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Abstract

We show that certain mechanical systems, including a geodesic flow in any dimension plus
a quasi-periodic perturbation by a potential, have orbits of unbounded energy.

The assumptions we make in the case of geodesic flows are:

(a) The metric and the external perturbation are smooth enough.
(b) The geodesic flow has a hyperbolic periodic orbit such that its stable and unstable manifolds

have a tranverse homoclinic intersection.
(c) The frequency of the external perturbation is Diophantine.
(d) The external potential satisfies a generic condition depending on the periodic orbit consid-

ered in (b).

The assumptions on the metric are C2 open and are known to be dense on many manifolds.
The assumptions on the potential fail only in infinite codimension spaces of potentials.

The proof is based on geometric considerations of invariant manifolds and their intersections.
The main tools include the scattering map of normally hyperbolic invariant manifolds, as well
as standard perturbation theories (averaging, KAM and Melnikov techniques).

We do not need to assume that the metric is Riemannian and we obtain results for Finsler or
Lorentz metrics. Indeed, there is a formulation for Hamiltonian systems satisfying scaling
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hypotheses. We do not need to make assumptions on the global topology of the manifold nor
on its dimension.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The goal of this paper is to give a proof, using geometric perturbation methods,
of a generalization of a result proved by the authors in [DLS00], which provided a



A. Delshams et al. / Advances in Mathematics 202 (2006) 64–188 67

geometric version of a result of [Mat96]. (Another geometric version of the results of
[Mat96] was developed in [BT99].)

More precisely, we will show that the mechanical system consisting of a geodesic
flow in a manifold plus a time quasi-periodic potential possesses orbits of unbounded
energy, provided that the geodesic flow and the potential satisfy some mild non-
degeneracy assumptions. We refer to Theorem 1.3 for a precise formulation of the
results on geodesic flows.

The only feature of the geodesic flow that we use in the proof is that the metric
is homogeneous in the momenta so that, for high enough energy, we can consider the
potential as a small and slow perturbation of the geodesic flow. In contrast with many
variational results, we do not need that the Hamiltonian is convex in the momenta.

Hence, we obtain results for geodesic flows not only in Riemannian metrics but also
when the metric is Finsler or Lorentz or when the system has a magnetic field.

Similarly, we do not use the homology of the manifold. Provided that the geodesic
flow has a periodic orbit with a transverse homoclinic intersection, all our analysis is
carried out in a neighborhood of the orbit and the connection. In particular, our results
apply just as well to geodesic flows on the sphere.

Even if many of the methods of this paper are similar to [DLS00], there are important
differences both conceptual and technical. In any case, we have striven to make this
paper self-contained so that it can be read independently from [DLS00]. (A more
detailed comparison of this paper with [DLS00] and with other papers can be found
in Section 1.2.)

Indeed, we have attempted to make this paper not only self-contained but also ped-
agogical and have included many details that can be found in standard references and
indeed documented results that are in the folklore. Since the main result is proved by
an assembly of diverse techniques, which are developed in different places, we hope
that this would be useful for the readers.

In this paper we will deal with a n-dimensional manifold M, and we will consider
a Cr metric g on it (r sufficiently large).

We recall that a geodesic “�” is a curve “�”: R → M , parameterized by arc length
which is a critical point for length between any two points. It is also possible to consider
a dynamical system given by the geodesic flow in S1M , the unit tangent bundle of M.
We denote the parameterized curve in S1M corresponding to the geodesic “�” as �(t),
and we denote by

�̂ = Range(�) ⊂ S1M.

Note that we can change the origin in the parameterization of the geodesic arbitrarily.
We will assume that this origin is chosen once and for all. Once this choice is made,
other choices of coordinates that we will introduce later will become unique. See (6).

We will assume that the metric g verifies:

H1. There exists a closed geodesic “�” such that its corresponding periodic orbit �̂
under the geodesic flow is hyperbolic.
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H2. There exists another geodesic “�” such that �̂ is a transversal homoclinic orbit
to �̂.

That is, �̂ is contained in the intersection of the stable and unstable manifolds of �̂,
W s

�̂
, W u

�̂
, in the unit tangent bundle.

Moreover, we assume that the intersection of the stable and unstable manifolds of �̂
is transversal along �̂. That is

T�(t)W
s
�̂

+ T�(t)W
u
�̂

= T�(t)S1M, t ∈ R. (1)

We will assume, without loss of generality and just to avoid typographical clutter
that the period of “�” is 1. This, clearly, can be achieved by choosing the units of
time, which does not affect any of the subsequent discussions.

The abundance of systems satisfying hypotheses H1, H2 is described in Section 2.
We just note that they can be found arbitrarily close to integrable metrics (e.g. the
standard metrics in the torus or in the sphere).

Remark 1.1. A consequence of the hyperbolicity of �̂ assumed in H1 is that the orbits
that tend to �̂ actually approach a specific orbit contained in �̂. (This is a particular
case of the well-known fact in normal hyperbolicity theory that W s

�̂
= ∪

x∈�̂ W s
x . See

Appendix B for an account of the theory of normally hyperbolic invariant manifolds.)
That is, if “�”, “�” are as in H2, there exist real numbers a+, a−, such that

dist (“�”(s + a±), “�”(s)) → 0 as s → ±∞. (2)

We recall that hyperbolicity of �̂ implies that there exist C > 0, �0 > 0 such that

dist (“�”(s + a±), “�”(s))�Ce−�0|s|, as s → ±∞.

Then, the orbits of �̂ and �̂ approach exponentially fast, both in the future and in the
past. Standard perturbation theory for ordinary differential equations (see e.g. [CL55])
shows that the asymptotic phase shift � := a+ − a− exists and is unique modulo an
integer multiple of the period of “�”.

In this paper, we study the effects of adding a quasi-periodic potential U to the
geodesic flow. We will need that the frequency of the perturbation satisfies Diophantine
conditions, so we recall the standard definition.

Definition 1.2. We say that � ∈ Rd is Diophantine when there exist � > 0 and ��d−1
such that

|� · k|��|k|−� ∀k ∈ Zd \ {0}. (3)
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We have collected some more information on Diophantine numbers in Appendix A,
Section A.1.

Note that when d = 1, all real numbers different from zero satisfy condition (3)
with � = 0. When � is the frequency of a quasi-periodic motion, d = 1 corresponds to
a periodic motion. Hence, the periodic potentials considered in [DLS00] are particular
cases of the quasi-periodic potentials considered in this paper.

The main result of this paper for geodesic flows is:

Theorem 1.3. Let � ∈ Rd be Diophantine, r ∈ N be sufficiently large (depending on
�, the Diophantine exponent of �).

Let g be a Cr metric on a compact manifold M, verifying hypotheses H1, H2, and
U : M × Td → R a generic Cr function.

Consider the time dependent Lagrangian

L(q, q̇, �t) = 1
2gq(q̇, q̇) − U(q, �t), (4)

where gq denotes the metric in TqM .
Then, the Euler–Lagrange equation of L has a solution q(t) whose energy

E(t) = 1
2gq(q̇(t), q̇(t)) + U(q(t), �t),

tends to infinity as t → ∞.

We will deduce Theorem 1.3 from a more general result, Theorem 3.4, stated in the
Hamiltonian formulation. In turn, Theorem 3.4 will be deduced from the more general
Theorem 4.27 which establishes the existence of orbits whose energy changes in largely
arbitrary ways. In particular, we will establish the existence of uncountably many orbits
whose energy is unbounded.

Remark 1.4. Even if, for the moment, we have only claimed the result for a generic
potential, the genericity condition for U will be described very explicitly in the statement
of Theorem 3.4. It amounts to assuming that the Poincaré function L (introduced in
(16)), associated to the homoclinic intersection and the potential, is not constant. This
Poincaré function is, roughly, a combination of integrals of U along the geodesics “�”,
“�” satisfying H1, H2. If we fix “�”, “�”, this condition is true for all U’s except those
in a set of infinite codimension.

Notice that once a system has some geodesics satisfying H1, H2, it has infinitely
many (e.g. apply Smale’s horseshoe theorem). If the hypothesis on the Poincaré function
L is verified just for one pair �, �, the existence of orbits with unbounded energy will
follow. Hence, it is extremely rare to have potentials that fail to satisfy this hypothesis.
We conjecture that given a geodesic flow satisfying H1, H2, all non-degenerate analytic
potentials (i.e. all potentials U such that �q��U(q, �) �≡ 0) satisfy it.

Remark 1.5. Let us emphasize that the conclusion of Theorem 1.3 is the existence
of orbits whose energy changes significantly. This is different from the results in
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[Gal97,Gal99], which also consider quasi-periodic perturbations. In [Gal97,Gal99], the
variables that experience changes of order 1 are actions introduced in the Hamiltonian
formalism which are not present in the Lagrangian formalism. We will present a more
detailed comparison in Remark 4.24.

Remark 1.6. We can give explicit bounds for the value of r for which the method
presented here works. The proof that we present here shows that the argument works
if r > max(53 + 4�, 28 + 5�), where ��d − 1 is the Diophantine exponent of � given
in Definition (1.2), but we do not claim this to be the minimum value for the result
to be true or for the techniques presented here to work.

Theorem 1.3 is a generalization of Theorem 1.1 of [DLS00]. In that paper, periodic
perturbations of a geodesic flow in a two-torus were considered. The hypotheses of
[DLS00] are contained in the hypotheses of this paper.

The existence of orbits with unbounded energy in perturbations of geodesic flows of
T2 by periodic potentials had been established in [Mat96] using variational methods.
We also note that [BT99] presents a geometric mechanism for existence of unbounded
orbits different from the one presented in [DLS00] and in this paper. Other mechanisms
that rely more on hyperbolicity can be found in [Lla02,Tre02a,Tre02b]. An example
where the diffusion is generated by oscillations of an adiabatic invariant is presented
somewhat heuristically in [IdlLNV02].

One motivation to study external quasi-periodic perturbations, is that they are a natu-
ral step towards more realistic models in which one can find orbits with unbounded en-
ergy. Models in which the energy is affected by a quasi-periodic perturbation are natural
models of the solar system (see [GJSM01a,GJSM01b,GLMS01,GSLM01,SGJM95]).

The method of proof that we present in this paper is related to the method of proof
used in [DLS00]. A description of the proof used in the present paper is given in
Section 1.1 and the comparison with that of [DLS00] in Section 1.2.

The orbits that we produce can be described heuristically in the same way that the
orbits of [DLS00] and the orbits of [Mat96]. They are orbits that remain “parked” near
the periodic geodesic, but when the phases of the external perturbation are such that a
homoclinic excursion will lead to a gain of energy, they perform it. Of course, the details
of the proof are very different for quasi-periodic perturbations and for periodic ones.

Remark 1.7. We do not know whether a variational proof of existence of unbounded
orbits in the models considered here could be obtained. The main obstacles seem to
be the consideration of quasi-periodic perturbations, the use of Hamiltonians which
are not positive definite and the fact that the manifold we consider may not have any
non-trivial homology. Of course, there are quite a number of variants of variational
methods and it seems possible that some of them could be adapted to the models at
hand. In particular, we call attention to [Itu96] which contains a study of variational
methods for non-autonomous systems with rather general time dependence.

Remark 1.8. In the mechanism of [BT99], the orbits stay parked not near periodic or-
bits but near whiskered tori with one hyperbolic direction. Hence, for two-dimensional
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geodesic flows, the orbits of [DLS00] and those of [BT99] admit a similar geometric
description. Nevertheless, for higher-dimensional manifolds they are quite different. For
example, there are quite detailed studies [Kli78,Kli83] of the abundance of metrics with
periodic orbits and homoclinic intersections. On the other hand, for dimensions greater
than 2, we are not aware of studies of abundance of whiskered tori with 1-D stable
or unstable manifolds. We think that it would be interesting to obtain a method that
unifies the methods of [BT99,DLS00].

In the mechanism of [Lla02], there are no periodic or quasi-periodic orbits that play
an explicit role. The mechanism of [Lla02] does not require that the perturbation is
Diophantine.

Remark 1.9. Note that the mechanism for unbounded growth of energy presented
here can be considered somewhat related to the classical Arnol’d diffusion. Indeed,
we obtain the growth of energy by establishing the existence of a transition chain
of whiskered tori with unbounded energy. (See the precise definitions of whiskered
tori and transition chains and what we call transition path later in Definitions 4.28
and 4.32.)

We note that the unperturbed system (the geodesic flow) already has transversal ho-
moclinic orbits. This is different from most of the situations considered in Arnol’d
diffusion in which the unperturbed system is considered to be integrable; either in the
sense of having action angle variables—called a priori stable in [CG94,CG98]—or
in the sense of having conserved quantities with separatrices—called a priori unsta-
ble in [CG94]—. In [DLS00] the systems in which the unperturbed part has already
transversal homoclinic intersections are called a priori chaotic.

The field of diffusion has received a great deal of attention recently. We mention the
recent papers [BB02,BBB03,CQC03,DdlLMS03,DdlLS03,EMR01,Moe02,MS02,Tre02a,
Tre02b,Tre02c,Tre04] as well as the announcements [Mat2,Xia98].

1.1. Summary of the method

The proof will be organized in a sequence of steps. We emphasize that the steps
are quite independent of each other and that most of them are just extensions of
well-known techniques (normal hyperbolicity, averaging theory, KAM theory, Melnikov
method, shadowing method). Besides extending and unifying the above-mentioned stan-
dard techniques, a tool that will be very useful for us is the “scattering map” associated
to a normally hyperbolic invariant manifold with homoclinic connections. This tool was
introduced in [DLS00].

We emphasize that the strategy has a rather simple geometric interpretation and that
in the geometric language, the progression of the argument is very clear. Of course,
rigorous proofs require a variety of techniques and are, therefore, long, but we hope that
the fact that the steps are largely independent can make it possible to read it modularly
and even skip some sections which may look obvious to the expert. Needless to say,
most of the steps used in the present proof can be accomplished using techniques
different from the ones we present here. We hope that the modularity will encourage
alternative approaches.
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We hope that the strategy presented here (and the attendant toolkit we used to
implement it) can be applied to a variety of problems. Indeed, in [DdlLMS03,DdlLS03],
we have used geometric methods to construct orbits that overcome the large gap
problem.

In the rest of this section, we give a description of the method and in the next
section, we will highlight some of the main technical differences with [DLS00].

In Section 2, we study some cases where hypotheses H1 and H2 are verified. For
example, they are verified for all closed surfaces of genus bigger or equal than 2,
and are generic for all compact surfaces. They are also known to happen in higher
dimensional manifolds. We think that it is reasonable to conjecture that they hold for
generic metrics in all manifolds.

In Section 3 we highlight some geometric features of the geodesic flow defined in
the extended phase space T∗M × Td when using the Hamiltonian formalism. We show
that H1 and H2 can be formulated as the existence of a (d + 2)-dimensional normally
hyperbolic invariant manifold �̃ filled by (d + 1)-dimensional tori, and the existence
of a (d + 2)-dimensional homoclinic manifold �̃ to �̃.

One important geometric observation is that the geodesic flow restricted to �̃ is
the product of a one degree of freedom Hamiltonian and a Kronecker flow in a d-
dimensional torus, and therefore, it is integrable.

In Section 3.7 we introduce the scattering map, S̃ : �̃ → �̃ associated to �̃, which
is one of the main tools we will use to find homoclinic and heteroclinic connections.
We construct the scattering map S̃ associated to �̃ as follows: Given an orbit �(t) in �̃,
S̃ associates to the orbit in �̃ asymptotic to �(t) in the past, the orbit in �̃ asymptotic
to �(t) in the future.

The scattering map is a geometrically natural way to describe homoclinic or hetero-
clinic transitions between invariant objects of a normally hyperbolic invariant manifold.
The geometrical naturalness of the method will become useful when we carry out the
perturbative calculations to establish existence of heteroclinic intersections.

In Section 4 we study the effects of the quasi-periodic potential in all the invariant
objects for the geodesic flow that we had considered before.

First of all, to exhibit the perturbative character of the problem for high energy,
we introduce, in Section 4.2, scaled variables. This leads to the fact that, for high
enough energy, the potential can be considered as a small and slow perturbation of the
geodesic flow. More concretely, setting ε = 1√

E∗ for some large value of the energy

E∗, the potential can be considered, in a neighborhood of the surface of energy E∗,
as a perturbation of the geodesic flow of size O(ε2) and of frequency O(ε). We note
that, for the subsequent analysis, the fact that the perturbation is slow plays a much
more significant role than its smallness.

In Section 4.3 we use the theory of normally hyperbolic invariant manifolds to obtain
the persistence of a (d + 2)-dimensional manifold �̃ε, close to �̃.

We also formulate the persistence of the stable and unstable manifolds to �̃ε and
their homoclinic intersections along a manifold �̃ε, close to �̃. That is, all the features
that we highlighted in Section 3 persist. As a consequence, it is possible to define still
a scattering map for the perturbed manifold �̃ε.
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In Section 4.3.4 we consider the Hamiltonian flow restricted to the perturbed invariant
manifold �̃ε. We first observe that the flow restricted to �̃ε is a slow perturbation of
an integrable system.

Therefore, in Section 4.3.5, taking advantage of the fact that our system is very
differentiable, we use an averaging method to high order to show that, in some canonical
variables, the flow is an extremely small quasi-periodic perturbation of an integrable
flow. In Section 4.3.6, we apply KAM theory to this averaged flow and we prove
that the manifold �̃ε contains an abundance of KAM tori, with extremely small gaps
between them (the gaps can be bounded from above by a large power of the inverse
of the energy).

In Section 4.4 we compute perturbatively the scattering map on the perturbed mani-
fold �̃ε. In particular, we show that the computation of heteroclinic orbits to invariant
tori by means of the scattering map reduces to a variant of the Melnikov method intro-
duced in [Tre94] and already developed in [DLS00]. We work out the relation of the
scattering map formalism and the more commonly used language of Melnikov func-
tions and Melnikov potentials. One advantage of the scattering map method is that the
scattering map is defined on the whole manifold �̃ε and does not use that the objects
considered can be reduced to a common system of coordinates or have a particular
dynamics. This allows to compute connections among invariant objects of a different
nature. This advantage is particularly crucial in [DdlLS03,DdlLMS03].

We conclude in Lemma 4.33 that, under the hypothesis that some explicitly com-
putable function (the Poincaré function (16)) is non-constant, there exist transition paths
joining tori with arbitrarily large energies.

The non-triviality of the Poincaré function is the generic hypothesis on U alluded in
Theorem 1.3. It will be clear that, once we select the �, � that verify hypotheses H1,
H2, the condition on the potential is verified by a Cs open and dense set of potentials
with s�1.

We note for experts that in this paper we formulate our results in terms of transition
paths (see Definition 4.32) rather than in terms of transition chains as it is commonly
done in the literature. While transition chains are just a sequence of whiskered tori
with heteroclinic connections between consecutive ones, transition paths specify the
sequence of tori and the heteroclinic connections between consecutive ones. Hence,
when we construct orbits shadowing transition paths, we not only specify which tori
they visit but also which paths they use to move from one torus to the next. This
makes explicit a much more detailed control.

In Section 4.5.3 we establish the existence of transition paths involving tori whose
energy goes to infinity. As a matter of fact, we will establish the existence of a sequence
of tori, whose energy goes to infinity so that there are connections going from each one
of them to the next and to the precedent. This makes it possible to construct transition
paths whose energy changes in largely arbitrary ways.

Once we have the existence of a transition path between invariant tori whose energy
goes to infinity, in Section 4.5.4, we show that, given a—possibly infinite—transition
path, there exist orbits which follow the transition path with arbitrarily chosen accuracy.
In particular, the energy remains always close to that of the invariant tori and the
connections in the transition chain.
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Theorem 4.27 is a rather precise statement about the existence of orbits whose energy
performs largely arbitrary excursions, in particular, of an uncountable number of orbits
whose energy tends to infinity.

Even if the KAM theorem we use, namely Theorem 4.8, is very close to results
that can be found in the literature—see in particular [Zha00] and [BHTB90]—we
have not found a statement that includes explicitly the quantitative results we need.
Hence, we have developed Appendix A to establish Theorem 4.8 by modifying slightly
[Zeh76a,Zeh76b]. Undoubtedly, the modifications presented will be well known to ex-
perts but we hope that the explicit presentation could be useful for some readers and
make this paper self-contained.

Also for the sake of completeness, we present in Appendix B proofs of the result on
persistence of normally hyperbolic invariant manifolds that we use. The statement that
we need presents some peculiarities which are not covered in standard treatment, such
as dealing with non-compact manifolds or with unbounded vector fields. Nevertheless,
using the special structure of the problem, it is possible to give a very simple and
quantitative proof.

Remark 1.10. We emphasize that, as pointed out in [AA67], the argument of existence
of shadowing orbits we use in the proof of Theorem 4.27 is purely topological, once
one has an appropriate �-lemma which uses C2 properties of the map. We follow the
version of the argument in [DLS00] which relies on the �-lemma of [FM00,FM03].

The topological argument presented here does not produce any estimates on the
times of transition. Hence Theorem 1.3 does not make any claim on the times required
for the energy to grow. It seems quite possible to us that one could modify this
paper using the more quantitative connecting arguments developed in—among others—
[BB02,BBB03,BCV01,CG03,Tre02a]. It also seems that at these stage, one could also
use some connecting argument based in the broken geodesics method [Bes96,RS02], or
on topological methods [Eas78,Eas89,GR03,GR04]. This may be the subject of future
work.

It seems almost certain that the model presented here contains other mechanisms of
diffusion with quantitatively different properties.

1.2. Comparison of the method of this paper with the methods of [DLS00] and other
papers

Even if at the level of a superficial description the method of proof of this paper
is similar to that of [DLS00], there are several important differences which we now
describe. Of course, this section does not contain any result used later in this paper
and can be skipped safely.

We call attention to two technical improvements that can have further applications.
Notably, we include a more precise description of transition chains (transition paths)
and shadowing lemmas and a more efficient perturbative calculation of the scattering
map.
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1.2.1. Removing assumptions on the underlying manifold
We have removed completely the assumption that the manifold is T2.
Indeed, in [DLS00], this assumption was not used much, only to obtain a system of

coordinates.
The geometric method just needs to analyze the behavior of the system in a neigh-

borhood of the periodic orbit and the homoclinic excursion to it.
Therefore, independently of the ambient dimension and the properties of the manifold

M, it suffices to perform a largely two-dimensional analysis on the (d +2)-dimensional
manifolds �̃, �̃, formed by the periodic and the homoclinic geodesics for all sufficiently
large values of the energy plus the d quasi-periodic variables.

1.2.2. KAM theorem
In this paper, we have to resort to a more sophisticated KAM theorem (4.8) instead

of the standard KAM theorem for twist maps as was done in [DLS00]. In contrast
with the KAM theorem for twist maps, we could not find a proof of the theorem we
need in the literature. So, we present a proof in Appendix A. The proof is significantly
less optimized (in aspects such as the differentiability assumptions and the size of the
gaps) than the KAM theorem for twist maps. When applied to the case considered
in [DLS00], the present proof requires more differentiability on the metric and on the
potential than the result in [DLS00].

1.2.3. Asymptotic expansion of the KAM tori
Related to that, we note that we have also changed the method of obtaining an

approximate description of the (d + 1)-dimensional invariant tori produced by KAM
theorem 4.8.

We recall that the problem of obtaining approximate expresions for KAM tori with
a fixed frequency is solved by the standard Linsdstedt series. In our case, however,
one of the frequencies is also become small at the same time that the perturbation
becomes small. (in particular, the frequency depends on the perturbation parameter ε).
Hence, if one considers all the possible Fourier modes for a range of ε, one has zero
divisors.

In [DLS00], we just considered Fourier modes of size ε−1/2. In this way, the smallerst
denominators are ε1/2. Using the decay of coefficients due to the differentiability, it is
possible to bound—in a space of less regularity—the error of the approximate solution
by a power of ε. The power is large if we allow a larger loss of differentiability.

In this paper, in Section 4.3.7, we use just that, in the averaged coordinates, the
tori are almost flat, but we make back the change of variables explicitly. This has
the advantage that it makes more explicit the fact that tori of similar frequency fit
together.

We also note that the problem of obtaining Lindstedt series when the frequencies are
in different scales has been extensively studied in [Gal94,GGM99,GGM00]. Unfortu-
nately, the methods of these papers are not suitable for our case, since they rely on the
perturbations being analytic. We will present full details of an elementary geometric
method which yields the results we need.
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1.2.4. A quasi-periodic Melnikov method
The Melnikov method that has been developed in [DLS00] has been adapted to the

quasi-periodic case. This requires to develop again the theory of Melnikov functions.
Since there are d-dimensional phases in the problem, the properties of the Melnikov
vector function will be more complicated that those of the periodic case. Nevertheless
we show that this Melnikov vector function is the gradient of a Melnikov potential.
This potential unifies the existence of heteroclinic orbits and the gain of energy since
both can be obtained by taking directional derivatives of the Melnikov potential.

1.2.5. Geometry of the intersections in extended phase spaces
We call attention to the fact that the geometry of the intersections of manifolds in the

quasi-periodic case is very different from that of the periodic case. Indeed, it contains
a geometric surprise. In contrast with the periodic case, naive dimension counting does
not predict the intersection of the stable and unstable invariant manifolds we consider in
this paper. The structure given by the fact that the system is a quasi-periodic perturbation
is very important.

We will introduce angle variables that give the phases of the external perturbations
and, to keep the symplectic structure, we will need to introduce external actions con-
jugated to these angles. These action variables have little dynamical meaning. We will
be dealing with a Hamiltonian system of n+d degrees of freedom and the phase space
will be (2n + 2d)-dimensional. We will find in it a family of (d + 1)-dimensional tori
with heteroclinic connections between them. A naive dimension counting of dimensions
would suggest that the dimension of the family of tori with heteroclinic intersections is
d +1. Nevertheless, taking into account that the d extra action variables are not dynam-
ical variables, we will see that the dimension of the families is just one-dimensional,
indeed the parameter is the energy.

1.2.6. Transition paths
Our study of diffusing orbits is based on the study of “transition paths” (see Definition

4.32) which is more precise than the usual study based on transition chains.
We recall that a transition chain specifies a sequence of whiskered tori so that the

unstable manifold of one intersects transversally the stable manifold of the next.
A transition path specifies a transition chain and the heteroclinic orbits connecting one

torus and the next. This is more precise than just specifying the transition chain since
two whiskered tori have several (infinitely many in the cases we consider) connecting
orbits between them.

We will prove that, given a transition path, there is a true orbit that stays arbitrarily
close to it.

This has some useful consequences. In the cases we consider, it is possible to
arrange transition paths for which the energy changes only a small amount during the
connecting path. Hence, we obtain that the energy of the shadowing orbit is very close
to the sequence of energies of the tori in the chain.

This later result seems to have been known to experts (and was used e.g. in [BT99]
and [DLS00]) but, as it was pointed out by M. Sevryuk, it was never explicitly written
in the literature even if it was commonly used and its proof was folklore.
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1.2.7. Comparison with [BT99]
The main difference with [BT99] is that, rather than basing our transition path

on whiskered invariant tori of codimension one, we base it on the remnants of the
periodic orbits under quasi-periodic perturbation. This allows us to carry out a good
part of the argument using the theory of normally hyperbolic invariant manifolds. The
method of [BT99] does not need to use the theory of normally hyperbolic invariant
manifolds. For geodesic flows in two-dimensional manifolds, hyperbolic periodic orbits
are the same as whiskered tori of codimension 1. Hence, for the case considered
in [Mat96], the orbits produced in this paper and [DLS00] are the same as those
produced in [BT99]. Nevertheless, for higher dimensional geodesic flows, they are
very different. In particular, the results on abundance of our hypotheses H1, H2 for
higher-dimensional systems are very different from the results on abundance of the
corresponding hypotheses for [BT99].

2. On the abundance of hypotheses H1, H2

There are many cases where the hypotheses H1 and H2 are known to hold. In this
section, we summarize some of these cases, as a motivation to them.

2.1. Riemannian surfaces

For two-dimensional compact boundaryless manifolds, the situation is very clear.
First of all, the theory of [Hed32], based on [Mor24] (see [Ban88] for a modern

exposition of the classical theory and several developments) and supplemented by some
remarks in [Mat96], shows that H1, H2 are Cr generic for metrics on T2, if r �2.

On the sphere S2, one can also construct [Don88] some particular examples that
contain a great abundance of horseshoes. A recent paper [CBP02] shows that on S2

there is a C2 dense and open set of C∞ metrics whose geodesic flows contain a
hyperbolic orbit with a transverse homoclinic intersection. See also [KW02].

On surfaces of genus bigger or equal than 2, the following argument of [Kat82]
shows that hyperbolic orbits with homoclinic connections exist for all C2+� metrics,
� > 0.

Lemma 2.1. Let M2 be a surface of genus 2 or higher. Then, any C2+� metric, � > 0,
on M2 has hyperbolic geodesics with transversal homoclinic connections.

We just reproduce the relevant steps of the proof since in the paper [Kat82] the
argument is used to reach a slightly different conclusion.

Positive topological entropy. We note that the fundamental group of a surface of
genus g�2 has exponential growth. That is, given a set 	1, . . . , 	N of generators of
�1(M

2), we have that the number of different words 	i1 · · · · · 	iL of length L is at
least e
L for some 
 > 0.
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By Tonneli’s theorem (see [KH95, Theorem 9.5.10, p. 371]), in each of these homo-
topy classes, we can find a shortest periodic geodesic �	i1 ··· 	iL

which minimizes the
length among all the closed curves in this homotopy class.

It is also true that we can find an ε0 > 0 such that the distance between two of these
minimizers in different homotopy classes is bigger than ε0. The reason is that, since
the minimizers satisfy differential equations, they are uniformly differentiable. If two
uniformly differentiable curves of finite length are sufficiently close (depending only
on the modulus of continuity of the derivative), they are homotopically equivalent.

Since for some S < ∞ we can find a closed curve of length smaller that LS in the
homotopy class—take as a test function a closed curve which is a concatenation of the
generators of the fundamental group—we conclude that

|�	i1 ··· 	iL
|�LS.

From these considerations, it follows that the topological entropy of the geodesic
flow in a manifold with genus greater than 1 is strictly positive. (See also [KH95,
Theorem 9.6.7, p. 374].)

Alternative arguments for positive topological entropy of geodesic flows in this sit-
uation can be found in [Din71,Kat82]. A systematic study of the relations between
topology of the manifold and entropy (and other dynamical properties of the geodesic
flow) can be found in [Pat99].

Invariant measure with some positive Lyapunov exponents. From the variational
principle, (see [KH95, Theorem 4.5.3, p. 181]) we have that there is an invariant mea-
sure � whose measure-theoretic entropy is arbitrarily close to the topological entropy,
in particular, positive.

By Ruelle’s inequality [Rue78] we have that the measure � has to have some posi-
tive Lyapunov exponents. (In contrast to most of the results of Pesin theory, Ruelle’s
inequality only needs that the flow is C1.)

Invariant measure with no zero Lyapunov exponents. Since the flow is symplectic,
the existence of a strictly positive Lyapunov exponent implies the existence of a strictly
negative Lyapunov exponent.

Since the geodesic flow of a two-dimensional manifold takes place in the unit tangent
bundle, which is three dimensional—this is the only place of the argument where we use
that the manifold is two dimensional—the only zero Lyapunov exponent will correspond
with the motion along the flow.

Existence of horseshoes. The theory of measures with no zero Lyapunov exponents
[Kat80] implies the existence of horseshoes. Indeed, the topological entropy of these
horseshoes approximates the metric entropy of the measure. (Simpler versions of this
result can be found in [FL92,Pol93].)

Even if [FL92,Kat80,Pol93] are only written for diffeomorphisms, it is not difficult
to adapt the result for flows. See the remarks on [Kat82], where a similar adaptation
is used.

This part of the proof as written in the literature uses that the flow is C1+�. We do
not know if this could be lowered to just requiring C1 regularity.
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2.2. Hamiltonian systems, higher-dimensional manifolds, Finsler metrics

The main theorem of this paper—Theorem 3.4—is formulated in the generality of
Hamiltonian systems of the form

H(p, q, t) = H0(p, q) + U(q, �t),

where H0 is homogeneous of degree two in the momenta, and plays the role of the
geodesic flow. It is therefore useful to discuss the abundance of the analogous hypothe-
ses H1′, H2′ in the class of Hamiltonian systems.

In the context of Hamiltonian systems, once one has periodic orbits with elliptic
directions, by studying the associated Poincaré map in a neighborhood of the corre-
sponding fixed point in the center manifold, one can find periodic points with tran-
versal homoclinic intersections in Cr generic Hamiltonian systems for several r. See
[New77,Rob70a,Rob70b,Tak70,Zeh73].

Since geodesic flows are more restrictive than Hamiltonian systems, the arguments
showing genericity for Hamiltonian systems do not apply straightforwardly to geodesic
flows. Nevertheless, it is not unreasonable to conjecture that many of the above proper-
ties for Hamiltonian systems have analogues for geodesic flows of Riemannian metrics.

In particular, we think it is reasonable to conjecture (as it is widely believed by
experts) that the existence of a periodic orbit with a transverse homoclinic is Cr dense
for r = 2 in the space of smooth Riemannian metrics for any manifold. One can also
make a similar conjecture for r > 2, but the proof seems to be out of reach since
the known techniques seem to require generalizing closing lemmas and the like, which
appear to be quite difficult to obtain for higher regularities.

There is some progress in the direction of the proof of the above conjecture. The fact
that intersections of stable and unstable manifolds can be made transverse by arbitrary
small perturbations is established for surfaces in [Don95] and for any manifold in
[BW02] following an unpublished argument of Petroll [Pet96]. A detailed account of
the argument of [Pet96] can be found in Appendix A of [CBP02].

Well-known surveys of results on the existence and abundance of closed geodesics
in Riemannian manifolds are [Kli78,Kli83].

In a less systematic direction, it is not difficult to produce examples of systems
satisfying H1, H2 by considering perturbations of metrics with integrable geodesic flows
in spheres or tori. Similarly, taking products of manifolds that satisfy the hypotheses,
we obtain manifolds that satisfy them.

For the case of Finsler metrics, we remark that many of the results on abundance of
periodic orbits with homoclinic intersections for Hamiltonians can be extended straight-
forwardly to geodesic flows of Finsler metrics. See for example [ISM00].

2.3. Hedlund examples

In [Hed32], one can find examples of metrics in Td , d �3, where there are very few
class-A minimizing geodesics.
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These examples consist in modifying the metric so that there are periodic orbits
along the generators of the homology so that the metric is much weaker in tubes along
them than outside. As a consequence, to obtain an orbit with a certain homology, it is
advantageous to just move along the generators except for at most d − 1 jumps than to
move close to the direction in the homology, so that there are no class-A minimizers
except along the minimizers.

The paper [Lev97] shows that, when d = 3, one one can construct Hedlund examples
in such a way that they admit symbolic dynamics. That is, one can prescribe sequences
of the minimizers and get an orbit that visits the terms in the sequence in the given
order. Furthermore, the orbits thus produced have the property that any two of them
with sequences that agree in the future, actually converge exponentially. This is, of
course, very reminiscent of what one expects of hyperbolic orbits.

Indeed, the examples described in [Lev97] have the property that the periodic orbits
associated to the minimizers are hyperbolic. The constructions in [Lev97] have as
a corollary that the stable manifolds of the periodic orbits associated to the special
directions have intersections. By modifying the metric slightly, it is possible to make
the intersections transversal, so that they verify the hypothesis H1.

3. Hamiltonian formalism of the unperturbed problem

In this section, we introduce a Hamiltonian formalism for the problem and formulate
the hypotheses H1′, H2′ which are the Hamiltonian counterparts of the hypotheses H1,
H2 for the geodesic flow. We find the Hamiltonian formalism more convenient than
the Lagrangian one because the geometric tools we use (averaging, KAM, etc.) are
customarily formulated in Hamiltonian language and normal hyperbolicity results are
formulated for first-order differential equations.

The rest of the arguments in this paper will be formulated in terms of Hamiltonian
formalism and will only use H1′, H2′ and that the main part of the Hamiltonian and
the perturbation behave differently under scaling. We formulate the main result of the
Hamiltonian formalism as Theorem 3.4. It clearly implies Theorem 1.3. It is also clear
that Theorem 3.4 applies as well to Lorentz or to Finsler metrics.

3.1. Hamiltonian formalism and notation

The Hamiltonian phase space of the geodesic flow is T∗M . We will denote the local
coordinates in M by q and the cotangent directions by p.

As it is well known, the phase space, being a cotangent bundle, admits a canonical
exact symplectic form

� = d	. (5)

In local coordinates, 	 = ∑
i pidqi , � = ∑

i dpi ∧ dqi .
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With respect to the form �, the geodesic flow is Hamiltonian and the Hamiltonian
function is

H0(p, q) = 1
2gq(p, p),

where gq is the metric in T∗M . We will denote by �t this geodesic flow.
Since the energy H0 is preserved and it is not degenerate, for each E, the energy

level �E = {(p, q) H0(p, q) = E}, is a (2n− 1)-dimensional manifold invariant under
the geodesic flow.

Given an arbitrary geodesic “�”: R → M we will denote

�E(t) = (�p
E(t), �q

E(t))

the orbit of the geodesic flow that lies in the energy surface �E , and such that �q
E , the

projection over q, runs along the range of “�”.
Moreover, we fix the origin of time in �E so that it corresponds to the origin of the

parameterization in “�”. More precisely,

H0(�E(t)) = E

and

Range(“�”) = Range(�q
E), “�”(0) = �q

E(0). (6)

It is easy to check that the above conditions determine uniquely the orbit of the geodesic
flow in the cotangent bundle corresponding to a geodesic “�”.

We use �̂E to denote the range of the orbit �E(t). That is, �̂E is the lift to the
hypersurface of energy E of the geodesic “�”.

Note that the orbits of the geodesic flow rescale with energy as

(
�p
E(t), �q

E(t)
) =

(√
2E�p

1/2

(√
2Et

)
, �q

1/2

(√
2Et

))
. (7)

Since �1/2 has period 1 with our conventions that the geodesic “�” is normalized to
have length 1, then �E has period 1/

√
2E .

3.2. Normal hyperbolicity properties

Now, we start to discuss normal hyperbolicity properties of certain objects invariant
under the geodesic flow. This will lead to the fact that these objects have analogues
in the system with the potential perturbation included. Standard references for normal
hyperbolicity theory are [Fen72,Fen74,HP70,HPS77]. For the sake of making this paper
more self-contained we have presented proofs of the results we use for our system in
Appendix B.
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Notation 3.1. We follow standard practice in the theory of normally hyperbolic invari-
ant manifolds and call stable and unstable manifolds different objects than those called
stable and unstable manifolds in topological dynamics.

In topological dynamics, the stable set of an invariant object is the set of points
whose orbit converges to the object. In the theory of normally hyperbolic invariant
manifolds, the stable manifold is the set of points whose orbit converges to an orbit
of the normally hyperbolic invariant manifold at an exponential rate with an exponent
larger than the bound on the tangential exponents. (See Appendix A of [DLS00] for
some discussion on this point and references to the original literature.)

Similarly, homoclinic and heteroclinic orbits refers to orbits in the intersections of the
stable and unstable manifolds in the sense of the theory of normally hyperbolic invariant
manifolds, that is, including explicit exponential rates. We will not use homoclinic or
heteroclinic just in the sense of convergence.

Notation 3.2. Given a manifold M and two submanifolds N1, N2, we say that N1
intersects transversally N2 (denoted as N1�N2) when there is a point x ∈ N1 ∩N2 and

TxN1 + TxN2 = TxM. (8)

Since the manifolds N1,2 can be considered as submanifolds of several manifolds,
when there is risk of confusion, we will write N1�MN2 to denote that they intersect
transversally when considered as submanifolds of M.

We recall that the standard usage in transversality theory is to say that the intersection
between N1 and N2 is transversal either if N1 ∩ N2 = ∅ or when all the points of
the intersection satisfy (8). We will maintain the difference between these two usages
of the word by emphasizing that the sentences where the intersection is allow for
empty intersection whereas the sentences manifolds intersect transversally imply that
the manifolds intersect. Indeed, in the overwhelming majority of the usage in this paper,
we have that the intersection is not empty.

The hypotheses H1, H2 of the geodesic flow when formulated in the Hamiltonian
formalism for the Hamiltonian H0 translate into:

H1′. For any E > 0, there exists a periodic orbit �E(t), as in (7), of the Hamiltonian
H0 whose range �̂E is a normally hyperbolic invariant manifold in the energy surface

�E := {(p, q) ∈ T∗M , H0(p, q) = E}. (9)

H2′. The stable and unstable manifolds W
s,u

�̂E

of �̂E are n-dimensional, and there

exists a homoclinic orbit �E(t). That is, the range of �E satisfies

�̂E ⊂
(
W s

�̂E

\ �̂E

)
∩
(
W u

�̂E

\ �̂E

)
.
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Moreover, this intersection is transversal as intersection of invariant manifolds in the
energy surface �E along �̂E .

As a consequence of the hyperbolicity of �̂1/2, we have that, analogously to (2), for
some a± ∈ R,

dist (�1/2(t + a±), �1/2(t)) → 0 as t → ±∞. (10)

Indeed, as we already noticed in Remark 1.1, the hyperbolicity of �̂1/2 implies that
there exist C > 0 and an exponential rate �0 > 0, such that

dist (�1/2(t + a±), �1/2(t))�Ce−�0|t |, as t → ±∞. (11)

Moreover, it is clear that there exists a number A > 0 such that

max{distW s
�̂1/2

(�̂1/2, �̂1/2), distW u
�̂1/2

(�̂1/2, �̂1/2)}�A, (12)

where given a submanifold W we denote by distW(x, y) the distance along the sub-
manifold.

As a consequence of (12) and the rescaling properties (7), we also have that

max{distW s
�̂E

(�̂E, �̂E), distW u
�̂E

(�̂E, �̂E)}�A
√

E. (13)

As a consequence of (13), there exist compact subsets Ks
E ⊂ W s

�̂E

, Ku
E ⊂ W u

�̂E

, such

that

�̂E ⊂ (Ks
E ∩ W u

�̂E

)
⋃

(Ku
E ∩ W s

�̂E

). (14)

This property will play a role in Section 4.4 when we study perturbation theory of
the stable and unstable manifolds and their homoclinic intersections for a finite range
of energies, say, E ∈ [1/2, 2].

Since �̂E is one-dimensional, W s
�̂E

,W u
�̂E

are n-dimensional and the ambient manifold

�E is (2n − 1)-dimensional, we have

Tx �̂E = TxW
s
�̂E

∩ TxW
u
�̂E

for all the points x ∈ �̂E .
Hence, the transversality assumption gives that �̂E is the locally unique intersection

between the stable and unstable manifolds of �̂E .
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For the Hamiltonian H0, the energy is preserved and therefore the dynamics can
be analyzed on each energy surface, but when we consider the external quasi-periodic
potential depending on time, the energy will change, and then, it will be useful to
consider any fixed value E0 > 0, and introduce the manifold � = ⋃

E �E0
�̂E for all

values of the energy larger than E0. In subsequent lemmas, we will assume that E0 is
large enough.

The following Proposition is an obvious description of the situation.

Proposition 3.3. Define � = ⋃
E �E0

�̂E . It is a 2-dimensional normally hyperbolic
invariant manifold with boundary satisfying:

• � is diffeomorphic to [E0, ∞) × T1.
• The canonical symplectic form � on T∗M restricted to � is non-degenerate.
• The form �|� is invariant under the flow �t of the Hamiltonian H0(p, q).
• The stable and unstable manifolds of �, W s

� and W u
�, are (n + 1)-dimensional

manifolds diffeomorphic to [E0, ∞) × T1 × Rn−1.
• W s

� and W u
� intersect transversally along �, defined by

� =
⋃

E �E0

�̂E ⊂ (
W s

� \ �
) ∩ (W u

� \ �
)

which is diffeomorphic to [E0, ∞) × R.

3.3. Statement of results for Hamiltonian systems

In this section, we will state our main result in the Hamiltonian language, Theorem
3.4, which clearly implies Theorem 1.3.

Theorem 3.4. Let M be a compact manifold. Let H0 be a Hamiltonian in T∗M which
satisfies:

(i) H0 is homogeneous of degree 2 in the momenta, that is H0(�p, q) = �2H0(p, q)

for � ∈ R+.
(ii) The Hamiltonian system generated by H0 satisfies H1′, H2′.

Let � ∈ Rd be a Diophantine number as in (1.2). Let U : M ×Td → R be a function
and consider the time-dependent Hamiltonian system

H(p, q, t) = H0(p, q) + U(q, �t). (15)

Assume furthermore that:

(iii) The functions U and H0 are Cr , where r is sufficiently large depending on the
dimension d and the Diophantine exponent of �.
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(iv) Consider the Poincaré function L : Td → R associated to the orbits �1/2 and �1/2
verifying (10) and (11):

L(�) = lim
T1,T2→∞

[∫ T2

−T1

dt Ũ(�q
1/2(t), �)

−
∫ T2+a+

−T1+a−
dt Ũ(�q

1/2(t), �)

]
, (16)

where the functions U(�), and Ũ (q, �) are defined by:

U(�) =
∫ 1

0
U(�q

1/2(), �) d, Ũ (q, �) = U(q, �) − U(�). (17)

Assume that the Poincaré function (16) is non-constant.

Then the Hamiltonian system generated by H in (15) has orbits whose energy tends
to infinity.

The proof of Theorem 3.4 will be accomplished in the rest of the paper. Indeed, we
will establish the more general result Theorem 4.27, which implies Theorem 3.4.

We note that the hypotheses we make do not involve neither convexity properties of
the Hamiltonian H0 nor that it is a quadratic form. Therefore, they apply to Lorentz
metrics or to Finsler metrics. Similarly, we do not need to assume that the orbits �E ,
�E of hypotheses H1′, H2′ are minimizers.

We note that the Poincaré function (16) depends only on the geometric geodesics
“�” = �q

1/2, “�” = �q
1/2, which live in the manifold M.

Although we will not discuss this in detail, we will not even need H0 to be quadratic.
It would suffice that H0 is homogeneous in p of positive order or sums of terms each
of which is homogeneous of positive order.

3.4. A remark on normally hyperbolic invariant manifolds in product systems

We will use the following elementary result in the next section.

Proposition 3.5. Let � be a normally hyperbolic invariant manifold under a flow �t

on a manifold M. Let � > �� �0 be the exponential expansion rates corresponding to
the normal hyperbolicity of � as in (11). Let N be another manifold with a flow t with
exponential expansion rates less or equal than ��. Consider the flow �̃t := (�t , t )

on the manifold M × N .
Then the manifold �̃ := � × N is a normally hyperbolic invariant manifold for the

flow �̃t .
Moreover, W s

� × N = W s
�̃

is the stable manifold of �̃ for the extended flow �̃t .

For x ∈ �, y ∈ N , we have that W s
(x,y) = W s

x × N is the stable manifold of the
point (x, y).



86 A. Delshams et al. / Advances in Mathematics 202 (2006) 64–188

The same results hold for the unstable manifold.

In the applications we have in mind for this paper, the flow t will be either a
rotation on a d-dimensional torus or the identity.

Proof. The proof of Proposition 3.5 is an obvious consequence of the definition of
normally hyperbolic invariant manifolds. Note that T(x,y)(M × N) = TxM ⊕ TyN and
T(x,y)(� × N) = Tx� ⊕ TyN .

Hence the decomposition

TxM = Tx� ⊕ Es
x ⊕ Eu

x (18)

assumed to exist in the normal hyperbolicity of �, leads to a decomposition

T(x,y)(M × N) = T(x,y)(� × N) ⊕ Es
x ⊕ Eu

x . (19)

It is easy to see that if decomposition (18) is invariant under �t , then decomposition
(19) is invariant under �̃t . Moreover, using the fact that the exponential expansion rates
of the vector field t are smaller than �� it is immediate that

||D�̃t (x, y)|T(x,y)�×N || = ||D�t (x)|Tx� ⊕ Dt (y)||�Ce��|t |. �

3.5. Extended phase spaces

To study quasi-periodic systems it is customary to make the system autonomous by
introducing an extra variable � ∈ Td , which moves at a constant frequency �. Then,
the phase space will be the (2n + d)-dimensional manifold T∗M × Td , which we will
call the extended phase space.

We will denote by �̃t (p, q, �) = (�t (p, q), � + �t) the flow on the extended phase
space corresponding to the unperturbed Hamiltonian. Since in the unperturbed system,
the variable � does not affect the other variables, the flow �̃t is the Cartesian product
of the flow on T∗M and the rotation at constant velocity � on Td .

Following Proposition 3.5, we will introduce the notation �̃ = � × Td , and analo-
gously �̃ = �× Td . Then, applying Proposition 3.5 to the results of Proposition 3.3 we
obtain:

Proposition 3.6. Under assumptions H1′ and H2′ we have, for any value of E > 0:

• TE := �̂E × Td is a (d + 1)-dimensional whiskered invariant torus (sees Definition
4.28). Its stable and unstable manifolds W s

TE
= W s

�̂E

× Td , W u
TE

= W u
�̂E

× Td , are

(n + d)-dimensional manifolds.
• The manifolds W s

TE
and W u

TE
intersect along �̂E ×Td . This intersection is a transver-

sal intersection in �E × Td , where �E is the energy surface introduced in (9).
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That is, for all x̃ ∈ �̂E × Td , we have:

Tx̃W
s
TE

+ Tx̃W
u
TE

= Tx̃(�E × Td).

Moreover, for any E0 > 0:

• The manifold �̃ := ∪E �E0TE = � × Td is a (d + 2)-dimensional manifold.
• �̃ is a normally hyperbolic invariant manifold for the extended flow �̃t .
• The (un)stable manifolds of �̃ are

W
u,s

�̃
= W

u,s
� × Td . (20)

In particular, they are (n + d + 1)-dimensional manifolds.
• The manifolds W s

�̃
and W u

�̃
intersect transversally in the extended phase space T∗M×

Td along

�̃ := � × Td =
⋃

E �E0

�̂E × Td ⊂
(
W s

�̃
\ �̃

)
∩
(
W u

�̃
\ �̃

)
.

This extended phase space is obviously not symplectic. In order to keep the sym-
plectic character we add d real variables (actions) A = (A1, . . . , Ad) symplectically
conjugated to �, which do not change with time.

Then, the symplectically extended phase space, which we will call the full symplectic
space, is T∗M × Rd × Td , which is (2n + 2d)-dimensional. The symplectic form in
the full symplectic space is

�∗ = � +
d∑

i=1

dAi ∧ d�i .

The full symplectic form �∗ is exact:

�∗ = d

(
	 +

d∑
i=1

Aid�i

)
= d	∗. (21)

We will denote by �∗
t (p, q, A, �) = (�t (p, q), A, � + �t) the full symplectic flow.

This flow is Hamiltonian with respect to the form �∗, and the Hamiltonian function is

H ∗
0 (p, q, A, �) := � · A + H0(p, q). (22)

Since A1, . . . , Ad are conserved, the restriction of the flow �∗
t to each of the mani-

folds obtained by fixing the values of all the actions is identical to the flow of H0 in
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the extended phase space. These A variables do not have a dynamical meaning since
their value does not affect the dynamics of the variables (p, q, �).

Proposition 3.7. We have the following geometric properties in the full symplectic
space T∗M × Rd × Td :

• For any fixed E > 0, B ∈ Rd , the set

�∗
E,B := {(p, q, A, �) , H0(q, p) = E, A = B}

is a (2n− 1 + d)-dimensional manifold. It is invariant under the full symplectic flow
�∗

t .
• The set

T ∗
E,B = �̂E × {B} × Td

is a (d + 1)-dimensional whiskered invariant torus contained in �∗
E,B .

• The torus T ∗
E,B has stable and unstable manifolds W s

T ∗
E,B

= W s
�̂E

×{B}×Td , W u
T ∗

E,B
=

W u
�̂E

× {B} × Td , which are (n + d)-dimensional manifolds.

• The manifolds W s
T ∗

E,B
, W u

T ∗
E,B

intersect along �̂E × {B} × Td . This intersection is a

transversal intersection in �∗
E,B . That is, for all x∗ ∈ �̂E × {B} × Td , we have:

Tx∗W s
T ∗

E,B
+ Tx∗W u

T ∗
E,B

= Tx∗�∗
E,B. (23)

Moreover, for any E0 > 0,

• �∗ = ∪E �E0,B T ∗
E,B is a (2d + 2)-dimensional manifold.

• �∗ is a normally hyperbolic invariant manifold for the full symplectic flow �∗
t in

T∗M × Rd × Td .
• The (un)stable manifolds of �∗ are

W
u,s
�∗ = W

u,s
� × Rd × Td .

In particular, they are (n + 1 + 2d)-dimensional manifolds.
• The manifolds W s

�∗ and W u
�∗ intersect transversally in the full symplectic space along

�∗ := � × Rd × Td ⊂ (
W s

�∗ \ �∗) ∩ (W u
�∗ \ �∗) .

3.6. A coordinate system on �̃, and �∗

Now we want to describe a coordinate system in �̃ (and �∗) that is not only defined
on �̃ but also on a neighborhood of it.
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Recall that the only difference between �̃ and �∗ is that �∗ includes the variables
A that restore the symplectic character of the problem.

One real valued coordinate in �̃ is J = √
2H0 �

√
2E0. For the conjugate angle

coordinate, we will take  ∈ T1, which is determined by dJ ∧ d = �|�, and  =
0 corresponds to the origin of the parameterization in the curve “�” chosen at the
begining, (6) (of course, the choice of the origin of the parameterization is arbitrary
and there are many other choices which will work.) The other d angles are the global
coordinates � of the quasi-periodic perturbation.

If we are in �∗ we will take also the conjugate momentum to � which are the global
real coordinates A. Hence 	|�∗ = Jd+A d�. If we express the full symplectic flow in
�∗ in these variables, it is an integrable Hamiltonian flow of Hamiltonian � · A + 1

2J 2

and the equations of motion are

J̇ = 0, ̇ = J, Ȧ = 0, �̇ = �.

By formula (7), the geodesic �E of hypothesis H1′ is given in coordinates (J, ) by

�E = {(J, ) : J = √
2E ,  ∈ T},

and the flow �t on it associated to �E(t + 0/
√

2E) = �1/2(
√

2Et + 0), for any
0 ∈ R is J = √

2E ,  = √
2Et + 0.

Associated to �E there is a family of (d + 1)-dimensional tori in �∗ given by

T ∗
E,B = {(J, , A, �) : J = √

2E, A = B,  ∈ T, � ∈ Td}, (24)

for any B.
The full symplectic flow �∗

t on the tori T ∗
E,B is given by

J = √
2E,  = √

2Et + 0, A = B, � = �t + �0, 0 ∈ T, �0 ∈ Td .

All these tori T ∗
E,B project, in �̃, to the same torus

TE = {(J, , �) : J = √
2E,  ∈ T, � ∈ Td}, (25)

and the extended flow �̃t on the torus TE is given by

J = √
2E,  = √

2Et + 0, � = �t + �0, 0 ∈ T, �0 ∈ Td .

3.7. The scattering (outer) map

Once we have seen in Proposition 3.6 that our system possess a normally hyperbolic
invariant manifold �̃ and a transversal homoclinic manifold �̃ associated to it, we are
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going to study the heteroclinic or homoclinic connections in �̃ between the invariant
objects (specially the (d +1)-dimensional tori TE) that fill �̃. To this end, we introduce
a map S̃ : �̃ → �̃ that we call the “scattering map” or the “outer map”. This scattering
map S̃ will transform the asymptotic point at −∞ of a homoclinic orbit to �̃ into its
asymptotic point at +∞. More concretely, we define the scattering (or outer) map
S̃ : �̃ �→ �̃ associated to �̃ by

x̃+ = S̃(x̃−) ⇐⇒ W s
x̃+ ∩ W u

x̃− ∩ �̃ �= ∅. (26)

Since the manifolds W s
�̃

, and W u
�̃

are characterized by the exponential convergence

with a uniform exponential expansion rate �, the condition in (26) is equivalent to
∃z̃ ∈ �̃ ⊂ T∗M × Td , such that

dist
(
�̃t (x̃±), �̃t (z̃)

)
�Ce−�|t |, as t → ±∞.

for some constant C > 0.
Using the coordinates (J, , �) on �̃ introduced in Section 3.6, the scattering map

can be computed explicitly. Let us recall that, by hypothesis H2′, inequality (11) is
fulfilled, and the rescaling properties (7) imply

dist

(
�E

(
t + 0 + a±√

2E

)
, �E

(
t + 0√

2E

))
�C

√
2Ee−�0

√
2E|t | as t → ±∞. (27)

Hence, the points x̃± =
(
�E

((
0 + a±

)
/
√

2E
)

, �0

)
∈ TE are asymptotically con-

nected through z̃ =
(
�E

(
0/

√
2E
)

, �0

)
, and the orbit �̃t (z̃) is an homoclinic orbit

to the torus TE .
Then, the map S̃ is expressed as

S̃(J,  + a−, �) = (J,  + a+, �),

or more simply, calling � = a+ − a− the phase shift in the -coordinate:

S̃ : �̃ → �̃,

(J, , �) �→ (J,  + �, �). (28)

Note that the phase shift � is uniquely defined in spite of the fact that the point z̃

is not unique and that the a± are defined only up to the simultaneous addition of an
integer. (For more details about the definition of S̃ see [DLS00].)

Let us note also that, as S̃(TE) = TE , any torus TE has only homoclinic orbits
and no orbits heteroclinic to another torus. Of course, this will change when we add
perturbations.
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It is useful to have an analogous definition of the scattering map in the full symplectic
space. Since the actions A do not change, we just have that the unperturbed scattering
map is given by

S∗ : �∗ → �∗,

(J, , A, �) �→ (J,  + �, A, �). (29)

The scattering map is formulated in terms of the intersections of stable and unstable
manifolds. The fact that these manifolds persist under changes in the dynamical sys-
tem and depend smoothly on parameters will allow us to compute the scattering map
perturbatively for high enough energies in Section 4.4.

Remark 3.8. As it is obvious from the definition, the map S̃ depends on the �̃ chosen
and, therefore, of the geodesic “�” verifying hypothesis H2. Indeed, different choices
of �̃ lead to different scattering maps.

Nevertheless, in the rest of the paper, �̃ will be fixed and we will impose conditions
on the external potential depending on �̃. Hence, we will omit the �̃ from the notation
for the scattering map.

Remark 3.9. By the implicit function theorem and the transversality of the intersection
between the stable and the unstable manifolds of �̃ along �̃, it is clear that the scattering
map is locally well defined.

The fact that if we continue S̃ along a closed loop in �̃ we obtain the same map
follows from Remark 1.1.

Remark 3.10. The scattering map can be defined in other situations
[DLS00,DdlLS03,DdlLMS03], as long as there exists a normally hyperbolic invari-
ant manifold �̃ associated to it (see [DdlLMS04] for more details). If the stable and the
unstable manifolds W

s,u

�̃
fail to intersect transversally at some points of �̃, the domain

and the range of the scattering map are subsets of �̃, which we denote by H−, H+.
These sets can be characterized by

H± = {x̃ ∈ �̃, ∃z ∈ �̃, dist
(
�̃t (x̃), �̃t (z̃)

)
�Ce−�|t |, as t → ±∞},

or, equivalently

W s
H+ ∩ W u

H− ∩ �̃ �= ∅.

Remark 3.11. From dynamical systems theory, we know that the existence of a trans
versal homoclinic connection implies the existence of infinitely many others, usually
called secondary homoclinic connections. If the external potential verifies the hypotheses
of Theorem 3.4 for any of these connections, there will be orbits of unbounded energy.
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One can be even more precise. It is true that one can use the existence of several
homoclinic connections and therefore several scattering maps to produce orbits that
gain energy jumping through more than one of them at different times. We will not
develop this idea in this paper since in the models we consider it does not weaken the
sufficient conditions we obtain for the existence of unbounded orbits. Nevertheless, in
the models considered in [DdlLS03,DdlLMS03], it leads to weaker conditions for the
main results.

4. The problem with external potential

4.1. Introduction and overview

The goal of Section 4.2 is to show that, for high energy, the external potential is a
small (and slow) perturbation of the extended flow �̃t introduced in Section 3.5. As a
first consequence, in Section 4.3, we will see that the manifold �̃, which is normally
hyperbolic for the unperturbed flow, will persist for high energy when we consider the
system with the external potential.

Furthermore, in Sections 4.3.5 and 4.3.6 we will show that this manifold is almost
filled by (d +1)-dimensional invariant tori, which are close to the unperturbed ones TE

(see (25)). The gaps between those tori will be smaller than a negative power of the
energy. Thanks to the fact that the perturbation is slow, provided that the Hamiltonian
is differentiable enough, we can take the power to be as large as we want.

We note that the whiskered invariant tori TE are full dimensional KAM tori when
considered in the manifold �̃. Equivalently T ∗

E,B given in (24) are full dimensional in
�∗ (as was already noticed in [Moe96], see also [Sor02] for further developments).

The transverse intersection of the stable and unstable manifolds of �̃ along �̃ will
persist for high enough energies. This will allow us to define S̃ and to compute it
perturbatively in Section 4.4. Moreover, we will show in Lemma 4.33 that, under the
non-degeneracy condition given in Theorem 3.4, the image of a torus by the perturbed
scattering map intersects transversally other tori which are close enough. This will give
us in Section 4.5 the existence of transversal heteroclinic connections between some
perturbed tori. These heteroclinic orbits will give us an infinite transition path of tori
with increasing energies.

The existence of orbits which follow finite transition paths is quite well known in
the field of Arnol’d diffusion. In Section 4.5.4 we will present an argument that can
deal with infinite paths and we will also pay attention to the behavior of the energy
during the transitions. The argument follows closely the presentation in [DLS00].

Moreover, by performing the analysis with more care, we will show that there are
orbits which visit the tori of the chain in an almost arbitrary order and hence the energy
can make almost arbitrary excursions. We also remark that the energy of the orbits is
well approximated by the energy of the visited tori, so that this symbolic description
gives a very accurate picture of the evolution of the energy. In particular, there are
orbits whose energy grows to infinity.
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4.2. The scaled problem

To make precise the idea that the external potential is a slow and small perturbation
of the geodesic flow for high energy, we scale the variables and the time. Thus, we
pick a (large) number E∗ > 0 and introduce

ε = 1/
√

E∗. (30)

The Hamiltonian corresponding to (15) in the full symplectic space is

H ∗(p, q, A, �) = � · A + H0(p, q) + U(q, �). (31)

If we denote εp = p̄, εA = Ā and consider the symplectic form �̄
∗
, given in local

coordinates by �̄
∗ = dp̄ ∧ dq + dĀ ∧ d� = ε�∗, we see that q, p̄ and �, Ā are

conjugate variables with respect to �̄
∗
. We also introduce a new time t̄ = t/ε, and

then the original equations for the Hamiltonian H ∗:

dp

dt
= −�H0

�q
(p, q) − �U

�q
(q, �),

dq

dt
= �H0

�p
(p, q),

dA

dt
= −�U

��
(q, �),

d�

dt
= �

are equivalent to

dp̄

dt̄
= −�H0

�q
(p̄, q) − ε2 �U

�q
(q, �),

dq

dt̄
= �H0

�p
(p̄, q),

dĀ

dt̄
= −ε2 �U

��
(q, �),

d�

dt̄
= ε�, (32)
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which are Hamiltonian equations with respect to the symplectic form �̄
∗
, for the time

t̄ , corresponding to the Hamiltonian

H̄ ∗
ε (p̄, q, Ā, �) := ε� · Ā + H0(p̄, q) + ε2U(q, �)

= ε� · Ā + H̄ε(p̄, q, Ā, �).

From (32) we have � = �0 + ε�t . Hence the flow of the Hamiltonian H̄ ∗
ε is a small

and slow perturbation of the flow of Hamiltonian H0.
Since H̄ ∗

ε (p̄, q, Ā, �) = ε2H ∗(p, q, A, �) and

H̄ε(p̄, q, �) = ε2H(p, q, �), (33)

we introduce the notation

E = ε2E = E/E∗. (34)

For the first stages of our analysis, it suffices to analyze a fixed range in scaled energies
Ē which we will fix arbitrarily to be [1/2, 2]. Our goal will be to establish that, for
large enough E∗, given two KAM tori Ta, Tb with energy H̄ε close to E = 1/2
and E = 2, we can find a sequence of tori {Ti}Ni=1 such that W u

Ti
�W s

Ti+1
, T1 = Ta ,

TN = Tb.
Once we have the existence of these finite paths, using that the result is true for

arbitrarily large E∗, we will obtain, in Lemma 4.35, that we can get transition paths
that transverse all the sufficiently large energies.

From now on, and until further notice, we will drop the bar from the rescaled
variables since we will not work for a while on the original variables. Then, our
Hamiltonian will be

H ∗
ε (p, q, A, �) = ε� · A + H0(p, q) + ε2U(q, �)

= ε� · A + Hε(p, q, A, �). (35)

We will refer to the original variables as the physical variables if there is need to
distinguish between them and the rescaled ones.

It is important to note that as S∗
0 was defined through geometric considerations it

does not change when rescaled. Hence in the rescaled variables, we also have, as in
(29)

S∗
0 (J, , A, �) = (J,  + �, A, �). (36)

Similarly, we can study the hyperbolic properties of �̃ (or �∗) under the rescaled flow.
It is easy to note that the stable and unstable bundles do not change under rescaling
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of time, and that the exponential expansion rates �0

√
2E in (27) get multiplied by

ε = 1√
2E∗ becoming �0

√
2Ē. Hence, in the scaled variables, the exponential expansion

rates are bounded between �0 and 2�0.

4.3. The perturbed invariant manifold and study of the inner motion

The main goal of this Section is to show that, for high enough energies, the manifold
�̃ of Proposition 3.6—and the manifold �∗ of Proposition 3.7—persists, and that it is
almost covered by KAM tori leaving only extremely small gaps.

Using that, for high energies, the potential is a small perturbation of the geodesic
flow the theory of normally hyperbolic invariant manifolds implies that the manifold
�̃ persists. In Theorem 4.1 we state the main consequences of the theory. Since the
proof of persistence of the invariant manifold presents some peculiarities with respect
to standard presentations, we have included a detailed presentation in Appendix B.

In Section 4.3.2 we will study the symplectic geometry of the perturbed manifold. In
Section 4.3.3 we will introduce a system of coordinates on the perturbed manifold which
will allow us to exhibit the motion on the perturbed manifold as a slow perturbation
of an integrable system. In Section 4.3.5 we will take advantage of the fact that the
perturbation induced by the external potential is slow and we will perform several steps
of averaging. After averaging, the system will be an extremely small perturbation of an
integrable system. In Section 4.3.6 we apply the KAM theorem to the averaged system
and conclude that the perturbed manifold is almost covered by KAM tori except for
very small gaps. Even if the quantitative version of the KAM theorem we use is rather
straightforward and, we presume, well known to experts, we have included in Appendix
A a proof based on [Zeh75,Zeh76a,Zeh76b], since we could not find a proof in the
literature that covered the desired result.

In Section 4.3.7 we obtain some approximate expressions for the KAM tori. This
will be used later in the subsequent discussion of existence of heteroclinic intersections.
Note that the perturbation moves the tori, so that to discuss whether their asymptotic
manifolds intersect, we need to take into account also the displacement of the tori.

4.3.1. Persistence of the invariant manifold
Using the hyperbolicity properties of the manifold �̃ for the extended flow �̃t de-

scribed in Section 3.2, we will apply some results of hyperbolic perturbation theory.
We note that in Hamiltonian (35), ε enters in two different ways, on one hand it is

a perturbation parameter in the Hamiltonian and on the other hand ε� is the frequency
of the perturbing potential. To distinguish these two different rôles of ε, we find it
more convenient to introduce the autonomous flow

ṗ = −�H0

�q
(p, q) − �

�H1

�q
(p, q, �),

q̇ = �H0

�p
(p, q) + �

�H1

�p
(p, q, �),
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�̇ = �

�
(37)

defined on the extended phase space T∗M × Td . This problem is equivalent to our
original one if we set � = ε2, � = 1/ε, and H1(p, q, �) = U(q, �). We will prove
results for � small enough, which are uniform on �.

We denote the flow of (37) by

�̃t,�,�(p, q, �) =
(
�t,�,�(p, q, �), � + �

�
t
)

. (38)

Setting � = 0 in (37) we have, by Propositions 3.3 and 3.6, that

�̃ = � × Td � [E0, ∞) × T1 × Td � [J0, ∞) × T1 × Td ,

where J0 = √
2E0 (see Section 3.6), is a manifold locally invariant for the flow.

The following theorem on persistence of normally hyperbolic invariant manifolds is
proved in Appendix B. The proof requires some adaptation of the standard proof to
deal with the non-compactness of �̃ and that the vector fields are not bounded. The
main point is the fact that, by (7), the exponential rates of �̃ scale with the energy.

Theorem 4.1. Assume that we have a system of equations as in (37), where the Hamil-
tonian H = H0 + �H1 is Cr , 2�r < ∞, and H0 satisfies the hypotheses of Theorem
3.4. Then, there exists a �∗ > 0 and a K > 0, depending only on the C2 norm of H0,
H1, and the C1 properties of the unperturbed manifold �̃, such that for |�| < �∗, there
is a Cr−1 function

F̃ : [J0 + K�, ∞) × T1 × Td × (−�∗, �∗) −→ T∗M × Td

which is of the form F̃ = (F, IdTd ), with

F : [J0 + K�, ∞) × T1 × Td × (−�∗, �∗) −→ T∗M

such that the manifold

�̃�,� = F̃
(
[J0 + K�, ∞) × T1 × Td × {�}

)
= F

(
[J0 + K�, ∞) × T1 × Td × {�}

)
× Td (39)

is locally invariant for the flow of (37) and the manifold �̃�,� is �-close to �̃�,0 = �̃
in the Cr−2 sense. Moreover, �̃�,� is a normally hyperbolic invariant manifold.
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Furthermore, F verifies

F(J, , �, 0) = �E

(
√
2E

)
, J = √

2E. (40)

We can find a Cr−1 function

F̃ s : [J0 + K�, ∞) × T1 × Td × [0, ∞)(n−1) × (−�∗, �∗) −→ T∗M × Td

of the form F̃ s = (F s, IdTd ), with

F s : [J0 + K�, ∞) × T1 × Td × [0, ∞)(n−1) × (−�∗, �∗) −→ T∗M

such that the (local) stable invariant manifold of �̃�,� takes the form

W
s,loc

�̃�,�
= F̃ s

(
[J0 + K�, ∞) × T1 × Td × [0, ∞)(n−1) × {�}

)
. (41)

If x̃ = F̃(J, , �, �) = (F(J, , �, �), �) ∈ �̃�,�, then

W
s,loc
x̃

= F̃ s({J } × {} × {�} × [0, ∞)(n−1) × {�}).

Therefore W
s,loc

�̃�,�
is �-close to W

s,loc

�̃
in the Cr−2 sense.

Analogous results hold for the (local) unstable manifold.

To maintain a symplectic structure, it is convenient to apply the normal hyperbolicity
theory to the full Hamiltonian H ∗

�,�.

Theorem 4.2. If we consider the Hamiltonian equations associated to the Hamiltonian
H ∗

�,� = �
� · A + H0 + �H1, then there exists �∗ > 0 and K > 0, depending only on the

C2 norm of H0, H1, and the C1 properties of the unperturbed manifold �∗, such that
there is a Cr−1 function

F∗ : [J0 + K�, ∞) × T1 × Rd × Td × (−�∗, �∗) −→ T∗M × Rd × Td

such that

�∗
�,� = F∗ ([J0 + K�, ∞) × T1 × Rd × Td × {�}

)
(42)

is locally invariant for the Hamiltonian flow associated to H ∗
�,�. Therefore, �∗

�,� is

�-close to �∗
�,0 = �∗ in the Cr−2 sense.
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As the Hamiltonian H ∗
�,� is quasi-periodic, we have that F∗ = (F, A, IdTd ), with

A(J, , B, �, 0) = B, and that, if x∗ ∈ �∗
�,� then we write in coordinates

x∗ = F∗(J, , B, �, �) = (F(J, , �, �), A(J, , B, �, �), �),

and

x̃ = F̃(J, , �, �) = (F(J, , �, �), �) ∈ �̃�,�.

Then, the manifold �̃�,� is the projection in the extended phase space of the manifold
�∗

�,�.

Moreover, �∗
�,� is a normally hyperbolic invariant manifold. We can find a Cr−1

function

F∗ s : [J0 + K�, ∞) × T1 × Rd × Td × [0, ∞)(n−1) × (−�∗, �∗) −→ T∗M × Rd × Td

such that its (local) stable invariant manifold takes the form

W
s,loc
�∗

�,�
= F∗ s

(
[J0 + K�, ∞) × T1 × Rd × Td × [0, ∞)(n−1) × {�}

)
. (43)

If x∗ = F∗(J, , B, �, �) = (F(J, , �, �), A(J, , B, �, �), �) ∈ �∗
�,�, then

W
s,loc
x∗ = F∗ s({J } × {} × {B} × {�} × [0, ∞)(n−1) × {�}).

Therefore W
s,loc
�∗

�,�
is �-close to W

s,loc
�∗ in the Cr−2 sense. Analogous results hold for the

(local) unstable manifold.

Remark 4.3. We emphasize that, since �∗ depends only on the C2 norm of H0 and
H1, and H1 depends periodically on �, the value of �∗ can be chosen independently
of �. In particular, we obtain results for � = ε2, � = 1/ε.

Remark 4.4. Since W s
�̃

, W u
�̃

are transversal at �̃ ⊂ W s
�̃
�W u

�̃
, we see that there ex-

ists a locally unique �̃�,� which is �-close to �̃ in the Cr−2 sense, such that �̃�,� ⊂
W s

�̃�,�
�W u

�̃�,�
.

Notation 4.5. From now on, we are going to fix our attention on the case � = ε2

and � = 1/ε, and we will call �̃ε = �̃1/ε,ε2 , �̃ε = �̃1/ε,ε2 , �̃t,ε = �̃t,1/ε,ε2 . The same
simplified notation for the full space with �∗

ε ,�∗
ε , �∗

t,ε.
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4.3.2. Symplectic geometry on the invariant manifold �∗
ε

In order to introduce a Hamiltonian flow in the perturbed invariant manifold �∗
ε we

start by investigating first its symplectic geometry and the symplectic properties of the
full symplectic flow restricted to it. In subsequent sections, we will find how these
properties can be expressed in a convenient system of coordinates.

By Theorem 4.2, we have that �∗
ε = ∪

(�,B)∈Td×Rd �∗,�,B
ε × {�}, where

�∗,�,B
ε = (F, A)

(
[J0 + Kε2, ∞) × T1 × {�} × {ε2}

)
.

Note that all the two-dimensional manifolds �∗,�,B
ε are ε2-close to ��

0 ×{B} = �×{B}
in the Cr−2 sense. The parameters �, B both d-dimensional. The manifold �∗,�,B

ε is
2 + 2d dimensional.

For every �, we define ��
ε to be the two-form obtained by restricting the symplectic

form � to ��
ε .

Since ��
ε is ε2-close to � and �|� is non-degenerate, we obtain that ��

ε is non-
degenerate. Hence ��

ε is an exact symplectic form on ��
ε .

Indeed, if we denote by 	�
ε = 	|��

ε
, where 	 is the primitive of � introduced in (5)

and by d�
ε the exterior differential on ��

ε , we have

��
ε = d�

ε 	�
ε .

Since the coordinate � moves at constant velocity ε�, we have that the extended flow
satisfies

�̃t,ε

(
��

ε , �
)

= (��+ε�t
ε , � + ε�t). (44)

Since the flow �∗
t,ε preserves the form �∗ and moreover is exact, we have

(�∗
t,ε)∗�∗ = �∗,

(�∗
t,ε)∗	∗ = 	∗ + dSt,ε.

Since by (38) �̃t,ε = (�t,ε(·, �), � + ε�t), it follows by restriction that �t,ε(·, �) are
exact symplectic transformations from ��

ε to ��+ε�t
ε endowed with the exact symplectic

forms ��
ε .

4.3.3. A system of coordinates on �∗
ε

Theorem 4.2 gives a system of coordinates on the manifold �∗
ε by pushing the system

of coordinates (J, , B, �) on �∗ through the function F∗. Since the mapping F∗ is not
unique, we can take advantage of the non-uniqueness to obtain a parameterization with
extra features that will make subsequent analysis more convenient. We will choose the
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system of coordinates in such a way that the standard representation of the symplectic
form holds. This will allow us to use the customary formulas of perturbation theory. (Of
course, if we had developed the perturbation theory in a more coordinate-independent
form, this preparation of the system of coordinates would not be necessary.)

Proposition 4.6. For r > 2, it is possible to find a Cr−2 family F∗ satisfying the
conclusions of Theorem 4.2 in such a way that, moreover

��
ε = dJ ∧ d,

where J,  are the push forward by F of the coordinates on [J0 + ∞) × T1.

Proof. We note that the F claimed in Theorem 4.2 is such that ��
ε is O(ε2) close

to dJ ∧ d in the Cr−2 sense. Then, applying a global version of Darboux theorem
[Wei77] we obtain a Cr−2 change of coordinates C�

ε : ��
ε → �, such that in the new

coordinates, that we will also denote by J, , we have: ��
ε = dJ ∧ d.

Moreover, it is possible to arrange that the change of variables is Cr−2 in the variables
(J, , �). This amounts to a parameterized version of the Darboux theorem [BLW96]
that shows that these transformations depend smoothly on parameters. The case that
� ∈ T1 can be found in [DLS00] and a more explicit construction is in [DdlLMS03]

The idea of the proof—we refer to [BLW96] for full details—is that, using the
standard deformation method for the proof of Darboux theorem, we obtain a family
of symplectic forms �� such that �0 is the original form and �1 is the target form.
The equation for f� given by f ∗

� �0 = �� is equivalent to the fact that f� satisfies
a differential equation with independent variable �. It is straightforward to check that
when we take �1 depending smoothly on another parameter � the differential equation
we derive depends differentiably on �. The desired regularity with respect to parame-
ters is a straightforward consequence of the results on dependence on parameters for
ODEs. �

Using the parameterization of �∗
ε given by the family F∗ = (F, A, IdTd ) provided

by Proposition 4.6, we have a system of coordinates (J, , B, �) on �∗
ε . The flow �∗

t,ε

obtained by restricting the full symplectic flow �∗
t,ε, is given, in these coordinates, by

the relation

F∗(�∗
t,ε(J, , B, �), ε2) = �∗

t,ε(F∗(J, , B, �, ε2)).

Since the transformations are exact, we have

(�∗
t,ε)∗	∗ = 	∗ + dSt,ε.

Hence, the flow �∗
t,ε is a Hamiltonian flow. Moreover �∗

t,ε is a quasi-periodic Hamil-

tonian flow with �̇ = ε�, and this allows us to define �̃t,ε on �̃ε. We will think of �̃t,ε
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as the representation in the coordinates (J, , �) of the extended flow �̃t,ε restricted
to the invariant manifold �̃ε.

4.3.4. The Hamiltonian flow in �∗
ε

Now we start to compute more explicitly the Hamiltonian of the flow restricted to
the invariant manifold �∗

ε .
We will write ε� · B + kε(J, , �) to denote the Hamiltonian generating �∗

t,ε with
respect to the standard symplectic form.

Since we have generated the system of coordinates by changes of variables that
transform the symplectic form in the standard one, it is easy to see that ε� · B +
kε(J, , �) will be the push-forward by F∗, of the Hamiltonian ε� · A + Hε(p, q, �)

given in (35). In particular, ε� · B + kε(J, , �) is Cr−2 and �∗
t,ε is a Cr−3 flow, quasi-

periodic, and it is a small perturbation of size O(ε2) of the constant flow J̇ = 0, ̇ = J ,
Ḃ = 0, �̇ = ε� of the unperturbed Hamiltonian ε� · B + 1

2J 2 in �∗.
Therefore, kε(J, , �) = 1

2J 2 + ε2k1
ε (J, , �), so that the Hamiltonian in �∗

ε is given
by

ε� · B + kε(J, , �) = ε� · B + 1
2J 2 + ε2k1

ε (J, , �). (45)

As we saw in Section 3.6, the unperturbed Hamiltonian has a (d + 1)-parametric
family of invariant tori T ∗

E,B given in (24) which fill the invariant manifold �∗. Looking
at the extended phase space we saw that all the tori obtained by taking different values
of B project into the same torus TE in �̃ given in (25), obtaining a one-parameter
family of tori in �̃.

Our next goal is to study �̃t,ε, the extended flow of the perturbed Hamiltonian (45)
restricted to �̃ε, and show that some of the tori TE persist and that the gaps between
them are very small.

A direct application of KAM theory to (45) will establish only the existence of tori
with gaps significantly bigger than what would be desirable for our later purposes.
Therefore, we will take advantage of the fact that the perturbation is slow in the angles
� and we will apply the averaging method to eliminate the fast angle . Applying
the KAM theorem to the averaged system we will establish the existence of tori that
are much closer that what a direct application of KAM Theory to (45) would yield.
Note that the fact that one the perturbation is slow with respect to the unperturbed
system implies that the only resonaces possible happen only in very high orders of the
perturbation theory. In the following Sections 4.3.5 and 4.3.6 we will implement the
averaging procedure and the KAM theorem.

4.3.5. Averaging theory
The following result is a version of the classical averaging theorem that allows to

change variables on a system perturbed by a slowly evolving term and reduce it to a
system under a much smaller perturbation.
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Theorem 4.7. Let ε� · B + kε(J, , �) as in (45) be a Cn family of Hamiltonians,
1-periodic on  and on � = (�1, . . . , �d).

Then, for any 0 < m < n, there exists a canonical change of variables (J, , B, �) �→
(Ĵ , ̂, B̂, �), 1-periodic in  and �, which is ε2-close to the identity in the Cn−m

topology, such that it transforms the Hamiltonian system of Hamiltonian (45) into a
Hamiltonian system of Hamiltonian ε� · B̂ + Kε(Ĵ , ̂, �). This new Hamiltonian is a
Cn−m function with

Kε(Ĵ , ̂, �) = K0
ε (Ĵ , �) + εm+1K1

ε (Ĵ , ̂, �),

where K0
ε (Ĵ , �) = 1

2 Ĵ 2 + OCn−m(ε2), and the notation OCl (ε) means a function whose
Cl norm is O(ε).

Proof. It is standard, and it is carried out in detail for the case of periodic perturbations
in [DLS00, Theorem 4.6]. See also [AKN88,LM88].

The only change needed to transform the write up of the one-dimensional theorem
in [DLS00] to the case considered here is that the one-dimensional variable εs of the
case of periodic perturbations has to be replaced by the d-dimensional variable �. Note
that in both cases the perturbation is slow because �̇ = ε� and, for the periodic case
(εs)=̇ε. All the arguments and calculations in [DLS00] go through without any other
change.

It is important to note that the changes of variables are found to eliminate the variable
—which continues to be one dimensional. Therefore, the homological equation that
appear in the steps of the averaging procedure can be solved by quadratures. (In
particular, there is no need to solve any small divisors equation.) In other words, the
phases � which change from those in [DLS00] enter only as parameters in all the
transformations required in the proof. �

4.3.6. K.A.M. theory
By Theorem 4.7, with n = r −2, 0 < m < r −2, Hamiltonian (45) is given, in these

new averaged variables, by

ε� · B̂ + Kε(Ĵ , ̂, �) = ε� · B̂ + K0
ε (Ĵ , �) + εm+1K1

ε (Ĵ , ̂, �), (46)

where

K0
ε (Ĵ , �) = 1

2 Ĵ 2 + OCr−2−m(ε2) (47)

is a Cr−2−m function.
We note that the first part of (46), namely ε�·B̂+K0

ε (Ĵ , �), is integrable, but it is not
written in the classical action-angle variables. The next step will be to apply the KAM
theorem to Hamiltonian (46). To this end, it is convenient to introduce action-angle
variables (Ĵ , �, B, �) in place of the variables (Ĵ , ̂, B̂, �), that is, the variables Ĵ and
� remain unchanged.
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We introduce the generating function �Ĵ + �B̂ + ε�(Ĵ , �; ε), where �(Ĵ , �; ε) is the
solution of the classical small divisors equation:

ε2� · ���(Ĵ , �; ε) = K0
ε (Ĵ , �)− < K0

ε (Ĵ , ·) > (48)

with

< K0
ε (Ĵ , ·) >=

∫
Td

K0
ε (Ĵ , �)d�.

Note that, by (47), K0
ε (Ĵ , �)− < K0

ε (Ĵ , ·) >= OCr−2−m(ε2).
Using the results of [Rus75] on solutions of small divisors equations, reproduced in

Lemma A.23 for the analytic case, the solution � of the homological equation has a
Cr−2−m−� norm bounded independently of ε, where � is the diophantine exponent of
� (see (3)).

The change of variables generated by � is

Ĵ = Ĵ ,

B = B̂ + ε
��

��
(Ĵ , �; ε),

� = ̂ − ε
��

�Ĵ
(Ĵ , �; ε),

� = �. (49)

Note that this change of variables is OCr−3−m−�(ε) close to the identity.
With the change of variables (49) Hamiltonian (46) transforms into

ε� · B+ < K0
ε (Ĵ , ·) > +εm+1K̄1

ε (Ĵ , �, �), (50)

where εm+1K̄1
ε is a Cr−3−m−� function.

We note that our Hamiltonian is finitely differentiable. The KAM theorem which
we will use is patterned after the KAM theorem in [Zeh76a], which requires that the
unperturbed Hamiltonian is analytic. As suggested in [Zeh76a, p. 70], it is natural to
separate from the integrable part a polynomial part. We apply this suggestion to our
case.

For any value Ĵ = I0 the unperturbed Hamiltonian ε� · B+ < K0
ε (Ĵ , ·) > leaves

invariant a torus of frequency (�, ��) in the extended phase space, where, by (47)

� = �(I0) = �

�Ĵ
< K0

ε (Ĵ , ·) >|Ĵ=I0
= I0 + OCr−3−m−�(ε2). (51)
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If we change the origin of Ĵ through I = Ĵ − I0, to translate the torus we are
interested in to the origin, the unperturbed Hamiltonian can be written, around this
torus, as

H0(I, B; ε) + I 2m+2R2(I ; ε),

where

H0(I, B; ε) = ε� · B + c0 + �I + Q0I
2 + c3I

3 + · · · + c2m+1I
2m+1, (52)

contains the 2m + 1-degree Taylor polynomial of < K0
ε (I0 + I, ·) > around I = 0,

Q0 = �2

�Ĵ 2
< K0

ε (Ĵ , ·) >|Ĵ=I0
= 1 + OCr−4−m−�(ε2),

and I 2m+2R2(I ; ε) is a Cr−3m−4 function.
In these variables, Hamiltonian (46) reads as a perturbation of (52):

H(I, �, B, �; ε) = H0(I, B; ε) + εm+1R1(I, �, B, �; ε) + I 2m+2R2(I ; ε), (53)

where εm+1R1(I, �, B, �; ε) is a Cr−m−3−� function.
We are now in a position to apply a KAM theorem. We will show that, for ε small

enough, Hamiltonian (53) has an invariant torus with frequency (�, ε�), provided this
frequency satisfies some Diophantine conditions. We will see that the gaps between
such Diophantine frequencies are of size O(ε(m+1)/4).

In terms of the original variables (J, , B, �) inside �∗
ε , Hamiltonian (45) will have

invariant tori with gaps between them also of size O(ε(m+1)/4).
Even if the component � of the frequency (�, ε�) of the torus is to be chosen

depending on the initial conditions, the last components are determined by those of
the external forcing. Hence, we will not only require that the external frequency ε�
is Diophantine, but also that the frequency � is Diophantine relative to ε�. Precise
definitions about relatively Diophantine numbers and on their abundance are collected
in Definition A.1, Propositions A.2 and A.3.

Theorem 4.8. Let � ∈ Dd(�, �), � ∈ Dn(ε�, �̃, �̃) (see Definition A.1), with 0 < �̃�ε�,
�̃�� > 0.

Denote � = 2�̃ + 1 and assume l�2� + 3 = 4�̃ + 5.
Let H0 be a polynomial of the form:

H0(I, B) = c0 + ε� · B + � · I + 1
2I�Q0I + R0(I ), (54)
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where R0(I ) = O(|I |3) and

Bs = {(I, �, B, �) ∈ Rn × Tn × Rd × Td , |I | �s, |B| �s}, s > 0

and assume that

e := ‖H0‖Cl (Bs)
< ∞,

� :=
∥∥∥< Q0 >−1

∥∥∥ < ∞.

(The constant � will be referred as the twist constant.)
Then, there is a constant C > 0 depending on e, �, �̃, �, l—but not on �̃ or on

�—such that, given any Cl function H of the form

H(I, �, B, �) = ε� · B + E(I, �, �) (55)

satisfying

‖H − H0‖Cl (Bs)
�C�−2�̃4, (56)

where s is large enough so that s − C�̃2 > 0, we have

(1) There is a symplectic diffeomorphism F ∈ S1 ∩Cl−�−1(Bs̃), where s̃ = s −C�̃2 and
S1 is a subset of the space of canonical diffeomorphisms specified in Definition
A.9.

(2) The diffeomorphism F is of the form

F(I, �, B, �) = (f (I, �, B, �), �). (57)

(3) The transformed Hamiltonian is of the form

H ◦ F(I, �, B, �) = c + ε� · B + � · I + 1
2I�Q(�, �)I + R(I, �, �), (58)

where R = O(I 3).
(4) The following estimates hold:

‖F − Id‖Cl−�−1(Bs̃ )
� C�̃−2� ‖H − H0‖Cl (Bs)

, (59)

‖Q − Q0‖Cl−�−1(Bs̃ )
� C�̃−2� ‖H − H0‖Cl (Bs)

. (60)

The proof of Theorem 4.8 is given in Appendix A.
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Remark 4.9. Theorem 4.8 is not optimal in two aspects. First, it requires a loss in the
derivatives heavier than needed and consequently higher differentiability assumptions.
Second, the values obtained for the exponent of �̃ in (56), (59) and (60) are twice
the optimal ones. In Remark A.25 we discuss in more detail the optimality. For the
purposes of this paper, the only effect of lack of optimality is that we assume more
differentiability than needed and, of course, that the initial energy of the orbits is higher
than needed.

Applying Theorem 4.8 to Hamiltonian (53), we obtain invariant tori for Hamiltonian
(46) and consequently for Hamiltonian (35), for

l̄ := min(r − m − 3 − �, r − 3m − 4)� l0, l0 = 4�̃ + 5, (61)

or equivalently for r � max(m + 3 + � + l0, 3m + 4 + l0).
There are two properties of the KAM tori for (46) that will be important for future

analysis. One is that the tori are close (in a C1 topology) to the tori obtained fixing
the value of the actions to appropriate values (59). The second property is that the tori
leave very small gaps between them. The precise meaning of “leaving small gaps” is
that in the extended phase space we can find tori whose C1 distance will be bounded
by a (high) power of ε.

It is clear that, to accomplish this proximity, we have to consider an increasing
number of tori for smaller ε. That is, we will need to consider tori of frequencies
(�, ε�) with worse Diophantine properties as we consider ε → 0. Since we will also
need to obtain explicit approximations of these tori, it will be important to keep track
of the size of the Diophantine constants allowed.

Proposition 4.10. Assume that r is big enough so that (61) holds for �̃ = � + 2, ε is
sufficiently small and m > 3.

The KAM tori produced applying Theorem 4.8 to Hamiltonian (46) are OC l̄−6−2�

(ε(m+1)/2)-close to surfaces of the form {I0} × T1+d .
Given any of these KAM tori, we can find another KAM torus which is OC l̄−6−2�

(ε(m+1)/4)-close to it. In particular, it is OC1(ε(m+1)/4)-close to it.

Remark 4.11. Due to the fact that the actions A are not dynamical variables, the torus
of frequency (�, ε�) is not unique in the full symplectic space. We can always obtain
a family of tori T ∗

�,B(ε) with the same frequency (�, ε�) by translating by B in the
A-direction the torus produced by Theorem 4.8.

Of course, all these tori T ∗
�,B(ε) ⊂ �∗

ε project in the same torus T�(ε) ⊂ �̃ε when
we consider the extended phase space.

Therefore, when we speak about gaps between tori we will refer to the gaps between
the tori T�(ε) of the extended system.

Note also that the diffusion we establish in this paper takes place also in the extended
phase space.
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Proof. Recall that the external frequency � verifies that � ∈ D(�, �).
Given ε > 0 small enough take �̃ = � + 2 so that � = 2� + 5, �̃ = Cε(m+1)/4 and

s = ε1/2. Since m > 3 we have �̃�ε� and s − c�̃2 > 0. Consider I0 such that its
frequency � = �(I0) as given in (51), verifies � ∈ D1(ε�, �̃, �̃).

Therefore, the change of variables (49) transforms Hamiltonian (46) into (50).
After the change of origin I = Ĵ − I0, Hamiltonian (50) takes the form (53). All

the conditions of Theorem 4.8, specially (56) are satisfied, so there exists an invariant
torus of frequency (�, ε�) of the C l̄ Hamiltonian (53).

This invariant torus is the image of the torus {0} × T1+d by the diffeomorphism F
produced in Theorem 4.8. By (59) and (61), we have

||F − Id ||C l̄−6−2� �Cε−(m+1)/2ε(m+1) = Cε(m+1)/2.

Since change (49) is OCr−m−3−�(ε)-close to the identity and does not change the action
Ĵ , we obtain an invariant torus T�(ε) of Hamiltonian (46) which is OC l̄−6−2�(ε

(m+1)/2)-
close to {I0} × T1+d .

Proposition A.3 shows that any ball of R of radius r, with r bigger than �̃ =
Cε(m+1)/4 contains an � ∈ D1(ε�; Cε(m+1)/4, �̃). By Eq. (51) the mapping that to fre-
quency � associates the action I0 is a diffeomorphism with uniform Lipschitz constant
of order one. Therefore, in any ball of radius bigger than C1�̃ in the space of actions,
we can find a point so that the frequency of the unperturbed part in (46) satisfies the
conditions of Theorem 4.8.

As the tori are OC l̄−6−2�(ε
(m+1)/2)-close to the surfaces Ĵ = I0, the gaps between

them in the C1 topology are of order OC l̄−6−2�(ε
(m+1)/4). Since l̄ −6−2� > 2�+6 > 1,

the gaps between them in the C1 topology are of order ε(m+1)/4. �

Remark 4.12. By Theorem 4.7, the change of variables transforming Hamiltonian (45)
in (46) is ε2-close to the identity in the Cr−3−�−m topology. Therefore, Hamiltonian (45)
will have KAM tori that are OC1(ε2)-close to surfaces of the form J0 × T1+d in the
extended phase space, but the gaps between them are still of order OC1(ε(m+1)/4).

Remark 4.13. The KAM tori we have produced are, obviously, invariant for the full
Hamiltonian (35). Nevertheless, considered as subsets of the full system they are not
maximal tori (see [Moe96,Sor02]). They inherit the stable and unstable directions from
the normally hyperbolic invariant manifold �̃ε.

Remark 4.14. Note that the tori produced by KAM theory are of codimension 1
inside �̃ε. Therefore we can consider the manifolds with boundary inside �̃ε trapped
between KAM tori. Any of these submanifolds will be a normally hyperbolic invariant
manifold for the extended flow, and then the results of hyperbolic perturbation theory
of Theorem 4.1 give in this case results of uniqueness for the stable and unstable
manifolds as is explained in observation 4 after Theorem A.14 in [DLS00].
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4.3.7. Some approximate expressions for the KAM tori
Theorem 4.8, Proposition 4.10 and Remark 4.12 provide the existence of KAM

invariant tori of Hamiltonian (45), which is the restriction of Hamiltonian (35) H ∗
ε

to �∗
ε .

It will be useful for further analysis to obtain some explicit approximations for these
invariant tori in the coordinate system given by the phases (, �), the value of the
Hamiltonian Hε, and the actions A.

The reason we want approximations for the KAM tori in these coordinates is that,
to decide whether the image of a torus by the scattering map crosses another torus, we
need to take into account that not only the scattering map changes from its unperturbed
value but also that the position of the tori change under the perturbation.

In order to compare the effect of the perturbation of the tori with the scattering map
it will be useful for us that the approximation for the invariant tori satisfy a functional
equation. The functional equation will be very similar to the equations satisfied by the
first order approximation of the change in the scattering map and it will allow us to
combine them into a function that measures whether tori intersect. This procedure is a
generalization of the one used in [DLS00,Tre94].

The following proposition is a consequence of the fact that the KAM tori are close
to flat in a C1 norm.

Proposition 4.15. Under the assumptions of Proposition 4.10, let � ∈ D1(ε�; �̃, �̃) be
one of the frequencies for which we can apply Theorem 4.8 and let us call l = l̄−6−2�
and assume (61).

Then, in the coordinate system (Hε, A, , �), where Hε, A are given in (35) and  is
the angle variable introduced in Section 3.6, we can write the invariant torus T ∗

�,B(ε) ⊂
�∗

ε of frequencies (�, ε�) as the graph of functions from the angle coordinates to the
energy and the action variables:

Hε = G�(, �; ε),

A = P�,B(, �; ε). (62)

Moreover, the functions G�, P�,B can be written as:

G�(, �; ε) = �2/2 + ε2U(�) + ε3� · ��h̃(, �; ε) + OCl−�(ε
4),

P�,B(, �; ε) = B − ε��h̄(�) − ε2��h̃(, �; ε) + OCl−�(ε
3). (63)

(Even if h̃, h depend on �, we omit the � from the notation for typographical reasons.)
The functions h̃(, �; ε) and h(�) are 1-periodic functions which satisfy

��h̃(, �; ε) + ε� · ��h̃(, �; ε) = Ũ (�q
1/2(), �),

� · ��h̄(�) = U(�), (64)
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where the functions U(�) and Ũ (q, �) are defined in (17), and
∥∥∥h̃(·, ·; ε)

∥∥∥
Cl−�

is

bounded uniformly in ε.

Remark 4.16. From expression (63), it is clear that any trajectory in the invariant torus
T ∗

�,B(ε) experiences an oscillation of order ε2 in the energy Hε, due to the averaged

term ε2Ū (�), which is the same for all the invariant tori.
On the other hand, the same trajectory experiences an oscillation of order ε3 in the

averaged energy Hε − ε2Ū (�), which could have been chosen as alternative variable to
describe the tori. Of course, if we had averaged more times, the tori would have been
flatter.

Proof. First notice that, since the total extended energy H ∗
ε in (35) is conserved, we

have that G� + ε� · P�,B is independent of , �.
We will derive the equations satisfied by the functions G�, P�,B . These equations

will be just expressions of the derivatives of Hε and A with respect to time along the
trajectories of the flow.

The KAM theorem 4.8, Proposition 4.10, the change of variables (49), the Averaging
Theorem 4.7, and Theorem 4.1 about the persistence of normally hyperbolic invariant
manifolds, provide us with a parameterization K�,B(�, �) of the invariant torus T ∗

�,B(ε)

of Hamiltonian (35) in terms of two variables � ∈ T1, � ∈ Td (� will be the phase of
the perturbation and will remain unchanged) so that the evolution equations inside the
torus are equivalent to �̇ = �, �̇ = ε�.

By Proposition 4.10, the KAM parameterization is OCl (ε(m+1)/2)-close to the identity
when expressed in the coordinates (I, �, B, �) of Hamiltonian (53). Moreover, the
change of variables in the averaging method given in Theorem 4.7 is OCr−2−m(ε2)

close to the identity. Therefore, using also change (49), the function that gives the
variable  as a function of �, � satisfies

 = �(�, �) = � + ε
��

�Ĵ
(�, �; ε) + OCl (ε

2), Ĵ = J�(�, �) = � + OCl (ε
2). (65)

The phase � of the external perturbation is not changed in any of the changes of
coordinates that we introduce.

Continuing one step further, using the parameterization on �∗
ε given by Theorem 4.2,

and using (40) and (7), we obtain

K�,B(�, �) = (p(�, �), q(�, �), A(�, �), �)

=
(

��2
2

(
1

�

(
� + ε

��

�Ĵ
(�, �; ε)

))
, B, �

)
+ OCl (ε

2)

=
(

��p
1
2

(
� + ε

��

�Ĵ
(�, �)

)
, �q

1
2

(
� + ε

��

�Ĵ
(�, �; ε)

)
, B, �

)
+OCl (ε

2). (66)
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We write

G�(�, �; ε) = Hε(p(�, �), q(�, �), �), P�,B(�, �; ε) = A(p(�, �), q(�, �), �),

and observe that G�(�, �; ε) = �2

2 + OCl (ε2) and P�,B(�, �; ε) = B + OCl (ε2).
Moreover

d

dt
(G� ◦ �∗

t,ε)|t=0 = ε3� · ��U(q(�, �), �),

d

dt
(P�,B ◦ �∗

t,ε)|t=0 = −ε2��U(q(�, �), �),

where �∗
t,ε is the flow associated to the Hamiltonian H ∗

ε in (35).
Taking into account (66), we obtain

d

dt
(G� ◦ �∗

t,ε)|t=0 = ε3� · ��U

(
�q

1/2

(
� + ε

��

�Ĵ
(�, �; ε)

)
, �

)
+ OCl (ε

5),

d

dt
(P�,B ◦ �∗

t,ε)|t=0 = −ε2��U

(
�q

1/2

(
� + ε

��

�Ĵ
(�, �; ε)

)
, �

)
+ OCl (ε

4).

On the other hand, using the reduced equations �̇ = �, �̇ = ε�, we have that

d

dt
(G� ◦ �∗

t,ε)|t=0 = �
�G�

��
(�, �; ε) + ε�

�G�

��
(�, �; ε),

and an analogous equation for P�,B .
So we can obtain G� as a solution of the functional equation

�
�G�

��
(�, �) + ε�

�G�

��
(�, �) = ε3� · ��U

(
�q

1/2

(
� + ε

��

�Ĵ
(�, �; ε)

)
, �

)
+ OCl (ε

5).

Expanding the right-hand side of the equation by Taylor’s formula we can look for G�

as G� = �2

2 + g1 + g2 + g3, where

�
�gj

��
+ ε�

�gj

��
= �j , (67)
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with

�1(�, �) = ε3� · ��U(�q
1/2(�), �),

�2(�, �) = ε4� · ��

(
��U(�q

1/2(�), �)
) ��

�Ĵ
(�, �; ε),

�3(�, �) = OCl (ε
5).

The classical way to solve the homological equation

�
�g

��
+ ε�

�g

��
= � (68)

is expanding � and g in Fourier series g(�, �) = ∑
gk,le

i(k�+l·�), obtaining

gk,l = �k,l

i(�k + ε� · l)
. (69)

From expression (69) it follows that for k �= 0 the coefficient gk,l is of the same
order as the coefficient �k,l (see Remark 4.14 in [DLS00]).

In particular, when
∫

T �(�, �)d� = 0, we have that there exists some constant C > 0
such that ‖g‖Cl �C ‖�‖Cl . This reasoning leads to ‖g2‖Cl �C ‖�2‖Cl = OCl (ε4).

For k = 0, Eq. (69) gives g0,l = �0,l

iε(�·l) .
So, in the general case, using the results of [Rus75] (see also Lemma A.23) the solu-

tion of Eq. (68) verifies that there exists some constant C > 0 such that ‖g‖Cl−� �C 1
ε

‖�‖Cl , where � is the Diophantine exponent of �. This reasoning leads to ‖g3‖Cl−� �C 1
ε

‖�3‖Cl = OCl−�(ε4).
g1 can be found explicitly solving Eq. (67) for j = 1, and using the decomposition

introduced in (17), so that

��U(�1/2(�), �) = ��U(�) + ��Ũ (�1/2(�), �),

which gives immediately

g1 = ε2U(�) + ε3g̃1(�, �; ε),

where g̃1 verifies the same equation as g1 with the Ũ instead of U. Moreover g̃1 =
���h̃, if we choose h̃ to be the solution of the homological equation (68) with � =
Ũ (�1/2(�), �).

Putting together the expression for g − 1, as well as the bounds for g2 and g3, we
obtain the approximation formula (63) for G� in terms of the variables (�, �). Using
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(65) we see that we can change the arguments of the right-hand side from the �, � to
, � without any change in the explicit terms of formula (63).

An analogous reasoning leads to the equation for the components A = P�,B of the
torus.

4.4. The perturbed scattering map

4.4.1. Introduction and overview
The goal of this Section is to define and to compute the scattering map S∗

ε and to
use it to characterize intersections of stable and unstable manifolds of the different
invariant objects in �∗

ε for the perturbed flow.
We recall that, according to Theorem 4.2 and Remark 4.4, when we consider the

perturbed full symplectic flow of (35) in the full symplectic space, we can find �∗
ε ,

W s,u(�∗
ε), �∗

ε , continuing those of the unperturbed system. Then, given x∗+, x∗− ∈ �∗
ε ,

we say, as in Eq. (26), that x∗+ = S∗
ε (x∗−) when

W s
x∗+ ∩ W u

x∗− ∩ �∗
ε �= ∅, (70)

that is, there exists z∗ ∈ �∗
ε such that

dist
(
�∗

t,ε(x
∗±), �∗

t,ε(z
∗)
)

�C e−�|t | for ± t �0. (71)

for some � > 0 that will be close to �0 in (11).
If we write x∗± = (x±, A±, �±, ), z∗ = (z, Az∗ , �z∗), since the flow of (35) satisfies

�̇ = ε�, we see that (71) implies �+ = �− = �z∗ , which we will henceforth denote
by �.

In order to perform explicit calculations, we will compute the scattering map for a
finite range of energies E ∈ [1/2, 2] in the scaled variables. This will allow us to use
uniform continuity arguments. This will be enough for our purposes since at this stage
we only want to study transition chains for this range of energies.

We note that since E∗ chosen in (30) for the change to scaled variables was arbitrary,
we can construct the scattering map for all the manifold �∗

ε .
We will express the map S∗

ε in the full space in terms of the explicit coordinates
(J, , B, �) for �∗

ε that we have introduced in Section 4.3.3. We recall that the coor-
dinates B are deformations of the actions A, obtained through the parameterization F∗
of Theorem 4.2, chosen so that the symplectic form in �∗

ε (restriction of the ambient
one) has the standard form.

In these coordinates, if we consider x∗+ = S∗
ε (x∗−) connected through a point z∗

verifying (71), we have

x∗± = (F(J±, ±, �, ε2), A(J±, ±, B±, �, ε2), �)
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and, using the regular dependence on parameters of the stable and unstable manifolds
on compact sets and (14), we obtain that

± = 0 + a± + O(ε2),

J± = J0 + O(ε2),

B± = B0 + O(ε2), (72)

for some 0 ∈ R, J0 ∈ R, B0 ∈ Rd , and where a± were introduced in hypotheses H2
and H2′, in formulas (2) and (10). Moreover, we have, by (40)

�∗
t,ε(x

∗±) =
(

�E

(
t + 0 + a±√

2E

)
+ OC1(ε2), B0 + OC1(ε2), � + ε�t

)
�∗

t,ε(z
∗) =

(
�E

(
t + 0√

2E

)
+ OC1(ε2), B0 + OC1(ε2), � + ε�t

)
(73)

with E = J 2
0 /2.

In the formulas (73), the OC1(ε2) is uniform for t ∈ R. This follows from the
dependence on parameters in hyperbolicity theory and (14).

Our next goal is to give quantitative conditions for the existence of heteroclinic
connections between the KAM tori obtained in Section 4.3.6. To this end, we will
obtain enough quantitative information that allows us to conclude that the heteroclinic
intersections are transversal and to estimate the energy of the tori connected through
these intersections.

That is, we will state sufficient conditions that ensure that, given two different KAM
tori T ∗

1 , T ∗
2 in �∗

ε , the unstable manifold of T ∗
1 intersects transversally the stable

manifold of T ∗
2 in the full space. The intersections of the stable and unstable manifolds

of different KAM tori are referred to as heteroclinic connections. As we will see in
Lemma 4.33, due to the fact that the stable and unstable manifolds of �∗

ε intersect
transversally along �∗

ε , it will be enough to see that S∗
ε (T ∗

1 ) is transversal to T ∗
2 in

�∗
ε .
To characterize the intersection between S∗

ε (T ∗
1 ) and T ∗

2 we will use the fact that
(Hε, , A, �) constitutes a good system of coordinates in the manifold �∗

ε . Moreover,
by Proposition 4.15 we know that, in this system of coordinates, the KAM tori can be
expressed as graphs of functions. Indeed, in the coordinates above, the KAM tori will
be OC1(ε)-close to surfaces of the form Hε = c, Ai = ci .

One reason why the system of coordinates given by (Hε, , A, �) is useful for us is
that not only it is defined in the manifold �∗

ε but also on its homoclinic orbits. This
will allow us to compute the change of the coordinates in a homoclinic excursion to
�∗

ε and compare it with the change of coordinates of an orbit who stays in a KAM
torus. In this way we will be able to decide whether a homoclinic connection connects
two KAM tori.

As it is well known in Melnikov theory, the change of the coordinates in a homoclinic
excursion can be computed by applying the fundamental theorem of calculus along the
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Fig. 1. Illustration of the perturbed tori and the outer map.

homoclinic orbit. In turn, the perturbed trajectory will be computed approximately using
the smooth dependence on parameters for the invariant manifolds.

It is also important to note the regular dependence on the parameter ε of all the
objects we are studying, such as invariant tori and their manifolds, and consequently
of the scattering map S∗

ε . This will allows us to compute this map perturbatively.
We will detect whether x∗− and x∗+ = S∗

ε (x∗−) lie on two different KAM tori by
computing Hε(x

∗+) − Hε(y) and A(x∗+) − A(y), where y is the projection of x∗+ on the
KAM torus containing x∗−, i.e., y has the same angle coordinates (+, �) as x∗+. See
Fig. 1.

Since we are looking for heteroclinic connections between tori, such tori have to
be in the same energy level of the full space T∗M × Rd × Td of the autonomous
Hamiltonian H ∗

ε (p, q, A, �) in (35). Then, it is not restrictive to set H ∗
ε (p, q, A, �) =

ε� · A + Hε(p, q, �) = 0. Once we fix the total energy level, the quantities (Hε, A) are
not independent and it is natural to work only with the coordinates A since we have
that

Hε(x
∗+) − Hε(y) = −ε� · (A(x∗+) − A(y)). (74)

Therefore, the main goal in the discussion of intersections of tori under the scattering
map is to compute

�A ≡ A(x∗+) − A(y), (75)

where, as mentioned before, y is the point in the KAM torus which contains x∗− and
that has the same angle coordinates (+, �) as x∗+.
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We will compute �A as

�A = [A(x∗+) − A(x∗−)] + [A(x∗−) − A(y)]. (76)

The first term of (76) will be computed in Lemma 4.18 by means of a classical calcula-
tion, that goes back to Poincaré. The idea is that since x∗+ and x∗− are connected through
an orbit, we can use the fundamental theorem of calculus and obtain A(x∗+)−A(x∗−) by
integrating the derivative of A along this orbit and taking appropriate limits. Moreover,
by the regular dependence on parameters of normal hyperbolicity, the connecting orbit
is approximately the unperturbed homoclinic orbit � and, to compute the leading con-
tribution, it suffices to integrate along the unperturbed orbit �. Hence, we can explicitly
write the main term of the first term of (76).

The term A(x∗−) − A(y) in (76) can be computed using the explicit expansions
of KAM tori from Proposition 4.15. In Lemma 4.19 we obtain the main term of
A(x∗+) − A(y) as an explicit vector function (82), that we will call Melnikov vector
following [DR97].

Thanks to the Hamiltonian structure of the problem, the Melnikov vector is the
gradient of a scalar function (88) called in [DR97,DG00] the Melnikov potential.

Remark 4.17. The fact that the main term of the perturbation is a gradient has deep
topological implications for the number of zeros of the Melnikov vector, and hence,
the number of homoclinic intersections. However, in this paper, we will use it mainly
as a tool to simplify the calculations and to make connections with the variational
formulation in [Mat96], which involved similar expressions.

Similarly, we note that the main term of Hε(x
∗+) − Hε(y), which we will compute

in (93), and which we call Melnikov function, is the directional derivative of the
Melnikov potential in the direction given by �.

We emphasize that the calculation of Melnikov functions up to this point is quite
general and does not use the fact that the system is quadratic in the momenta perturbed
by a potential, or that the perturbation is slow. Taking this into account in Lemma 4.26
we establish that L in (90) (called Poincaré function) gives the leading term of the
expansion of the Melnikov potential for large energies.

We further show that if the function L is non-constant there are heteroclinic con-
nections among all sufficiently large energies forming a transition path. Once we have
transition paths for all large values of the energy, we will be able to construct orbits
that follow them in Lemma 4.37.

4.4.2. Calculation of the scattering map
In this section, we start computing perturbatively the scattering map. By formula (74)

and the discussion after it, it is enough to compute the change of the action coordinates
A. Since we will only be computing the scattering map to order ε, we will carry the
calculations of the change in A only to that order.
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Lemma 4.18. Let x∗− and x∗+ be two points on �∗
ε such that x∗+ = S∗

ε (x∗−). Then

A(x∗+) − A(x∗−) = ε2 lim
T1,T2→∞

[
−
∫ T2

−T1

dt ��Ũ

(
�q
E

(
t + 0√

2E

)
, � + ε�t

)

+
∫ 0

−T1

dt ��Ũ

(
�q

E

(
t + 0 + a−√

2E

)
, � + ε�t

)

+
∫ T2

0
dt ��Ũ

(
�q

E

(
t + 0 + a+√

2E

)
, � + ε�t

)]
+OC1(ε4), (77)

where, using (72),

x∗± =
(
F(J±, ±, �, ε2), A(J±, ±, B±, �, ε2), �

)
=
(

�E

(
0 + a±√

2E

)
+ OC1(ε2), B0 + OC1(ε2), �

)

for some 0 ∈ R, E > 0, B0 ∈ R, where F is introduced in Theorem 4.1, and Ũ ,
introduced in (17), is the forcing potential minus its average on the periodic orbit �1/2.

Proof. Recall that if �∗(t) = (�p(t), �q(t), A(�∗(t)), 	 + ε�t) is a trajectory of the
Hamiltonian (35) then

d

dt
A(�∗(t)) = −ε2��U(�q(t), 	 + ε�t).

Therefore, for two trajectories �∗(t) and �∗(t) of (37), we have, by the fundamental
theorem of calculus,

A(�∗(T )) − A(�∗(T )) = A(�∗(0)) − A(�∗(0))

−ε2
∫ T

0
dt ��U(�q(t), 	 + ε�t)

+ε2
∫ T

0
dt ��U(�q(t), � + ε�t). (78)

Since x∗+ = S∗
ε (x∗−), we know that there exists z∗ ∈ T∗M × Rd × Td , such that the

trajectories �∗
ε(t) = �∗

t,ε(z
∗) and �∗±,ε(t) = �∗

t,ε(x
∗±) verify (71).
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Then, taking limits T → ±∞ in (78) for �∗(t) = �∗±,ε(t) and �∗(t) = �∗
ε(t) as

appropriate, we obtain

0 = A(x∗+) − A(z∗)

− lim
T2→∞ ε2

∫ T2

0
dt
(
��U

(
�q

+,ε(t), � + ε�t
)− ��U

(
�q
ε (t), � + ε�t

))
,

0 = A(x∗−) − A(z∗)

− lim
T1→∞ ε2

∫ −T1

0
dt
(
��U

(
�q

−,ε(t), � + ε�t
)− ��U

(
�q
ε (t), � + ε�t

))
.

Subtracting these two equations we obtain

A(x∗+) − A(x∗−)

= +ε2 lim
T1,T2→∞

[∫ T2

0
dt
(
��U

(
�q

+,ε(t), � + ε�t
)− ��U

(
�q
ε (t), � + ε�t

))
+
∫ 0

−T1

dt
(
��U

(
�q

−,ε(t), � + ε�t
)− ��U

(
�q
ε (t), � + ε�t

))]
. (79)

By (71), the limits in (79) are reached uniformly in ε, and the dependence of the
trajectories on ε is uniform on compact intervals of time. Hence, at the expense only
of introducing an error of higher order in ε, we can substitute in (79) for �±,ε and �ε

the unperturbed orbits given by (73).
We note that the right-hand side of (79) is linear in U. Hence if we use the decom-

position U(q, �) = U(�) + Ũ (q, �) given in (17), the computation of the right-hand
side of the terms in (79) containing U are zero, so we obtain (77). �

4.4.3. Intersection of KAM tori with the image of KAM tori under the scattering map
The goal of this section is to decide whether the image under the scattering map of

a KAM torus intersects another (or perhaps the same) KAM torus.
To carry out this calculation, we will work in the coordinates given by (Hε, A, , �).

In these coordinates, the torus is approximately given by the graph of a function from
the angles into the action variables computed in Proposition 4.15.

Lemma 4.19. Let y be a point with the phases (+, �) of x∗+ and which lies on the
invariant torus for the perturbed flow which contains x∗−, where

x∗± =
(
F(J±, ±, �, ε2), A(J±, ±, B±, �, ε2), �

)
=
(

�E

(
0 + a±√

2E

)
+ OC1(ε2), B0 + OC1(ε2), �

)
.
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Then

A(x∗+) − A(y) = ε2 lim
T1,T2→∞

[
−
∫ T2

−T1

dt ��Ũ

(
�q
E

(
t + 0√

2E

)
, � + ε�t

)
+��h̃

(
0 + a+ + √

2E T2, � + ε�T2; ε
)

−��h̃
(
0 + a− − √

2E T1, � − ε�T1; ε
)]

+OC1(ε3), (80)

where h̃(, �; ε) verifies Eq. (64), associated to the invariant torus of the perturbed
flow which contains x∗−.

Proof. We use Lemma 4.18 for A(x∗+)−A(x∗−) and formulas (62) and (63), l − � > 1,
of Proposition 4.15 for A(x∗−) − A(y):

A(x∗+) − A(y) = A(x∗+) − A(x∗−) + A(x∗−) − A(y)

= ε2 lim
T1,T2→∞

[
−
∫ T2

−T1

dt ��Ũ

(
�q
E

(
t + 0√

2E

)
, � + ε�t

)

+
∫ 0

−T1

dt ��Ũ

(
�q

E

(
t + 0 + a−√

2E

)
, � + ε�t

)

+
∫ T2

0
dt ��Ũ

(
�q

E

(
t + 0 + a+√

2E

)
, � + ε�t

)

−��h̃(0 + a−, �; ε) + ��h̃(0 + a+, �; ε)

]

+OC1(ε3). (81)

Now, calling A−(t) = ��h̃
(
0 + a− + √

2Et, � + ε�t; ε
)

, we have, using the func-

tional equation (64) verified by h̃ and the scaling (7):

d

dt
A−(t) = √

2E���h̃
(
0 + a− + √

2Et, � + ε�t; ε
)

+ε�����h̃
(
0 + a− + √

2Et, � + ε�t; ε
)
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= ��Ũ
(
�q

1/2

(√
2Et + 0 + a−

)
, � + ε�t

)
= ��Ũ

(
�q

E

(
t + 0 + a−√

2E

)
, � + ε�t

)

and a similar identity holds for A+(t) = ��h̃
(
0 + a+ + √

2Et, � + ε�t; ε
)

, which

verifies

d

dt
A+(t) = ��Ũ

(
�q

E

(
t + 0 + a+√

2E

)
, � + ε�t

)

Then, using the fundamental theorem of Calculus, we have for any T:

A±(T ) − A±(0) =
∫ T

0
dt ��Ũ

(
�q

E

(
t + 0 + a±√

2E

)
, � + ε�t

)
and using the above identities to express the second and third integrals in (81) with
T = −T1, T2 we obtain formula (80). �

Remark 4.20. The vector function M giving the main term of (80) in Lemma 4.19 is

M(0, �, E; ε)

= lim
T1,T2→∞

[
−
∫ T2

−T1

dt ��Ũ

(
�q
E

(
t + 0√

2E

)
, � + ε�t

)
+��h̃

(
0 + a+ + √

2ET2, � + ε�T2; ε
)

−��h̃
(
0 + a− − √

2ET1, � − ε�T1; ε
)]

(82)

is usually called (see [DR97]) the Melnikov vector associated to the perturbed torus in
�∗

ε which arises, when ε �= 0, from the torus T ∗
E,B0

given in (24).

As, by Lemma 4.19, we have that

A(x∗+) − A(y) = ε2M(0, �, E; ε) + OC1(ε3), (83)

M is the leading term of the vector we will use to study the existence of heteroclinic
intersections among tori.

Remark 4.21. Let us note that the Melnikov vector (82) has terms of two different
kinds: A term which is an integral of Ũ over orbits of the unperturbed system and
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the terms given by the gradient of the function h̃. Both of these terms have a clear
dynamical meaning. The term ��h̃ measures the displacement of the invariant torus
under the perturbation, whereas the integral term represents the changes induced in the
stable manifolds of the unperturbed torus.

Clearly, when one wants to establish the existence of intersections between two tori
labeled by different frequencies, one has to take into account the change of the tori
and the changes of the invariant manifolds. Since we are considering only the leading
order in ε of the changes, it suffices to add both effects.

Unfortunately, in the literature on the Melnikov method it is a rather extended mis-
take to omit the term corresponding to the displacement of the torus. For instance, it
is omitted in (2.16) of [HM82, p. 671]. This leads to somewhat paradoxical results,
such as the fact that the integrals that appear in the Melnikov vector are not convergent
but conditionally convergent. For example, in [Wig90, Proposition 4.1.29, p. 412 ff.]
it is realized—but not acted upon—that these omitted terms lead to consideration of
improper integrals with oscillatory integrands and that they only converge along sub-
sequences of times. Of course, the the value of the integral depends on the arbitrary
choice such as the sequence on which it is evaluated. Hence it is somewhat suspicious
that one can draw dynamical conclusions about their zeros.

A more careful analysis of the subsequences allowed for the convergence of these
conditionally convergent integrals can be found in [Rob88]. A correct treatment of these
problems including the correction due to the change of the unperturbed torus can be
found in [Tre94] and also in [DG00,DLS00].

We note however, that if one is interested only in making statements that include
that some phenomena happen generically, the exact form of the formula is not used,
only that the formula exists. Hence, the results which conclude that phenomena happen
generically are not affected. Of course, those that obtain conclusions for specific systems
may be affected.

Remark 4.22. Even if we will not be concerned with homoclinic intersections of tori,
we note that the non-degenerate zeros of the vector function M(0, �, E; ε) lead to
homoclinic intersections to the perturbed torus T ∗

�,B0
(ε) in the full space T∗M×Rd×Td .

From (83), it is straightforward that

Hε(x
∗+) − Hε(y) = −ε3� · M(0, �, E; ε) + OC1(ε4). (84)

Hence, we arrive to a rather explicit expression of the image of the KAM tori under
the scattering map.

We will introduce the notation

Mε,E(0, �) = M(0, �, E, ε). (85)

This is useful when we want to think of M as a function of the 0, � and think of
the variables E, ε as parameters. As we will see this notation plays a role in (86) in
Proposition 4.23 when we want to express images of tori as graphs.
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Next, proposition is an immediate consequence of (83) and (84) letting (, �) varying
in T × Td

Proposition 4.23. Consider a KAM torus T ∗
�,B(ε) ⊂ �∗

ε represented in Proposition 4.15
as the graph of functions G�, P�,B , giving respectively Hε, A as a function of the
angle coordinates , �.

Then, we can also represent S∗
ε (T ∗

�,B0
(ε)), the image of T ∗

�,B0
(ε) under the scattering

map S∗
ε , as the graph of two functions Ĝ�, P̂� that satisfy

Ĝ� = G� + ε3� · Mε,E + OC1(ε4), (86)

P̂�,B = P�,B − ε2Mε,E + OC1(ε3). (87)

where Mε,E is as introduced in (85).

Remark 4.24. There are significant differences in the geometry of the problem in the
extended phase space T∗M × Td and the full symplectic phase space T∗M × Rd × Td .

We now that the symplectically extended equations (32) are a skew product. That
is, the equations of motion for the extended phase space for the dynamical variables
p, q, � do not involve the action A. On the other hand, the motion of the A can be
obtained from the solution of the other variables by a quadrature.

The fact that the system is a skew product causes that the dimension counting for
the intersections has to be somewhat different when one considers the system in the
dynamical variables and in the full symplectically extended variables.

Roughly speaking, every feature in the dynamical variables p, q, � lifts to a full
family of features in the full symplectically extended variables. In particular, a KAM or
a whiskered torus in the dynamical variables lifts to a full family of KAM or whiskered
tori. Note that heteroclinic connections among tori in the full extended phase space may
correspond to homoclinic connections for tori in the extended space.

There are important consequences of the fact that tori in the extended system lift to
families of tori in the full symplectically extended system. In the full symplectically
extended system the lifts of KAM or whiskered tori in the extended space do not have
gaps in the direction of the actions A. Of course, they have gaps in the direction of
the dynamical variables and consequently in the energy Hε.

Note that, since total energy H ∗
ε (p, q, �, A) = �·A+Hε(p, q, �) is conserved, changes

in the energy Hε imply changes in A but changes in A do not imply necessarily changes
in Hε since they could be in the direction orthogonal to �.

Hence, the diffusion in the action variables A is significantly different from the
diffusion in the energy. The problem of diffusion in the A variables is much closer to
the model considered in [Arn64], where the tori also form a continuum.

The problem of diffusion in the action variables A in a priori unstable isochronous
systems has been studied in [Gal97,Gal99].

The results in this paper do not apply to the models considered in [Gal97,Gal99].
We assume that the systems that we study in this paper are a priori chaotic and satisfy
some scaling hypothesis rather than just assuming that they are a priori unstable. In
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[DdlLS03,DdlLMS03], we have extended the methods here to suggest a mechanism for
diffusion in the dynamical variables for a priori unstable anysochronous systems and
verified it in some models.

4.4.4. The Melnikov potential
In this subsection we express the Melnikov vector (82) as a gradient and compute

its leading term as ε → 0. The representation of the Melnikov function as a gradient
will allow us to simplify the expression for high energy, or equivalently, for ε small
enough, and show that just one condition is enough to guarantee the existence of
transition chains consisting of infinitely many tori whose energy tends to infinity.

Following [DG00,DR97] we will show that the Melnikov vector M can be obtained
taking appropriate derivatives of a function L in (88) called the Melnikov potential.

We define the Melnikov potential as

L(0, �, E; ε) = lim
T1,T2→∞

[
−
∫ T2

−T1

dt Ũ

(
�q
E

(
t + 0√

2E

)
, � + ε�t

)
+h̃

(
0 + a+ + √

2ET2, � + ε�T2; ε
)

−h̃
(
0 + a− − √

2ET1, � − ε�T1; ε
)]

, (88)

where h̃ verifies (64).
As can be verified exchanging the derivatives and the limit T1, T2 → ∞ (justified

by the extremely fast convergence of the terms inside the limit) we have:

Proposition 4.25. The Melnikov potential defined in (88) satisfies the following prop-
erties:

(1) L(0, �, E; ε) is 1-periodic in �.
(2) For any u ∈ R one has:

L
(
0 + √

2Eu, � + ε�u, E; ε
)

= L(0, �, E; ε) (89)

and therefore
√

2E �L

�0
+ ε� · �L

��
= 0.

Taking u = −0/
√

2E in (89), we have:

L(0, �, E; ε) = L
(

0, � − ε�0/
√

2E, E; ε
)

.

In other words, L is a quasi-periodic function of 0 with frequency ε�/
√

2E .
(3) M(0, �, E; ε) = ��L(0, �, E; ε).
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In the following lemma we are going to give an approximation of the Melnikov
potential L(0, �, E; ε) in terms of a function L(�), which we will call Poincaré
function.

Lemma 4.26. Under the assumptions of Proposition 4.15

L(0, �, E; ε) = 1√
2E

L
(

� − ε�
0√
2E

)
+ OC2(ε), (90)

where

L(�) = − lim
T1,T2→∞

[ ∫ +T2

−T1

dt Ũ(�q
1/2(t), �)

−
∫ +T2+a+

−T1+a−
dt Ũ(�q

1/2(t), �)
]

is called the Poincaré function and was already defined in (16).

Proof. In order to obtain the first-order terms in the Melnikov potential we write (88),
with 0 = 0, as

L(0, �, E; ε) = lim
T1,T2→∞

[
−
∫ T2

−T1

dt Ũ
(
�q
E(t), � + ε�t

)
+h̃

(
a+ + √

2E T2, � + ε�T2; ε
)

− h̃ (a+, �; ε)

−h̃
(
a− − √

2E T1, � − ε�T1; ε
)

+ h̃ (a−, �; ε)

+h̃ (a+, �; ε) − h̃
(
a− + �, � + ε��/

√
2E; ε

)
+h̃

(
a− + �, � + ε��/

√
2E; ε

)
− h̃(a−, �; ε)

]
. (91)

The terms in the fourth line of expression (91) are of order OC2(ε) due to the fact
that ‖h̃(·, ·; ε)‖Cl−� is bounded and l − � > 2, and a− + � = a+.

To obtain integral expressions for the terms in the other lines of Eq. (91), it suffices
to use the fundamental theorem of Calculus and the functional equation (64) verified
by h̃. Thus,

L(0, �, E; ε)

= lim
(T1,T2)→∞

[
−
∫ 0

−T1

dt Ũ
(
�q
E(t), � + ε�t

)− Ũ
(
�q

1/2

(
a− + √

2Et
)

, � + ε�t
)
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−
∫ T2

0
dt Ũ

(
�q
E(t), � + ε�t

)− Ũ
(
�q

1/2

(
a+ + √

2Et
)

, � + ε�t
)

+
∫ �/

√
2E

0
dt Ũ

(
�q

1/2

(
a− + √

2Et
)

, � + ε�t
)]

+ OC2(ε),

or equivalently, by the change of variable u = √
2Et , and using the scaling proper-

ties (7) for �E :

L(0, �, E; ε) = − 1√
2E

× lim
T1,T2→∞

[∫ 0

−T1
√

2E

du Ũ

(
�q

1/2(u), � + ε�
u√
2E

)

−Ũ

(
�q

1/2(a− + u), � + ε�
u√
2E

)

+
∫ T2

√
2E

0
du Ũ

(
�q

1/2(u), � + ε�
u√
2E

)
−Ũ

(
�q

1/2(a+ + u), � + ε�
u√
2E

)

−
∫ �

0
du Ũ

(
�q

1/2(a− + u), � + ε�
u√
2E

)]
+ OC2(ε),

and taking the dominant terms in ε,

L(0, �, E; ε)

= − 1√
2E

lim
T1,T2→∞

[∫ 0

−T1
√

2E

du Ũ
(
�q

1/2(u), �
)

− Ũ
(
�q

1/2(a− + u), �
)

+
∫ T2

√
2E

0
du Ũ

(
�q

1/2(u), �
)

− Ũ
(
�q

1/2(a+ + u), �
)

−
∫ �

0
du Ũ

(
�q

1/2(a− + u), �
)]

+ 1√
2E

R(�, ε) + OC2(ε)

= 1√
2E

L(�) + 1√
2E

R(�, ε) + OC2(ε),

where R(�, ε) is defined so that the above is an identity. Note that it only involves the
difference of integrals whose integrands have second arguments that differ by ε� u√

2E
.

This is a reflection of the fact that the potential is a slow perturbation.
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We bound R(�, ε) using properties (71) and the fact that Ũ (q, �) is a periodic
function with respect to its second variable �, as

|R(�, ε)| � Kε

(∫ +∞

−∞
du |u| e−�|u| +

∫ �

0
|u| du

)
� Cε.

Similarly, one can bound the first and second derivatives of R(�, ε) because one can take
derivatives under the integral sign (the convergence of the integrand is exponentially
fast) and then, similar cancellations than those used above, establish

L(0, �, E; ε) = 1√
2E

L(�) + OC2(ε),

Replacing � by � − ε� 0√
2E

, and using property 2 of Proposition 4.25, we obtain the
desired conclusions in Lemma 4.26. �

From item (3) of Proposition 4.25 and Eq. (90) is clear that

M(0, �, E; ε) = 1√
2E

�
��

[
L
(

� − ε�
0√
2E

)]
+ OC1(ε). (92)

By formula (84) we have

Hε(x
∗+) − Hε(y) = −ε3� · M(0, �, E; ε) + OC1(ε4)

= − ε3

√
2E

� · ��L
(

� − ε�
0√
2E

)
+ OC1(ε4). (93)

To establish the existence of heteroclinic orbits in the extended phase space, it suffices
that the leading term in (93) is non-constant as a function of � and 0, that is, the
function

� ∈ Td �→ � · �L
��

(�) ∈ R (94)

is not identically zero, where L is the Poincaré function defined in (16). This is
equivalent to hypothesis (iv) in Theorem 3.4. Indeed, given a smooth function f :
Td → R and a rational independent vector � ∈ Rd , the equations � · ��f ≡ 0 and
f ≡ cte. are equivalent, as can be easily checked, for example, writing these equations
in Fourier coefficients.

Roughly speaking, the fact that the Poincaré function (16) is non-trivial will imply
that all the tori with sufficiently high energy get moved by the scattering map by an
amount that can be bounded from below by ε3.
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We point out that the work that we have done simplifying the Melnikov potential,
leads to a condition which is independent of the energy.

Note also that the condition that L is non-constant is satisfied except for very ex-
ceptional potentials. We also note that the Poincaré function L in (16) depends on the
periodic orbit �1/2 and the homoclinic connection �1/2 chosen. If there is one such
orbit �1/2, the theory of dynamical systems shows that there are infinitely many. To
establish the existence of orbits with unbounded energy, it suffices to verify that the
potential U satisfies hypothesis (iv) in Theorem 3.4 for one �, �. Hence, for the systems
that we consider, the potentials which do not lead to diffusion are extremely rare.

4.5. Existence of transition chains and orbits of unbounded energy

The goal of this Section is to provide a proof of Theorem 4.27, which establishes
the existence of orbits of Hamiltonian (15) whose energy follows largely arbitrary
excursions (including tending to ∞).

Theorem 4.27 clearly implies Theorem 3.4, which in turn implies Theorem 1.3.
Note that Theorem 4.27 is expressed in the original unscaled variables (just as in

Theorems 1.3 and 3.4).
The proof of Theorem 4.27 will consist in showing the existence of largely arbitrary

transition paths (see Definition 4.32) and, then, showing the existence of orbits that
shadow the transition paths.

The proof of the existence of transition paths, being a local problem, will be carried
out in the scaled variables, but the shadowing, being a more global problem, will be
carried out in the physical variables.

Theorem 4.27. Given E0 > 0, and any continuous function E : [0, ∞) → [E0, ∞),
and any K > 0, consider the set

IE(s)
K = {E ∈ [E0, ∞) : |E − E(s)|�K}. (95)

Under the assumptions of Theorem 3.4 we can find E0 sufficiently large and K > 0
such that for any function E as above, there exists a monotone function T : [0, ∞) →
[0, ∞) and an orbit x(t) of the Hamiltonian H given in (15) such that

H(x(T (s)), T (s)) ∈ IE(s)
K .

The meaning of Theorem 4.27 is that we can find orbits that follow somewhat
arbitrary changes in the energy—given by the arbitrarily prescribed function E(s)—
up to a certain error—given by K—. We make no assertions in this paper about the
time it takes to accomplish these changes (this is the role of the function T which
reparameterizes the time). Nevertheless, we can guarantee that the energy of the orbits
does not stray very much from the desired goal.

Since we are allowing reparameterizations, the only features that are relevant of the
function E are the values of its local maxima and minima.
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We emphasize that K can be chosen for all functions E and for all E0 sufficiently
large. It only depends on the Hamiltonian.

4.5.1. Whiskered tori
In this section we collect some definitions of the objects we are considering.
A class of objects that play an important role in our argument are whiskered tori

and transition paths among them. Their role in diffusion was emphasized already in
[Arn64]. See also [AA67].

In this section we collect some rather standard definitions and rather standard facts.

Definition 4.28. We say that T is a whiskered torus for a n degrees of freedom Hamil-
tonian on a 2n-dimensional symplectic manifold M when:

(a) T is a C1 embedded Tk , 1�k < n: T = v(Tk).
(b) T is invariant under the Hamiltonian flow �t .
(c) It is possible to choose v, the embedding of Tk above, in such a way that the

Hamiltonian flow is an irrational rotation, that is

�t ◦ v(�) = v(� + �t), (96)

where � ∈ Rk satisfies

� · � �= 0 ∀� ∈ Zk − {0}.

(d) The symplectic form restricted to T vanishes. (This property is usually referred to
saying that the manifold T is isotropic.)

(e) There exist n − k dimensional bundles Es
v(�)

, Eu
v(�)

⊂ Tv(�)M such that for some
C > 0, 0 < � < 1, we have

D�t (v(�))E
s,u
v(�)

= E
s,u
v(�+�t)

,

||D�t (v(�))|Es
v(�)

||�C�t , t �0,

||D�t (v(�))|Eu
v(�)

||�C�|t |, t �0.

Remark 4.29. A well-known argument shows that, when the symplectic form is exact—
as is the case in the cotangent bundles we are considering in this paper—property (c)
implies property (d). Hence, for an exact symplectic manifold, it is only necessary to
assume (c). �

We note that whiskered tori are not normally hyperbolic invariant manifolds. Indeed
note that since the symplectic form vanishes on T , we have that the k-dimensional space
Nv(�) symplectically conjugate to Tv(�)T satisfies Nv(�) ∩ Tv(�)T = {0}. Moreover, by
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the preservation of the symplectic form, the bundle N is invariant under D�t and it is
impossible to have for some C > 0, 0 < � < 1 inequalities ||D�t |N ||�C�|t | for either
all t �0 or all t �0.

Therefore it cannot be true that Tv(�)M is spanned by Tv(�)T and directions E
s,u
v(�)

that contract either in the future or in the past as required by the definition of normally
hyperbolic manifolds.

Nevertheless, we note that

dim(Tv(�)T ) + dim(Es
v(�)

) + dim(Eu
v(�)

) = k + (n − k) + (n − k) = 2n − k.

Hence, the whiskered tori contain as many hyperbolic directions as allowed by the
geometric properties of supporting a rotation and being isotropic. Therefore, in Hamil-
tonian mechanics literature, where these properties are quite common, whiskered tori
are sometimes called hyperbolic tori. Since in this paper we use theorems for normally
hyperbolic invariant manifolds, many of which are not true for whiskered tori, we
keep the distinction between normally hyperbolic invariant manifolds and whiskered
ones.

Even if the whiskered tori are not normally hyperbolic, it is true that there exists a
gap in the spectrum of the linearization acting on the tangent bundle. Standard results
in the theory of normally hyperbolic invariant manifolds (see e.g. [Fen74]) show that
there exist immersed manifolds W s

T , W u
T which are characterized by

W s
T = {x : dist(�t (x), T )�Cx(1 − �)t t �0 }

= {x : dist(�t (x), T )�Cx(� + �)t t �0 },

W u
T = {x : dist(�t (x), T )�Cx(1 − �)|t | t �0 }

= {x : dist(�t (x), T )�Cx(� + �)|t | t �0 }.

Note that the above equations show that, as soon as the convergence to the manifold
is exponential with any rate, it is exponential with a rate close to that given by �. See
[Fen74].

If the Hamiltonian flow �t is Cr r ∈ N + [0, Lip] ∪ {∞, �}, the manifolds W
s,u
T are

Cr .
When r ∈ N + [0, Lip] the above regularity conclusion follows by the standard

theory of normally hyperbolic invariant manifolds noting that the motion on the bundles
N + T T is bounded by arbitrarily small exponentials while the stable and unstable
bundles are exponentially contracting.

The cases r = ∞, � do not follow from the standard arguments on normally hy-
perbolic invariant manifolds. They use essentially that the motion on the manifold is a
rotation. The proof for r = ∞, � can be found in [dlLW04].
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Another important fact is that

W
s,u
T = ∪x∈T W s,u

x ,

where

W s
x = {y : dist(�t (x), �t (y))�C(1 − �)t , t �0 }

= {y : dist(�t (x), �t (y))�C(� + �)t , t �0 },

W u
x = {y : dist(�t (x), �t (y))�C(1 − �)|t |, t �0 }

= {y : dist(�t (x), �t (y))�C(� + �)|t |, t �0}.

The standard theory of [Fen74,HPS77] shows that if the flow �t is Cr , r ∈ N +
[0, Lip] ∪ {∞, �}, the manifolds Ws

x , Wu
x are Cr . This part of the argument does not

use many properties of the motion on the whiskered tori and holds in much greater
generality. The results about regularity of Ws

T mentioned above can be understood as
regularity statements about the map x �→ Ws

x , which is rather regular for whiskered
tori but not for general invariant manifolds with stable and unstable bundles.

For our applications, it is important to mention that the notion of whiskered torus
can be adapted without difficulty to quasi-periodic vector fields.

Given a vector field of the form

ẋ = F(x, �),

�̇ = �, (97)

where x ∈ M , � ∈ Td , we obtain a flow �̃t (x, �) = (�t (x, �), � + t�). A whiskered
torus is an embedding ṽ : Tk × Td → M × Td of the form

ṽ(, �) = (v(, �), �) (98)

satisfying the properties included in Definition 4.28 for the extended flow (97).
We note that the equation of invariance for the extended flow required in Defini-

tion 4.28 is

�̃t (ṽ(, �)) = ṽ( + t�, � + t�).

This amounts, in terms of the maps of the manifold to

�t (v(, �), �) = v( + t�, � + t�).



130 A. Delshams et al. / Advances in Mathematics 202 (2006) 64–188

When we consider symplectic flows, we note that the mapping x �→ �t (x, �) is
symplectic. In case that we study symplectic structures, it is natural to consider not
only the extended flows (97) but also the full symplectic flows which require adding
action variables A ∈ Rd conjugate to the angles � ∈ Td with respect to the standard
symplectic form

∑d
j=1 dAi ∧ d�i .

We note that if the symplectic form � in the manifold M is exact, i.e. � = d	, then
the symplectic form �∗ in the full symplectic manifold M∗ ≡ M × Rd × T∗ is exact:
�∗ = d(	 +∑d

j=1 Aid�i ).
A quasi-periodic flow corresponds to a Hamiltonian H(x, �, A) of the form H(x, �, A)

= H(x, �) + �A. Note that the equations of motion are:

ẋ = J∇xH(x, �),

�̇ = �,

Ȧ = −∇�H(x, �). (99)

Note that the equations of motion of the variables x, � determine the motion of A just
by quadrature. It is clear that from a quasi-periodic torus in the full symplectic system
(99), just by ignoring the variable A, we obtain a whiskered torus in the extended
system (97).

On the other hand, given a whiskered torus in the extended system (97), we can
wonder if it is possible to find a similar embedding in system (99). This is not true
for Hamiltonian systems in general, since it can happen that the last equation of (99)
has secular terms. Similarly, when integrating a quasi-periodic function, if the number
is not Diophantine, it could happen that the integral is not quasi-periodic. See, for
example [Fur61].

Nevertheless, the following proposition shows that if the torus is Diophantine and the
system is exact and differentiable enough (depending on the exponent of the Diophan-
tine number) then, both definitions of whiskered tori in quasiperiodic systems agree. We
note that all the quasi-periodic solutions that we will consider, since they are produced
invoking the KAM theorem, satisfy the hypothesis.

Proposition 4.30. If the form � is exact, given a whiskered torus with embedding ṽ

(98) in the extended system (97), we can find a function a : Tk × Td → Rd such that
the mapping v∗ : Tk × Td → M × Td × Rd defined by

v∗(, �) = (
ṽ(, �), a(, �)

)
is a whiskered torus in the sense of Definition 4.28 for the full symplectic system (99).

Proof. Given F : Td → R, we recall that the equation

Ȧ = F(�t)
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has a formal quasiperiodic solution A(t) = G(�t)+ < F > t , where < F > denotes
the average of the periodic function F, and G : Td → R is determined, in Fourier
coefficients by

Ĝk = 2� < �, k >−1 F̂k

The above formal solution is a genuine solution when � is Diophantine and F is
differentiable enough (see the results from [Rus75] summarized in Lemma A.23).

It then follows that Eqs. (99) evaluated on a quasiperiodic solition have a solution
in which A is of the form A = �t + G(�t) for some constant � ∈ R and then, all the
other variables change quasi-periodically.

The desired result will be established when we show that � = 0.
We note that if we consider the evolution of the whole embedded torus it is just

translated by �t along the A direction. Using that the flow is exact, the integral of
the symplectic form �∗ along a loop of the form given by letting only �i vary while
keeping all the other variables, should be independent of t. On the other hand, a direct
calculation shows that the change of the integral of 	 along this loop changes by �i .
This allows us to conclude that � = 0. �

We note that the KAM tori T�(ε) inside �̃ε produced in Section 4.3.6 are whiskered
tori for a quasi-periodic Hamiltonian system. Analogously, the KAM tori T ∗

�,B(ε) are
whiskered tori of the full symplectic system.

4.5.2. Transition paths
The idea of transition chain goes back to Arnold [Arn64] who introduced a transition

chain as a sequence of whiskered tori {Ti}K+
i=K− such that

W s
Ti+1

�W u
Ti

.

In this paper, we formulate explicitly the more precise concept of transition path.
See Definition 4.32. A transition path specifies not only the sequence of tori but also
a choice of connecting orbits. Including the connecting orbits allows us to formulate
more precise results. We will prove that, given a connecting path, there are shadowing
orbits which never move at a distance from the path. (We believe that this result was
more or less folklore, but M. Sevryuk pointed to us that it was not formulated in
the literature.) The fact that the diffusing orbit stays at a bounded distance from the
transition path provides control of the energy of the diffusing orbit for all times.

Also, since usually there are many connecting orbits, this will give rise to different
transition paths and, hence, different diffusing orbits.

Definition 4.31. We say that � is a connecting orbit between two whiskered tori T +,
T − when

(a) � ⊂ W s
T + ∩ W u

T − . That is

lim
t→±∞ dist(�(t), T±) = 0.
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(b) The intersection of W s
T + and W u

T − is transversal along �. That is

T�(t)W
s
T + ⊕ T�(t)W

u
T − = T�(t)M.

Sometimes, one speaks about connecting orbits without assuming that the intersection
is transversal. In this paper, all the connecting orbits that we consider are transversal.

Definition 4.32. We say that a sequence of whiskered tori and connecting orbits
{Ti}K+

i=K− , {�i+1}K+−1
i=K− (possibly infinite, i.e. K− ∈ Z∪{−∞}, K+ ∈ Z∪{∞}, K+ > K−)

is a transition path when

�i+1 ⊂ W s
Ti+1

�W u
Ti

4.5.3. Existence of transition paths for systems as in Theorem 3.4
We recall that our study of Hamiltonian flows satisfying H1′, H2′ has produced three

types of results:

• Studying the dynamics inside �̃ε, we have shown in Proposition 4.10 that if the
system is differentiable enough, the manifold �̃ε is covered with KAM tori that

leave gaps between them smaller that OC1(ε
m+1

4 ). If we assume that m, the number
of steps of averaging taken in Theorem 4.7 is large enough, m�12, which can be
done provided that the system is smooth enough, the size of the gaps is at most
ε3+1/4.

• We have obtained in Proposition 4.15 an expression (63) for the energy Hε introduced
in (35) of the KAM tori. In particular, for any invariant torus T , the energy Hε

experiences an oscillation of order ε2:

max Hε(T ) − min Hε(T ) = O(ε2). (100)

• Studying the scattering map, we have shown in Eq. (93) that, provided that the
Poincaré function (16) is non-constant, the homoclinic excursions connect tori whose
distance is O(ε3).
In the next lemmas, we put together the information to show that we can construct

transition paths whose energy changes more or less arbitrarily.

Lemma 4.33. Consider the Hamiltonian system of Hamiltonian (35) and assume that
the Poincaré function (16) is non-constant.

Then, under the assumptions of Proposition 4.15 with m�12, there exist intervals
I± = [	±

1 , 	±
2 ], with 	−

i < 0, 	+
i > 0, i = 1, 2, such that, for ε sufficiently small, given

a KAM torus T�(ε) ⊂ �̃ε of frequency (�, ε�) in the extended phase space, there exist
KAM tori T�+(ε), T�−(ε) produced by KAM theorem 4.8 (see Remark 4.11) which
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verify

E± − E := (�±)2

2
− �2

2
∈ ε3I±,

with connecting orbits

�+ ⊂ W s
T�+ (ε)�W u

T�(ε), �− ⊂ W s
T�(ε)�W u

T�− (ε).

Moreover, �± ⊂ �̃ε, the intersection manifold we used in the construction of the
scattering map, and they verify

dist(�±, �E) = OC1(ε2),∣∣Hε(�
±) − E

∣∣ = OC1(ε2). (101)

Proof. A very similar lemma for periodic perturbations is established in [DLS00,
Lemma 4.21].

The only difference between the argument in [DLS00] and the present paper is that
now, as the perturbation is quasi-periodic, the Poincaré function L depends on a variable
� ∈ Td rather than on a variable on the circle.

We know that, by Proposition 4.23, the effect of the scattering map acting on an
invariant torus is to add a term O(ε3) to the function G�—given by Proposition 4.15—
whose graph in the coordinates (Hε, , �) represents the invariant torus.

Under the assumption that the Poincaré function L is non-constant, this term is
non-trivial.

More concretely, if a torus T�(ε) is represented as the graph of the function G�,
then, by Proposition 4.23, S̃ε(T�) will be represented as the graph of the function

Ĝ� = G� + ε3� · Mε,E(, �) + OC1(ε4)

= G� + ε3

√
2E

� · ��L
(

� − ε�
√
2E

)
+ OC1(ε4).

By the assumption that L(�) is not trivial, we conclude that there is a non-empty open
set U ⊂ Td and a constant C0 > 0, such that ∀� ∈ U we have that det |���L(�)|�C0.

We choose I± = [	±
1 , 	±

2 ] ⊂ �√
2E

· ��L(U). For any other torus T�̃ such that

Ẽ − E = �̃2

2 − �2

2 ∈ ε3I+, we have that for any (, �) ∈ T × Td :

Ĝ�(, �) − G�̃(, �) = �2

2
− �̃2

2
+ ε3

√
2E

� · ��L
(

� − ε�
√
2E

)
+ OC1(ε4).
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By definition of I+ there exists (∗, �∗) for which Ĝ�(∗, �∗) − G�̃(∗, �∗) = 0
and �∗ − ε� ∗√

2E
∈ U , so S̃ε(T�(ε)) intersects T�̃.

Since

��Ĝ�(∗, �∗) − ��G�̃(∗, �∗) = − ε3

√
2E

� · ���L
(

�∗ − ε�
∗

√
2E

)
+ OC0(ε4),

and ���L is non-degenerate in U , we conclude that the intersection between S̃ε(T�(ε))

and T�̃ is transversal in �̃ε.

The existence of tori T�+(ε) whose frequency verifies (�+)2

2 −�2

2 ∈ ε3I+ is guaranteed
by KAM theorem 4.8 and Proposition 4.10 if m�12.

Hence, we have that there exists T�+(ε) such that

S̃ε(T�(ε))��̃ε
T�+(ε). (102)

Now we want to argue that W s
T�+ (ε)

�W u
T�(ε)

.
The argument is exactly the same as the argument in [DLS00, p.382]. First, by (102):

(
W s

S̃ε(T�)(ε)
∩ �̃ε

)
��̃ε

(
W s

T�+ (ε) ∩ �̃ε

)
Second, by the definition of the scattering map, W u

T�(ε)
∩ �̃ε = W s

S̃ε(T�(ε))
∩ �̃ε.

Therefore,

(
W u

T�(ε) ∩ �̃ε

)
��̃ε

(
W s

T�+ (ε) ∩ �̃ε

)
.

Since W s
�̃ε

intersects W u
�̃ε

along �̃ε, we obtain that W u
T�(ε)

�W s
T�+ (ε)

.

An analogous argument gives the existence of T�−(ε) such that that W s
T�(ε)

�W u
T�− (ε)

.
Concerning quantitative estimates, we know, by (100), that the energy Hε on the torus

T�(ε) experiences an oscillation of O(ε2) around E = �2

2 . By (73) any homoclinic orbit

to T�(ε) experiences an oscillation of the same order. Since E± − E = (�±)2

2 − �2

2 ∈
ε3I±, estimates (101) hold. �

So far, we had been working in the scaled variables introduced in Section 4.2, where
we introduced the variable ε = 1√

E∗ . It is important to remark that all the results we
have obtained—the KAM theorem and the abundance of heteroclinic intersections—
hold for sufficiently large energy E∗.

Now, we formulate the results in terms of the original variables for which the Hamil-
tonian takes the form (15) in Theorem 3.4. This translation is straightforward by re-
calling that Escaled = Ephysε2 (see (34)).
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As indicated at the beginning of Section 4.2 all the results in this section have
been formulated for scaled variables, but we wrote E instead of Ē for Escaled for
typographical reasons.

First we note that by Proposition 4.15 and (33), KAM theorem provides the existence

of invariant tori given by H = Ephys+Ū (�)+O((Ephys)− 1
2 ), where Ephys can be chosen

in a set whose graphs are smaller than �Ephys = O((Ephys)− m+1
8 +1).

Lemma 4.33 expressed in the physical variables reads:

Lemma 4.34. Consider the Hamiltonian system of Hamiltonian (15) and assume that
the Poincaré function (16) is non-constant. Assume that r � max(m + 5� + 16, 3m +
4� + 17), m�12.

Then there exist intervals I± = [	±
1 , 	±

2 ], with 	−
i < 0, 	+

i > 0, i = 1, 2, such that,
for sufficiently large energies E—or for sufficiently large frequencies � = √

2E—,
given a KAM torus T� of frequency (�, �) in the extended phase space, there exist
KAM tori T�+ , T�− produced by KAM theorem 4.8 which verify

E± − E := (�±)2

2
− �2

2
∈ 1√

E
I±, (103)

with connecting orbits

�+ ⊂ W u
T�

�W s
T�+ , �− ⊂ W s

T�
�W u

T�− ,

verifying

∣∣H(�±) − E
∣∣ �C̄. (104)

By applying repeatedly Lemma 4.34, we can obtain the following lemma.

Lemma 4.35. Given E0 > 0, and any continuous function E : [0, ∞) → [E0, ∞) and
given any K > 0, consider the set

IE(s)
K = {E ∈ [E0, ∞) : |E − E(s)|�K}. (105)

Under the assumptions of Theorem 3.4 we can find E0 sufficiently large and K > 0
such that for any function E as above, there exists a monotone sequence si < si+1 and
a transition path {Ti , �i+1}i=1,∞, such that

(1) |E(si) − E(s)| �1, for s ∈ [si, si+1].
(2) H(Ti ) ∈ IE(si )

K .

(3) H(�i+1) ∈ IE(si )
K .
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4.5.4. Existence of orbits shadowing transition paths
Note that Lemma 4.35 is very close to implying Theorem 4.27. It follows immediately

from Lemma 4.35 that we obtain Theorem 4.27 if we replace in it “orbit” with transition
path.

The next task, accomplished in this section, is to show that there is a true orbit that
follows the transition path thus constructed.

There are many papers in the literature based on very different methods, for example,
variational methods, methods based on normal forms, etc. to obtain true orbits through
“pseudo-orbits”.

In what follows, we will present an elementary point set topology argument that
applies to infinite transition paths. We recall that for us, a transition path as defined
in 4.32, includes not only the tori but also the connecting orbits between them. Hence,
our argument shows that the orbit not only visits the prescribed tori but also that it
does not deviate from the prescribed connections. The argument presented here has
the advantage that it does not use either differentiability beyond C2 or the symplectic
structure. It also works without much change for finite or infinite chains. Unfortunately,
it does not provide any information on the time needed to perform an excursion. The
argument is inspired by the arguments in [AA67].

The first step is to use a Lambda-lemma for whiskered tori. The following result
is a particular case of the results of [FM00]. (Related results appear in [Cre97]. See
also [FM03].) The result of [FM00] does not need that the map is symplectic and
applies to whiskered tori in a general map. Nevertheless, since we have made all our
definitions to be used in our applications where there is a symplectic structure, we
state the result for quasi-periodic symplectic maps and quasi-periodic whiskered tori as
defined in Section 4.5.1.

Lemma 4.36. Let f be a C2 quasi-periodic symplectic mapping in a 2n + d manifold.
Assume that the map leaves invariant a C1 d + 1-dimensional whiskered torus T and
that the motion on the torus is an irrational rotation. Let � be a l-dimensional manifold,
l�n, intersecting W s

T transversally.
Then there exists a neighborhood V of T such that for any U ⊂ V , then

U ∩ W u
T ⊂

⋃
i>0

�i ,

where �1 = � ∩ U , �i = f (�i−1) ∩ U .

Of course, an analogous result for flows follows by taking time-1 maps.
An immediate consequence of this is that any finite transition path can be shadowed

by a true orbit. The argument for infinite paths requires some elementary point set
topology. The following result and its proof are similar to the ones in [DLS00]. They
are very inspired by the arguments in [AA67]. The only difference is that here we also
control the shadowing along the heteroclinic connections.
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Fig. 2. Fist part of the inductive step in the proof of Lemma 4.37.

Lemma 4.37. Let {Ti , �i+1}∞i=1 be a transition path. Given {εi}∞i=1 a sequence of strictly
positive numbers, we can find a point P and an increasing sequence of numbers Ti ,
with T0 = 0, such that

�Ti
(P ) ∈ Nεi

(Ti ), �t (P ) ∈ Nεi
(�i ), t ∈ [Ti−1, Ti], i�1,

where Nεi
(Ti ), Nεi

(�i ), denote, respectively, neighborhoods of size εi of the torus Ti

and the heteroclinic connection �i .

An illustration of the proof is given in Figs. 2–5.

Proof. We will assume without loss of generality that εi are small enough so that
Nεi

(Ti ) ⊂ Vi where the Inclination Lemma 4.36 applies.
Let x1 ∈ W s

T1
. We can find a closed ball B1 centered on x1 such that, for some

t1 �0,

�t1(B1) ⊂ Nε1(T1). (106)
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Fig. 3. Second part of the inductive step in the proof of Lemma 4.37.

Fig. 4. Third part of the inductive step in the proof of Lemma 4.37.

Let x2 ∈ Nε1(T1) ∩ �2. There exists t2 > 0, and a ball B ′
2 ⊂ Nε1(T1) centered at x2

such that

�t2(B
′
2) ⊂ Nε2(T2), �t (B

′
2) ⊂ Nε2(�2), t ∈ [0, t2].

By the Inclination Lemma 4.36 applied inside Nε1(T1), there exists t12 �0 such that

�−t12(B
′
2) ∩ �t1(B1) �= ∅, �−t (B

′
2) ⊂ Nε1(T1), t ∈ [0, t12].

Hence, introducing T1 = t1 + t12, T2 = T1 + t2, we can find a closed ball B2 ⊂ B1,
centered in a point of �−T1(B

′
2) ∩ W s

T2
such that satisfies

�T1(B2) ⊂ �T1(B1) ⊂ Nε1(T1),
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Fig. 5. The whole inductive step in the proof of Lemma 4.37.

as well as

�T2(B2) ⊂ Nε2(T2), �t (B2) ⊂ Nε2(�2), t ∈ [T1, T2].

Proceeding by induction, we can find a sequence of closed balls Bi ⊂ Bi−1 ⊂ · · · ⊂
B1 such that

�Ti
(Bi) ⊂ Nεi

(Ti ), �t (Bi) ⊂ Nεi
(�i ), t ∈ [Ti−1, Ti].

Since the balls Bi are compact, ∩Bi �= ∅. A point P in the intersection satisfies the
required property. �

4.5.5. Proof of Theorem 4.27
The proof of Theorem 4.27 follows applying the results of Lemma 4.37 to the

transition chain provided by Lemma 4.35.
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Appendix A. Proof of Theorem 4.8

In this section we present a proof of Theorem 4.8. The proof is a quite straightfor-
ward adaptation of standard techniques and it is, undoubtedly, trivial for the experts.
Nevertheless, we could not find a place in the literature where the needed theorem
was presented exactly in the way we needed. The main goal for us is to obtain upper
estimates of the size of the gaps between the tori which survive. We hope that this
appendix will help to make the paper more self-contained. The main theorem of this
appendix, Theorem A.15, will be proved for an arbitrary number of degrees of freedom
even if for the applications in the paper, we only need the one degree of freedom case.

There are several papers that come very close to proving the result in the form we
need it. In particular, we call attention to Theorem 4.1 of [BHTB90] and the discussions
in pages 50 and 135 which indeed come very close to the statement of Theorem A.15.
Also [Zha00] contains a proof for a KAM theorem for quasi-periodic perturbations of
analytic one degree of freedom maps.

We will follow the method started in [Mos66a,Mos66b] and prove a quantitative
Theorem A.15 in analytic regularities.

A corresponding result Theorem A.26 for finite regularity will be deduced using a
characterization of differentiable functions by approximations with analytic functions.

To use this approximation method it is important that the analytic Theorem A.15
is formulated in the form that existence of an approximate torus with some quan-
titative properties implies the existence of a true torus and that, moreover, the dis-
tance of the approximate torus to the true one can be bounded by the error in the
approximation.

We will follow the method of proof and the presentation of [Zeh75,Zeh76a,Zeh76b]
but we will change some of the details. In particular, we will pay attention to the
dependence of the tori on the diophantine constants. Also, to make the paper more
self-contained, rather than invoking a general implicit function theorem, we will present
the detailed iterative procedure. This will have the advantage that the assumption that
the unperturbed Hamiltonian is analytic can be eliminated.

Of course, a similar result could have been established in many other ways follow-
ing different schemes of proof. The reader is referred to [dlL01] for a comparative
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discussion of different proofs of KAM theorem. All the methods discussed in [dlL01]
can be adapted to give a proof of Theorem A.15.

The advantage for us of the presentation of [Zeh76a] with respect to other references,
is that it is easy to adapt and that it yields estimates which are suitable for our
applications—even if not optimal—. We will discuss in more detail the issue of optimal
estimates in Remark A.25.

A.1. Diophantine properties

In this section we collect some definitions on Diophantine numbers and their abun-
dance. Most of the definitions and proofs are quite standard except for the Diophantine
properties with respect to an external frequency (for which the standard methods also
work).

Definition A.1. We introduce the following sets of Diophantine numbers:

Dd(�, �) =
{
� ∈ Rd : |� · k| �� |k|−� , k ∈ Zd \ {0}

}
. (107)

When � ∈ Dd(�, �) and �̃��, �̃��, we define the numbers which are Diophantine with
respect to �

Dn(�; �̃, �̃) = {
� ∈ Rn : (�, �) ∈ Dn+d(�̃, �̃)

}
. (108)

The following is quite well known. We present a rather explicit argument to keep
track of the dependence on the constants, which will be important later. The argument
is far from optimal in many aspects, specially in the case n = 1, but will be sufficient
for our applications.

Proposition A.2. When � > d − 1, the set

Dd(�) :=
⋃
�>0

Dd(�, �)

has full measure in Rd .
Moreover, if Br is any ball in Rd of radius r we have

|Dd(�, �) ∩ Br |� |Br | − Cd�rd−1.

In particular, when r ��Cd , we have:

Dd(�, �) ∩ Br �= ∅,

where Cd is a positive number which depends only on d.
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Similarly, given � ∈ Dd(�, �), �̃ > n + d , �̃�� and �̃�� then the set

Dn(�; �̃) :=
⋃

0<�̃��

Dn(�; �̃, �̃)

has full measure in Rn.
Moreover, if Br is any ball in Rn of radius r we have

|Dn(�; �̃, �̃) ∩ Br |� |Br | − Cn,d �̃rn−1

In particular, when r � �̃Cn,d

Dn(�; �̃, �̃) ∩ Br �= ∅,

where Cn,d is a positive number which depends only on n and on d.

Proof. The proof is quite standard. Consider the sets

Nk(d, �, �) =
{
� ∈ Rd : |� · k| < �|k|−�

}
,

N�,k(n, �, �̃, �̃) =
{
� ∈ Rn : |� · � + � · k| < �̃ |(�, k)|−�̃

}
,

for 0 �= k ∈ Zd and (0, 0) �= (�, k) ∈ Zn×Zd , respectively, where one of the inequalities
required by the definitions of Diophantine numbers (107), (108) fail.

Note that

Dd(�, �) = Rd

∖ ⋃
k∈Zd\{0}

Nk(d, �, �),

Dn(�; �̃, �̃) = Rn

∖ ⋃
(�,k)∈(Zn×Zd )\{(0,0)}

N�,k(n, �, �̃, �̃). (109)

Hence, to get lower bounds for the measure of the sets of Diophantine numbers, it
suffices to obtain upper bounds for the measures of the sets Nk , N�,k and add them.

Geometrically, the sets Nk(d, �, �), are slabs in Rd , bounded by parallel planes with
normals k and at a distance � |k|−�−1. Similarly, when � �= 0, the sets N�,k(n, �, �̃, �̃) are
slabs in Rn bounded between planes with normals � and at a distance �̃ |(�, k)|−�̃ |�|−1.
When � = 0, the condition defining N0,k does not depend on �. We can see that
N0,k(n, �, �̃, �̃) is empty provided that � ∈ Dd(�, �) and that �̃��, �̃��.

Since the measure of the intersection of a ball of radius r in Rd with a slab of width
w is bounded by C̃drd−1w, we can estimate the measure in the excluded sets in (109)
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to obtain

|Br \ Dd(�, �)| �
∑

k∈Zd\{0}
|Br ∩ Nk(d, �, �)|

�
∑

k∈Zd\{0}
C̃drd−1�|k|−�−1

�
∑
m�1

C̄drd−1� m−�−1+d−1. (110)

When � > d − 1, from the summation in the right hand side we obtain

|Br \ Dd(�, �)| �Cdrd−1�. (111)

When Cd��r , the right-hand side of (111) is smaller than the volume of the ball of
radius r. Hence, the intersection Br ∩ Dd(�, �) has positive measure and, therefore, is
non-empty.

When we take the union over � > 0 we obtain that Dd(�) is a set of full measure
since the excluded set goes to zero with �.

The argument for the estimates of the measure of Br \ Dn(�; �̃, �̃), where Br is now
a ball in Rn, is very similar to the argument just presented.

Recall that, under the assumptions of the Proposition A.2, we have

N0,k(n, �, �̃, �̃) = ∅.

Using that �̃ > n + d we obtain,

|Br \ Dn(�; �̃, �̃)| �
∑

(�,k)∈Zn×Zd\{(0,0)}

∣∣Br ∩ N�,�(n, �, �̃, �̃)
∣∣

�
∑

(�,k)∈(Zn\{0})×Zd

C̃nr
n−1�̃ |(�, k)|−�̃ |�|−1

�
∑

(�,k)∈(Zn\{0})×Zd

C̃nr
n−1�̃ |(�, k)|−�̃

� C̄nr
n−1�̃

∑
m�1

m−�̃+n+d−1

� Cn,drn−1�̃. (112)

Hence, when Cn,d �̃�r , we can make the right-hand side of the above inequality smaller
than the measure of the ball of radius r in Rn, obtaining that Br intersects Dn(�, �̃, �̃).
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Again, when we take the union over �̃ > 0 we obtain that Dn(�, �̃) is a set of full
measure. �

For the applications of KAM theorems we have in mind, it will be important to
investigate the dependence of the sets of Definition A.1 and the constants in Propo-
sition A.2 when we multiply the frequency � by a number. The following is obvious
from the definitions, but we record it.

Proposition A.3. With the Definitions A.1 we have that for any ε > 0:

� ∈ Dd(�, �) ⇐⇒ ε� ∈ Dd(ε�, �).

If � ∈ Dd(�, �) and �̃�ε�, then for any ball Br in Rn of radius r � �̃Cn,d , we have
for �̃��, �̃ > n + d:

Dn(ε�, �̃, �̃) ∩ Br �= ∅.

Moreover,

|Br \ Dn(ε�, �̃, �̃)| �Cn,drn−1�̃. (113)

A.2. Spaces of functions

The following is an adaptation of the definitions for spaces of analytic functions
in [Zeh76a, p.57]. The only change is that we have included the extra variables corre-
sponding to the quasi-periodic motion.

Definition A.4. For 
 > 0, r > 0 we denote

U
 := {x ∈ Cn+d : |Im(xi)| < 
, 1� i�n + d},
U
,r := {(x, y) ∈ Cn+d × Cn+d : (x, y) ∈ U
, |y| < r − 
}.

We define H
, H
,r the Banach spaces of analytic functions on U
, U
,r which are
bounded, periodic in the x variables and real for real arguments, endowed with the
norms

‖f ‖
 := sup
x∈U


|f (x)| ,

‖g‖
,r := sup
(x,y)∈U
,r

|g(x, y)| . (114)
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In some estimates we will find it convenient to use the notation

‖f ‖
,C2 := sup
x∈U


max(|f (x)| , |Df (x)| ,
∣∣∣D2f (x)

∣∣∣),
‖g‖
,r,C2 := sup

(x,y)∈U
,r

max(|g(x, y)| , |Df (x, y)| ,
∣∣∣D2f (x, y)

∣∣∣). (115)

The method of [Mos66a,Mos66b,Zeh75,Zeh76a] deduces results for finite differen-
tiability out of results for analytic maps. A key ingredient is a characterization of
functions with finite regularity by their quantitative approximation properties by ana-
lytic functions. The following result goes back to [Mos66a,Mos66b]. A shorter proof
appears in [Zeh75,Zeh76a].

Definition A.5. Let l ∈ N and 	 ∈ (0, 1).
We denote by Cl+	(Td × Br) the space of functions f : Td × Br → R which are

l times continuously differentiable and whose derivatives of order l are Hölder with
exponent 	. The space Cl+	(Td × Br) is endowed with the norm

‖f ‖Cl+	(Td×Br)
= max

0� i � l

(
sup
x

|Dif (x)|, sup
x �=y

|Dlf (x) − Dlf (y)| · |x − y|−	

)
. (116)

Endowed with the norm (116), Cl+	(Td × Br) is a Banach space.

Proposition A.6. A function f is in Cl+	(Td ×Br) if and only if there exists a sequence
of analytic functions {f n} such that, for some � > 1, r > 0, � > 0

f n ∈ H��−n,r ,

f n C0(Td×Br)−→ f,
∥∥f n − f

∥∥
C0(Td×Br)

�C �l+	�−n(l+	)∥∥∥f n − f n+1
∥∥∥

��−(n+1),r
�C �l+	�−(n+1)(l+	) (117)

Moreover

(a) The best constant C in (117) is equivalent to ‖f ‖Cl+	 (Td × Br).
(b) It is possible to choose the approximations in such a way that

||f 0||�,r �C(�) ‖f ‖Cl+	 (Td × Br). (118)

For details of the proof of Proposition A.6, we refer to [Zeh75]. (Earlier proofs
can be found in [Mos66a,Mos66b].) We just indicate that the fact that the limit of
a sequence f n as above is differentiable is a consequence of Cauchy inequalities for
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functions. Conversely, given a differentiable function, the approximating functions f n

can be obtained by convoluting with an analytic kernel. Since the convolution with
the kernel is a linear operator, a more precise formulation of Proposition A.6 can be
obtained using the language of smoothing operators.

Remark A.7. It is clear that if (117) holds for some � > 0, � > 1, it holds for any
other such �, �. Often, one can find them stated just for � = 2, � = 1.

Remark A.8. We note that for the characterization Proposition A.6 to hold, it is im-
portant that 	 �= 0, 1. In those cases, conditions (117) define other spaces of functions
than the usual Cr spaces. The paper [Zeh75] uses the notation Ĉr to indicate these
spaces. In [Ste70], these are called �r spaces.

A.3. Some canonical transformations

We will consider phase spaces M = Tn × Td × U where U ⊂ Rn × Rd is an open
set. We will consider M endowed with the exact symplectic form � = ∑n

i=1 dIi ∧
d�i +∑d

j=1 dAj ∧ d�j and we will use the notation x = (�, �), y = (I, A).
We will find it convenient to select a particular class of canonical transformations

which we will denote by S1. The following is an adaptation of the definition of [Zeh76a,
p. 54] to incorporate an extra variable which is moving quasi-periodically.

Definition A.9. Consider the symplectic manifold M = Tn × Td × U ⊂ Tn × Td ×
(Rn × Rd) and denote by S1 the set of symplectic diffeomorphisms S on M of the
form

S(x, y) = (
a(x), [(Da(x))�]−1(−�xb(x) + y)

)
, (119)

where a is a diffeomorphism of Tn × Td of the form

a(�, �) = (� + 	(�, �), �) (120)

with 	 : Tn × Td → Rn and Da(x)� means the transpose of Da(x). The function
b : Rn × Td → R is of the form

b(�, �) = � · � + �(�, �), (121)

where � : Tn × Td → R and � ∈ Rn.

The transformations of the form (119) are determined by (�, 	, �). Hence, if there
is a possibility of confusion, we will use the notation S�,	,�.

We note that the functions S�,	,� are affine in the action variables. Hence to estimate
their analyticity properties it suffices to estimate the analyticity properties of the func-
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tions a, b which are functions of the angle variables. Using the notation of analytic
spaces introduced before we obtain

||S�,	,�||
,r �rA + B,

||S�,	,� − Id ||
,r �rC + D.

Explicit expressions of A, B, C, D in terms of can be readily obtained in terms of
�, 	, �.

Hence, in our work, we will just need to estimate the �, 	, � and the estimates in the
action variables will be automatic. This is an important advantage of the present method
compared with the study of canonical transformations based on generating functions or
on Lie transforms.

We introduce the notation

a(x) = x + â(x),

where

â(x) = (	(x), 0)

is a periodic function of x. We will also use the notation

Da(x)−� = [Da(x)�]−1.

Remark A.10. In mechanics, one often says that the map S defined in (119) is asso-
ciated to the generating function

G(x, y′) = a(x)�y′ + b(x) = (y′)�a(x) + b(x).

That is, it is equivalent to say that S(x, y) = (x′, y′) than to say that x, y, x′, y′
satisfy

x′ = �y′G(x, y′),

y = �xG(x, y′).

The fact that the transformations can be associated to a generating function establishes
that the transformations in S1 are canonical. Of course, this can also be verified by a
direct calculation.

Note also that it is possible to think of the transformations in S1 as families of
canonical transformations of the (I, �) variables which are indexed by the variables �.
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Remark A.11. We also note that the transformations of S1 are formally a subgroup of
the group of symplectic transformations with respect to the composition.

We will not use this property much, but we note that it has the consequence that the
transformation produced in Theorem A.15 will be a transformation of the form (119).

Remark A.12. The transformations in S1 are always symplectic but they are not exact
symplectic if � �= 0 because the constant vector � is essentially a translation in the I
coordinates which makes the transformations not exact if � �= 0.

A.3.1. Transformations close to identity
In the proof, we will pay special attention to the transformations in S1 which are

close to the identity. That is, to the situations where 	, �, � are small.
The distance to the identity can be estimated by∥∥S�,	,� − Id

∥∥
Cr �C max(|�|, ‖	‖Cr+1 , ‖�‖Cr+1).

provided that max(|�|, ‖	‖Cr+1 , ‖�‖Cr+1) is small. (Note that when 	 and � are both
large, the term (Da(x))−�(−�xb(x)) is quadratic).

Similarly, in analytic spaces we have, for 
 > � > 0:∥∥S�,	,� − Id
∥∥


−�,r0
�C max(|�|, �−1 ‖	‖
,r0 , �−1 ‖�‖
,r0

) (122)

provided max(|�|, �−1 ‖	‖
,r0 , �−1 ‖�‖
,r0
) is small. For simplicity, we will use the—

obviously wasteful—estimate

max(|�|, �−1 ‖	‖
,r0 , �−1 ‖�‖
,r0
)��−1 max(|�|, ‖	‖
,r0 , ‖�‖
,r0

)

in (122) to obtain expressions which are easier to handle.
The leading approximation to the identity corresponds to expanding S and ignoring

the terms which are quadratic in 	, �, �.
Formally, we have that the infinitesimal approximations are:

(S�,	,� − Id)(x, y) ≈ (	(x), −D	(x)�y + �x�(x) + �).

We will denote

Ŝ�,	,�(x, y) = (	(x), −D	(x)�y + �x�(x) + �).

Note that we have, by Cauchy estimates∥∥∥Ŝ�,	,�

∥∥∥

−�,r

�C�−1 max(|�| , ‖	‖
 , ‖�‖
).
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A more precise formulation of the calculations on infinitesimal transformation is:

Proposition A.13. With the notations above and assuming that

�−1 max(|�| , ‖	‖
 , ‖�‖
)

is sufficiently small, we have

∥∥∥S�,	,� − Id −Ŝ�,	,�

∥∥∥

−�,r

�C�−2 max(|�| , ‖	‖
 , ‖�‖
)2. (123)

Similarly, assuming that the composition H ◦ S makes sense we have

∥∥∥H ◦ S�,	,� − H − DHŜ�,	,�

∥∥∥

−�,r−�

�C�−2 max(|�| , ‖	‖
 , ‖�‖
)2, (124)

where C depends only on ‖H‖
,r,C2 .

Proof. We have, using the Neumann series that

∥∥∥Da−� − Id −D	�
∥∥∥


−�,r
� C

∥∥∥D	−�
∥∥∥2


−�,r

� C�−2 ‖	‖2

,r .

Eq. (123) follows immediately using the Banach algebra properties adding and sub-
tracting terms.

The proof of (124) is to observe that by Taylor’s theorem we have

|H ◦ S(x, y) − H(x, y) − DH(x, y)Ŝ(x, y)| = C sup
x̃,ỹ

|D2H(x̃, ỹ)| · |Ŝ(x, y)|2,

where (x̃, ỹ) is a point intermediate between x, y, S(x, y).
Then, we can apply the Banach algebras property, Cauchy estimates and the previous

estimates. �

Remark A.14. It will be important to note that if H has the form (55) and S has
the form (119), then H ◦ S has the form (55). That is, when we apply quasi-periodic
transformations of frequency � to a quasi-periodic Hamiltonian of the same frequency
�, we obtain a quasi-periodic Hamiltonian of the same frequency. Hence, when we
consider quasi-periodic Hamiltonians as in (55) we can use the transformations in S1
in the same way that [Zeh75] uses the transformations which are denoted there as S1.
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A.4. Proof of an analytic version of the KAM theorem

In this section, we establish a quantitative theorem for analytic invariant tori. Then,
in Section A.5, we will deduce the result for finitely differentiable perturbations from
the analytic one by using the characterization of finitely differentiable functions by
their approximation properties by analytic ones. We will follow [Zeh75,Zeh76a,Zeh76b]
rather closely but rather than reducing the proof to an implicit function theorem we
will present details on the iterative scheme.

The quantitative version of the theorem for analytic regularity we will establish is:

Theorem A.15. Let � ∈ Dd(�, �), � ∈ Dn(�, �̃, �̃), for some 0 < �̃��, �̃�� > 0.
Denote � = 2�̃ + 1.

Let H0 ∈ H
0,1, for some 
0 > 0, be of the form

H0(�, �, I, A) = c0 + � · A + � · I + 1
2I�Q0(�, �)I + R0(�, �, I ), (125)

where R0(�, �, I ) = O(I 3).
Denote

< Q0 >=
∫

Tn+d
Q0(�, �) d� d�,

and assume that

e := ‖H0‖
0,1,C2 < ∞,

� :=
∥∥∥< Q0 >−1

∥∥∥ < ∞.

Then, there are constants C, 
∗ > 0, depending on e, �, �̃, �—but not on �̃—such that,
for all 
�
∗, given any function H ∈ H
,1 of the form

H(�, �, I, A) = � · A + E(�, �, I ) (126)

satisfying

‖H − H0‖
,1 �C�̃4
2�+3�−2, (127)

then, there is a symplectic diffeomorphism F ∈ S1 ∩ H
/4,∞ such that
(A) We have

H ◦ F(�, �, I, A) = c + � · A + � · I + 1
2I�Q(�, �)I + R(�, �, I ), (128)

where R = O(I 3).
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(B) F = F�,	,� is close to the identity

max{|�| , ‖	‖
/4 , ‖�‖
/4}�C��̃−2
−� ‖H − H0‖
,1 . (129)

Hence, in particular,

‖F − Id‖
/6,1,C1 �C��̃−2
−�−1 ‖H − H0‖
,1 . (130)

(C) ‖Q − Q0‖
/4 �C��̃−2
−� ‖H − H0‖
,1 . (131)

Remark A.16. Theorem A.15 is the same as Theorem 2.1 of [Zeh76a], except for a
few differences. We note:

(1) We are assuming a special quasi-periodic form for the Hamiltonian and for the
perturbation (see (126)) and we are obtaining that the transformation F has a
special form. (It is the identity in the � variable.)

As we will see later, this does not affect much the proof. The proof is based in
an iterative procedure and we just have to check that the transformations at each
step can be taken as identities in the � variable and that the Hamiltonians at each
step have the form (126).

(2) We are making explicit the dependence on conclusions (129)–(131) on the constant
�̃ of the Diophantine properties of (�, �). This explicit dependence, namely �̃−2,
is included in the main lemma of [Zeh76b].

Note, in particular, that it suffices that the initial error (127) is smaller than �̃4.
Then, we obtain in (130) that the distance of the correction to the identity can be
bounded by the initial error multiplied by �̃−2.

(3) We are also making explicit the dependence of the constants on the twist parameter
�. This improvement is also included in [Zeh76b] although it will not be used in
this paper.

Making explicit the dependence on �̃ is important for our purposes since it makes it
possible to discuss the proximity of the tori that survive. The dependence of the result
on �̃ is also crucial to obtain lower bounds on the the measure occupied by the tori.
In this paper, we will not consider measure theoretic properties of the tori produced,
since for us it is enough to bound from above the size of the gaps.

Remark A.17. Following [Zeh76a], we have assumed that the analyticity domain of
the unperturbed hamiltonian in the action variables is 1.

This is an assumption that can always be arranged. If we make the change of
variables for 0 < � < 1:

Ĩ = �−1I, Ã = �−1A,

�̃ = �, �̃ = �,

t̃ = �−1t,
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the resulting equations are also Hamiltonian, and the new Hamiltonian is given by

H̃0(�̃, �̃, Ĩ , Ã) = �−1H0(�̃, �̃, �Ĩ , �Ã)

but then the domain of analyticity of the hamiltonian in the Ĩ , Ã variables is �−1 times
larger than in the original variables.

Note also that H̃0 is also of the same form assumed in (125). The frequencies
are unchanged, the twist constant changes according to �̃ = �−1�. We also note that
||H̃0||
,1,C2 = ||H0||
,�,C2 so that provided that we have inequalities (127) for the scaled
quantities, we can apply the result.

Remark A.18. Note that the symplectic diffeomorphism F ∈ S1 claimed in Theorem
A.15 solving Eq. (128) is non-unique. If we compose F on the left with an arbitrary
rotation in the angle variable �, it will also be a solution of (128).

The estimates claimed in the rest of the theorem are not true for all the solutions of
(128) but only for the one produced through the procedure described in the proof.

Remark A.19. Theorem A.15 implies in particular the persistence of quasi-periodic
solutions in systems that are close to integrable. It suffices to use as approximate
solutions the quasiperiodic solutions of the integrable system.

Remark A.20. In spite of the non-uniqueness for F observed in Remark A.18, under
the conditions we have assumed (notably < Q0 > invertible) the torus with the assigned
frequency is locally unique in a neighborhood of Tn+d × {0}.

This follows as in [Zeh75,Zeh76a] because we will show that, if we impose an
extra normalization, the Newton method admits a left inverse. That is, the only non-
uniqueness of the solution of (58) is that described in Remark A.18.

Remark A.21. The uniqueness of the torus with respect to the frequency, allows to
define a mapping T that to a number � ∈ Dn(�, �̃, �̃) associates the torus T� with
frequency (�, �).

The space of tori can considered as a Banach manifold modeled on a space of
analytic functions. (If a torus corresponds to {(�, �, I ) : I = 0}, then the close enough
tori can be written as the graph of a function I = T (�, �), where T : Tn+d → Rn.)

The mapping T is Whitney differentiable. This is well known for regular KAM
theorems from [CG82,Pos82,Sva80]. It is also a consequence of the proof based on
abstract implicit function theorems. This is shown in [LV01].

We note Theorems A.15 and A.26 imply immediately that the dependence is Lipschitz
since we can take a torus as an approximate solution for a torus with a slightly different
frequency. The error is proportional to the difference of frequencies.

Remark A.22. The results of Theorem A.15 can be improved significantly when � is
one dimensional—i.e. periodic perturbations—. This case is treated in [Zeh76a], where
it is shown that this case implies analogous results for maps.
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As shown in [Zeh76a], in the case of periodic perturbations, it is possible to assume
much less regularity than what follows from applying Theorem A.15.

These improvements are based on the observation—which we have also used in
Section 4.3.5 and especially in Theorem 4.7—that the cohomology equations in one
variable can be solved by integrating and one does not need to deal neither with Fourier
series nor small divisors.

Proof. We follow the strategy of proof in [Zeh76a] but carry out the estimates keeping
explicit the dependence on the constants �̃, � which appear in the hypotheses of
Theorem A.15. Similar estimates are done in the proof of the main Lemma of [Zeh76b,
p.108].

We recall that the method of proof in [Zeh76a] is to develop an iterative procedure.
A step of the iterative procedure consists in applying a canonical transformation in S1
that eliminates the leading part of the terms in the Hamiltonian that prevent it from
being in the desired normal form (128).

As it is well known the choice of the convenient transformations involves solving
small divisors equations and, hence, at each step of the iterative procedure we will
obtain control only in a slightly smaller domain. This loss of domain can be controlled
if the error is small because of the quadratic convergence of the method.

The key observation in adapting the proof of [Zeh76a] to our case is that the changes
of variables used to reduce the perturbation can be taken to be in S1 when the pertur-
bations are of the quasiperiodic form (126).

Since the changes of variables in S1 preserve the form (126), we see that the iterative
procedure in [Zeh76a] can be carried out using only Hamiltonians of the form (126)
and transformations in S1.

We will also need to check that the transformations at each stage are derived through
equations which are analogue to the infinitesimal equations (2.27)–(2.29) [Zeh76a,
p. 63].

We will check that if we add to the objects in [Zeh76a] the extra variables �
and impose quasi-periodic dependence, we obtain quasi-periodic dependence on the
solutions. Moreover, we will see that the estimates obtained in the iterative step are
very similar to those in [Zeh76a] and in [Zeh76b]. After that, the changes from the
above papers will be quite minimal. The estimates that establish convergence and
quantitative properties of the solutions will not require any changes from those in the
above papers. We give details.

The proof will consist of an iterative procedure which produces transformations that
reduce progressively the error. At any step of the iterative procedure, we consider a
Hamiltonian of the form

H(I, �, A, �) = c + � · A + � · I + E0(�, �) + E1(�, �) · I

+ 1
2I�Q(�, �)I + R(I, �, �) (132)

with R = O(I 3).
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We note that the scalar function c + E0 and the vector function E1 are the Taylor
expansions in the variables I of order 0 and 1 respectively of functions as in (55).
The c is chosen so that the average of E0 vanishes. (Note that, since Hamiltonians are
defined up to additive constants, we could also have just ignored the constant terms.)

We want to find a transformation S in S1 as in Definition A.9 in such a way that
the errors Ẽ0, Ẽ1 of the function H̃ ≡ H ◦ F are quadratic: As usual in KAM theory,
this means estimated in a smaller domain by the square of the original errors times
a function of the domain loss which does not grow too fast. For example, a negative
power. That is, we will find the (�, 	, �) which, according to Definition A.9, determine
the transformation S = S�,	,�. We will also need to determine Q̃, the new quadratic
term in Hamiltonian (55). �

A.4.1. Estimates for a step of the iterative procedure
As in the proof of Lemma 2.1 of [Zeh76a], taking into account that S � Id +Ŝ (see

(123)) we compute H ◦ S ≈ H + DHŜ, keeping only the terms which are linear in
E0, E1, 	, �, �, and imposing that the new terms of order 0, 1 in I vanish. It will be
possible to obtain estimates for the new error terms by using estimates for the �, 	, �
in terms of E0, E1 and using (124).

By requiring, as indicated above, that the leading terms in the error vanish, we derive
the following equations for �, 	, �, which are complete analogues of equations (2.27),
(2.28), of [Zeh76a].

�� + � · � + c − c̃ = −E0,

−�	 + Q(� + ���) = −E1, (133)

where � is the differential operator acting on periodic functions given by

� := � · �� + � · ��. (134)

The above equations (133) are the well known small divisor equations that appear
in KAM theory. Very sharp estimates for their solutions appear in [Rus75] (see also
[Rus76b,Rus76a]). We summarize them now.

Lemma A.23. Assume that � ∈ Dn(�, �̃, �̃).
Let � be an analytic function on Tn+d with zero average.
Then, we can find a unique  solving

� = �

and having zero average.
Moreover, if � ∈ H
, we have for all 0 < 
′ < 
:

‖‖
′ �C�̃(
 − 
′)−�̃‖�‖
, (135)

where C is a constant which depends only on �̃, n + d.
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Explicit expressions for C in (135) appear in [Rus75]. We also note that if we do
not impose that the solution  has zero average, we obtain that the solution of (135)
is unique up to an additive constant.

Proofs of (135) with a factor (
−
′)−(�̃+n+d) instead of (
−
′)−�̃ can be obtained
rather elementarily by noting that the Fourier coefficients of the solution are given by
̂k = (2�ik�̃)−1�̂k , where �̃ = (�, �). It suffices to use Cauchy estimates for the
Fourier coefficients and the inequalities in the definition of Diophantine properties. The
proof in [Rus75] obtains sharper results by observing that the bounds in the definition
of Diophantine properties cannot be saturated very often.

Coming back to the analysis of the iterative step in the proof of KAM theorem,
we note that system (133) has an upper triangular structure which allows to reduce its
analysis to an application of Lemma A.23.

We first solve �� = −E0. We recall that E0 was assumed to have zero average.
Hence, applying Lemma A.23 we obtain � with zero average.

To solve the second equation of (133), we choose first � such that

< Q > � = − < E1 > − < Q��� > .

With this choice of �, the function Q(� + ���) + E1 has zero average, and we can
apply Lemma A.23 to obtain 	.

Finally, we take c̃ such that

c − c̃ + � · � = 0

to complete the solution of the first equation of (133). (Of course, this step could be
omitted by noting that Hamiltonians can be defined up to additive constants.)

Hence, we obtain that it is possible to solve Eqs. (133) and that the solutions obtained
satisfy the estimates:

En la siguiente formula habia un exponente mas esto afecta al exponente � despues.

|�| , ‖	‖
′ , ‖�‖
′ �C��̃−2(
 − 
′)−2�̃−1(||E0||
 + ||E1||
), (136)

From the estimates on 	, �, � we have using Proposition A.13

‖S − Id‖
′,1 �C��̃−2(
 − 
′)−�−1(||E0||
 + ||E1||
), (137)

where � = 2�̃ + 1.
Eq. (2.29) of [Zeh76a], which determines the new Q, is simply an algebraic equation

which does not require any change. We present the details.
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We just note that we can bound∥∥∥< Q > − < Q̃ >

∥∥∥ � C max(|�| , ‖	‖
′ , ‖�‖
′)

� C��̃−2(
 − 
′)−�(||E0||
 + ||E1||
). (138)

In particular, if < Q > is invertible and the perturbation is small enough, then < Q̃ >

will be invertible and we can bound

|� − �̃| � C max(|�| |, |	||
′ , ||�||
′)

� C��̃−2(
 − 
′)−�(||E0||
 + ||E1||
). (139)

Note that this are the same estimates as in [Zeh76a] except that we have made
explicit the dependence on the small divisor conditions and on �.

Provided that � = 
 − 
′ is larger than the RHS of (137) we can consider H ◦ S

defined in the domain U
′,1−�. This sufficient condition will ensure that we can define
the iterative step. More explicitly, using the estimates that we have for ‖S − Id‖, we
have that a sufficient condition for the possibility of carrying out the iterative step is


 − 
′ > C��̃−2(
 − 
′)−�−1(||E0||
 + ||E1||
). (140)

In the rest of the proof we will check that

(1) Condition (140) can be verified for successive steps.
Note that condition (140) is verified provided that the error terms are much

smaller than the loss of domain. Hence, the inductive assumption (140) will be
verified when the errors decrease much faster than the loss of domain.

(2) The conditions on � and on the second derivative of the Hamiltonian do not
deteriorate and, for example, can be assumed to be bounded by twice their original
values.

We note that the change of the Hamiltonian can be controlled by the difference
of the transformation to the identity, which in turn can be bounded by the size of
the errors. Again, we note that if we obtain good bounds on the size of decrease
of the errors, then, the deterioration of these parameters during the proof is small.

(3) The transformations converge in a smaller domain.

So, the crux of the proof is to estimate that the error decreases fast enough provided
that the constants � and ‖Hn‖
n,1−�n

are twice the original values.
We note that the 	, �, � are chosen so that, in the linear approximation, the new

error terms are exactly zero. Hence, the new error terms of H ◦ S can be estimated
by the error of the linear approximation as in Proposition A.13. More precisely, we
note that the new error terms, Ẽ0, Ẽ1, are obtained by evaluating respectively H ◦ S
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and �IH ◦ S at I = 0. We note that, by the construction of S, H − DHŜ|I=0 = 0,
�IH − DHŜ|I=0 = 0. Hence

H ◦ S|I=0 = (H ◦ S − H − DHŜ)|I=0,

�IH ◦ S|I=0 = �I (H ◦ S − H − DHŜ)|I=0

Applying Proposition A.13 and Cauchy bounds in the last equation we obtain∥∥∥Ẽ0

∥∥∥

′ � C(
 − 
′)−2 max(|�| , ‖	‖
 , ‖�‖
)2

� C�2�̃−4(
 − 
′)−2�−2(||E0||
 + ||E1||
)2,

∥∥∥Ẽ1

∥∥∥

′ � C(
 − 
′)−3 max(|�| , ‖	‖
 , ‖�‖
)2,

� C�2�̃−4(
 − 
′)−2�−3(||E0||
 + ||E1||
)2. (141)

Hence, we have established that, after applying one step, the error ε = ||E0||
 +
||E1||
 can be bounded by a quadratic estimate in a slightly smaller domain. Namely

ε̃�C�2�̃−4(
 − 
′)−qε2, (142)

where q = 2� + 3, and ε̃ = ||Ẽ0||
′ + ||Ẽ1||
′ .
We also note that we have bounds (137) on how close to the identity is the trans-

formation S that reduces the error.
Finally, we now show that estimates on the second derivative of the new Hamiltonian

are not much worse than that of the original one (provided that the original error is
small enough).

Proposition A.24. Provided that

‖S − Id‖
−�,�−� �K�−�−1ε < �,

� − � > 0, (143)

we have

S(U
−�,�−�) ⊂ U
,� (144)
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and

||H ◦ S||
−�,�−�,C2 � ||H ||
,�,C2(1 + K�−2||Ŝ||
−(7/8)�,�−(7/8)�)

� ||H ||
,�,C2(1 + K�−�−3ε).

Proof. Since we have that real values are mapped into real values, we have (144).
To estimate the derivatives, we note that

D2(H ◦ S) = D2H ◦ SDS⊗2 + DH ◦ SD2S

= D2H ◦ S(Id +DŜ)⊗2 + DH ◦ SD2S.

Using (144), we can bound the supremum in the indicated domain of the second
derivative.

The increase of the bounds for the first derivative are much easier and are left for
the reader. �

A.4.2. Repeating the iterative step and convergence
After the work carried out so far, we could apply an implicit function theorem or

the Main Lemma of [Zeh76b] to obtain the desired result, Theorem A.15. Nevertheless,
for the sake or completeness, we present the details, which are not too complicated.

The argument is to show that, provided that ε0 is small enough, and that we can
perform n iterations, then, the error has reduced so much that we can perform the next
iteration.

Assuming that we can perform n iterative steps—which amounts to the fact that we
have (140) in all the steps—and that all the � that appear are bounded by 2�0, we
obtain

εn+1 � (C�̃−4�2
0


−q
0 )1+2+22+···+2n

2q[n+2(n−1)+22(n−2)+···+2n](ε0)
2n+1

� (C
−q
0 �2

0�̃
−422qε0)

2n+1
(145)

which we can see converges to zero extremely fast if the term in parenthesis is strictly
smaller than 1. We have used the elementary bounds

2q[n+2(n−1)+22(n−2)+···+2n] �2q2n+1[n2−n+1+(n−12−n+2 · · · 2−1]�22q2n+1

In summary, if

C�2
022q
−q

0 �̃−4ε0 < 1, (146)
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and we can perform the iteration n times, we have bounds (145). These bounds will
verify the inductive bounds (140)

Now, the only thing that remains to do, to verify that we can perform a next iteration,
is that the estimates in � and on ‖H‖
′,�′,C2 are not much worse than the initial ones.

We observe also that by (139) we have

�n ��0 +
n−1∑
j

C�2
0�̃

−2
−�
0 2j�)εj

and, by Proposition (A.24)

||H ◦ Fn||
n,�n,C2 � ||H ||
0,�0,C2

n−1∏
i=0

(1 + K
−�−3
0 2i(�+3)εi)

� ||H ||
0,�0,C2

n−1∏
i=0

(1 + K
−�−3
0 2i(�+3)(C
−q

0 �2
0�̃

−422qε0)
2i

).

We will, therefore assume that ε0 is small enough, so that C22q�2
0


−q
0 �̃−4ε0 < 1/20.

The bounds imply that

||H ◦ S||
n,�n,C2 �2||H ◦ S||
0,�0,C2 .

These bounds and (145) imply that conditions (140) are satisfied and we can take
one step more.

Furthermore, since the distance of the changes of variables Sn to the identity is
controlled by εn, we can estimate the changes of variables and obtain the result claimed
in Theorem A.15. We leave these details to the reader or refer to [Zeh76a]. The main
observation is that since the changes at the n step are converging to the identity very
fast, the distance of the total change to the identity is comparable to that of the first
step.

Remark A.25. The dependence on the Diophantine constants �̃, �̃ and the loss of
derivatives in Theorem A.15 are not optimal.

One can prove the same result as Theorem A.15 for ‖H − H0‖ �C�̃a
2�+2
0 , with

a = 2, � = �̃ + 1 instead of a = 4 and � = 2�̃ + 1.
These improved estimates, to the best of our knowledge, require longer proofs and

more severe adaptations. Since the version presented here is enough for the purposes
of the present paper, we decided to present only the proofs that seemed to us simpler
to adapt.
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Nevertheless, for the sake of completeness, we just indicate some possibilities that
lead to better results.

Ref. [dlL04] contains better results on the loss of derivatives by using weighted
norms which are adapted to the upper triangular equations (133).

There is an alternative proof of KAM theorem based on a strategy started in [Kol54]
and implemented fully in [Arn63]. The optimal value of a for the standard KAM
theorem for analytic Hamiltonians is obtained in [Nei81]. The fact that a = 2 cannot
be improved is easy to verify in examples.

Some modern proofs of the standard KAM theorem which lead to optimal estimates
on the measure and on the loss of derivatives are [Pos82,Pos01,Sal86] It seems that
any of the proofs mentioned above can be adapted to the situation presented here and
obtain the results with better exponents in the loss of derivatives and in the Diophantine
constant.

We refer to [dlL01] for a comparison between different proofs of KAM theorem.

A.5. Proof of a differentiable version of the KAM theorem

In this section, we use Theorem A.15, the analytic version of the KAM theorem, to
prove Theorem A.26 below, which is a differentiable version of the KAM theorem.

Following [Mos66a,Mos66b,Zeh76a], the proof consists in applying Theorem A.15 to
a sequence of approximations given by Proposition A.6. The transformations required
will converge fast. Hence, by an application of Proposition A.6 (indeed, just Cauchy
estimates), we will conclude that there is a finitely differentiable transformation F that
casts the Hamiltonian H into (128).

Given the work that we have already done, the result follows from an invocation to
the abstract theorem in [Zeh75] as modified in [Zeh76b]. (The main difference between
[Zeh76b] and [Zeh75] is that [Zeh76b] keeps track of the dependence of the smallness
conditions on the Diophantine constants. This is crucial for our quantitative arguments.)
We will present the details of the proof—following the steps suggested by the abstract
theorem in our concrete case—to make this paper more self-contained.

Theorem A.26. Let � ∈ Dd(�, �), � ∈ Dn(�, �̃, �̃), for some 0 < �̃��, �̃�� > 0.
Denote � = 2�̃ + 1.

Let H0 ∈ H
0,1, for some
0 > 0, be of the form

H0(�, �, I, A) = c0 + � · A + � · I + 1
2I�Q0(�, �)I + R0(�, �, I ), (147)

where R0(�, �, I ) = O(I 3).
Denote

< Q0 >=
∫

Tn+d
Q0(�, �) d� d�,
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and assume that

e := ‖H0‖
0,1,C2 < ∞,

� :=
∥∥∥< Q0 >−1

∥∥∥ < ∞.

Then, there is a constant C0 > 0, depending on e, �, �̃, �—but not on �̃—such that
given any function H ∈ Cl (Tn+d × B1), l�2� + 3 = 4�̃ + 5, l /∈ N, of the form

H(�, �, I, A) = � · A + E(�, �, I ) (148)

satisfying

‖H − H0‖Cl(Tn+d×B1)
�C0�̃

4�−2, (149)

then, there is a symplectic diffeomorphism F ∈ S1 ∩ Cl−�−1(Tn+d × B1) such that

(A) We have

H ◦ F(�, �, I, A) = c + � · A + � · I + 1
2I�Q(�, �)I + R(�, �, I ) (150)

where R = O(I 3).
(B) F is close to the identity,

||F − Id ||Cl−�−1(Tn+d×B1)
�C��̃−2||H − H0||Cl (Tn+d×B1)

(151)

(C) ‖Q − Q0‖Cl−�−1(Tn+d×B1)
�C��̃−2 ‖H − H0‖Cl (Tn+d×B1)

. (152)

Remark A.27. Note that we have followed [Zeh75,Zeh76a,Zeh76b] in assuming that
the unperturbed Hamiltonian is analytic rather than just finite differentiable.

This assumption can be removed from Theorem A.26 by applying Lemma A.6 not
only to the perturbation but also to the unperturbed one.

This would have been somewhat useful in our case since the unperturbed Hamil-
tonian is indeed finitely differentiable. However, we have decided not to include this
improvement to remain reasonably close to the papers mentioned above. In our case,
it is easy to modify a suggestion in [Zeh76a, p. 80] and use a Taylor approximation
of the unperturbed problem so that we can consider an analytic unperturbed problem
and apply Theorem A.26. See Section 4.3.6 for more details.
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A.5.1. Proof of Theorem A.26
We apply Proposition A.6 with � = 1, � = 8, r = 1 to

� ≡ H − H0 (153)

and obtain {�n}∞n=0 with �n ∈ H8−n,1 . We have, by (117) and (118) in Proposition A.6,
that ∥∥�n

∥∥
8−n,1 � C ‖H − H0‖Cl

� CC0�̃
4�−2. (154)

Moreover, ∥∥∥�n+1 − �n
∥∥∥

8−(n+1),1
� C8−l(n+1) ‖H − H0‖Cl

� C8−l(n+1)C0�̃
4�−2. (155)

We introduce the notation Hn = �n + H0. The proof of Theorem A.26 consists in
showing inductively that there is a symplectic change of variables Fn such that Hn◦Fn

is of the form (150).
By the definition of Hn, we have

Hn+1 ◦ Fn = (�n+1 − �n) ◦ Fn + Hn ◦ Fn (156)

Hence, Hn+1 ◦ Fn is a small perturbation of Hn ◦ Fn, which can be considered as
an unperturbed system in Theorem A.15. Then, we apply Theorem A.15 to (156), and
obtain a transformation F̂ n, which is close to the identity and such that Hn+1 ◦Fn ◦ F̂ n

is of the form (150). Setting Fn+1 = Fn ◦ F̂ n, finishes the induction step.

Moreover, using the estimates of
∥∥∥F̂ n − Id

∥∥∥
(1/6)·8−(n+1),1,C1

provided in (130)

in the conclusions of Theorem A.15, we will establish bounds for∥∥Fn − Fn+1
∥∥

(1/8)·8−(n+1),1,C0 , which, using the easy part of Proposition A.6, will yield
that the limiting transformation satisfies the regularity claimed in Theorem A.26. Bounds
(130) also allow to show that the smallness assumptions needed to apply Theorem A.15
are satisfied. They will also be useful to establish that all the compositions we have
indicated are defined in the appropriate domains.

Let us now carry out the detailed estimates.
In the first step of the induction we find F 0 such that H 0 ◦ F 0 = (�0 + H0) ◦ F 0 is

of the form (150).
To apply Theorem A.15 to H 0, the only condition that we need to verify is the small-

ness condition on
∥∥∥�0

∥∥∥
1,1

, which, given (154), is implied by the smallness assumption

on ‖H − H0‖Cl in Theorem A.26.
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Applying Theorem A.15, we obtain that there is F 0 ∈ S1 ∩H1/4,∞ such that H 0 ◦F 0

is of the form (150). Moreover,∥∥∥F 0 − Id
∥∥∥

1/6,1,C1
� C��̃−2

∥∥∥�0
∥∥∥

1,1

� C��̃−2 ‖H − H0‖Cl .

Because of the previous bound, and assuming that its right-hand side is smaller than
(1/4) · 8−1, which is implied by smallness of ‖H − H0‖Cl , we have for the domains
introduced in Definition A.4:

F 0(U(3/4)·8−1,1) ⊂ U8−1,1.

Hence, we can define H 1 ◦ F 0 = [(�1 − �0) + H0] ◦ F 0 on U(3/4)·8−1,1 and we can
bound ∥∥∥(�1 − �0) ◦ F 0

∥∥∥
(3/4)·8−1,1

�
∥∥∥�1 − �0

∥∥∥
8−1,1

� C 8−l ‖H − H0‖Cl

Applying conclusions (131), we obtain that, denoting by Q1 the quadratic part of
H 1, we have: ∥∥∥Q1 − Q0

∥∥∥
1/4

�C��̃−2||�0||1,1.

This finishes the first step in the induction. Now, we present the estimates for the
general inductive step.

We will assume inductively that the twist constant � in all the steps is not bigger
than 2-times the initial constant.

We will assume inductively that we have applied the inductive procedure n times
and defined Fn in such a way that Hn ◦ Fn is of the form (150)

We will assume inductively that the functions F̂ n ∈ S1 satisfy∥∥∥F̂ i − Id
∥∥∥

(1/6)·0.9·8−i ,1,C1
�C�̃2�8−i(l−(�+1)) ‖H − H0‖Cl (157)

for i = 0, . . . , n.
Assumption (157) implies, when ‖H − H0‖Cl is small enough that

∥∥Fn − Id
∥∥

(1/6)·8−n,1,C1 �1/10 (158)
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A consequence of (158) is that

Fn(U0.9·8−(n+1),1) ⊂ U8−(n+1),1

Therefore, we have that the compositions �n+1◦Fn, �n◦Fn are defined on U0.9·8−(n+1),1
and we have∥∥∥(�n+1 − �n) ◦ Fn

∥∥∥
0.9·8−(n+1),1

�
∥∥∥(�n+1 − �n) ◦ Fn

∥∥∥
8−(n+1),1

� C8−(n+1)l ‖H − H0‖Cl .

Under the condition l�2� + 3, and that ‖H − H0‖Cl is sufficiently small (note
that the smallness condition of ‖H − H0‖Cl is independent of n), condition (127) is
satisfied and we can apply Theorem A.15 to obtain F̂ n+1 as indicated before. Out of
the conclusions of Theorem A.15 we obtain∥∥∥F̂ n+1 − Id

∥∥∥
(1/6)·0.9·8−(n+1),C1

�C�̃2�8−(n+1)(l−(�+1)) ‖H − H0‖Cl . (159)

Eq. (159), is, of course, the inductive assumption (157) for n + 1.
Another consequence of the application of Theorem A.15 is:∥∥∥Qn+1 − Qn

∥∥∥
0.9·8−(n+1)

�C�̃2�8−(n+1)(l−(�+1) ‖H − H0‖Cl .

Therefore, if ‖H − H0‖Cl is sufficiently small, then the twist condition at all steps is
less than twice the initial value.

Finally, we show that the Fn’s produced converge in C1 to a transformation which
is differentiable as claimed.

We estimate∥∥∥Fn+1 − Fn
∥∥∥

(1/6)·8−(n+1),1,C1
=
∥∥∥Fn ◦ F̂ n − Fn ◦ Id

∥∥∥
(1/6)·8−(n+1),1,C1

�
∥∥Fn

∥∥
(1/3)·8−(n+1),1,C1 · 6 · 8n+1

·
∥∥∥F̂ n − Id

∥∥∥
(1/6)·8−(n+1),1,C1

� (1/10 + 1)C�̃2�8−(n+1)(l−(�+2)) ‖H − H0‖Cl

(160)
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The first equality above is just the definition of Fn+1 = Fn ◦ F̂ n. The second
inequality is the intermediate value theorem and Cauchy inequalities for Fn. The third
inequality is just the inductive assumption on the size of F̂ n. Note that in the second
line, we have used that F̂ n(U(1/6)·8−(n+1),0.9) ⊂ U8−n,1 which follow from the fact that

F̂ n is close to the identity and linear in the actions.
Applying Cauchy inequalities—which is just the easy implication of Proposition

A.6—we obtain that, provided that 0 < l − � − 1, Fn converges in C0. Inequalities
(160) and Proposition A.6 imply that the limiting transformation is Cl−�−1 as claimed
and the bounds claimed on ‖F − Id‖Cl .

Appendix B. Proof of Theorem 4.1

In this appendix we present a proof of Theorem 4.1
The theorem follows from more general results in the theory of normally hyperbolic

manifolds which undoubtedly are well known to the experts. Nevertheless, the result
presents some peculiarities such as having the manifold not compact, which are not
often addressed in the literature (it is, however, a standard remark that compactness only
enters to assume that the vector fields are uniformly bounded and uniformly continuous,
so that if one assumes that instead of compactness one has the uniform continuity, the
standard proof goes through). Even if the vector field in our problem is not uniformly
bounded, using the scaling properties we will see that the Poincaré map with respect
to a conveniently chosen section is uniformly bounded together with its derivatives up
to of order r − 1. The derivatives of order r − 1 are uniformly continuous.

In our case, taking advantage of the peculiarities of the system, it is easy to
give a proof that is simpler than the standard arguments (notably, the extension ar-
guments which are cumbersome in the general case, can be done rather easily for
our model using that we have a global system of coordinates). We can also avoid
the use of adapted metrics, bundle maps, some linear operators become constants,
etc.

We present the proof for the sake of making this paper more self-contained. We
point out for experts that after the system of coordinates (Section B.1) and the use
of Poincaré map (Section B.3) the rest are small modifications of fairly standard
methods.

One important difference between our case and the general results on normally hy-
perbolic invariant manifolds is that, in our case, the manifolds we produce are invariant
and not just locally invariant as one concludes from the general theory of normally
hyperbolic invariant manifolds. The invariance of the manifold �̃ happens because the
KAM circles, being codimension 1, separate the manifold. The region bounded between
KAM tori is invariant. The fact that the manifold is invariant has deep consequences.
For example, the definitions of (un)stable manifolds, which are quite cumbersome for
locally invariant manifolds become very transparent. Also, the invariant manifold is
unique, which eliminates some ambiguities.
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B.1. System of coordinates

In a neighborhood of the unperturbed manifold �̃ we consider the coordinates
(, I, �, s, u) ∈ T × R × Td × Rds × Rdu which correspond, respectively, to the phase
of the periodic orbit �E , I = √

2E, the phases of the external perturbation and the
stable and unstable directions of the unstable orbits, normalized in such a way that the
expansion rate is constant around the periodic orbit. These coordinates are constructed
in Floquet theory.

Even in Theorem 4.1 de dimension of the stable and unstable directions are ds =
du = n − 1 we will do the proof in the general case. We will use the scaled variables
introduced in Section 4.2 but work on the whole manifold (we will introduce later
several cut-offs).

We will also add the extra variable � ∈ B�∗ ⊂ Rp, which does not evolve in time.
This standard device is a way to introduce parameters in the problem. We will prove
the existence of a smooth manifold parameterized by , �, I, �. From this, it follows
that for each �, there is a smooth manifold and that they can be joined in a smooth
family.

Due to the rescaling properties (7) the equations of the geodesic flow in a neighbor-
hood of �̃ expressed in this system of coordinates are:

̇ = I + I Ñ(, �, I, �, s, u),

İ = 0 + I ÑI (, �, I, �, s, u),

ṡ = IAss + I Ñs(, �, I, �, s, u),

u̇ = IAuu + I Ñu(, �, I, �, s, u),

�̇ = �/�,

�̇ = 0, (161)

where As , Au are constant matrices, the functions N are Cr−1 and the r −1 derivatives
are uniformly continuous. Moreover

Ñ(, �, �, I, s = 0, u = 0) = 0,

DsÑ(, �, �, I, s = 0, u = 0) = 0,

DuÑ(, �, �, I, s = 0, u = 0) = 0. (162)

We note that (162) is just an expression of the fact that, by definition, we have
segregated the terms of order 0 and 1 in the Taylor expansion.

The fact that the terms of order 0 and 1 take the indicated expression—in particular
that As, Au are constant matrices—is a consequence of the scaling properties (7) of
the geodesic flow. For us, the more important consequence of the scaling is that the
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vector field can be written as I multiplied by a smooth function, which is reflected
in (161).

The perturbed equations (37) written in the scaled coordinates take the form

̇ = I + I Ñ(, �, I, s, u, �) + �P̃(, �, I, s, u, �),

İ = I ÑI (, �, I, s, u, �) + �P̃I (, �, I, s, u, �),

ṡ = IAss + I Ñs(, �, I, s, u, �) + �P̃s(, �, I, s, u, �),

u̇ = IAuu + I Ñu(, �, I, s, u, �) + �P̃u(, �, I, s, u, �),

�̇ = �/�,

�̇ = 0 (163)

in the domain

D̂ = {I ∈ [1, ∞),  ∈ T, � ∈ Td , s2 + u2 ��2}. (164)

(We recall that we have taken � = ε2, ε = E
−1/2
0 , so that in the original coordinates,

this corresponds to the domain Iphys �
√

2E∗.)
The function P in (163) as well as its derivatives of order up to r − 1 are uniformly

bounded and uniformly continuous in the domain considered since they correspond to
derivatives of the scaled potential. The fact that the derivatives of P and N are bounded
will be important since it will allow us to work with a non-compact manifold. We
also note that in our case, the derivatives of order r − 1 of Ñ and P̃ are uniformly
continuous.

B.2. Extensions of the equations

As usual in the theory of invariant manifolds, we will proceed to extend Eqs. (161)
to the domain

D = { ∈ T, I ∈ R, s ∈ Rds , u ∈ Rdu , � ∈ Td} (165)

in such a way that they agree with the original unperturbed equations (161) in a small
neighborhood of {s = 0, u = 0}.

Note that we are extending the equations to the coordinate space, not to the geometric
phase space. In our case, the identification between coordinates and points of the phase
space happens only in a neighborhood of the unperturbed invariant manifold.

We will show that the extended perturbed equations have a manifold invariant in a
small neighborhood of the set {s = 0, u = 0}.

It follows that a manifold which is invariant for the extended system is locally
invariant for the original system (that is, the true evolution of a point in the manifold,
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remains in the manifold or takes it to a place where the extended equations do not
agree with the original equations). Later, in Section B.7, we will show that indeed the
manifold is invariant and that the second alternative above does not happen.

Similarly, the perturbed equations will be extended to the set D in such a way that
they agree with the original equation (163) in the set D̂ in (164).

We will show that the extension of (163) has an invariant manifold contained in
{s2 + u2 �
(�)} where 
(�) →

�→0
0. Therefore, for |�| small enough we obtain that


(ε) < � and the invariant manifold of the extended system is a locally invariant
manifold for the original system.

Let � : R → R be a C∞ function such that

�(x) = 1 when |x|�1,

�(x) = 0 when |x|�2.

We first modify the vector field (161) so that

̇ = �(2|I |) + (1 − �(2|I |))
(
|I | + I Ñ( )

)
. (166)

Clearly, this new vector field agrees with the original one (161) in {|I |�1}.
The reason to introduce this change is that in the subsequent proof we will consider

 as a fast variable with respect to �. This, clearly runs into problems when I = 0.
When we introduce the above change of vector field, the variable  will indeed by
uniformly fast in all the domain and we can simplify the exposition by using the same
techniques over all the domain.

We furthermore introduce

N(, �, I, �, s, u) = Ñ(, �, I, �, s, u)�

(
s2 + u2

�2

)
(1 − �(|I |))

and

P(, �, I, �, s, u) = P̃ (, �, I, �, s, u)�

(
s2 + u2

�2

)
(1 − �(|I |)).

Clearly the extended system can be defined in D and agrees with the original one
in D̂. By (162) we have that the Cr−1 norm of N is small.

B.3. The Poincaré map

The extended vector field corresponding to (161) is unbounded in D. This makes
it hard to adapt the general results in the literature on normally hyperbolic invariant
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manifolds directly. (We note, however, that the unboundedness comes in the good terms,
since the unboundedness of the vector field makes the hyperbolicity become stronger,
so that a more general proof than the one we present here is possible.)

In our case, however, since the unboundedness is of a very special form, we can
take advantage of this and reduce it to a more standard problem.

We observe that for system (161) the set { = 0} is a global section.
The return map to this section of the unperturbed system (161) is given by

I ′ = I + N̂I (�, I, �, s, u),

s′ = eAs s + N̂s(�, I, �, s, u),

u′ = eAuu + N̂u(�, I, �, s, u),

�′ = � + ε��(�, I, �, s, u),

�′ = �,

where � is the Cr−1 function measuring the time it takes to go from the invariant
section { = 0} to it again.

Clearly, for large I, �(�, I, �, s, u) is approximately 1/|I |. On the other hand, �(�, I,

�, s, u) remains bounded for any value of I because we introduced change (166).
Recalling the scaling properties of the vector field, we will argue that the map

N̂ = (N̂I , N̂s, N̂u) is uniformly bounded with its derivatives of order up to r − 1.
Heuristically, the reason is that, as I increases, the time of return to the section decreases
as I−1, which balances exactly the growth of the vector field (which except for the
explicit factor I is uniformly bounded). Indeed, the scaling transformations in Section
4.2 transform the return map to  = 0 in a domain I ∈ (I ∗, 2I ∗) into the return map
of any other such domain. Hence, the Cr−1 norm of all these return maps are bounded
uniformly in I ∗. Also, the r − 1 derivatives are uniformly continuous.

We also have

N̂(�, I, �, 0, 0) = 0,

DsN̂(�, I, �, 0, 0) = 0,

DuN̂(�, I, �, 0, 0) = 0,

�(�, I, �, 0, 0) = 1

I
,

Ds�(�, I, �, 0, 0) = 0,

Du�(�, I, �, 0, 0) = 0.
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The Poincaré map of the perturbed flow (163) has the form

I ′ = I + N̂I (�, I, �, s, u) + �P̂I (�, I, �, s, u),

s′ = eAs s + N̂s(�, I, �, s, u) + �P̂s(�, I, �, s, u),

u′ = eAuu + N̂u(�, I, �, s, u) + �P̂u(�, I, �, s, u),

�′ = � + ε��(�, I, �, s, u) + �P̂�(�,I,�,s,u), (167)

where ‖eAs ‖ , ‖e−Au‖�� < 1.
Henceforth, we will denote the return map by F.

B.4. Equations for the invariant manifolds

As it is standard in invariant manifold theory we will write the invariant manifold
as the graph of a function that gives s, u as a function of �, I, �.

We introduce the notation x = (�, I, �).
Let W be a function that to a point x ∈ Td × R × B�∗ associates (Ws(x), Wu(x))

which are coordinates in the s, u directions.
Given a point

(x, Ws(x), Wu(x)) = (x, W(x)) (168)

in the graph of W, its image under the map in (167) is in the graph of W if and only
if, after applying (167) to (168), we obtain that the s, u components can be expressed
as the function W evaluated on the x = (�, I, �) components of F(x, W(x)).

This amounts to

Ws(R(x)) = eAs Ws(x) + N̂s(x, Ws(x), Wu(x)) + �P̂s(x, Ws(x), Wu(x)),

Wu(R(x)) = eAuWu(x) + N̂u(x, Ws(x), Wu(x)) + �P̂u(x, Ws(x), Wu(x)), (169)

where the function R : Td × R × B�∗ → Td × R × B�∗ is given by

R(x) = R(�, I, �)

= (� + �/��(�, I, �, Ws(�, I, �), Wu(�, I, �))

+�P̂�(�, I, �, Ws(�, I, �), Wu(�, I, �)),

I + N̂I (�, I, �, Ws(�, I, �), Wu(�, I, �))

+�P̂I (�, I, �, Ws(�, I, �), Wu(�, I, �)), �). (170)

Note that R depends on W, but we will omit the dependence from the notation for
simplicity, except in some points where the dependence is particularly important.
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We will rearrange (169) and (170) in such a way that they can be reduced to a fixed
point theorem.

We will formulate the fixed point theorem in the space of functions W : Td × R ×
Rp �→ Rds × Rdu such that

‖W‖Cr−1 �
(�, ‖N̂‖Cr−1),

where 
 = 
(�, ‖N̂‖Cr−1) is a function which will be described along the proof. We
note that 
 tends to zero when its arguments tend to zero.

We first note that if
∥∥∥N̂∥∥∥

C1
, �, ‖W‖C1 are sufficiently small, R is a C1-small pertur-

bation of the identity, hence, globally invertible.
Eqs. (169) can be re-written, composing the first equation with R−1 on the left and

applying algebraic manipulation on the second as

Ws(x) = eAs Ws ◦ R−1(x) + N̂s(R
−1x, W ◦ R−1(x))

+�P̂s(R
−1(x), W ◦ R−1(x)),

Wu(x) = e−Au [Wu ◦ R(x) − N̂u(x, W(x)) − �P̂u(x, W(x)]. (171)

B.5. Solution of the fixed point equations

The Eqs. (171) are the fixed point formulation of Eqs. (169) which express the fact
that the graph of W is invariant.

We will consider the equations as a fixed point problem for the operator T that to
a function W associates the right-hand side of (171). We will denote by Ts[W ] the
right-hand side of the first equation in (171) and by Tu[W ] the right-hand side of the
second.

Remark B.1. For the experts we note that the operator T that we have introduced
above is not the graph transform operator. It is rather an operator that has the same
fixed points as the graph transform.

The graph transform operator G is defined by

F(Graph(W)) = Graph(G(W)).

When the functions W map into stable and unstable components, the graph transform
is not a contraction. We will, however, find the graph transform useful when discussing
stable and unstable manifolds.

See Remark B.4 for a discussion of the proof of the existence and regularity for �̃
using the graph transform.
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The analysis of Eqs. (171) will be done using the uniform Cr−1 spaces in Td × R ×
B�∗ . These Banach spaces are the spaces of r − 1 times continuously differentiable
functions with the norm

‖f ‖Cr−1 = sup
x

max
0� i � r−1

‖Dif (x)‖ .

Note that for these spaces we not only require that the derivatives are continuous
but also that they are uniformly bounded. This is a significant restriction for functions
defined in domains which are not compact.

Following the standard procedure in the study of invariant manifolds, we will show

(a) That the operator T indeed is well defined on

B ≡ {‖W‖Cr−1 �
(ε, ‖N̂‖Cr−1)}.

(b) That T (B) ⊂ B.
(c) That T is a contraction on B in the C0 norm topology. That is

‖T (W) − T (W̃ )‖C0 �K‖W − W̃‖C0 , K < 1

for W, W̃ ∈ B.

Then, it follows that T has a fixed point in the C0 closure of B.
From Ascoli-Arzelà theorem it follows that C0-closure of B is contained in Cr−2+Lip,

which is what we had claimed.

Remark B.2. A much more general characterization of the closure (in topologies much
weaker than C0) of B can be found in [LI73]. The characterization in [LI73] also works
in infinite dimensional Banach spaces.

We refer to [dlLO99] for a compendium of properties of the composition operator
in C� spaces which we will find useful.

In particular, we will use repeatedly that

‖f ◦ g‖Cr−1 �C‖f ‖Cr−1(1 + ‖g‖Cr−1)r−1, (172)

where C is a constant which only depends on r.
The proof of (172) is not very hard. It suffices to note that if we take derivatives of

f ◦ g of order j �r − 1, we obtain a polynomial expression in derivatives of f, g. All
the terms contain a derivative of f of order not larger than j (a fortiori not larger than
r − 1). A term contains not more than r − 1 factors all of which are derivatives of g
of order not larger than r − 1. We use the estimate that any product of k derivatives
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of g of order up to r − 1 can be estimated by

∥∥∥Dl1g · · · Dlk

∥∥∥
C0

�C(1 + ‖g‖Cr−1)r−1. (173)

Of course, estimate (173) is very conservative and, when for instance we know that
‖g‖Cr−1 �1 we can obtain more precise estimates.

Since we will often be considering composition with functions which are close to
the identity, it is also useful to remark that, if ‖g − Id‖Cr−1 �1/2 we have

‖f ◦ g‖Cr−1 �C ‖f ‖Cr−1 (1 + ‖g − Id‖Cr−1)r−1. (174)

The proof of (174) follows the same lines than the proof of (172). We just write
Dg = D(g − Id) + Id and Dlg = Dl(g − Id) for 2� l�r − 1. Then, we note that
Djf ◦ g can be expressed in the same way as before as a polynomial in derivatives
of the desired form.

B.5.1. The operator T is well defined
The fact that the operator T is well defined has been essentially accomplished.
From the estimates of the composition of two Cr−1 functions we obtain that

‖N̂(·, W(·))‖Cr−1 � C‖N̂‖Cr−1(1 + ‖W‖Cr−1)r−1,

‖P̂ (·, W(·)‖Cr−1 � C‖P̂ ‖Cr−1(1 + ‖W‖Cr−1)r−1.

Hence, under smallness assumptions on ‖N̂‖Cr−1 and �, and assuming


(�, ‖N̂‖Cr−1)��, (175)

we obtain that R from (170) is a Cr−1 perturbation of the identity, hence, R−1 will be
defined for all functions W in B. Moreover, ‖R−1

W − Id ‖Cr−1 will be uniformly small
for all functions in W.

We denote by

� = �(�, ‖N̂‖Cr−1) = sup
W∈B

max(‖RW − Id ‖Cr−1 , ‖R−1
W − Id ‖Cr−1)

and we note that � = �(�, ‖N̂‖Cr−1) is small if ε, ‖N‖Cr−1 are small.
The above considerations show that the operator T is well defined for all the functions

W ∈ B.
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B.5.2. The range of the operator T
The fact that T maps the space B into itself follows because, by applying (172),

(174) and the triangle inequality to the definition of T , we obtain

‖Ts[W ]‖Cr−1 � ‖eAs ‖C
(1 + �)r−1

+C(‖N̂‖Cr−1 + �‖P̂ ‖Cr−1) · (1 + C
(1 + �)r−1)r−1,

‖Tu[W ]‖Cr−1 � ‖e−Au‖[C
(1 + �)r−1

+C(‖N̂‖Cr−1 + �‖P̂ ‖Cr−1) · (1 + 
)r−1)] (176)

We see that (176) have the structure

‖T ‖Cr−1 ��

(
�,

∥∥∥N̂∥∥∥
Cr−1

)
+ �,

where � < 1 and � = �(�,

∥∥∥N̂∥∥∥
Cr−1

) is a polynomial expression which goes to zero if

�,

∥∥∥N̂∥∥∥
Cr−1

converge to 0.

It, therefore, suffices to take


 <
�

1 − �
(177)

to ensure that the set B is mapped into itself.

B.5.3. Contraction properties of T
The estimates for the contraction in C0 are not very difficult, even if a bit repetitive.
The only tools needed are elementary techniques such as adding and subtracting, the

triangle inequality and the following estimate, which is an easy consequence of the
mean value theorem:

‖f ◦ W − f ◦ W̃‖C0 �‖f ‖C1‖W − W̃‖C0 . (178)

A good heuristic guide is to consider that all the terms involving N̂, P̂ are ignorable
since they contribute to quantities that have Lipschitz constants that are arbitrarily small.
As we will see, the estimates needed to justify this heuristics are straightforward—albeit
long—applications of the above elementary techniques.

We start by estimating RW in detail. As in the previous proof, we write � to denote

terms which are arbitrarily small by choosing �
∥∥∥N̂∥∥∥

Cr−1
small. We observe that

‖�(·, W(·)) − �(·, W̃ (·))‖C0 � �‖W − W̃‖C0 ,

�‖P̂ (·, W) − P̂ (·, W̃ (·))‖C0 � �‖W − W̃‖C0 .
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Therefore

‖RW − RW̃‖C0 ��‖W − W̃‖C0 . (179)

Since we have that

‖R − Id‖C1 ,

∥∥∥R−1 − Id
∥∥∥

C1
�1/2,

we obtain from (179),

‖RW − RW̃‖C0 ��‖W − W̃‖C0 (180)

and

‖W ◦ RW − W̃ ◦ RW̃‖C0 � ‖W ◦ RW − W̃ ◦ RW‖C0 + ‖W̃ ◦ RW − W̃ ◦ RW̃‖C0

� ‖W − W̃‖C0 + ‖W̃‖C1�‖W − W̃‖C0

� (1 + �)‖W − W̃‖C0 . (181)

Similarly, we obtain

‖W ◦ R−1
W − W̃ ◦ R−1

W̃
‖C0 �(1 + �)‖W − W̃‖C0 . (182)

From (182) we obtain

‖N̂s(R
−1
W , W ◦ R−1

W ) − N̂s(R
−1
W̃

, W̃ ◦ R−1
W )‖C0

�‖N̂‖C1

(
‖R−1

W − R−1
W̃

‖C0 + ‖W ◦ R−1
W − W̃ ◦ R−1

W̃
‖C0

)
�‖N̂‖C1(1 + 2�)‖W − W̃‖C0

��‖W − W̃‖C0 .

Identical estimates show

‖�P̂s(R
−1
W , W ◦ R−1

W ) − �P̂s(R
−1
W̃

, W̃ ◦ R−1
W̃

)‖C0 ��‖W − W̃‖C0 ,

‖N̂u(·, W) − N̂u(·, W̃ )‖C0 ��‖W − W̃‖C0 ,

‖�P̂u(·, W) − �P̂u(·, W̃ )‖C0 ��‖W − W̃‖C0 .
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The previous estimates show that

‖Ts[W ] − Ts[W̃ ]‖C0 �(‖eAs ‖ + �)‖W − W̃‖C0 ,

‖Tu[W ] − T [W̃ ]‖C0 �(‖e−Au‖ + �)‖W − W̃‖C0 .

Therefore if �, ‖N̂‖C1 is small enough, we obtain that, as claimed, T is a contraction
in C0 norm for the functions in B.

Applying the contraction mapping theorem, we obtain that there is a fixed point in
the C0 closure of B. By Ascoli-Arzelà theorem, this closure consists of functions which
are Cr−2+Lip.

This finishes the proof of the theorem with the slightly smaller regularity Cr−2+Lip

rather that with the claimed regularity Cr−1.

B.5.4. Sharp regularity
To obtain the Cr−1 regularity claimed, we note that we know by Rademacher’s

theorem that the r − 1 derivative exists almost everywhere.
If we take derivatives of order r − 1 of Eq. (171), we obtain, writing explicitly the

terms which involve derivatives of W of order r − 1,

Dr−1Ws(x) = eAs Dr−1Ws ◦ R−1(x)(DR−1(x))⊗(r−1)

+D2N̂s(R
−1x, W ◦ R−1(x))Dr−1W(x)(DR−1(x))⊗(r−1)

+�D2P̂s(R
−1(x), W ◦ R−1(x))Dr−1W(x)(DR−1(x))⊗(r−1)

+Ms(x),

Dr−1Wu(x) = e−AuDr−1Wu ◦ R(x)(DR(x))⊗r−1

−D2N̂u(x, W(x))Dr−1W(x)

−�D2P̂u(x, W(x))Dr−1Wu(x) + Mu(x), (183)

where Ms, Mu are polynomial expressions involving derivatives of W, Ws , Wu up to
order r − 2 evaluated at x or at R(x) or at R−1(x) and derivatives of N̂ , P̂ of order
up to r − 1 evaluated at appropriate places.

The main observation is that Ms, Mu are continuous and are uniformly bounded.
We consider (183) as a fixed point equation for Dr−1W . We note that, because

of the assumptions on the rates of contraction, we have that the right-hand side is a

contraction in L∞ provided that
∥∥∥N̂∥∥∥

Cr−1
and � are small enough. We also have that,

because of the continuity of M = (Ms, Mu), the operator given by the right-hand side
maps C0 into C0. In this circumstances, we obtain the the L∞ fixed point has to be in
C0.

This establishes that the fixed point of (171) is Cr−1. This is, the regularity that we
had claimed for the manifold in Theorem 4.1.
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By noting that N̂ , P̂ have uniformly continuous derivatives of order r −1, we obtain
that the right-hand side of (183) maps uniformly continuous functions into uniformly
continuous functions. Since the uniform limit of uniformly continuous functions is uni-
formly continuous, we obtain that the r −1 derivatives of W are uniformly continuous.

B.6. The stable and unstable manifolds of �̃

In this section we establish the existence of the the stable and unstable manifolds to
the invariant manifold �̃, we just constructed.

We consider first the unstable manifold, since its existence can be done by the graph
transform.

We consider a function S that given �, I, �, u produces the coordinate s. We denote
y = (�, I, �, u). We will denote a point in the full space as (y, s). This is slightly
inconsistent with the order we have used for the variables, but we hope it will not lead
to confusion.

We consider a point (y, S(y)) in the graph of S. Its image under map (167) is in
the graph of a map G(S) given by

G[S](y) = eAs S(T −1(y)) + Ns(T
−1(y), S(T −1(y))) + ε2Ps(T

−1(y), S(T −1(y)),

(184)

where T is the map given by (again, we temporarily suppress from the notation that T
depends on S)

T (�, I, �, u) = � + �/��(y, S(y)) + �P̂�(y, S(y)),

I + N̂I (y, S(y)) + �P̂I (y, S(y)),

�,

eAuu + N̂u(y, S(y)) + �P̂u(y, S(y))). (185)

The formulas above for the map are easily obtained noting that T is just �′, I ′, �′, u′
obtained applying map (167) to the point (y, S(y)). Then, we just express the coordinate
s′ as function of those. Noting that N̂ , �P̂ are C1 small, we can apply the implicit
function theorem and obtain that T is indeed invertible and that G(S) is indeed a well
defined map.

By following arguments very similar to—indeed somewhat simpler than—those in
the previous section, it follows that, under strong enough smallness assumptions on the
mapping, G maps a Cr−1 ball to itself and it is a C0 contraction there. This establishes
that the manifold is Cr−2−Lip. As before, we establish that it is Cr−1 by studying the
equation which is satisfied by the r − 1 derivative. We leave details to the reader since
they are identical to the argument presented in Section B.5.4.
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Hence, we can construct a Cr−1 invariant manifold which is a Cr−1 perturbation
of the coordinate manifold corresponding to (�, I, �). We will show that this manifold
is W u

�̃
.

We also note that the fact that G is a contraction in C0 tells us that the iterates of the
coordinate manifold are converging exponentially fast in C0 to the invariant manifold.

Applying the results above to the inverse mapping we can obtain a Cr−1 invariant
manifold which is modelled on the coordinate manifold corresponding to (�, I, �, s).
We will denote this manifold by W s

�̃
.

We note that the manifold W s
�̃

∩ W u
�̃

is invariant and is a small perturbation of the

coordinate manifold along (�, I, �).
Since the manifold �̃ produced in the previous section is also invariant and is also

C0 close to the coordinate manifold, and the solutions of (171) are unique—we are
using the contraction mapping principle—, we obtain that the manifold �̃ produced in
the previous section agrees with the intersection. That is

W u
�̃

∩ W s
�̃

= �̃.

Furthermore, by the fact that G preserves a C1 neighborhood of the coordinate map
and that it is a contraction in the C0 distance there, we obtain that

distC0(Gn(0) ∩ W s
�̃
, �̃)�C�̃

n

for n > 0, where �̃ is a number which is arbitrarily close to � if ‖N̂‖C1 , � are small
enough.

Recalling the definition of G, we conclude that, given any point x ∈ W s
�̃

, we have

dist(F n(x), �̃)�C�̃
n

(186)

for n�0.
Applying the argument for F−1, we obtain that given any point x ∈ W s

�̃
, we have

dist(F n(x), �̃)�C�̃
n

(187)

for n�0.
The following is a strengthening of a converse to (186) and (187). The arguments

will play an important role in the discussion of uniqueness.

Proposition B.3. Under the standard assumptions that ‖N̂‖C1 , � are small enough,
then all the points that satisfy dist(F n(x), �̃)�C for all n�0, are points in W s

�̃
.
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Conversely, if dist(F n(x), �̃)�C for all n�0, then x in W u
�̃

.

If dist(F n, �̃)�C for all n ∈ Z, then x ∈ �̃.

The proof of Proposition B.3 consists in showing that there is a field of cones that
is preserved by the dynamics. In this cones, the unstable directions stretch. From this,
it follows that given (�, I, �, s), there can only be a value of u for which the iterates
remain in a neighborhood in the future. Since the points in W s

�̃
satisfy this, and W s

�̃
is a graph, it follows that the only points which remain bounded in the future are the
points in the stable manifold. Similarly for the unstable manifold.

The proof of the persistence of cone fields is quite standard. We refer to
[KH95, p. 245].

Remark B.4. Many expositions of the theory of normally hyperbolic manifolds prove
the persistence of the invariant manifold by proving the persistence of the stable and
the unstable manifold as in Section B.6 and then, constructing the invariant manifold
as the intersection. Calculations of invariant manifolds using the stable and unstable
approach have been undertaken in [BOV97].

From the point of view of numerical implementations, the proof presented here has
the advantage that the algorithms for fixed � have only to work with functions of two
variables. The proof based on stable and unstable manifolds has to deal with functions
of three variables.

B.6.1. The stable and unstable bundles of �̃
The following result about stability of bundles is quite standard. See for example

[HP70].
The invariant manifold �̃ is normally hyperbolic in the sense that

Proposition B.5. There is a splitting of the tangent space of the coordinate space D
in (165)

TxD = Tx�̃ ⊕ Es
x ⊕ Eu

x ,

where there exist constants C > 0, 0 < �̃ < 1 such that

v ∈ Es
x ⇐⇒ |DFn(x)v|�C|v|�̃n

, n�0,

v ∈ Eu
x ⇐⇒ |DFn(x)v|�C|v|�̃|n|

, n�0.

Moreover, the mappings that to x assign E
s,u
x are Cr−2.

The Proposition B.5 is a very standard perturbation result. Full details can be found
in [HP70] in more general situations. We will just indicate the most important ideas
of the proof.
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Note that the result is true when N̂ ≡ 0 and � = 0.
We can use the coordinate spaces as coordinates in TxD. Denoting by C


x the different
coordinate spaces of the tangent bundle, we will write

TxD = C�
x ⊕ CI

x ⊕ C�
x ⊕ Cs

x ⊕ Cu
x

= Cs
x ⊕ Cc

x, (188)

where Cc
x denotes all the variables which are not s.

We obtain the stable bundle Es
x as the graph of a linear map Lx from Cs

x to Cc
x .

Corresponding to splitting (188), we can express the matrix of the derivative of the
map is expressed as

DF(x) =
(

(eAs + �ss(x) �sc(x)

�cs(x) B + �cc(x)

)
,

where all the �’s above indicate matrices that are Cr−2 small if ‖N‖Cr−2 , ε are small.
The matrix B is readily available. It has diagonal elements which are 1 in the �

and I directions, eAu in the unstable direction. There are no non-diagonal elements. We
note that the matrix B is invertible.

We can see (�, Lx�) ∈ TxD gets mapped under DF(x) into

((eAs + �ss(x) + �sc(x)Lx)�, (�cs(x) + BLx)�.

Therefore, the condition of invariance of the graph is

AF(x)(e
As + �ss(x) + �sc(x)Lx) = �cs(x) + BLx.

Equivalently,

Lx = B−1(LF(x)(e
As + �ss(x) + �sc(x)Lx) − �cs(x)). (189)

We consider (189) as a fixed point equation. We will argue that the operator defined
by the right-hand side on the space of Cr−2 functions is a contraction in Cr−2.

We note that, taking derivatives of (189) we obtain that

Di
xB

−1(Lf (x)(e
As + �ss(x) + �sc(x)Lx) − �cs(x)) = Di

xLf (x)(D
F (x))⊗i (eAs ) + Si,

where we denote by f the map induced in the coordinates given the invariant manifold
by the map F. where Si is a polynomial involving derivatives of L up to order i and
derivatives of F and of � also to order i. All the terms in S contain at least a derivative
of �.
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We note that the derivative of Df has norm as close sa desired to 1 since it is the
restriction of F to the invariant manifold.

Hence, we can conclude that the RHS of (189) is a contraction operator in Cr−2

provided that we make strong enough assumptions on ‖N‖Cr−1 , ε.

B.6.2. The stable/unstable manifolds for a point
From the exponential convergence of the points in Ws

�̃
to �̃, it follows that the orbit

of each point in W s
�̃

is asymptotic in the future to the orbit of a point in �̃. More

precisely, z ∈ W s
�̃

implies that there exists x such that

dist(F n(x), F n(z))�C�̃
n

n�0. (190)

We note that the point x is defined uniquely because

dist(F n(x), F n(x̃))�C�̃
n

n�0, x, x̃ ∈ �̃ �⇒ x = x̃. (191)

We denote the set of points satisfying (190) by W s
x . Clearly, the W s

x constitutes a
foliation of W s

�̃
, since, (191) is an equivalence relation.

The following result is a particular case of the results in [Fen74,Fen77].

Proposition B.6. With the notations above, the manifolds W s
x are Cr−1 manifolds. We

have

TxW
s
x = Es

x. (192)

Moreover, there is a Cr−1 mapping S : �̃ × B
 in such a way that S({x}, B
) is a
local diffeomorphism into a neighborhood of x in W s

x .

Remark B.7. In the general theory of normally hyperbolic manifolds, the manifolds
W s

x are as regular as the mapping, but the regularity of S is limited not only by the
regularity of the map but also by ratios of exponents along the normal directions and
along the manifold.

In our case, however, since the exponents along the manifold are as close to 1 as
desired, we obtain that the only limit to the regularity of S is the regularity of the
mapping F.

Besides the proofs in [Fen74,Fen77], a good exposition of the existence and regularity
of W s

x and their characterization by exponential rates, is in [KH95, p. 244 ff.].
To prove the existence of the manifold W s

x , we construct it as the graph of a mapping
sx from a ball in Es

x to its complementary space Ec
x . The fact that x ∈ W s

x is equivalent
to sx(0) = 0. Eq. (192) is equivalent to Dsx(0) = 0.

We introduce the notation that x + v where v ∈ TxD to mean the regular addition of
the coordinates (of course in the angle coordinates, they are taken mod 1). We introduce
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the mapping Fx : TxD → TF(x)D by Fx(v) ≡ F(x + v) − F(x). This construction is
standard. See e.g. [HP70] and, even if now we have used the Euclidean structure of
the coordinate space, analogous constructions can be carried out in any manifold using
the exponential mapping from Riemannian geometry.

We furthermore introduce the notation Fx = DF(x) + Nx (we suppress the depen-
dence on ε from the notation for the sake of brevity). We also use DFs,s(x) and
similar notations to denote the components of the matrix for DF(x) along the split-
ting TxD = Es

x ⊕ Ec
x . Because the splitting is invariant we have DF(x)sc(x) = 0,

DFcs(x) = 0.
We use Ns

x to denote the projections of N along the same splitting. All the mappings
Nx , N


x are Cr−1 and that the r − 1 derivatives of all of them have a uniform modulus
of continuity in B
, which is also independent of x. Nx(z), N


x (z) is Cr−2 jointly in
x, z with uniformly continuous r − 2 derivatives. Similarly, DF(x), DF 
,
′

(x) are C2

with uniformly continuous r − 2 derivatives.
Under the assumption that ‖N |‖Cr−1 , ε are small enough, we obtain that supx

‖Nx‖Cr−1 , supx

∥∥N

x

∥∥
Cr−1 , ‖N·(·)‖Cr−1 ,

∥∥N
· (·)∥∥Cr−1 are as small as desired. We also
have that DFss

x is close to eAs , in particular is a contraction.
Proceeding in a way similar to the derivation of (189) in Section B.6.1, we obtain

that a point (t, sx(t)) in the graph of sx is mapped by Fx to

(DF ss)xt + Ns
x(y, sx(t)), DFcc)xws(t)t + Nc

x(y, sx(t))) (193)

Note that, under our assumptions that DFss(x) is a contraction and that Ns is small
we obtain that DFss)xt + Ns

x(y, sx(t)) ⊂ B
, therefore, point (193) is in the graph of
sf (x) if and only if we have

sf (x)(DF ss)xt + Ns
x(y, sx(t))) = DFcc)xt + Nc

x(y, sx(t)). (194)

Equivalently

sx(t) = DFcc(x)−1[sf (x)(DF ss)xt + Ns
x(y, sx(t))) − Nc

x(y, sx(t))]. (195)

Exactly the same analysis that we have performed before shows that the RHS of
(195) defines an operator that sends a ball in the space of mappings which are Cr−1

in t and Cr−2 in t, x into itself. Moreover, it is a contraction in the C0 distance.
This shows that it has a fixed point which is Cr−2+Lip in t and jointly Cr−3+Lip

in x, t .
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The existence of derivatives of order r − 1 in t and r − 2 jointly in x, t as well as
their uniform continuity are obtained, as before by examining the equation satisfied by
the derivatives of highest order by differentiating (195).

B.7. Uniqueness of the manifold �̃. Invariance

Since we are applying the contraction mapping theorem, we obtain that the solutions
of Eqs. (171) are unique among all the bounded solutions. Similarly, for the stable and
unstable manifolds.

This gives that the invariant manifolds of the extended equations produced in Section
B.2 are unique in a C0 neighborhood.

Since the extended equations agree with the original ones domain E�E0, s
2+u2 ��,

we obtain that invariant manifold W invariant for the extended equations is locally
invariant for the original equations.

Unfortunately, the extension process involves arbitrary choices and it is, in principle
possible that the manifolds produced by two such extension processes are different.
Indeed, in the general theory of normally hyperbolic manifolds it is easy to construct
examples of systems with an infinitude of locally invariant manifolds.

When �̃ is only locally invariant, the notion of the stable manifolds to �̃ and
that of stable manifolds to a point in �̃ become somewhat delicate. Note that, the
characterization of the stable manifold of a point x by the asymptotic behavior after a
large number of iterates becomes quite problematic if the orbit of a point steps out of
�̃ after a finite number of iterates. Note that, if we wander out of �̃, then the orbit of
x is determined by the extensions that we have chosen and, of course, the orbits that
approach this extended orbit also depend on the choice of extensions.

In [Fen77] one can find a discussion of these issues in the general case.

B.7.1. Invariance in our case
However, in our case, one can do better than in the general theory. The key obser-

vation is that since the manifold is 2+d dimensional—the d corresponds to the phases
of the quasi-periodic perturbation—the KAM tori, produced in Section 4.3.6 separate
the space since they are 1 + d dimensional. (Note that the proof of the KAM theorem
only requires the local invariance since it only involves transformations in a very small
neighborhood.)

Hence, all the locally invariant manifolds produced so far are, actually invariant, after
perhaps, reducing them slightly so that the boundaries are KAM tori.

Since the locally manifolds are invariant, the cone argument presented in Proposition
B.3 shows that they have to agree.

This makes the invariant manifolds independent of the extension. As a consequence,
the characterization of stable manifolds by the asymptotic convergence, which was
established for the extended system, becomes valid in the original system.

Note that, in contrast with the arguments of existence of the locally invariant manifold
which only require that the map is C1, the arguments on uniqueness of the manifold
require enough differentiability so that we can apply the KAM theorem A.26.
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