empty, 
we obtain that Jδ = I∗.

For future reference, let us write the characterization of the projection Γk,l(I) along 
the k-direction:

I∗ = Γk,l(I) ⇐⇒ I − I∗ ∈ 〈k〉 and ∂h

∂I
(I∗) · k + l = 0. (29)

Let us observe that for I ∈ Jδ in a neighborhood of a secular resonance Rk,l, (k, l) ∈
N [≤2], there exists a constant C ≥ 1 such that

dist(I,Rk,l) ≤ dist(I,Γk,l(I)) ≤ C dist(I,Rk,l). (30)

Indeed, C can be chosen as any constant satisfying

C >
‖k‖

∥∥D2h(I)k
∥∥

‖k�D2h(I)k‖ , ∀I ∈ Jδ, (l, k) ∈ N [≤2]

In the case of the orthogonal projection the value of the constant C (30) is 1. We 
emphasize that, in the averaging procedure, the resonant sets are determined by the 
integrable Hamiltonian h(I) and not by the perturbation. Of course, given a concrete 
system, many resonances do not play any role and only the resonances excited by the 
perturbation play a role, as we will see in next lemma.

As we indicate before, the solution of the homological equation involves choices of 
which terms are eliminated and which terms are kept in the averaged Hamiltonian. The 
following lemma indicates the choice we will follow. We will use in it a general projection 
Γk,l, just assuming that it verifies (30).

Lemma 12. Let

K(I, ϕ, s) =
∑

(k,l)∈N
Kk,l(I)e2πi(kϕ+ls)

be a Hamiltonian, with N = N (K) ⊂ Zd+1 a finite set. Assume that K is of class C	 with 
respect to I ∈ Jδ ⊂ I∗ ⊂ Rd and consider the resonant set RN = {I ∈ Jδ, ω(I) · k+ l =
0, (k, l) ∈ N} = ∪(k,l)∈NRk,l ⊂ Jδ.

Choose 0 < L < 1 small enough such that for any (k, l), (k̄, ̄l) ∈ N , either Rk,l = Rk̄,l̄

or the tubular neighborhood of Rk,l of radius L does not contain Rk̄,l̄.
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Assume that we have a projection Γk,l : Jδ → Rk,l such that it verifies (30).
Then, there exist G(I, ϕ, s) of class C	−1 with respect to I, and K̄ of class C	 with 

respect to I, with N (G) and N (K̄) finite sets. Moreover N (G), N (K̄) ⊂ N (K).
The functions G(I, ϕ, s) and K̄ solve the homological equation (21) in Jδ and satisfy:

a) If d(I, RN ) ≥ 2L, then

K̄(I, ϕ, s) = K0,0(I).

b) If d(I, Rki,li) ≤ L for i = 1, . . . j, then

K̄(I, ϕ, s) = K0,0(I) +
j∑

i=1

(
Ni∑

ν=−Ni

Kνki,νli(Γki,li(I))e2πiν(kiϕ+lis)

)

= K0,0(I) + Uk1,l1,...,kj ,lj (I, k1ϕ + l1s, . . . , kjϕ + ljs),

where 0 < Ni < ∞ are such that if (νki, νli) ∈ N , then |ν| ≤ Ni.
c) The function K̄ verifies: ‖K̄‖C� ≤ (1 + C

L�+1 )‖K‖C� , where C is a constant indepen-
dent of L.

d) The function G verifies ‖G‖C�−1 ≤ C

L	+1 ‖K‖C� .

Remark 13. We observe that in the formula of K̄ the angles can be redundant because 
some of the angles included in the sum can be combination of others. One can be more 
precise by considering the module generated by (k1, l1), . . . , (kj , lj) and the dimension of 
this module gives us the number of independent angles among k1ϕ + l1s, . . . , kjϕ + ljs. 
However, in this paper, this will not be needed. Our strategy later will be to reduce the 
domain in such a way that we will not need to deal with multiple resonances.

Proof. If we write the homological equation (21) in Fourier coefficients, we obtain equa-
tion (23). Our first choice is K̄k,l(I) = Gk,l(I) = 0, if (k, l) /∈ N . For (k, l) ∈ N , we solve 
equation (23) choosing:

(1) If (0, 0) ∈ N we take K̄0,0(I) = K0,0(I).
(2) If (0, l) ∈ N , l �= 0, K̄0,l(I) = 0.
(3) If (k, l) ∈ N , k �= 0, we choose K̄k,l(I) as:

K̄k,l(I) = Kk,l(Γk,l(I))ψ
(

1
L

(d(I,Rk,l))
)

where ψ(t) is a fixed C∞ function such that: ψ(t) = 1, if t ∈ [−1, 1], and ψ(t) = 0, if 
t /∈ [−2, 2]. With this choice we have that K̄k,l verifies:
(a) If d(I, Rk,l) ≤ L then K̄k,l(I) = Kk,l(Γk,l(I)),
(b) if d(I, Rk,l) ≥ 2L then K̄k,l(I) = 0.
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Once we have defined K̄ =
∑

(k,l)∈N K̄k,le
i(kϕ+ls), it is clear that it has the form an-

nounced in a) and b), is a C	 function with respect to I, and that it verifies the bounds c), 
where the constant C only depends on the cut-off C∞ function ψ, the functions Γk,l, the 
degree of the Fourier polynomials and �.

Now, we choose G that satisfies equation (22):

(1) G0,0(I) = 0,

(2) For (0, l) ∈ N , l �= 0, G0,l(I) =
K0,l(I)
2πil ,

(3) If (k, l) ∈ N , k �= 0, we choose Gk,l(I) as:

(a) If ω(I) · k + l �= 0 then Gk,l(I) =
Kk,l(I) − K̄k,l(I)
2πi(ω(I) · k + l) .

(b) If ω(I) · k + l = 0 and we are using the standard orthogonal projection, then 

Gk,l(I) =
∇Kk,l(Γk,l(I)) ·D2h(I)k

2πi||D2h(I)k||2 .

(c) If ω(I) · k + l = 0 and we are using the k-projection, then Gk,l(I) =
DKk,l(I)k

2πi ‖k�D2h(I)k‖ .

To bound the function G we first bound its Fourier coefficients Gk,l(I):

(1) For (0, l) ∈ N , l �= 0, ‖G0,l‖C�−1 ≤ C‖K0,l‖C�−1 .
(2) Given (k0, l0) ∈ N , k0 �= 0, by the definition of K̄ and G, we have:

(a) On {I ∈ I, d(I, Rk0,l0) ≤ L}, we have ‖Gk0,l0‖C�−1 ≤ C
‖Kk0,l0‖C�

|k0|
.

(b) On {I ∈ I, d(I, Rk0,l0) ≥ 2L}, we have ‖Gk0,l0‖C�−1 ≤ C
‖Kk0,l0‖C�

(|k0|L)	 .

(c) On {I ∈ I, L ≤ d(I, Rk0,l0) ≤ 2L}, we have

‖Gk0,l0‖C�−1 ≤ C
‖Kk0,l0‖C�−1

(|k0|L)	−1 .

Therefore, G(I, ϕ, s) is a trigonometric polynomial in (ϕ, s), and of class C	−1 with 
respect to I and satisfies the bounds in d). �
Remark 14. We note that the above estimates use the fact that the function K is a 
trigonometric polynomial in (ϕ, s) and the constant C in the bounds of G depend on the 
degree of the polynomial.

One can follow the same procedure when the function is not a polynomial by estimat-
ing the Fourier coefficients using Cauchy bounds:

‖Kk,l‖ ≤ C‖K‖Cr(|k| + |l|)−r
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and then using the estimates we presented. The only difference is that for general func-
tions we obtain estimates:

‖G‖C�−d−1 ≤ C

L	+1 ‖K‖C� .

where C depends only on the dimension of the space.

As we will use Lemma 12 in the averaging Algorithm 10, in the next definition we 
want to emphasize that resonances only play a role when they are present in the Fourier 
transform of the Hamiltonian at the step N , that is, when the numerator in equation 
(23) for Gk,l(I) is not zero.

Note that the denominator in expression (23) depends on the unperturbed system, but 
the numerator depends on the perturbation. The places where the denominator vanishes 
are the resonances. Clearly the resonances do not matter unless the numerator is not 
zero.

Definition 15. Given a resonance Rk,l as defined in Definition 11, we say that it is 
activated at order N if N is the smallest value such that (k, l) ∈ NN , were NN is the 
support of the Fourier transform of the term of order εN , after applying N − 1 steps of 
the Averaging Algorithm 10. That is, NN is the support of the Fourier transform of KN

in (19).
We denote the set of resonances activated at order N by

RN = ∪(k,l)∈NN
Rk,l (31)

and we introduce the resonances open up to order N as the set

R[≤N ] = ∪N
i=1Ri = ∪(k,l)∈N [≤N]Rk,l

where

N [≤N ] = ∪N
i=1Ni

The resonances open up to order 2, R[≤2], are called secular resonances.

We note that if a resonance has been activated at order q, we have that, in a neigh-
borhood of that resonance, the system is reduced to integrable up to order εq. If the 
term of order εq in the averaged system does not vanish, averaging to higher order does 
not change the leading order term anymore. We will only need the cases q = 1, 2.

Definition 16. Given a frequency ω and an order of averaging N , we define its active 
resonances up to order N :
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A(ω,N) = {(k, l) ∈ N [≤N ], ω · k + l = 0} (32)

and m(ω, N), the multiplicity of ω up to order N , as the dimension of the Z-module 
generated by A(ω, N):

m(ω,N) = dim(M[A(ω,N)]). (33)

Of course m(ω, N + 1) ≥ m(ω, N) and inequality can be strict.
The relevance of the concept of multiplicity comes because, as we emphasize in Re-

mark 13, the main result of the averaging method is that in a neighborhood of a point 
I ∈ Jδ such that the frequency ω(I) is of multiplicity m(ω, N) up to order N , there 
exists a change of variables that reduces the Hamiltonian K in Lemma 12 to a function 
of I and m(ω, N) angles up to an error of order O(εN+1).

Using the method of Lemma 12 in Algorithm 10 we obtain straightforwardly 
Lemma 17, that is the main iterative step in the averaging procedure.

The hypothesis of next Lemma 17 are that we have a Hamiltonian averaged up to 
order q. The conclusions are that we can produce another Hamiltonian which is averaged 
up to a higher order q + 1 in ε.

Lemma 17. Consider a Hamiltonian of the form:

Kq(I, ϕ, s; ε) = K0
q (I, ϕ, s; ε) + εq+1K1

q (I, ϕ, s; ε). (34)

Assume that Kq is of class C	 with respect to I ∈ Jδ ⊂ I∗ ⊂ Rd.
Consider the finite collection of sets Rs ⊂ Jδ, called resonances activated at order s, 

s = 1, . . . , q, and R[≤q] = ∪1≤s≤qRs the set of resonances open up to order q.
Consider a number L < 1 small enough such that:

L1 for any Rk,l, Rk̃,l̃ ∈ R[≤q], either Rk,l = Rk̃,l̃ or the tubular neighborhood of Rk,l of 
radius L does not contain Rk̃,l̃.

And assume that:

• K0
q (I, ϕ, s; ε) satisfies:

◦ If q = 0, K0
0 (I, ϕ, s; ε) = I0 + h(I).

◦ If q ≥ 1, K0
q (I, ϕ, s; ε) is a Cn+2−2q function that verifies:

1.1. If d(I, R[≤q]) ≥ 2L, then

K0
q (I, ϕ, s; ε) = I0 + h(I) + εK0,0

q (I; ε),

where εK0,0
q (I; ε) is a polynomial of degree q in ε.

1.2. If d(I, R[≤q]) ≤ L, then we can find at least one (may be more) 0 ≤ j ≤ q such 
that d(I, Rj) ≤ L, and therefore at least one kji , l

j
i such that
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Rkj
i ,l

j
i
∈ Rs, i = 1, . . . , nj ,

and that d(I, Rkj
i ,l

j
i
) ≤ L.

Then,

K̄0
q (I, ϕ, s; ε) = h(I) + εK̄0,0(I; ε)

+
∑

0≤j≤q ε
jU j,q(I, kj1ϕ + lj1s, . . . , k

j
nj
ϕ + ljnj

s; ε) (35)

where the functions U j,q(I, θj1, . . . , θjnj
; ε) are polynomials in ε and trigonometric 

polynomials in the angle variables θji , i = 1, . . . , nj, with support of the Fourier 
transform with respect to the (ϕ, s) contained in N1 ∪ · · · ∪ Nq.
Moreover, for j = 1 the function U1,q(I, θ1

1, . . . , θ
1
n1

; ε) is given by:

U1,q =
n1∑
i=1

⎛
⎝ Ni∑

p=−Ni

K1
pk1

i ,pl
1
i
(Γk1

i ,l
1
i
(I))e2πip(k1

iϕ+l1i s)

⎞
⎠ + O(ε)

where K1
k,l(I) are the Fourier coefficients of K1

0 (I, ϕ, s; 0) with respect to the 
angle variables (ϕ, s).

2. K1
q (I, ϕ, s; ε) is a Cn−2q function whose Taylor series coefficients with respect to ε

are trigonometric polynomials in (ϕ, s).

Denote

K = K1
q (I, ϕ, s; 0) =

∑
(k,l)∈Nq+1

Kk,l
q (I)e2πi(kϕ+ls),

where Nq+1 is assumed to be a finite set. K is the term of the perturbation of order 
exactly q + 1. Introduce also the set of resonances activated at order q + 1:

Rq+1 = ∪(k,l)∈N q+1Rk,l \ R[≤q]. (36)

Choose 0 < L̃ < L such that L1 holds for R[≤q+1].
Let G(I, ϕ, s) be the Cn−2q−1 function whose Fourier coefficients Gk,l verify equa-

tion (22), for (k, l) ∈ Nq+1, with K = K1
q (I, ϕ, s; 0).

Then, the Cn−2q−2 change of variables

(I, ϕ, s) = g(B, α, s),

given by the time one flow of the Hamiltonian εq+1G(B, α, s) transforms the Hamiltonian 
Kq(I, ϕ, s; ε) into a Hamiltonian

Kq+1(B, α, s; ε) = K0
q+1(B, α, s; ε) + εq+2K1

q+1(B, α, s; ε),
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with

K0
q+1(B, α, s; ε) = K0

q (B, α, s; ε) + εq+1K̄1
q (B, α, s; 0), (37)

where K̄1
q (B, α, s; 0) = K̄(B, α, s), given in Lemma 12, is a Cn−2q function whose Fourier 

coefficients solve equations (22).
Moreover, the Hamiltonian K0

q+1(B, α, s; ε) verifies properties 1.0, 1.1, 1.2 up to order 
q + 1 with L̃ replacing L.

Furthermore, εq+2K1
q+1(B, α, s; ε) is a Cn−2q−2 function whose Taylor series coeffi-

cients with respect to ε are trigonometric polynomials in (α, s).

Once we know how to solve any homological equation (22), we can proceed to obtain 
a suitable global normal form of our reduced Hamiltonian by applying repeatedly the 
procedure. The precise result is formulated in the following Theorem 18, which is a 
straightforward generalization of Theorem 8.9 in [29].

Theorem 18. Let K̃(Ĩ , ϕ, s; ε) be a Cn Hamiltonian, n > 1, for I ∈ Jδ ⊂ I∗ ⊂ Rd and 
consider any 1 ≤ m < n, independent of ε. Assume that

K̃(Ĩ , ϕ, s; ε) = I0 + h(I) + εK(I, ϕ, s; ε). (38)

Let Ki(I, ϕ, s), i = 1, , . . . , m, be the coefficients in the Taylor expansion with respect 
to ε of K(I, ϕ, s; ε), and assume that the Ki(I, ϕ, s), i = 1, . . . , m, are trigonometric 
polynomials in ϕ, s.

Consider the finite collection of sets Ri ⊂ I∗, called resonances activated at order 
i, i = 1 . . .m, following Definition 15, as well as the resonances open up to order m: 
R[≤m] = ∪1=1,...,mRi.

Consider a number 0 < L < 1 small enough such that:

L1 for any Rk,l, Rk̃,l̃ ∈ R[≤m], either Rk,l = Rk̃,l̃ or the tubular neighborhood of Rk,l of 
radius L does not contain Rk̃,l̃.

Then, there exists a symplectic change of variables, depending on time, (I, ϕ, s) �→
(B, α, s), periodic in ϕ and s, and of class Cn−2m, which is ε-close to the identity in the 
Cn−2m−1 sense, such that transforms the Hamiltonian system associated to K̃(Ĩ , ϕ, s; ε)
into a Hamiltonian system of Hamiltonian

B0 + K̄(B, α, s; ε) = B0 + K̄0(B, α, s; ε) + εm+1K̄1(B, α, s; ε)

where the function K̄0 is of class Cn−2m+2, and εm+1K̄1 is of class Cn−2m, and they 
verify:
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(1) If d(B, R[≤m]) ≥ 2L, then

K̄0(B, α, s; ε) = h(B) + εK̄0,0(B; ε)

where K̄0,0(B; ε) is a polynomial of degree m − 1 in ε.
(2) If d(B, R[≤m]) ≤ L, then we can find at least one (may be more) 0 ≤ j ≤ m such 

that d(B, Rj) ≤ L, and therefore at least one kji , l
j
i such that

Rkj
i ,l

j
i
∈ Rj , i = 1, . . . nj ,

and that d(B, Rkj
i ,l

j
i
) ≤ L.

Then,

K̄0(B, α, s; ε) = h(B) + εK̄0,0(B; ε)
+

∑
0≤j≤m εjU j,m(B, kj1α + lj1s, . . . , k

j
nj
α + ljnj

s; ε) (39)

where the functions U j,m(B, θj1, . . . , θjnj
; ε) are polynomials in ε and trigonometric 

polynomials in the angle variables θji , i = 1, . . . , nj, with support of the Fourier 
transform with respect to the (ϕ, s) contained in N1 ∪ · · · ∪ Nm.
Moreover, if j = 1, the function U1,m(I, θ1

1, . . . , θ
1
n1

; ε) is given by:

U1,m =
n1∑
i=1

(
Ni∑

p=−Ni

K1
pk1

i ,pl
1
i
(Γk1

i ,l
1
i
(B))e2πip(k1

iα+l1i s)) + O(ε)

where K1
k,l(B) are the Fourier coefficients of the K(B, α, s; 0) with respect to the angle 

variables (α, s).

Note that in Theorem 18 we have not claimed anything in the regions at a distance 
between L and 2L of the resonance set R. This is not a problem because, by remembering 
that L is arbitrary, we can obtain the same results using L/2 in place of L.

Hence, the analysis that we will carry out in each of the different pieces applies to the 
whole space.

3.4.3. Averaging close to simple resonances
Theorem 18 reduces the original system to a non-integrable system of a partially 

simple form by a change of variables. The number of angles that enter in the averaged 
Hamiltonian for a given I depends on the resonances which are close to I. The key of the 
following reasoning is to understand the geometry of the set of points I for which the 
averaged system involves only one angle. The set of points that we have found useful to 
omit are the points in secular resonances (i.e. in the resonances which appear in averaging 
to order 1 or 2) which are also part of another resonance activated when averaging up 
to order m.
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So, next step is to define a region Iδ ⊂ Jδ where we take out the intersection of the 
secular resonances with any other resonances which appear in the process of averaging 
up to order m.

To this end we consider

B = R[≤2] ∩ {I ∈ Jδ, m(ω(I),m) ≥ 2}

which is a finite union of surfaces of codimension two or higher in Jδ, and we consider Bδ

a δ-neighborhood of these surfaces. Reducing L = L(δ) if necessary, the set Iδ = Jδ \Bδ

verifies the following property:

L2 If I ∈ Iδ there is at most one Rk,l ∈ R[≤2] such that d(I, Rk,l) ≤ L.

Theorem 18 in the domain Iδ reads:

Theorem 19. Let K̃(Ĩ , ϕ, s; ε) be the Cn Hamiltonian of Theorem 18, n > 1, and consider 
any 1 ≤ m < n, independent of ε.

Consider the finite collection of sets Ri ⊂ I∗, called resonances activated at order i, 
i = 1, . . .m, given in Definition 15.

Let 0 < δ < 1 be any number and consider 0 < L < 1 verifying L1 and L2 in Iδ.
Then, the symplectic change of variables given in Theorem 18,

(I, ϕ, s) �→ (B, α, s),

transforms the Hamiltonian system associated to K̃(I, ϕ, s; ε) in Iδ into a Hamiltonian 
system of Hamiltonian

B0 + K̄(B, α, s; ε) = B0 + K̄0(B, α, s; ε) + εm+1K̄1(B, α, s; ε) (40)

where the function K̄0 is of class Cn−2m+2, and εm+1K̄1 is of class Cn−2m and they 
verify:

(1) If B ∈ Iδ, satisfies d(B, R[≤2]) ≥ 2L, then

K̄0(B, α, s; ε) = h(B) + εK̄0,0(B; ε) + O(ε3)

where K̄0,0(B; ε) is a polynomial of degree 1 in ε.
(2) If B ∈ Iδ, satisfies d(B, R[≤2]) ≤ L, there exists a unique resonance activated at 

order one or two

Rk0,l0 ∈ Rj , j = 1, 2

such that d(B, Rk0,l0) ≤ L. Then
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K̄0(B, ϕ, s; ε) = h(B) + εK̄0,0(B; ε)
+ εjUk0,l0(Γk0,l0(B), k0 · α + l0s; ε) (41)

where the functions Uk0,l0(Γk0,l0(B), θ; ε) are polynomial in ε and trigonometric poly-
nomial in the angle variable θ = k0 · α + l0s.
Moreover, if Rk0,l0 ⊂ R1 the function Uk0,l0 is given by:

Uk0,l0 =
N1∑

p=−N1

K1
pk0,pl0(Γk0,l0(B))e2πip(k0·α+l0s) + O(ε)

where K1
k,l(B) are the Fourier coefficients of K(B, α, s; 0) with respect to the angle 

variables (α, s).

The next goal is to study in more detail the behavior of the system predicted by the 
averaged Hamiltonian.

The main remark is that, near simple resonances, the averaged system contains only 
one angle and, therefore, it is integrable. This allows us to analyze explicitly its dynamics. 
Its turns out that, for the problem at hand, we only need to study the resonances of 
order 1 or 2, which are called “secular resonances” by astronomers.

3.5. Geometric properties of the orbits of the averaged Hamiltonian

In this section, we study the invariant tori of the averaged system obtained in The-
orem 19, that is, the system given by Hamiltonian K̄0 in (40). Later, in Sections 3.5.2, 
3.5.4, we show that, under some non-degeneracy conditions, some of these tori are also 
present in the original system. This is, basically, the KAM Theorem.

In Sections 3.5.1, 3.5.3, we will see that the phase space Iδ × Td+1 is foliated by 
(quasi-)periodic solutions of the averaged system. Nevertheless, the topology of the solu-
tions is very different in the non-resonant regions and in the resonant regions. We define 
the non-resonant region as the set:

SL = {(I, ϕ, s) ∈ Iδ × Td+1, d(I,R[≤2]) ≥ 2L} (42)

In particular, SL includes the intersection of Iδ with all the resonances activated at order 
higher than 2. This region SL will be covered, up to very small gaps of order O(ε3/2), 
by KAM tori.

In the resonant regions of Iδ × Td+1 \ SL, we will obtain tori which are contractible 
to tori of lower dimension and, therefore, are not homotopic to a torus present in the 
unperturbed system. We call secondary KAM tori the invariant tori which have different 
topological type from the tori of the unperturbed system. We use the name primary
tori for the invariant tori which are homotopic to those of the unperturbed system. 
Primary tori are those usually considered in the perturbative versions of KAM Theorem 
for quasi-integrable systems.
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The importance of the secondary tori is that they dovetail precisely into the gaps 
between the set of KAM primary tori created by the resonances, so that it will be 
possible to construct a web of KAM tori, primary and secondary, which are ε3/2-close. 
For systems with 2+1/2 degrees of freedom this was introduced in [28,29]. See also [43].

In hypothesis H6 given in 3.5.3, we formulate precisely one non-degeneracy assump-
tion on the averaged system which allows us to apply the KAM Theorem and conclude 
that some of the solutions found in the averaged system K̄0 (including secondary tori) 
are indeed present in the full Hamiltonian (40), and therefore in the original system 
(16). Of course, since the averaged system is computable from the original model, the 
non-degeneracy conditions on the averaged system amount to some non-degeneracy con-
ditions on the original system.

3.5.1. The invariant tori of the averaged system in the non-resonant region of Iδ
By item (1) in Theorem 19, in the non-resonant region SL defined in (42), the full 

averaged Hamiltonian (40) reads

B0 + h(B) + εK̄0,0(B; ε) + O(ε3).

For the truncated Hamiltonian

B0 + h(B) + εK̄0,0(B; ε) (43)

the tori are given as the level sets of the averaged action variables

B0 = c0,B1 = c1, . . . ,Bd = cd

where the equation B0 = c0 is a reflection of the fact that the Hamiltonian (43) is 
autonomous.

When written in the original variables of the time dependent Hamiltonian (16), these 
tori in SL ⊂ Iδ × Td+1, as shown in Theorem 18 and Theorem 19, are given by the 
equations:

F1(I, ϕ, s; ε) = c1, . . . , Fd(I, ϕ, s; ε) = cd

where

F1(I, ϕ, s; ε) = I1 + O(ε), . . . , Fd(I, ϕ, s; ε) = Id + O(ε). (44)

3.5.2. The invariant tori in the non-resonant region of Iδ: KAM Theorem
We note that in the non-resonant region SL, we have managed to transform the system 

into an integrable system up to an error which is ε3 when measured in the Cr−3 norm.
Furthermore, we point out that the averaged part has a frequency map which is a 

diffeomorphism (it is an O(ε) perturbation of the diffeomorphism I �→ ∂h
∂I in a smooth 

norm).
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If r is sufficiently large (so that r − 3 is larger than 2d + 3) we can apply a KAM 
Theorem [64] and conclude that there are invariant tori which cover the non-resonant 
region SL except for a set of measure smaller than O(ε3/2).

Theorem 20. Under the conditions of Theorem 6, there exists ε0 such that, for 0 < |ε| <
ε0, the region SL can be covered by O(ε3/2) neighborhoods of invariant objects under the 
Hamiltonian flow of the Hamiltonian Kε(I, ϕ, s) in (16). Moreover:

• These invariant objects are given by the level sets F = E, for |E −E′| ≤ ε
3
2 .

• The C2 function F : Rd × Td × T → R is given by (44).
• These invariant objects are regular primary KAM d + 1-tori.

Therefore, in the non-resonant region, each torus has several tori which are much 
closer than O(ε) to it. This is what in [21] was called the “gap bridging mechanism”.

Remark 21. For experts, we note that there are different KAM theorems in the literature, 
which differ in some subtle features; a systematic comparison can be found in [23]. The 
main difference in the literature is whether one step of averaging requires to solve one 
cohomology equation or two. The methods which use only one cohomology equation (e.g. 
the method in [2,64,66]), called first order methods, establish that the gaps between tori 
are bounded by the error to the power 1/2. Those that use two cohomology equations 
(e.g. the methods in [51,59,74,75]), called second order methods, lead to gaps which are 
bounded by the error to power 1/4. These quantitative estimates for the Newton method 
are found in [76]. Very explicit verifications of the quantitative estimates of the method 
of [2] appear in [60]. Simple examples show that the exponent 1/2 cannot be increased.

In our case, either method could be applied. If we wanted to just refer to the second 
order methods to obtain gaps of order O(ε1/4), it would have been enough, to obtain 
gaps of order O(ε3/2), to define the non-resonant region as the region where one can 
average to order m = 5 instead of m = 2 (in fact, it would be enough m = 4 if we allow 
gaps of order O(ε5/4)).

Another technical point is that some results in the literature lose more derivatives. 
This is totally irrelevant for us since it only affects the number of derivatives that we 
need to assume in the original Hamiltonian.

3.5.3. Primary and secondary invariant tori of the averaged system in the resonant 
region

We define the secular resonant region as:

S [≤2] = {(I, ϕ, s) ∈ Iδ × Td+1, d(I,R[≤2]) ≤ L} (45)

In this region we will perform an elementary change of variables that makes it clear 
that, close to a resonance activated at order one or two, the Hamiltonian is a function 
of d − 1 actions and one resonant angle.
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The first observation is that the region S [≤2] is the union of the regions RL
k,l, which 

consist on tubular neighborhoods of size L of the resonances Rk,l defined in Definition 11.
For points (B, α, s) ∈ RL

k0,l0
, where

Rk0,l0 ⊂ Rj ⊂ R[≤2], j = 1, 2

the averaged Hamiltonian is

B0 + K̄0(B, α, s; ε) (46)

where, by Theorem 19:

K̄0(B, α, s; ε) = h(B) + εK̄0,0(B; ε) + εjUk0,l0(Γk0,l0(B), k0 · α + l0s; ε) (47)

is given in (41).
Assuming km0 �= 0 for some 1 ≤ m ≤ d, to understand the geometry of the averaged 

Hamiltonian we first perform the following change of angles

θ̃ = Mα̃, (48)

where θ̃ = (s, θ), and α̃ = (s, α), and M is the d + 1 × d + 1 matrix:

M =

⎛
⎜⎜⎜⎜⎝

1 . . .

· ·
l0 k�0
· ·

1

⎞
⎟⎟⎟⎟⎠

Let us observe that this change is just to take as a new angle the resonant angle:

θi = αi, i �= m, θm = k0 · α + l0s

To make the change symplectic we perform the change in actions:

J̃ = M−�B̃. (49)

The change B̃ = M�J̃ is equivalent to B = N�J where

N =

⎛
⎜⎜⎜⎜⎝

1 . . .

· ·
k�0

· ·

⎞
⎟⎟⎟⎟⎠
1
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and B0 = J0 + l0Jm, which is just the change in action which reflects the fact that we 
are doing a time dependent change of angles.

In components, this change is simply:

Bm = km0 Jm, Bi = Ji + ki0Jm, i �= m

or, analogously

Jm = Bm

km0
, Ji = Bi −

Bm

km0
ki0, i �= m (50)

With this change, the averaged Hamiltonian (46) is given by:

J0 + l0Jm + h(N�J) + εK̄0,0(N�J ; ε) + εjUk0,l0(Γk0,l0(N�J), θm; ε) (51)

which, in the region RL
k0,l0

⊂ Iδ × Td+1, corresponds to the autonomous Hamiltonian:

l0Jm + h(N�J) + εK̄0,0(N�J ; ε) + εjUk0,l0(Γk0,l0(N�J), θm; ε). (52)

Working in the variables (J, θ, s) makes easier to identify the invariant tori. The in-
variant tori of Hamiltonian (52) will be given by prescribing the values of the d −1 action 
variables Ji, for i �= m, and the value of the Hamiltonian (52), which is a constant of 
motion.

Abusing slightly the notation, let us write J = (Ĵ , Jm), θ = (θ̂, θm), with

Ĵ = (J1, . . . , Jm−1, Jm+1, . . . , Jd), θ̂ = (θ1, . . . , θm−1, θm+1, . . . , θd).

Given a value of B = N�J = (B̂, Bm), we want to compute its projection Γk0,l0(B) =
B∗
k0,l0

= N�J∗.
By the k0-characterization (29) of the projection Γk0,l0 we have that

B − B∗
k0,l0 ∈ 〈k0〉 and Dh(B∗

k0,l0) · k0 + l0 = 0.

Note that using the form of the change (50), and since B = N�J and B∗
k0,l0

= N�J∗, 
we have that Ji = J∗

i , if i �= m and that B − B∗
k0,l0

= (Jm − J∗
m)k0.

Then, given B = N�J , with J = (Ĵ , Jm), one can characterize the projection Γk0,l0(B)
as:

We compute:

Ĵ = B̂ − Bm

km0
k̂0 , Jm = Bm

km0
(53)

and therefore
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B = (Ĵ , 0) + Bm

km0
k0,

one can obtain the projection B∗
k0,l0

= N�J∗, with J∗ = (Ĵ , J∗
m) in terms of Ĵ :

B∗
k0,l0 = B∗(Ĵ) = (Ĵ , 0) + B∗

m

km0
k0 (54)

where B∗
m = km0 J∗

m and J∗
m = J∗

m(Ĵ) is obtained solving

Dh(N�(Ĵ , J∗
m)) · k0 + l0 = 0. (55)

Let us emphasize that J∗
m and therefore J∗ and B∗

k0,l0
are uniquely determined through 

(55) for a given B = N�J , and therefore for a given Ĵ , assuming dist(B, Rk0,l0) < L and 
L small enough.

Let us observe that for values B such that (B, α, s) ∈ Iδ, one has that the correspond-
ing values of Ĵ vary in a compact set that we will denote by Ĵ .

For Ĵ ∈ Ĵ , we will denote:

Uk0,l0,∗(θm; Ĵ , ε) = Uk0,l0(B∗
k0,l0(Ĵ), θm; ε) (56)

Using this notation, system (52) can be written as:

l0Jm + h(N�(Ĵ , Jm)) + εK̄0,0(N�(Ĵ , Jm); ε) + εjUk0,l0,∗(θm; Ĵ , ε). (57)

The next step is to use hypotheses H5 and H6 to obtain a change of variables

(Jm, θm) → (y, x)

such that Hamiltonian (57) in these new variables becomes:

K0(y, x; Ĵ , ε) = a(Ĵ , ε)y
2

2 (1 + O(y)) + εjU(x; Ĵ , ε). (58)

We first proceed to formulate hypothesis H5 which states precisely that the leading 
part of the kinetic energy is quadratic.

Taylor expanding the function h(N�J) around the resonant point N�J∗ and using 
(55), we obtain:

l0Jm + h(N�J) = l0Jm + h(N�J∗ + k0(Jm − J∗
m))

= l0J
∗
m + h

(
N�J∗)

+ 1
2(Jm − J∗

m)2k�0 D2h
(
N�J∗) k0

+ O((Jm − J∗
m)3) (59)
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where we have used that

Dh(B∗
k0,l0(Ĵ))k0 + l0 = 0, ∀Ĵ ∈ Ĵ ,

by the definition of B∗
k0,l0

(Ĵ) = N�J∗ in (54). Therefore, introducing

a(Ĵ) = a(Ĵ)k0,l0 := k�0 D2h
(
N�J∗) k0 = k�0 D2h

(
B∗
k0,l0(Ĵ)

)
k0, (60)

the hypothesis H5 is:

H5 a(Ĵ) �= 0, for any (k0, l0) ∈ R[≤2] and Ĵ ∈ Ĵ .

With the notation (60), equation (59) becomes

l0Jm + h(N�J) = l0J
∗
m + h(N�(Ĵ , J∗

m)) + a(Ĵ)
2 (Jm − J∗

m)2 + O((Jm − J∗
m)3). (61)

Since the actions Ĵ are d − 1 first integrals of the averaged Hamiltonian (52), we 
have that the dynamics in the (Jm, θm) variables is that of a nonlinear oscillator with 
potential Uk0,l0,∗(θm; Ĵ , ε). We can think of the variables Ĵ as parameters in the nonlinear 
oscillator.

We now introduce hypothesis H6, which is the other non-degeneracy assumption which 
will make precise the heuristic notion that “the averaged system near secular resonances 
looks like a pendulum”.

Assumption H6 formulates precisely that the potential of the truncated averaged 
Hamiltonian (47) at the resonance (see also (57)), if a(Ĵ) > 0, has a unique non-
degenerate maximum or, if a(Ĵ) < 0, has a unique non-degenerate minimum.

H6 For any B = N�J ∈ S [≤2] ⊂ Iδ, consider the value (k0, l0) such that d(B, Rk0,l0) ≤ L

and its k0-projection Γk0,l0(B) = B∗
k0,l0

(Ĵ). By hypothesis H5 we know that a(Ĵ) =
a(Ĵ)k0,l0 �= 0.
If a(Ĵ) > 0, we assume that there is a unique non-degenerate maximum of the 
potential of Hamiltonian (47)

Uk0,l0(Γk0,l0(B), θm; 0) = Uk0,l0(B∗
k0,l0(Ĵ), θm; 0)

with respect to θm, which is uniformly non-degenerate with respect to B ∈ S [≤2]. If 
a(Ĵ) < 0, we assume instead that there is a unique non-degenerate minimum with 
the same uniformity conditions.
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That is, there is a unique θ∗m such that

a(Ĵ)Uk0,l0(Γk0,l0(B), θ∗m; 0) = max
θm

a(Ĵ)Uk0,l0(Γk0,l0(B), θm; 0),

a(Ĵ) ∂2

∂θ2
m

Uk0,l0(Γk0,l0(B), θ∗m; 0) ≤ β < 0. (62)

Remark 22. We call attention to the fact that, as Γk0,l0(B) ∈ Rk0,l0 ⊂ R[≤2] the con-
ditions H5, H6 need to be verified only on the codimension one set R[≤2] ∩ Iδ × Td+1

formed by the secular resonances in Iδ × Td+1.
Note that the assumptions H5, H6 are Cr open conditions in the space of Hamilto-

nians. If assumptions H5, H6 are verified for a family, they will also be verified for all 
families close to it in a Cr topology with r ≥ 2 sufficiently large so that we can carry 
out the averaging procedure. Therefore, the conditions also hold in a Cr set of original 
Hamiltonians.

Using the notation introduced in (56) hypothesis H6 can be written as:

a(Ĵ)Uk0,l0,∗(θ∗m; Ĵ , 0) = max
θm

a(Ĵ)Uk0,l0,∗(θm; Ĵ , 0),

a(Ĵ) ∂2

∂θ2
m

Uk0,l0,∗(θ∗m; Ĵ , 0) ≤ β < 0. (63)

From now on we will assume that a(Ĵ) > 0. Moreover, it is uniform respect to Ĵ ∈ Ĵ . 
Therefore hypothesis H6 can be written as:

Uk0,l0,∗(θ∗m; Ĵ , 0) = max
θm

Uk0,l0,∗(θm; Ĵ , 0),

∂2

∂θ2
m

Uk0,l0,∗(θ∗m; Ĵ , 0) ≤ β < 0. (64)

The case a(Ĵ) < 0 can be done analogously.
Assumptions H5, H6 imply that, as a function of (Jm, θm), for any value of Ĵ , the 

Hamiltonian

l0Jm + h(N�(Ĵ , Jm)) + εjUk0,l0,∗(θm; Ĵ , 0)

has a saddle point at (J∗
m(Ĵ), θ∗m(Ĵ)), which gives rise to a saddle equilibrium point for 

the associated Hamiltonian system.
We note that, because of uniformity of the second derivative of the potential in (64)

and the hypothesis H5, we obtain that the point (J∗
m(Ĵ), θ∗m(Ĵ)) is uniformly hyperbolic. 

For a given ε > 0, the Lyapunov exponents are bounded away from zero for any Ĵ ∈ Ĵ
uniformly, and the angle between its stable and unstable directions is also bounded away 
from zero.
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Therefore, by the Implicit Function Theorem, for |ε| < ε0, the Hamiltonian system 
associated to Hamiltonian (57) in the phase space of (Jm, θm), has a saddle equilibrium 
point

(J̃m(Ĵ , ε), θ̃m(Ĵ , ε)) = (J∗
m(Ĵ), θ∗m(Ĵ)) + O(ε), (65)

for any Ĵ ∈ Ĵ .
To make the pendulum-like structure of the system given by Hamiltonian (57) more 

apparent and to analyze the behavior, we will find it convenient to make the translation

y = Jm − J̃m(Ĵ , ε), x = θm − θ̃m(Ĵ , ε), s = s, (66)

and we obtain the Cr−2m−2 Hamiltonian

K0(y, x; Ĵ , ε) = h0(y; Ĵ , ε) + εjU(x; Ĵ , ε) (67)

where

h0(y; εĴ, ) = l0y + h
(
N�(Ĵ , J̃m + y)

)
−h

(
N�(Ĵ , J̃m)

)
+εK̄0,0

(
N�(Ĵ , J̃m + y); ε

)
−εK̄0,0

(
N�(Ĵ , J̃m); ε

)
U(x; Ĵ , ε) = Uk0,l0,∗(θ̃m + x; Ĵ , ε) − Uk0,l0,∗(θ̃m; Ĵ , ε) (68)

where we have subtracted a constant term to the averaged Hamiltonian (57), the energy 
of the saddle (J̃m, θ̃m) = (J̃m(Ĵ , ε), θ̃m(Ĵ , ε)), to normalize:

h0(0; Ĵ , ε) = ∂h0

∂y
(0; Ĵ , ε) = 0,

∂2h0

∂y2 (0; Ĵ , ε) = a(Ĵ , ε) = a(Ĵ) + O(ε) �= 0,

U(0; Ĵ , ε) = ∂U

∂x
(0; Ĵ , ε) = 0, ∂2U

∂x2 (0; Ĵ , ε) ≤ β < 0, (69)

therefore the averaged Hamiltonian (67) can be written as:

K0(y, x; Ĵ , ε) = a(Ĵ , ε)y
2

2 (1 + O(y)) + εjU(x; Ĵ , ε) (70)

and (0, 0) is a saddle point of Hamiltonian (67), with energy level K0(0, 0; Ĵ , ε) = 0.
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Once we have the averaged Hamiltonian written in the form (58), we discuss the 
geometry and the dynamics on the sets obtained by fixing the energy level.

The main observation is that if we fix Ĵ = ĉ, there is a critical value c∗m(ĉ, ε) = 0 =
K0(0, 0; Ĵ , ε) for cm at which the topology and the dynamics of the level sets of the 
Hamiltonian K0(y, x; Ĵ , ε), and therefore of the Hamiltonian (57), change.

Now we describe the invariant sets of Hamiltonian K0(y, x, Ĵ ; ε) given in (67) in the 
region:

D = {(Ĵ , θ̂, y, x, s) ∈ Ĵ × Td−1 × R× T2, |y| ≤ L̄}, (71)

for some 0 < L̄ < L, where θ̂ = (θ1, . . . , θm−1, θm+1, . . . , θd).
Given any value Ĵ = ĉ we consider in the (y, x) space, the level set K0(y, x; Ĵ , ε) = cm:

• When cm > 0 but close enough to zero, the level set in the (y, x) annulus is composed 
by two non-contractible circles.

• When cm < 0 but close enough to zero, the level set in the (y, x) annulus is a circle 
which, however, is contractible to a point.

• When cm = 0, the level set is the union of two separatrices and the hyperbolic critical 
point (0, 0).

Therefore, the region D is filled by the level sets of the constants of motion, that is, 
the energy surfaces of the Hamiltonian K0, and the corresponding Ĵ :

T 0
c = {(Ĵ , θ̂, y, x, s) ∈ Rd−1 × Td−1 × R× T2 : K0(y, x; Ĵ , ε) = cm, Ĵ = ĉ}. (72)

T 0
c will, of course, be invariant by the Hamiltonian flow of K0.
The sets T 0

c consist on:

• When cm > 0 but close enough to zero, the level set T 0
c is composed by two primary 

tori (non-contractible tori of dimension d + 1).
• When cm < 0 but close enough to zero, the level set T 0

c is a secondary torus (torus 
of dimension d + 1 contractible to a d-dimensional torus).

• The level set corresponding to cm = 0 consists of one whiskered torus and its coin-
cident whiskers: the hyperbolic torus Td × {(0, 0)} and the homoclinic orbits to it. 
We will refer to T 0

0 as the separatrix loop.

Formula (72) gives an implicit equation for the tori T 0
c . To compute the images of 

these tori under the scattering map in Section 3.8, it will be convenient to have the 
explicit equation of these tori.

Lemma 23. There exists ρ > 0, such that the two primary tori (components of the 
secondary tori) T 0

c of Hamiltonian K0 can be written as graphs of the variables (Ĵ , y)
over the angle variables (θ̂, x), for ρ ≤ x ≤ 2π − ρ:
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T 0
c = {(Ĵ , θ̂, y, x, s) ∈ Rd−1 × Td−1 × R× [ρ, 2π − ρ] × T :

Ĵ = ĉ, y = ±Ỹ(x; c, ε)},
(73)

where the function Ỹ(x; c, ε) has different expressions depending of the value cm:

(1) If 0 < cm ≤ εj:

Ỹ(x; c, ε) = �̃(x; c, ε)(1 + O(ε
j
2 )) (74)

(2) If εj ≤ cm < 1, for cm = dmεα, with 0 < α < j:

Ỹ(x; c, ε) = �̃(x; c, ε)(1 + O(εα
2 )) (75)

(3) If cm = O(1):

Ỹ(x; c, ε) = h
(−1)
0 (cm)(1 + O(εj)) (76)

where the function where h0 is given in (69) and �̃ is given by:

�̃(x; c, ε) =

√
2

a(ĉ, ε) (cm − εjU(x; ĉ, ε))

Once we know the structure of the level sets of the averaged Hamiltonian (57) in 
terms of the variables (Ĵ , θ̂, y, x), we can write the equations of these sets in the original 
variables of the problem.

First, in terms of the variables (B, α, s) ∈ Rd × Td+1, using (50), (53), (66) and (67)
and (68), the tori T 0

E , with E = (Ê, Ẽm), are given by:

B̂ − Bm

km0
k̂0 = Ê

Bm

km0
l0 + h(B) + εK0,0(B; ε) + εjUk0,l0,∗(k0α + l0s; Ê, ε) = Ẽm. (77)

T 0
E will, of course, be invariant by the Hamiltonian flow of the averaged system (47).

Remark 24. Equations (77) are a natural consequence of the fact that the non-
autonomous Hamiltonian (47) has as first integrals the functions that are at the left 
hand side of (77).

Let us observe that the relation between the constants c and E is given by

Ê = ĉ

Ẽm = cm + Ẽ∗
m(Ê) = cm + l0J̃m + h(N�(Ê, J̃m))

+ εK̄0,0(N�(Ê, J̃m)) + εjUk0,l0,∗(θ̃m; Ê, ε)
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and the critical value where the topology of the invariant tori change is now Ẽ∗
m =

Ẽ∗
m(Ê), which is the energy level of the saddle (J̃m, θ̃m) = (J̃m(Ê, ε), θ̃m(Ê, ε)) and 

corresponds to taking the critical value cm = 0, ĉ = Ê, in (72), of Hamiltonian K0 in 
(67) with variables (66).

It is important to note that equations (77) can also be written, using (50), (66) and 
(53), as:

B̂ − Bm

km0
k̂0 = Ê

a(Ê, ε)y
2

2 (1 + O(y)) + εjUk0,l0,∗(k0α + l0s; Ê, ε) = Em (78)

where

y = Bm

km0
− J̃m(Ê, ε) = Bm − B∗

m(Ê)
km0

+ O(ε).

The value of the critical value E∗
m where the topology of the tori changes is given by

E∗
m = εjUk0,l0,∗(θ̃m(Ê, ε); Ê, ε),

which is just the value of the potential at the saddle point. Again, using the changes 
(50), (66) and formula (73) of Lemma 23, we can obtain explicit formulae for these tori:

B̂ = Ê + Bm

km0
k̂0

Bm = km0 J̃m(Ê, ε) ± km0 Y(k0α + l0s;E, ε)

= km0 J∗
m(Ê) ± km0 Y(k0α + l0s;E, ε) + O(ε)

= B∗
m(Ê) ± km0 Y(k0α + l0s;E, ε) + O(ε)

where

Y(θm;E, ε) = Ỹ(θm − θ̃m(Ê, ε);E; ε).

Going back to the original variables (I, ϕ, s) ∈ Rd × Td+1 we can write the implicit 
equations for these tori T 0

E as:

Î − Im
km0

k̂0 + O(ε) = Ê,

Im
km0

l0 + h(I) + εK0,0(I; ε) + εjUk0,l0,∗(k0ϕ + l0s; Ê, ε) + O(ε) = Ẽm

That can also be also written as:
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Î − Im
km0

k̂0 + O(ε) = Ê,

a(Ê, ε)y
2

2 (1 + O(y)) + εjUk0,l0,∗(k0ϕ + l0s; Ê, ε) + O(εj+1) = Em (79)

where:

y = Im − B∗
m(Ê)

km0
+ O(ε), E∗

m = εjUk0,l0,∗(θ̃m(Ê, ε); Ê, ε). (80)

Finally, these tori can be also written explicitly as:

Î = Ê + Im
km0

k̂0 + O(ε) (81)

Im = B∗
m(Ê) ± km0 Y(k0ϕ + l0s;E, ε) + O(ε)

Let us observe that the function Y verifies, according to Lemma 23:

• If 0 < |Em −E∗
m| ≤ εj :

Y(θm;E, ε) = �(θm;E, ε)(1 + O(ε
j
2 )) (82)

• If εj < |Em − E∗
m| < 1, writing |Em − E∗

m| = dmεγ , with 0 < γ < j:

Y(θm;E, ε) = �(θm;E, ε)(1 + O(ε
γ
2 )) (83)

• If |Em − E∗
m| = O(1):

Y(θm;E, ε) = h
(−1)
0 (Em)(1 + O(εj)) (84)

where the function � is given by (see (68)):

�(θm;E, ε) =
√

2
a(Ê, ε)

(Em − εjUk0,l0,∗(θm; Ê, ε)). (85)

3.5.4. Primary and secondary tori near the secular resonances: KAM Theorem
If we apply the changes of variables (48), (50) and (66) to Hamiltonian (40) we obtain:

K(Ĵ , θ̂, y, x, s; ε) = K0(Ĵ , y, x; ε) + εm+1S(Ĵ , θ̂, y, x, s; ε). (86)

First, we change to action–angle variables of the integrable part K0. The two only 
difficulties are that the action angle variables become singular near the level set K0 = 0, 
which is the separatrix of the torus {(x, y) = (0, 0)}, and also the twist condition becomes 
singular. In fact, the twist goes to ∞ when one approaches the separatrix and this is 
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favorable to application of the KAM Theorem [46,29] because this theorem only requires 
lower bounds on the twist and a larger twist improves the quantitative assumptions of 
the theorem.

If the number of averaging steps m is large enough we can ensure that there exist KAM 
tori (both primary and secondary) that cover the whole resonant region up to distances 
O(ε3/2) and which are ε3 close to the level sets K0 = cm of the averaged Hamiltonian 
K0. Of course, we could get even higher powers in the density by averaging more times.

• We select a region |cm − c∗m| ≤ εα surrounding the separatrix K0 = c∗m = 0. In 
this region (the chaotic zone) we will not perform any further analysis. We will just 
remark that it is small. In particular, if α = 3

2 + j
2 , the level sets of energy cm and 

c∗m are at a distance ε3/2 if (cm − c∗m) = ±εα .
• In the complementary region: |cm − c∗m| ≥ εα we change to action angle variables 

adapted to the level sets, F = c = (ĉ, cm), of the function F = (Ĵ , K0) defined in 
(72). We note that one of the components of F is precisely K0, the integrable part of 
the averaged Hamiltonian (86). The action variables can be obtained geometrically 
integrating the canonical form over the loops in a torus [4,1].
It is well known that the singularities of the action variable are only a power of 
(cm−c∗m). Therefore, since the size of the remainder in Hamiltonian (86) is O(εm+1), 
when expressed in the action angle variables in the region |cm−c∗m| ≥ εα the smallness 
of the remainder will be O(εm+1−Aα), for some value A > 0.

• The KAM Theorem in action–angle variables [65] gives tori which are at a distance 
εm+1−Aα of the level sets of the action variables. The gaps between these tori are 
O(ε(m+1−Aα)/2).

• Coming back to variables (y, x, Ĵ , θ̂) we obtain tori at a distance between them of 
order O(ε(m+1−Aα)/2−αA), and that are at a distance O(εm+1−2Aα) from the level 
sets of (Ĵ , K0).
We note that, if we fix α = 3

2 + j
2 , taking into account that A is a fixed number, we 

obtain that, taking m large enough we can ensure that we have tori for |c −c′| < ε
3
2+ j

2 , 
that is, the gaps are smaller than ε3/2 as claimed.

• Going back to the original variables through changes (53), (66) (which are close to 
the identity), we obtain the result in next Theorem 25.

Theorem 25. Under the conditions of Theorem 6, there exists ε0 such that, for 0 < |ε| <
ε0, the secular resonant region S [≤2] can be covered by O(ε3/2) neighborhoods of invariant 
objects under the Hamiltonian flow of the Hamiltonian Kε(I, ϕ, s) in (16). Moreover:

• These invariant objects are given by the level sets F = E = (Ê, Em), for |E −E′| ≤
ε

3
2+ j

2 and where ε
3
2+ j

2 ≤ |Em −E∗
m| ≤ 1 with E∗

m given in (80).
• The C2 function F : Rd × Td × T → R is given by (79).
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• These invariant objects are either regular primary KAM d + 1-tori, secondary d +
1-KAM tori of class 1 (i.e. d + 1-dimensional invariant tori which are contractible 
to a Td) or invariant manifolds of d-dimensional whiskered invariant tori.

3.6. Second step: the generation of a homoclinic manifold and computation of the 
scattering map

Let us observe that by hypothesis H2, for ε = 0, the manifold Λ̃0 has stable and 
unstable manifolds which coincide along a homoclinic manifold

Γ̃0 = W s(Λ̃0) = Wu(Λ̃0)

with

Γ̃0 = {(p∗(τ), q∗(τ), I, ϕ, s), (I, ϕ, s, τ) ∈ I∗ × Td+1 × Rn}

The first result in this section is that, if system (3) satisfies the non-degeneracy as-
sumption H7, then for all 0 < |ε| < ε0, W s(Λ̃ε), Wu(Λ̃ε), the stable and unstable 
manifolds of the normally hyperbolic invariant manifold Λ̃ε introduced in Section 3.2, 
have a transversal intersection along a homoclinic manifold Γ̃ε. Then, following [31] we 
use this intersection to define the scattering map in H− ⊂ Λ̃ε.

We will use a notation very similar to that of [29] and, indeed refer to this paper 
for a series of detailed calculations. The proof of the next proposition is identical to 
Proposition 9.2 in [29].

Proposition 26. Assume that hypothesis H7 is fulfilled. Then, given (I, ϕ, s) ∈ H− ⊂
I∗ × Td+1, for ε small enough, there exists a locally unique point z̃∗ of the form

z̃∗(I, ϕ, s; ε) = (p∗(τ∗(I, ϕ, s)) + O(ε), q∗(τ∗(I, ϕ, s)) + O(ε), I, ϕ, s) (87)

such that W s(Λ̃ε) � Wu(Λ̃ε) at z̃∗, that is,

z̃∗ ∈ W s(Λ̃ε) ∩Wu(Λ̃ε) and Tz̃∗W s(Λ̃ε) + Tz̃∗Wu(Λ̃ε) = Tz̃∗M̃,

where M̃ = Rn × Rn × I × Td × T.
In particular, there exist unique points

x̃± = x̃±(I, ϕ, s; ε) = (0, 0, I, ϕ, s) + OC1(ε) ∈ Λ̃ε

such that

∣∣Φ̃ε,t(z̃∗) − Φ̃ε,t(x̃±)
∣∣ ≤ cte. e−α|t|/2 for t → ±∞. (88)
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Moreover, expressing the points x̃± = kε(I±, ϕ±, s±; ε) in terms of the symplectic 
parametrization of Λ̃ε introduced in Section 3.2, the following formulas hold:

I(x̃±) = I + OC1(ε), ϕ(x̃±) = ϕ + OC1(ε), s(x̃±) = s,

and

I(x̃+) − I(x̃−) = ε
∂L∗

∂ϕ
(I, ϕ− ω(I)s) + OC1(ε1+
), (89)

where L∗(I, θ) is given in (12), and � > 0.

3.7. The scattering map

From now on we will take the homoclinic manifold

Γ̃ε = {z̃∗(I, ϕ, s; ε), (I, ϕ, s) ∈ H− ⊂ I∗ × Td+1}

given by Proposition 26. Following [31] we will call Γ̃ε a homoclinic channel and we can 
define the scattering map sε on Λ̃ε, also called outer map, associated to Γ̃ε.

Following [29,31] the scattering map is defined as follows: for any two points x̃± ∈ Λ̃ε, 
we say that x̃+ = sε(x̃−), if there exists a point z̃ ∈ Γ̃ε such that

dist(Φ̃ε,t(z), Φ̃ε,t(x±)) → 0, for t → ±∞.

Since the unperturbed system is a product system, it is clear that, independently of 
what is the homoclinic manifold, the stable manifold of one point in Λ̃0 is the same as 
its unstable manifold. Therefore, s0 = Id.

As shown in [31] the scattering map is an exact symplectic map and depends smoothly 
on parameters because the homoclinic manifold depends smoothly on parameters even 
through ε = 0.

It is well known (see [25]) that a family of exact symplectic mappings sε is conveniently 
described using a generator Sε and the associated Hamiltonian Sε:

d

dε
sε = Sε ◦ sε; ıSε

ω = dSε.

Indeed in [31] it is shown that the Hamiltonian Sε is given, up to first order in ε by 
the function −L∗(I, ϕ − ω(I)s), where the reduced Melnikov potential L∗(I, θ) is given 
in (12):

Sε = −L∗ + εS1 + O(ε2)

Therefore, the scattering map can be written, using the coordinates (I, ϕ, s) as:
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sε(I, ϕ, s) = (I + ε∂θL∗(I, ϕ− ω(I)s) + O(ε2),

ϕ− ε∂IL∗(I, ϕ− ω(I)s) + O(ε2), s) (90)

and, for any fixed s ∈ T, up the first order in ε it is given, in the coordinates (I, ϕ), as the 
time −ε map of the Hamiltonian flow of Hamiltonian L∗(I, θ) evaluated at (I, ϕ −ω(I)s).

The fundamental property to have instability will be to check, for any fixed s, that 
the tori invariant for the inner flow in Λ̃ε are not invariant by the perturbed scattering 
map sε. Therefore, we will pay attention at how the scattering map moves the tori TE
given in (44), (79), (80) using the results in [26].

3.8. Interaction between the inner flow and the scattering map and hypothesis H6

We have already shown in Theorems 20 and 25, that the KAM tori TE (both pri-
mary and secondary) are the level sets of an Rd-valued function Fε. Indeed we have 
approximate expressions for it in (44), (79), (80) (see also (81)).

The scattering map transports the level sets of Fε into other manifolds, which are the 
level sets of Fε ◦ s−1

ε .
The key observation relies on Lemma 10.4 in [29] (see also [27]), which states that, 

given two invariant manifolds for the inner flow Σi ⊂ Λ, i = 1, 2, if Σ1 intersects transver-
sally sε(Σ2) in Λ̃ε, then Wu

Σ2
� W s

Σ1
.

Our next goal will be to make explicit the conditions to ensure that the scattering map 
creates heteroclinic intersections between the KAM tori, primary or secondary, created 
in Sections 3.5.2 and 3.5.4.

Fix s ∈ T. The tori TE′ and sε(TE) intersect if there exists a point x̃ = (I, ϕ, s) such 
that:

Fε(I, ϕ, s; ε) = E

Fε ◦ sε(I, ϕ, s; ε) = E′. (91)

Let us observe that the first equation is the implicit equation for the torus TE. Instead, 
we can use its explicit equation I = λE(ϕ, s; ε) to eliminate the first d equations. The 
manifolds TE′ and sε(TE) intersect if there exists (ϕ, s) such that:

Fε ◦ sε(λE(ϕ, s; ε), ϕ, s; ε) = E′ (92)

and the intersection will be transversal if

detD(Fε ◦ sε(λE(ϕ, s; ε), ϕ, s; ε)) �= 0, (93)

where D = Dϕ.
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Using formula (159) in [26], we know that, given a function F :

F ◦ sε = F − ε{F,L∗} + ε2

2 ({{F,L∗},L∗} + {F, S1}) + O(ε3). (94)

Therefore equation (92) reads:

−{Fε,L∗}(λE(ϕ, s; ε), ϕ, s; ε) + O(ε) = E′ −E

ε
(95)

and we will have intersection as long as E
′−E
ε is small enough, close to the non-degenerate 

zeros of

{Fε,L∗}(λE(ϕ, s; ε), ϕ, s; ε) = 0

therefore the transversality condition (93) is equivalent to

D({Fε,L∗})(λE(ϕ, s; ε), ϕ, s; ε) �= 0 (96)

for a point in each of the level sets of Fε.

3.8.1. The non-degeneracy condition H8 in the non-resonant region
The non-resonant region SL (see (42)) is of O(1) and is covered by ε

3
2 neighborhoods 

of tori which are given by the level sets of the function:

Fε(I, ϕ, s) = I + O(ε) = E.

Therefore λE(ϕ, s; ε) = E + O(ε), and equation (95) reads:

∂L∗

∂θ
(E,ϕ− ω(E)s) + O(ε) = E′ − E

ε
(97)

Moreover, by the KAM Theorem 20 given in Section 3.5.2 we have tori for |E − E′| ≤
cε3/2, and therefore equation (97) has solutions for ϕ, which are non-degenerate if con-
dition (96) is verified, which in our case, becomes:

det
∣∣∣∣∂2L∗

∂θ2 (E,ϕ− ω(E)s)
∣∣∣∣ �= 0,

and is guaranteed if

det
∣∣∣∣∂2L∗

∂θ2 (I, ϕ− ω(I)s)
∣∣∣∣ �= 0 (98)

is satisfied for (I, ϕ, s) ∈ H− ⊂ I∗ × Td+1, and is one of the non-degeneracy conditions 
included in hypothesis H8.
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3.8.2. Heteroclinic orbits close to homoclinic ones in the non-resonant region
If condition (98) is verified in the region SL we can guarantee the existence of hetero-

clinic connections between neighboring KAM tori in this region. If we look for heteroclinic 
connections close to homoclinic ones, one can obtain a more explicit sufficient condition 
for equations (97) to have a solution. The main idea is to solve equations (97), using the 
Implicit Function Theorem. The small parameter will be

δ = E′ −E

ε
+ ε

and then equation (97) will read:

∂L∗

∂θ
(E,ϕ− ω(E)s) = O(δ)

Therefore, a non-degeneracy condition which guarantees that equation (97) has solutions 
close to the solutions of:

∂L∗

∂θ
(E,ϕ− ω(E)s) = 0

is that the function L∗ has non-degenerate critical points, that is:

∂L∗

∂θ
(E,ϕ− ω(E)s) = 0,=⇒ det

∣∣∣∣∂2L∗

∂θ2 (E,ϕ− ω(E)s)
∣∣∣∣ �= 0, (99)

in the region SL ∩H−. Equation (99) is part of hypothesis H8.

3.8.3. The non-degeneracy condition H8 in the resonant region
Now, we study the intersection equation (91) in the secular resonant region (45)

S [≤2]∩H−, to ensure that the image under the scattering map of a primary or secondary 
torus intersects other nearby tori. We denote by Fε again the function whose level sets 
give the tori. We recall that the secular resonant region S [≤2] is the union of the tubular 
neighborhoods RL

k,l of the secular resonances Rk,l, for (k, l) ∈ N [≤2].
If Rk0,l0 is a resonance of order j, j = 1, 2, in the region RL

k0,l0
, according to (79), (80)

and the KAM Theorem 25, the invariant tori are given by the level sets of a function:

Fε = (F̂ , Fm) = E = (Ê, Em),

for ε 3
2+ j

2 ≤ |Em−E∗
m| ≤ 1, where E∗

m = εjUk0,l0,∗(θ̃m(Ê, ε); Ê, ε) (see [29]), with Uk0,l0,∗

given in (56),

F̂ (I, ϕ, s; ε) = Î − Im
km0

k̂0 + O(ε), (100)

and
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Fm(I, ϕ, s; ε) = a(Ê, ε)y
2

2 (1 + O(y)) + εjUk0,l0,∗(k0ϕ + l0s; Ê, ε) + O(εj+1) (101)

with a(Ê, ε) given in (69), (60), and

y = Im − B∗
m(Ê)

km0
+ O(ε)

where B∗
m(Ê) = Γk0,l0(I) is the k0-projection in the resonance Rk0,l0 .

Moreover, by the KAM Theorem 25, we know that there exist tori Fε = E, Fε = E′

for |E −E′| ≤ ε
3
2+ j

2 .
The way to solve equation (91) is slightly different for a resonance or order one or for a 

resonance of order two. We give all the details in the case of a first order resonance. The 
case of a resonance of order two can be done with minor modifications, as it is explained 
in Remark 27.

For Fε = (F̂ , Fm), the set of equations (91) reads

F̂ (I, ϕ, s; ε) = Ê

Fm(I, ϕ, s; ε) = Em

F̂ (I, ϕ, s; ε) − ε{F̂ ,L∗}(I, ϕ, s; ε) + O(ε2) = Ê′

Fm(I, ϕ, s; ε) − ε{Fm,L∗}(I, ϕ, s; ε) + O(ε2) = E′
m

and, using (100), (101), these equations are equivalent to

F̂ (I, ϕ, s; ε) = Ê

Fm(I, ϕ, s; ε) = Em

∂θ̂L
∗(I, ϕ− ω(I)s) − 1

km0
∂θmL∗(I, ϕ− ω(I)s)k̂0 + O(ε) = Ê′ − Ê

ε

a(Ê, ε)Im − B∗
m(Ê)

(km0 )2 ∂θmL∗(I, ϕ− ω(I)s + O(ε) = E′
m −Em

ε
. (102)

From the first two equations, using (81) for Em − E∗
m = O(εγ), 0 < γ ≤ 3

2 + j
2 = 2, we 

obtain:

I = (Ê, 0) + Im
km0

k0 + O(ε)

Im = B∗
m(Ê) ± km0 Y(k0ϕ + l0s;E; ε) + O(ε)

where E = (Ê, Em) and

Y(k0ϕ + l0s;E; ε) = �(k0ϕ + l0s;E, ε)(1 + O(ε
γ
2 )) (103)
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and the function � is given in (85):

�(k0ϕ + l0s;E; ε) =
√

2
a(Ê, ε)

(Em − εUk0,l0,∗(k0ϕ + l0s; Ê, ε))

which gives, using that Em −E∗
m = O(εγ):

I = (Ê, 0) + B∗
m(Ê)
km0

k0 = I∗(Ê) + O(ε, ε
γ
2 )

and therefore, the two last equations of (102) read:

∂θ̂L
∗ − 1

km0
∂θmL∗k̂0 + O(ε, ε

γ
2 ) = − Ê − Ê′

ε

± a(Ê; ε)
km0

[Y(k0ϕ + l0s;E; ε) + O(ε)]

×
(
∂θmL∗ + O(ε, ε

γ
2 )
)

= − Ẽm − E′
m

ε
(104)

where, to shorten the notation, we have just written

L∗ = L∗(I∗(Ê), ϕ− ω(I∗(Ê))s).

Using equation (103) and that, by (69), a(Ê, ε) = a(Ê) + O(ε), equations (104) are 
equivalent to:

∂θ̂L
∗ − 1

km0
∂θmL∗k̂0 + O(ε, ε

γ
2 )

= Ê′ − Ê

ε

±

(
a(Ê) + O(ε)

)
km0

[
�(k0ϕ + l0s;E; ε)(1 + O(ε

γ
2 )) + O(ε)

]

×
(
∂θmL∗ + O(ε, ε

γ
2 ))

)

= Ẽ′
m − Em

ε
. (105)

We will see that we will have a solution of equations (105) for ϕ if |E′ − E| ≤
O(ε 3

2+ j
2 ) = O(ε2).
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It will be useful to work in the variables θ = (θ̂, θm) = (ϕ̂, k0ϕ + l0s). Observe that 
equivalent to the above change of variables we have:

ϕ̂ = θ̂, ϕm = θm − k̂0ϕ̂− l0s

km0
(106)

We define the auxiliary function:

L∗
k0,l0(θ̂, θm, s; Ê) = L∗(I∗(Ê), ϕ− ω(I∗(Ê))s)

= L∗(I∗(Ê), ϕ̂− ω̂(I∗(Ê))s, ϕm − ωm(I∗(Ê))s). (107)

Using that ω(I∗(Ê)) · k0 + l0 = 0, we obtain:

L∗
k0,l0(θ̂, θm, s; Ê)

= L∗(I∗(Ê), θ̂ − ω̂(I∗(Ê))s, θm − (θ̂ − ω̂(I∗(Ê))s)k̂0

km0
),

and then, taking derivatives with respect to θ̂ and θm:

∂

∂θ̂
L∗
k0,l0(ϕ̂, k0ϕ + l0s, s; Ê) = ∂

∂θ̂
L∗(I∗(Ê), ϕ− ω(I∗(Ê))s)

− 1
km0

∂

∂θm
L∗(I∗(Ê), ϕ− ω(I∗(Ê))s) k̂0

∂

∂θm
L∗
k0,l0(ϕ̂, k0ϕ + l0s, s; Ê) = 1

km0

∂

∂θm
L∗(I∗(Ê), ϕ− ω(I∗(Ê))s)

Therefore equations (105) become:

∂

∂θ̂
L∗
k0,l0(θ̂, θm, s; Ê) + O(ε, ε

γ
2 ) = Ê′ − Ê

ε

± (a(Ê) + O(ε))
km0

[
�(θm;E; ε)(1 + O(ε

γ
2 )) + O(ε)

]

×
(

∂

∂θm
L∗
k0,l0(θ̂, θm, s; Ê) + O(ε, ε

γ
2 )
)

= Ẽ′
m −Em

ε

(108)

which are the generalization to higher dimensions of the function M in [29, page 108].
Before looking for the solutions of these equations, me make a further simplification. 

First observe that there exist primary and secondary tori close to the separatrix of the 
averaged Hamiltonian for energies
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|Em −E∗
m| > ε

3
2+ j

2 = O(ε2), E∗
m = εUk0,l0,∗(θ̃(Ê, ε); Ê, ε)),

therefore it makes sense to scale Em = εem in the function � of equations (108) obtaining:

∂

∂θ̂
L∗
k0,l0(θ̂, θm, s; Ê) + O(ε, ε

γ
2 )

= Ê′ − Ê

ε

± (a(Ê) + O(ε))
km0

[
�̄(θm;E; ε)(1 + O(ε

γ
2 ) + O(ε 1

2 ))
]

×
(

∂

∂θm
L∗
k0,l0(θ̂, θm, s; Ê) + O(ε, ε

γ
2 )
)

= Ẽ′
m − Em

ε1+ 1
2

(109)

and the function �̄ is a scaled version of the one given in (85):

�̄(θm; Ê, em; ε) =
√

2
a(Ê, ε)

(em − Uk0,l0,∗(θm; Ê, ε)).

The function �̄ = O(1), but the important observation is that if we take ρ > 0 and we 
exclude a small region around the critical point θ̃m (that is, for ρ < θm − θ̃m ≤ 2π − ρ), 
�̄ never vanishes. In fact one has:

�̄(θm; Ê, em; ε) ≥ d > 0, for ρ < θm − θ̃m ≤ 2π − ρ. (110)

To have non-degenerate solutions of equations (109) it suffices to assume:

detDθ

(
∂
∂θ̂
L∗
k0,l0

(θ̂, θm, s;E)
±a(Ê)

km
0

�̄(θm;E; ε) ∂
∂θm

L∗
k0,l0

(θ̂, θm, s;E)

)
�= 0. (111)

Making explicit the derivatives in (111) and separating in blocks corresponding to θ̂ and 
θm, one obtains:

±a(Ê)
km0

∣∣∣∣∣
∂2

∂θ̂2L∗
k0,l0

∂2

∂θ̂∂θm
L∗
k0,l0

∂
∂θ̂

(�̄ ∂
∂θm

L∗
k0,l0

) ∂
∂θm

(�̄ ∂
∂θm

L∗
k0,l0

)

∣∣∣∣∣ (θ̂, θm, s;E, ε) �= 0 (112)

which gives:
∣∣∣∣∣∣

∂2

∂θ̂2L∗
k0,l0

∂2

∂θ̂∂θm
L∗
k0,l0

�̄ ∂2

ˆ L∗
k ,l �̄ ∂2

2 L∗
k ,l − (Uk0,l0,∗)′

ˆ ¯
∂ L∗

k ,l

∣∣∣∣∣∣ (θ̂, θm, s;E, ε) �= 0, (113)

∂θ∂θm 0 0 ∂θm 0 0 a(E) 	 ∂θm 0 0
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which, using that neither �̄ nor a(Ê) vanishes, is equivalent to:
(

2(em − Uk0,l0,∗)[ ∂
2

∂θ̂2
L∗
k0,l0

∂2

∂θ2
m

L∗
k0,l0 − ( ∂2

∂θ̂∂θm
L∗
k0,l0)

2] −

∂2

∂θ̂2
L∗
k0,l0

∂

∂θm
L∗
k0,l0(U

k0,l0,∗)′
)

(θ̂, θm, s;E, ε) �= 0 (114)

This inequality (or (113)) constitutes part of hypothesis H8, and is the generalization of 
the non-degeneracy conditions H5 ′ and H5 ′′ in [29]. We call attention to the fact that 
(113) takes a value for ε = 0.

An equivalent formulation for this non-degeneracy conditions can be written using 
the symplectic structure of the system.

Introducing the Poisson brackets:

{F̂ , ·} = ∂

∂θ̂

{Fm, ·} = �̄
∂

∂θm

we see that equations (108) read:

{F̂ ,L∗
k0,l0} + O(ε, ε

γ
2 ) = Ê − Ê′

ε

{Fm,L∗
k0,l0} + O(ε 1

2 , ε
γ
2 ) = Êm − Ê′

m

ε

and the non-degeneracy condition (113) becomes:
∣∣∣∣∣ {F̂ , {F̂ ,L∗

k0,l0
}} {Fm, {F̂ ,L∗

k0,l0
}}

{F̂ , {{Fm,L∗
k0,l0

}} {{Fm, {{Fm,L∗
k0,l0

}}

∣∣∣∣∣ (θ̂, θm, s;E, ε) �= 0.

3.8.4. Heteroclinic connections between primary tori and secondary tori close to 
homoclinic connections

If condition (114) is verified in the region R[≤L]
k0,l0

we can guarantee the existence of 
heteroclinic connections between the primary and secondary tori in this region. If we 
look for this heteroclinic connections close to homoclinic ones, one can obtain a more 
explicit sufficient condition to have a solution of equations (109).

The main idea is to solve equations (109) using the Implicit Function Theorem. The 
small parameters will be

δ̂ = Ê − Ê′

ε
+ O(ε, εγ/2), δm = Em − E′

m

ε
1
2+1 + O(ε 1

2 , εγ/2),

and then equations (109) read:
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∂

∂θ̂
L∗
k0,l0(θ̂, θm, s; Ê) = O(δ̂)

a(Ê)
km0

�̄(θm;E; ε) ∂

∂θm
L∗
k0,l0(θ̂, θm, s; Ê) = O(δm)

and, using that, by (110), the function �̄ never vanishes neither does a(Ê), they are 
equivalent to:

∂

∂θ̂
L∗
k0,l0(θ̂, θm, s; Ê) = O(δ̂) (115)

∂

∂θm
L∗
k0,l0(θ̂, θm, s; Ê) = O(δm) (116)

Therefore, the non-degeneracy condition which guarantees that these equations have 
solutions close to the solutions of:

∂

∂θ̂
L∗
k0,l0(θ̂, θm, s; Ê) = 0

∂

∂θm
L∗
k0,l0(θ̂, θm, s; Ê) = 0 (117)

is simply:

det

∣∣∣∣∣∂
2L∗

k0,l0

∂θ2 (θ, s; Ê)

∣∣∣∣∣ �= 0 (118)

holding in the region R[≤L]
k0,l0

. This is part of the non-degeneracy conditions which consti-
tute hypothesis H8.

In summarizing, the hypothesis H8 consists in assuming inequalities (98), (99), (113), 
(118).

It is important to note that the function L∗
k0,l0

(θ̂, θm) is the Poincaré function 

L∗(I∗(Ê), ϕ − ω(I∗(Ê))s) after the linear change of variables (106). Therefore condi-
tion (118) is equivalent to condition (99) that ensures that the Poincaré function has 
non-degenerate critical points.

Any of the non-degeneracy simplified conditions (117), (118), or equivalently (99), 
constitute hypothesis H8′ stated after Theorem 6, since they are sufficient conditions to 
ensure that the surface T ′

E intersects transversally sε(TE) for |E −E′| = O(ε 3
2+ 1

2 ).

Remark 27. In the case of a second order resonance, one needs to take into account the 
terms of order ε2 in equation (94). Nevertheless, if one looks for heteroclinic solutions 
close to homoclinic ones some easy computations show that these heteroclinic connec-
tions exist if equations (117) have non-degenerate zeros, and this is also guaranteed by 
condition (118).
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3.9. Constructing chains of invariant tori. Contouring the resonances of higher 
multiplicity. Formulation of the symbolic dynamics

In this section, we will see how to put together the information we have gathered on 
the scattering map and the KAM tori, and show that we can construct largely arbitrary 
motions in action space. In particular, we can go around double resonances and other 
effects of codimension 2.

We will prove the following result which clearly implies Theorem 6 since it has the 
same hypothesis and clearly stronger conclusions.

Theorem 28. Let Hε be a family of the form (1). Assume that Hε satisfies all the hypoth-
esis H1–H8. In particular, it is Cr for r ≥ r0.

Let m0 be a sufficiently large number. Fix δ > 0 sufficiently small and consider the 
set Iδ ⊂ I∗ ⊂ I defined before Theorem 19 to verify condition L2. Then, there exists 
ε0 > 0 such that for all |ε| ≤ ε0, given any C1 path γ : [0, 1] → Iδ in Iδ there exists 
xε(t) a trajectory of the flow generated by H and a time reparameterization Ψε (i.e. a 
diffeomorphism Ψε : R+ → [0, 1]) in such a way that

|I(xε(t)) − γ(Ψε(t))| ≤ Cε1/2 (119)

Of course, Theorem 28 immediately implies Theorem 6. Clearly, the hypotheses of 
both theorems are the same and, for δ sufficiently small so that given any two points 
I−, I+ ∈ I∗, we can get a path contained in Iδ which starts at a distance less than δ
from the I− and ends at a distance less than δ from I+. Applying Theorem 28 to this 
path we obtain the statement of Theorem 6 for δ + Cε

1/2
0 .

As a corollary of the proof of Theorem 28, we obtain that it is possible to construct 
orbits that are δ dense on invariant manifold Λε for ε small enough. These orbits also 
include excursions on the stable and unstable manifolds. So that they are dense in a 
larger domain. Some constructions of models with orbits dense on submanifolds appear 
also in [39].

Remark 29. Note that we do not prescribe first the path and then state conditions 
on the perturbations. We have identified conditions on the Hamiltonian that give the 
simultaneous existence of trajectories that follow any path in Iδ.

Remark 30. As we will see, the estimate in (119), is rather pessimistic for most of the 
paths. Indeed, except when the path is close to the resonant region we can have a bound 
Cε in (119).

3.9.1. Proof of Theorem 28
The proof of Theorem 28 will consist in recalling all the information that we have 

been gathering to construct a transition chain of whiskered tori that follows the indicated 
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path. Then, it will suffice to invoke an obstruction argument that establishes that given 
a transition chain of whiskered tori (i.e. a sequence of whiskered tori Ti such that Wu

Ti
�

W s
Ti+1

), there is an orbit that follows the path.
Recall that we have shown that there is a normally hyperbolic invariant manifold Λ̃ε.
We have shown that under the non-degeneracy assumptions H5, H6 we can define a 

scattering map in the region I∗, which is of a size independent of ε. In this region, we 
could define the scattering map and give explicit formulas for its leading behavior.

Independently of the scattering map, we have developed averaging theory and ob-
tained information about a geography of the resonances that appear when averaging. It 
is important to note that the geography of resonances depends only on the integrable 
flow. The perturbations activate some of them at the order that we consider.

We recall that the set Iδ was obtained by removing from the set I∗ (defined through 
hypotheses H3–H8) all the points at a distance less than δ from either of

a) The set of double resonances activated at order smaller than m0 one of whose 
resonances is a secular resonance (i.e. a resonance of order 1, 2, see (33) and Defini-
tion 15).

b) The set of points in (8) for which the secular resonance is degenerate.

Note that by assumptions H3 and H8, the sets involved in a), b) above are the union 
of a finite number of codimension 2 manifolds—b) will be empty for quasi-convex Hamil-
tonians. Hence, for sufficiently small δ, the set Iδ will be connected. Note also that Iδ is 
independent of ε and that has a size of order 1.

Recall that in Section 3.3 we have shown that the region Iδ can be covered by a 
collection of KAM tori which are ε3/2 close to each other (as mentioned in Remark 21, 
we could have obtained a larger power of ε simply by averaging more times, which 
requires to remove some more double resonances and assume more derivatives in the 
model). We will refer to this collection as the scaffolding since the motions we construct 
consist on jumping from one element of the scaffolding to the next by the scattering map 
and moving along the element for a while.

We have shown that, under the hypothesis H8, we have that the image under the 
scattering map of any of the tori constructed in Section 3.5 intersects transversally all 
the other tori which are at a distance smaller that a quantity O(ε).

That is, if T is an invariant torus in Λ̃ε—hence a whiskered torus in the whole phase 
space—we have T �Λ̃ε

T ′ for all other tori T ′ at a distance smaller than Cε.
Given a C1 path as in the conclusion of Theorem 28, we can find a sequence {Ti}∞i=0 of 

tori at a distance O(ε) from each other and from the path γ (recall that we have shown 
that these tori are at a distance not more than O(ε3/2)). These tori satisfy

Sε(Ti) �Λ̃ Ti+1.

ε



748 A. Delshams et al. / Advances in Mathematics 294 (2016) 689–755
By Lemma 10.4 in [27], we obtain that these invariant tori in Λ̃ε—hence whiskered tori 
in the full phase space—satisfy

Wu
Ti

�Λ̃ε
W s

Ti+1
.

That is, they constitute a transition chain.
In these circumstances, there are theorems that show that there are orbits that fol-

low the transition whole transition chain. One theorem particularly well suited for our 
purposes is that of [38]. (See also some extensions [38,27,30].) Of course, there are many 
versions of these results in the literature, but some of them include the extra assumption 
that the Birkhoff normal form of the tori does not contain some terms, or that the system 
is C∞ or that the transition chain is finite. The paper [38] does not have any of these 
limitations and also does not need any assumptions on the topology of the embedding 
of the torus. It applies just as well to chains in which some of the tori are primary and 
other that are secondary.

4. An example

In this section, we present an explicit example where one can check it verifies the 
conditions H1–H8. Consider the Hamiltonian:

H(I1, I2, ϕ1, ϕ2, p, q, t, ε) = ±
(
p2

2 + cos q − 1
)

+ h(I1, I2)

+ ε cos q g(ϕ1, ϕ2, t) (120)

where

h(I1, I2) = Ω1
I2
1
2 + Ω2

I2
2
2 ,

and

g(ϕ1, ϕ2, t) = a1 cosϕ1 + a2 cosϕ2 + a3 cos(ϕ1 + ϕ2 − t).

Proposition 31. Assume that a0, a1, a2, Ω1, Ω2, Ω1 + Ω2, 4Ω1 + Ω2 and Ω1 + 4Ω2 are 
non-zero. Then Hamiltonian (120) verifies hypotheses H1–H8 of Theorem 6.

As we will see, the proof of this proposition is very explicit and we can give a rather 
precise description of the geometric objects involved in the construction. This proof also 
shows that there are other heteroclinic connections which could be used to construct 
unstable orbits. These other choices would lead, through similar calculations, to other 
regions of parameters where Theorem 6 applies.



A. Delshams et al. / Advances in Mathematics 294 (2016) 689–755 749
Proof. The first observation is that g is a trigonometric polynomial in the angles ϕ1, ϕ2, 
t, so it is clear that Hamiltonian (120) satisfies hypotheses H1–H4. The Hamiltonian of 
one degree of freedom P±(p, q) = ± 

(
p2/2 + cos q − 1

)
is the standard pendulum when 

we choose the + sign, and its separatrix for positive p is given by:

q0(t) = 4 arctan e±t, p0(t) = 2/cosh t.

An important feature of the Hamiltonian (120) is that the 5-dimensional hyperbolic 
invariant manifold

Λ̃ = {(0, 0, I1, I2, ϕ1, ϕ2, s) : (I1, I2, ϕ1, ϕ2, s) ∈ R2 × T3}

is preserved for ε �= 0: p = q = 0 ⇒ ṗ = q̇ = 0. However, in contrast with the example 
in [3], the perturbation does not vanish on Λ̃. Indeed, the dynamics on Λ̃ is provided 
simply by the restriction of H|Λ̃, which is a 2 and a half degrees of freedom Hamiltonian 
taking the form

h(I1, I2) + εg(ϕ1, ϕ2, t).

However, for any I = (I1, I2), the 3-dimensional whiskered tori

T 0
I = {(0, 0, I, ϕ1, ϕ2, s) : (ϕ1, ϕ2, s) ∈ T3}

are not preserved if ai �= 0, and the resonances activated at order one are given by the 
equations ωi = 0, i = 1, 2, 3, where we introduce the notation

ω1 = Ω1I1, ω2 = Ω2, ω3 = Ω1I1 + Ω2I2 − 1.

Therefore, (120) presents the large gap problem, because it has “large gaps” associated 
to any of these resonances activated at order one (and also to the resonances activated 
at order two that will be introduced later on).

The Melnikov potential (9) associated to the Hamiltonian (120) is given by

L(τ, I, ϕ1, ϕ2, s) = 1
2

∞∫
−∞

p2
0(τ + σ)g(ϕ1 + Ω1I1σ, ϕ2 + Ω2I2σ, s + σ)dσ,

and computing the integrals by the Residue Theorem, we obtain

L(τ, I, ϕ1, ϕ2, s) =
3∑

i=1
Ai cos(ϕi − ωiτ)

where we introduce ϕ3 := ϕ1 + ϕ2 − s, and
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Ai = Ai(ωi) = 2πωi

sinh(πωi/2) ai, i = 1, 2, 3.

Since τ ∈ R, it can be written as

L(τ, I, ϕ1, ϕ2, s) = L(I, ϕ1 − ω1τ, ϕ2 − ω2τ, ϕ3 − ω3τ)

with

L(I, ϕ) =
3∑

i=1
Ai cosϕi.

Therefore

∂L

∂τ
(τ, I, ϕ1, ϕ2, s) =

3∑
i=1

ωiAi cos(ϕi − ωiτ)

so that, given (I, ϕ1, ϕ2, s), the condition

∂L

∂τ
(τ, I, ϕ1, ϕ2, s) = 0

is equivalent to the search of critical points τ∗ of the map

τ ∈ R �→ L(τ, I, ϕ1, ϕ2, s) =
3∑

i=1
Ai cos(ϕi − ωiτ) (121)

that is, of the function L restricted to the straight line in T3:

R = R(I, ϕ) = {ϕ− ωτ, τ ∈ R}. (122)

Fixing I ∈ R2, the 8 critical points of

ϕ ∈ T3 �→ L(I, ϕ)

satisfy τ∗ = 0, as well as the points (I, ϕ) in

C(I) = {ϕ ∈ T3,
3∑

i=1
ωiAi cosϕi = 0,

3∑
i=1

ω2
iAi sinϕi �= 0}.

As a consequence, the search for critical points of the map (121) is equivalent to the 
search for intersections between the straight line R(I, ϕ) and the set C(I).

For Hamiltonian (120) the equation of C(I) is simply

ω1A1 sinϕ1 + ω2A2 sinϕ2 + ω3A3 sinϕ3 = 0 (123)
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which is just DL(ϕ)ω = 0 and defines, locally, the equation of a regular surface in 
the angles ϕ = (ϕ1, ϕ2, ϕ3 = ϕ1 + ϕ2 − s) as long as ω�D2L(ϕ)ω �= 0 holds. We 
notice that for any I ∈ R2, the points ϕ∗

M and ϕ∗
m where the Melnikov potential L

reaches its maximum and minimum (ϕ∗
i = 0 or π) belong to the set C(I), so there exist 

at least two zones contained in C(I) where this set behaves as a local regular surface 
CM (I), Cm(I), respectively, which will be called crests in analogy with the case when ϕ
is two-dimensional (see [26]).

Once the set C(I) is known to be formed at least by the two crests Cm(I) and CM (I), 
it is clear that, for any ϕ, there exist several possible intersections of the straight line 
R(I, ϕ) given in (122) with the crests Cm(I) and CM (I), parameterized by several values 
τ∗ of the parameters τ which give rise to several scattering maps.

From now on, we will choose only one of these intersections, the “first one” with the 
crest CM (I). Given (I, ϕ1, ϕ2, s), we define τ∗(I, ϕ1, ϕ2, s) = τ∗M (I, ϕ) as the real number 
τ with minimum absolute value |τ | among all τ satisfying:

ϕ− ωτ ∈ CM (I).

To determine a domain of definition of τ∗ in the variables (I, ϕ), it suffices to check that 
the straight line R(I, ϕ) intersects transversally CM (I), that is, that ω�D2L(ϕ)ω �= 0
which is exactly the inequality satisfied by C(I) and a fortiori by CM (I).

We can now choose the domain of definition H− = HM , where τ∗ is continuous simply 
by taking H− as an appropriate neighborhood of ϕ∗

M , so that hypothesis H7 is fulfilled.
Recall that the reduced Poincaré function defined in (12) is

L∗(I, θ) = L(τ∗(I, θ, 0), I, θ, 0) = L(I, θ − ωτ∗(I, θ)).

Given (I, θ), L∗(I, θ) is the value of L on R(I, θ) ∩CM (I) and it is constant along R(I, θ)
so L∗(I, θ) is well defined on CM = ∪I∈I∗CM (I).

Recall that the scattering map written in coordinates (I, ϕ, s) takes the form (90), 
which, in coordinates (I, θ = ϕ − ω(I)s) becomes

sε(I, θ) = (I + ε∂θL∗(I, θ) + O(ε2), θ − ε∂IL∗(I, θ) + O(ε2), s).

We will check the hypotheses in the non-resonant region and in the resonances acti-
vated up to order two. There are three resonances activated at order one in this model

R1 = R1,0,0 = {(I1, I2), I1 = 0}

R2 = R0,1,0 = {(I1, I2), I2 = 0}

R3 = R1,1,−1 = {(I1, I2), Ω1I1 + Ω2I2 = 1}

and four more activated at order two:
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R4 = R1,0,−1 = {(I1, I2), Ω1I1 = 1}

R5 = R0,1,−1 = {(I1, I2), Ω2I2 = 1}

R6 = R2,1,−1 = {(I1, I2), 2Ω1I1 + Ω2I2 = 1}

R7 = R1,2,−1 = {(I1, I2), Ω1I1 + 2Ω2I2 = 1}

For (I1, I2) in the non-resonant region, the condition to have heteroclinic orbits be-
tween the KAM tori are given by (99). In the resonant regions, one has to check (117)
and (118). In our example, one can easily check that both conditions are implied by the 
conditions

DL(θ)ω = 0, ω�D2L(θ)ω �= 0

defining C(I), which are a fortiori satisfied by the crest CM (I).
To check conditions H5, H6 and H8 in Ri we simply need to impose that Ω1, Ω2, 

Ω1 + Ω2, 4Ω1 + Ω2 and Ω1 + 4Ω2 are non-zero. Moreover, the potential at the resonance 
R2 is given by

U1(0, I2, ϕ1) = a1 cosϕ1

and therefore hypothesis H6 is also verified. The study of the potential in the other 
resonances Ri is analogous. �
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