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ABSTRACT. We present a geometric mechanism for diffusion in Hamiltonian
systems. We also present tools that allow us to verify it in a concrete model.
In particular, we verify it in a system which presents the large gap problem.

1. BACKGROUND AND PRELIMINARIES

About 40 years ago, the paper [Atn64] introduced the remarkable Hamiltonian
H€7IJ«(A15 AQ; P15 P25 t) = HO + EHE + :U’HH

1 1
(1) = §A?+§A§+€(COS@1 —1)
+ p(cosy — 1) (sin 2 + cost)

and showed that for 0 < y < ¢ < 1, the flow of Hamiltonian () contains orbits
such that, for some T' > 0, |A2(T) — A2(0)| > 1.

This result is in marked contrast with the behavior in the case of ¢ = yu = 0 for
which Aj, As are conserved quantities, and it is all the more surprising since the
KAM theorem (proved slightly earlier than [Arn64]) showed that the phase space of
the system—except for a set of measure QO(e + p)*/2—is covered by quasi-periodic
solutions for which |A(t) — A(0)| < K (e + u)'/? for all real t, where A = (A;, As)
and K is a constant independent of ¢, p.

Motivated by applications, related phenomena of instability were studied numer-
ically and a wealth of heuristic understanding was accumulated (see e.g. [Chi79]).

An essential ingredient in the geometric description of the argument in [Arn64]
is that the flow of Hamiltonian (I) preserves for all £, 4 a one-parameter family of
2-dimensional tori

1. = {(A7<pat) D A= 0, Ay = a, p1 =0, (5027t) € TQ}

This is a consequence of the fact that all the terms in () which involve €, u contain
as a factor (cos i — 1) which vanishes up to second order in ¢7.

When e > 0, the tori 7, have 3-dimensional stable and unstable manifolds, so
they are called whiskered tori. By performing first order perturbative calculations
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in p, it is possible to show that the stable and unstable manifolds of nearby tori
cross transversally.

As shown in a classic calculation in [P0i99, §8§403-409] (modern expositions
emphasizing the Lagrangian character of the manifolds and its consequences are
[IDRI7, DGO0]) the distance between the modified manifolds associated to 7, can
be expressed as uV, :L(a, p2,t) + O(u?).

In the case of (), the function £, usually called Melnikov potential, has the form

2 & t
‘C(a’7 P2, t) =27 a SlnﬂfQ — oo s
smh(m) smh(z—\/g)

Note that the function £ is exponentially small in €, but if we choose
(2) [ < max (exp(—gag_l/Q% exp(_gg—m)) ’

the first order in p of the perturbative calculation of the intersection is much larger
than the remainder and it allows us to conclude that the stable and unstable man-
ifolds of a torus 7, intersect transversally. Hence, the unstable manifold of 7,
intersects transversally the stable manifold of 7,4 for 6 < |uVL|.

Therefore, it is possible to construct a sequence of tori {7,:}¥, such that the
unstable manifold of one intersects transversally the stable manifold of the next
and a' = 0,a" = 1.

Then, an argument—which can be made essentially topological—shows that
there is an orbit following all the intersections. More details on the paper [Arn64]
can be found in [AA67], [DLS03a|, [FMO03].

In [Arn63) p. 176] one can find the formulation of the unsolved problem of es-
tablishing that the mechanism in [Arn64] happens for many Hamiltonian systems.
The formulation of the problem already includes the hint that one would need to
consider resonances more carefully.

If instead of the term containing p in () we would have included a more general
function which does not happen to vanish to second order at ¢; = 0, the family 7,
would not have been preserved, since the tori 7, for which the frequency As = a is
rational are destroyed (see [Poi99, §81], [Tre89]).

At resonances (regions where the frequency A is rational), the family of tori is
interrupted by gaps whose size is at most of order O(ul/ 2). This is much larger
than the distance that the manifolds move in the range of parameters ([2)) that we
required to ensure that the first order perturbation theory in p gave conclusive
results. The fact that the gaps on the family of tori are larger than the size of the
intersections of the stable and unstable manifolds—for the ranges of perturbations
considered—is what in the literature is called the large gap problem.

The heuristic discoveries of numerical exploration show that the phenomenon
of diffusion is strongest precisely on resonances. Indeed this is the most impor-
tant guide in the numerical exploration and in applications. See [Chi79], [Ten82],
[CLSVS85|. In contrast, the diffusion exhibited in [Arn64] happens precisely—by
design—in a zone which is devoid of resonances since the resonant tori are pre-
served.

Hence, there seems to have been a divergence between the mathematical litera-
ture—that has aimed to verifying the mechanism of [Arn64]—and the physical
literature that has explored the role of resonances. See [Dou8g|, [DLCR83|, [FMO01],
[Gal99], [Moe96] for rigorous mathematical verifications of the existence of the
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mechanism of [Arn64] in some specially constructed models as well as [BB02],
[BBB03| and references there for a functional analysis approach. See [DLS00] and
IBT99| for rigorous verification variations of the mechanism in perturbed geodesic
flows, which has also been considered in [Mat95]. In all the cases above, the gaps
between KAM tori are smaller than the splitting of separatrices. (A more extensive
bibliography is available in [DLS03a].)

See also [CG94], [CGIY] for a rather complete set of tools. See [Ten82], [CLSV85]
as well as [Chi79] for heuristic discussions of the importance of resonances in diffu-
sion. Among conferences which include papers with the mathematical and physical
points of view on diffusion we mention [HRS83], [Sim99].

The goal of this note is to describe a geometric mechanism that overcomes the
large gap problem. We also describe a rather detailed verification of the existence
of this mechanism in a concrete problem. A more detailed manuscript with full
proofs is available in [DLS03a].

Similar problems have been considered in [Tre(3], [CY03], which we received
after finishing this paper.

We also mention that there are detailed announcements of results using varia-
tional methods [Maf)2] as well as shorter announcements [Xia9g].

2. THE TWO DYNAMICS MECHANISM FOR DIFFUSION (HEURISTIC)

The first main idea of our proposed mechanism is that, at the same time that
resonances destroy KAM whiskered tori, they generate some other objects that can
also be used as part of transition chains that generate diffusion.

An example which is well known is that perturbations of integrable twist maps
break resonant tori but leave hyperbolic periodic orbits—with their stable and
unstable manifolds—and elliptic islands. Note that neither of those objects have
analogues in the integrable map. (See [P0i99, §§74, 79, 81], [LW89] for some higher-
dimensional extensions.) All these objects generated by the resonances will take up
the role of the invariant tori that are destroyed by the resonances.

One convenient way of organizing the many different objects that we encounter
is to identify normally hyperbolic invariant manifolds A that are present in the
system. It happens frequently that the stable and unstable manifolds of A intersect
transversally. This is commonly described as saying that there are transverse ho-
moclinic intersections to A. An easy dimension count shows that the intersection
of these stable and unstable manifolds will typically contain a manifold that has
the same dimension as A.

More precisely, given a normally hyperbolic invariant manifold A whose stable
and unstable manifolds W;’u intersect transversally, we can associate to it two
dynamical systems:

The inner map: This is simply the time one map restricted to A, and we will
denote it by F.

The scattering map or outer map: We also associate another dynamical
system to the homoclinic excursions along the prescribed connection.

More precisely, given a family of orbits v C W3 N W7 such that the intersection
of the stable and unstable manifolds is transversal along y—hence « should be a
manifold of the same dimension of A—we define the scattering map S associated to v
by setting 4 = S(x_) when we can find z € v such that d(®;(z), ®;(z+)) < Ce A
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ast — +o0o. Here ®; denotes the dynamics of the system and A > 0 is the exponent
of the normal rate of contraction of the normally hyperbolic manifold.

That is, when performing a homoclinic excursion, the system goes from resem-
bling the orbit of z_ to resembling the orbit of x4 = S(z_).

Since the map S is formulated in terms of normally hyperbolic invariant mani-
folds, it is possible to compute it using perturbation theory of normally hyperbolic
manifolds. It admits a rather explicit expansion S = Sp + €51 + €28y + - - -.

We note that the scattering map can be regarded as an alternative to the stan-
dard methods in Melnikov theory. Conceptually, it relies less on coordinates, so that
it can be computed quite effectively and can work for all points in A independently
of the motion they experience.

By intermingling the two dynamics, we construct sequences of points {zy } nyen,
where zy = F™ 0 So0---050 F™(z), which diffuse.

Such a sequence can be described heuristically as a pseudo-orbit which stays
“parked” near the invariant manifold A along some convenient times n; and, at
certain times suitably chosen, performs homoclinic excursions.

Under many circumstances, there are variants of the obstruction property which
ensure that there are orbits of the original system that track zy closely. Notably
if all the z lie in non-resonant tori invariant under F, we can use the obstruction
argument in [AAG7] (a very careful implementation can be found in [FMOT]).

As a consequence, if xy experiences diffusion—and is such that the obstruction
property can be applied—then there is an orbit {®;(y)} in the original system which
also experiences diffusion.

Note that in Example (1) the manifold A; = 0, ¢; = 0 is normally hyperbolic
for |e| > 0. Hence it persists for |u| < 1.

We emphasize that the persistence of the normally hyperbolic invariant manifold
is true for any perturbation H,, not just the one used in ().

If we take the perturbation H, to be a generic one we can expect that the
dynamics in the manifold A includes not only the tori that survive from Hg + eH.
but also the dynamics associated to the resonances.

3. RIGOROUS VERIFICATION IN A MODEL

In [DLS03a] we have undertaken a very detailed rigorous verification of the ex-
istence of the mechanism described above for models of the form

1 1
(3) HE =+ <§A% + V(wl)) + iAg + 5h(A1,A2790178027t55)~

The system () presents the large gap problem and has been a very popular
model for the study of diffusion since [HM82].
A particular case of the results of [DLS03a] is:

Theorem 1. Assume that a Hamiltonian of the form @) satisfies:

H1. The termsV and h in B) are uniformly C" forr > ro, which is sufficiently
large.

H2. The potential V : T — R has a global mazimum at 0 which is non-degenerate
(i.e., the second derivative is not zero). We denote by (AY(t), ¢9(t)) an orbit
of the pendulum £(3 A3} 4+ V (¢1)) homoclinic to (0,0).
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H3. & is a trigonometric polynomial in ¢ and t:

h(Ay, Ag, 1,02, t52) = > hra(A, Ag, py;e)e’Featit),
kleN
where N' C 72 is a finite set.
H4. Consider the Poincaré function, also called Melnikov potential, associated
to h (and to the homoclinic orbit (A9, ) mentioned in H2):

+oo

@) Lltngnt) = = [ (h(A%0). A0 (o), pa + Arcit 4 30)

— 00

— h(0, A2,0, p2 + Az0,t + o; 0)) do.

Assume that, for any value of As € (a™,a™) there exists an open set Ja, C
T2, with the property that when (Aa,2,t) € H_, where

(5) H = | {4} xJa, C(a,a") xT?
Az€e(a—,at)
the map
(6) TeR’—?E(AQ,SDQ_AQT,t_T)

has a non-degenerate critical point T which is locally given, by the implicit
function theorem, in the form T = 7%(Ag, v2,t) with " a smooth function.
Assume moreover that for every (A, pa2,t) € H_, the function

oL . .
(7) 8—<p2(A27<P2—A2T t—1%)

is non-constant and negative (respectively, positive).
H5. The perturbation terms h(A1, As, p1,p2,t;0), %(Al,Ag,apl,apg,t;O), sat-
isfy some non-degeneracy conditions that can be stated quite explicitly.

Then, for 0 < |e| < &*, the system @) has orbits such that A2(0) < a~ + O(e),
As(T) > at + 0(e) (respectively, A2(0) > at + O(g), A2(T) <a™ +0(e)).

Remark 2. Since [CG94], it is sometimes customary to distinguish between a priori
stable and a priori unstable systems. Following this terminology, our model () is an
a priori unstable system because the unperturbed Hamiltonian has no global action
angle variables (in fact, it has partially hyperbolic tori with homoclinic trajectories).

This distinction makes sense only for one-parameter families. When one consid-
ers two-parameter families as in [Arn64] or generic results, the results for a priori
unstable maps automatically imply results for perturbations of an a priori stable
Hamiltonian in a cusp residual set.

For example, if we consider the a priori stable system with two parameters

)

1 1
(8) H56 == <§A% + 6V(901)> + 514% + €h(A1;A2a 50179027t;6)

satisfying non-degeneracy conditions, we obtain similar results as in Theorem [ if
we assume, as in [Arn64], that e is (exponentially) small with respect to §. Note,
that in (8) the gaps between KAM tori at a non-degenerate primary resonance are
Bel/? + O(e), the splitting of separatrices is O (exp(—C3~1/2)) + O(e?) and the
distance between secondary and primary tori is, again, smaller than O(%/2). O
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The verification undertaken in [DLS03a] is very explicit so that, given h, V, a
finite number of calculations can establish that (B]) satisfies the mechanism outlined
heuristically above, mainly H4 and H5.

The verification undertaken in [DLS03al consists of a sequence of perturbation
theories. Most of them are somewhat standard in geometric theory of diffusion.
They need to be developed with very quantitative statements so that they form a
coherent toolkit. We highlight here the main steps.

(1) Using the theory of normally hyperbolic invariant manifolds, we show:

(a)

(b)

(c)

The manifold A = {4; = 0,¢; = 0}, which is invariant and normally
hyperbolic for e = 0, persists for |¢| <« 1 giving rise to A.. We compute
expansions for A, and for the Hamiltonian restricted to it.

Under the non-degeneracy conditions in H4, the stable and unstable
manifolds W;’u of the normally hyperbolic invariant manifold A,—
which agree for e = 0—have transverse intersections.

Given the transverse intersections of the previous point, the scattering
map S can be computed in first order perturbation theory.

One of the conclusions of the calculations is that the scattering map S
is close to the identity in a C™ sense, where 7 can be taken arbitrarily
large if r is sufficiently large.

(2) The motion restricted to the normally hyperbolic invariant manifold A, is
analyzed as follows:

(a)

Using that the system restricted to A. is a periodic perturbation of
a one degree of freedom Hamiltonian system, averaging theory shows
that the system can be transformed up to small errors into a time in-
dependent system. Near the resonances, the system can be accurately
described by systems similar to a pendulum.
Far away from the resonances, using that a time independent one de-
gree of freedom Hamiltonian is integrable, we can use the standard
KAM theorem to show that there are closely spaced KAM tori.
Near the resonances we switch to singular action-angle variables and
show that, under appropriate non-degeneracy conditions, we can find
i) KAM tori close to the separatrices of the pendulum.
ii) Secondary KAM tori—tori which are contractible to a periodic
orbit—close to the separatrices of the pendulum.
iii) Stable and unstable manifolds of periodic orbits close to the
separatrices of the pendulum.

Note that the objects ii), iii) above are not present in the unperturbed
system but are generated by the resonances. We refer to these objects
as secondary objects.
We emphasize that the objects in i), ii), iii) can be made to be very
close to each other. In particular, the secondary tori of ii) are very
close to the KAM tori of i) and the stable and unstable manifolds of
iii) are in between.
These secondary objects dovetail in the gap produced by the reso-
nances among the KAM tori. See Figure[Il

(3) Under appropriate non-degeneracy conditions—which are reflected in the
non-vanishing of certain terms of the perturbation theory of the map S—
it will happen that the image under the scattering map S of some of the
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FIGURE 1. Surface of a section of A, illustrating the main invariant
objects. The primary KAM tori and the secondary tori are on the
left. The primary tori and the stable and unstable manifolds of
periodic orbits are on the right.

objects considered in (b) and (c) of step 2 intersect transversally in A, other
such objects.

A moment’s reflection shows that if S(V1), Vo intersect transversally as
submanifolds of A, then Wy, intersects Wy, transversally as submanifolds
of the phase space.

Since the objects we constructed in step 2 are closer than €%/2, and the
scattering map moves objects by an amount O(e), some non-degeneracy
assumptions will allow us to establish that they intersect transversally under
the action of the scattering map. Therefore, all these objects form what is
called a transition chain.

Note that the method allows us to establish without problem the exis-
tence of transition chains containing objects that have different topological
type and which do not have analogues in the unperturbed problem.

(4) The obstruction methods can be adapted to show that there are orbits that
track the escaping pseudo-orbits.

Even if some of the earlier proofs of the obstruction properties use coor-
dinate systems, we point out that there are more recent proofs which make
it clear that the obstruction property is true independently of a common
system of coordinates in the tori.

The motion on the normally hyperbolic invariant manifold is depicted in Figure
[ where we indicated the objects and their relative positions and distances.

In Figure 2l we indicate the effect of the scattering map on the objects previously
found.
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FIGURE 2. Schematic illustration of the main invariant objects in
A, as well as their images (dashed) under the scattering map.

4. FINAL REMARKS

The proof of Theorem [T shows that there exists a transition chain with a torus
O(e) close to 7T,- and another torus O(e) close to 7,+ and so that the tori composing
this transition chain are closely spaced. Note that under hypothesis H2 there are
indeed two homoclinic orbits of the pendulum +(3 A% +V(¢1)). Moreover, for each
of these orbits, the function given in (@) will have several critical points, which are
typically non-degenerate. If two of these choices give us intervals [a] ,a]], [ay,a]]
and a > a;, then, the result produces a transition chain that starts near a; and
ends near a; .

Besides orbits that diffuse along the action As, the geometric mechanism used in
the proof of Theorem [[] provides orbits that visit the tori in a somewhat arbitrary
order.

Note that the transition chains produced in [Arn64] increase the action O(e)
per step in the transition chain. The transition chains produced here take steps
0(e'/?) at resonances. This agrees with the numerical and heuristic intuition, which
suggests that the diffusion is faster precisely at resonances.

We note that the verification in [DLS03a] uses mainly tools which are rather stan-
dard in the geometric approach to diffusion. Of course, they require adaptations so
that they can work together and form an efficient toolkit. We hope that this toolkit
can be used for other problems. We also hope that new tools can be incorporated to
the toolkit. Notably, variational methods and more topological methods. Indeed,
a very similar mechanism to the one described in Section [2] was implemented in
[DLS00] to give a geometric proof of the results in [Mat95]. In turn, ingredients of
the geometric proof were used to simplify some of the variational arguments.

A similar toolkit has been used in [DLS03D] to verify the existence of orbits of un-
bounded energy of quasi-periodic perturbations of geodesic flows—for Riemannian,
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Lorentz or Finsler metrics—in many manifolds. We think it would be interesting
to find variational analogues of the later result.

It seems to us that, if one does not insist on verifying the results for concrete
systems, but rather show that the mechanism happens for quasi-integrable generic
systems, the verification could be somewhat simplified. We hope that the modu-
larity of the method could encourage the use of topological or variational methods
for some of the steps. We also note that the method presented here admits several
variants with different quantitative properties. Diffusion seems to include all the
variety of possible mechanisms.
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