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Abstract: We give a proof based in geometric perturbation theory of a result proved by
J. N. Mather using variational methods. Namely, the existence of orbits with unbounded
energy in perturbations of a generic geodesic flow inT

2 by a generic periodic potential.

1. Introduction

The goal of this paper is to give a proof, using geometric perturbation methods, of a
result proved by J.N. Mather using variational methods [Mat95]. We will prove:

Theorem 1.1.Let g be aCr generic metric onT2, U : T
2 × T → R a genericCr

function,r sufficiently large.
Consider the time dependent Lagrangian

L(q, q̇, t) = 1

2
gq(q̇, q̇)− U(q, t),

wheregq denotes the metric inTqT2. Then, the Euler–Lagrange equation ofL has a
solutionq(t) whose energy

E(t) = 1

2
gq(q̇(t), q̇(t))+ U(q(t), t),

tends to infinity ast → ∞.

Remark 1.2.Note that, in fact, the only unbounded part inE(t) is q̇(t), so that the
theorem could be expressed as unbounded growth in the velocity.

Remark 1.3.As it is usually the case in problems of diffusion, one not only constructs
orbits whose energy grows unbounded, but also orbits whose energy makes more or
less arbitrary excursions. We formulate this precisely in Theorem 4.26, and deduce
Theorem 1.1 from it.
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Remark 1.4.The argument presented here shows thatr ≥ 15 is large enough for The-
orem 1.1. (See the proof of Lemma 4.23.) We do not claim that this is optimal for the
geometric method to go through.

Remark 1.5.Actually, the results of Mather contain this as a particular case, as well
as ours. This theorem as stated seems to be just a common ground that allows some
comparison of the methods. Notably, Mather can deal with situations involving much
less regularity. Our method seems to apply to other situations. Notably, it applies without
substantial changes to geodesic flows in any manifold provided we assume that they have
a periodic orbit which is hyperbolic in an energy surface and that its stable and unstable
manifolds intersect transversally in the energy surface. Besides geodesic flows, it also
applies to some mechanical systems and to quasiperiodic perturbations. We hope to
come back to these extensions in future work.

Remark 1.6.The assumptions of genericity will be made quite explicit in Theorem 4.26,
a more general result than Theorem 1.1. They amount to the existence of a closed
hyperbolic geodesic with a homoclinic connecting orbit for the metricg, and that a certain
function L, called Poincaré function, computed from the potential on the homoclinic
orbit, is not constant.

The work of Mather [Mat95] also requires similar assumptions. As far as we can see,
the main difference in the hypotheses of [Mat95] and this paper is that [Mat95] also
uses that the periodic orbits and the connecting ones are minimizing and class A. On
the other hand, the differentiability hypotheses of this note are much more restrictive
than those in [Mat95]. The orbits with growing energy produced in this work and those
produced in [Mat95] are not necessarily the same: the orbits we produce here shadow
smooth invariant curves, whereas those in [Mat95] shadow minimizing Aubry–Mather
sets (which could be Cantor sets). We think that it is remarkable that the functional that
needs not to be constant is the same in both approaches. We hope that this could lead
to a more geometric understanding of [Mat95], which could perhaps lead to some new
results.

Remark 1.7.We note that it is possible to chooseg andU as arbitrarily close to the flat
metric and zero as desired in an analytic topology. Hence, this could be considered as
an analogue of Arnol’d diffusion. Depending on what one defines precisely as Arnol’d
diffusion it may not be appropriate to call the phenomenon described in [Mat95] and here
by this name. Since a universally accepted precise definition of Arnol’d diffusion seems
to be lacking we just point out that the phenomena described here has a similar flavor
and indeed the methods that we use here are very similar to the methods traditionally
used in the field.

The analogy with the traditional approaches ofArnol’d diffusion is much closer when
we consider what happens for a bounded range of (rather high) energies. We note that
in this case, there are two smallness parameters. One is the distance of the metric to the
flat metric and another one is the size of the potential. For high energy, the potential is a
very small perturbation of the geodesic flow (we will make all this more precise later).
If we chooseg close to flat, for the theorem to go through we need to choose the energy
for which the potential can be considered as a sufficiently small perturbation. The same
feature of two smallness parameters was present in the original example [Arn64].

Remark 1.8.Note that the geodesic flow, which in our case plays the rôle of the un-
perturbed system, is assumed to have some hyperbolicity properties. Indeed, the hy-
perbolicity properties involve that the system contains hyperbolic sets with transversal
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intersection in an energy surface. This is somewhat stronger hyperbolicity than thea
priori unstableunperturbed systems of [CG94], which are integrable.

We propose the namea priori chaotic for systems such as those considered in this
paper in which the reference system has some conserved quantities, but there are orbits
which are hyperbolic and with transverse heteroclinic intersections in the manifolds
corresponding to the conserved quantities.

One can hope that, besides their intrinsic interest since they appear in physically
relevant models, the study of a priori chaotic systems can be used as a stepping stone
for the study of other systems, in the same way that a priori unstable systems are used
as a step in the study of a priori stable systems.

Note that, sincea priori chaoticsystems are not close to integrable, the Nekhoroshev
upper bounds for the time of diffusion and the KAM bounds on the volume of diffusing
trajectories do not apply.

Remark 1.9.An important feature of this problem is that, besides two smallness param-
eters, it has two time scales. For high energy, the frequency of the unperturbed problem
is high while the frequency of the perturbation is small. Hence, one can bring to bear
methods of adiabatic theory to obtain small gaps between KAM tori. (This phenomenon
also happens in the models considered in [CG94], who emphasized the important rôle
played by this fact in the conclusions and also identified several physical models where
this is a natural assumption.)

Remark 1.10.The main difference of the methods presented here with more traditional
approaches to Arnold diffusion is the reliance in hyperbolic perturbation theory and cen-
ter manifold reduction rather than the exclusive reliance in KAM perturbation theories.
(A sketch of the method proposed was known in [Lla96].)

We think that the locally invariant normally hyperbolic manifold is an interesting
structure since one can study the dynamics on it using the powerful methods of two
dimensional dynamics, notably Aubry–Mather theory. We hope to come back to these
issues exploiting the many structures present in the invariant center manifold in the near
future. Similar ideas were used in [LW89]. We note that the use of methods based in
normal hyperbolicity to deal with systems with two scales of time in a geometric way
has been successfully used for a long time (see, e.g., [Fen79]).

We want to draw attention to [BT99], which presents another geometric method to
obtain similar results (In particular they also give a geometric proof of Mather’s result.)
They construct a transition chain relying on standard KAM theory and the Poincaré–
Melnikov method and do not use normally hyperbolic theory as we do in this paper.
Rather than relying on periodic orbits as we do in this paper, they rely on whiskered
tori with one hyperbolic degree of freedom. For systems with two degrees of freedom
(such as geodesic flows onT2) periodic orbits are the same as whiskered tori with one
hyperbolic degree of freedom, but for systems with more degrees of freedom, they are
not. Hence, the escaping orbits constructed by the two methods are different.

Of course, the methods used in [Mat95] are completely different from all the methods
based on geometric perturbation theory.

We have hopes that a blending of the traditional methods, with hyperbolic perturbation
theory, a more geometric understanding and variational methods could lead to progress
in the problem of Arnol’d diffusion.
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1.1. Summary of the method.The proof we present here can be conveniently divided
into different stages.

In a first stage, we use classical Riemannian geometry to establish the existence of
a family of periodic orbits. The whole family is a two dimensional normally hyperbolic
manifold which carries an exact symplectic form (restriction of the symplectic form in
the phase space). Its stable and unstable manifolds intersect transversally and the motion
on it is a twist map with an unbounded frequency. This step is due to Morse, Hedlund
and Mather, and is covered in Sects. 2 and 3.2.

In a second stage (Sect. 4.2), we show that, for high enough energy, the perturbation
introduced by the potential can be considered small. This is just an elementary scaling
argument. We give full details mainly to set the notation.

In a third stage, we use perturbation theory of normally hyperbolic manifolds to show
that this normally hyperbolic manifold persists into a locally invariant normally hyper-
bolic manifold, and its stable and unstable manifolds keep on intersecting transversally.
Also, we note that the perturbed invariant manifold inherits a symplectic structure from
the ambient space and that, therefore, the rich methods of Hamiltonian perturbation the-
ory can be brought to bear on the motion restricted to it. A brief summary of hyperbolic
perturbation theory is presented in Appendix A, and the application to our problem is
presented in Sects. 3.3 and 4.3. It is important to note that the motion on this invariant
manifold has a faster time scale than the perturbation introduced by the potential.

In a fourth stage (Sect. 4.4.1), we use averaging theory to eliminate the fast angles
from the Hamiltonian to obtain that the motion on the normally hyperbolic invariant
manifold can be reduced to integrable up to an error which is of very high order in the
perturbation parameter, which is given by the inverse of the square root of the energy.
Hence, the error decreases as an inverse power of the energy.

In a fifth stage (Sect. 4.4.2), we use quantitative versions of KAM theory to show
that the smallness of the perturbation in the invariant manifold leads to the fact that this
invariant manifold is filled very densely with KAM tori, and we obtain approximated
expressions for these tori.

In a sixth stage, we use the Poincaré-Melnikov method to compute the change of
energy in a homoclinic excursion and show that, under appropriate non-degeneracy
assumptions, the stable manifold of one KAM torus intersects transversally the unstable
manifold of another – very close – KAM torus, giving rise to heteroclinic orbits.

These calculations are not completely standard due to the presence of two time scales.
We also note that the literature about Melnikov functions for quasiperiodic objects is
somewhat confusing. Notably, some of the terms that make the naïve Melnikov integrals
not absolutely converging are incorrectly omitted in many papers. Hence, we decided to
present rather full details in Sect. 4.6.

In a seventh stage (Sect. 4.7) we use the results which show that given transition
chains, one can find orbits that shadow them.

We emphasize that all these stages use only readily available techniques and theorems
which are almost readily available. (Perhaps the less standard part is the part on the
calculation of Poincaré–Melnikov functions, so it appears fully expanded.) Moreover,
these stages are significantly independent, so that if we assume – or arrive by other
methods at – the conclusions of one, all the subsequent results apply.

In particular, if we assumed that the geodesic flow in a manifold (not necessarilyT
2

or not necessarily two dimensional) has a periodic orbit which, when considered in the
unit energy surface is hyperbolic and has a transverse homoclinic intersection, all the
results would go through. (The place where we need some more serious modifications
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for higher dimensional manifolds is the obstruction property since theλ-lemma we quote
works for codimension one surfaces.) Other mechanical systems could also be treated
in a similar manner.

In particular, the above strategy was designed to be compatible with variational meth-
ods.The invariant manifolds produced using the theory of normally hyperbolic manifolds
carry Aubry–Mather sets, as pointed out by J. N. Mather. Moreover, variational methods
can be used to provide powerful shadowing lemmas that can be used in the last stage.

2. Classical Geometry of the Geodesic Flow

The following geometric facts were proved by Morse, Hedlund and Mather and their
relevance for the problem we are considering was discovered and emphasized in [Mat95].

Theorem 2.1.For a Cr open and dense set of metrics inT
2, r = 2, . . . ,∞, ω, there

exists a closed geodesic “3” which is hyperbolic in the dynamical systems sense as a
periodic orbit of the geodesic flow.

Moreover, there exists another geodesic “γ ” and real numbersa+, a−, such that

dist(“3”(t + a±), “γ ”(t)) → 0 as t → ±∞. (2.1)

Here we will take the standard definition that a geodesic “3” is a curve “3” : R → T
2,

parameterized by arc length which is a critical point for the length among any two of
its points. Later, we will consider curves in the cotangent bundle that are orbits of the
geodesic flow. Clearly, these orbits are closely related to the geometric geodesics in the
manifold. We will use for the orbits in the cotangent bundle the same letter as for the
geodesics but suppress the quotation marks. When we want to speak about the orbits of
the geodesic flow as manifolds in phase space (more properly, the range of the mapping
3), we will use â (i.e. 3̂ = Range3). Note that the speed of a unit geodesic is 1 and
that, therefore, its energy is 1/2.

We assume without any loss of generality that the length of “3” on the metricg
is 1. (It suffices to multiply the metric by a constant, which, physically, corresponds
to choosing the units of length). Therefore, “3” as an orbit of the geodesic flow has
period 1. Note that by changing the origin of time, we obtain another geodesic, so that
the geodesics satisfying geometric properties are always one parameter families. This
consideration will be important when we consider time dependent perturbations. When
the change of origin of time is an integer (an integer number of times the period of “3”)
then (2.1) remains unaltered. Hencea± are defined only up to the simultaneous addition
of an integer to both of them.

Actually Morse and Hedlund showed much more. They showed that there exists one
“3” in each free homotopy class. Moreover, they showed that “3” can be taken to be
minimizing and “γ ” satisfies other minimizing properties (class A). These result were
essentially (no mention of genericity, hypernbolicity and higher differentiability was
required) established in [Mor24] for any two dimensional manifold of genus bigger than
1 and in [Hed32] for the torus.

Such minimization properties play an important rôle in the work [Mat95]. In this
work, what is important is that the closed geodesic “3” is hyperbolic and that there
exists a connecting geodesic “γ ”. Of course, the fact that “3” is hyperbolic implies
– when it has the right index – that it is a local minimizer for the length functional,
which is the assumption used in [Mat95]. On the other hand, our method seems to work
without any minimizing assumptions on the connecting geodesic “γ ”. Recall that, using
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dynamical systems theory, given a periodic orbit with homoclinic connections, there exist
other homoclinic connections (and other periodic orbits). Even if the original connection
was minimizing, the secondary ones will not, in general, be so. Similarly, we note that,
since the analysis we perform is quite local in the neighorhood of the periodic orbit and
its homoclinic connection, our method does not require that the manifold considered is
the torus. The transversality of the invariant manifolds associated to “3”, which plays
an important rôle for our method, does not seem to play a rôle in [Mat95]. Of course,
our method requires much more differentiability than the method of [Mat95].

3. The Unperturbed Problem

3.1. Hamiltonian formalism and notation.The present problem admits natural La-
grangian and Hamiltonian formulations. From our point of view neither of them plays a
large rôle, but it seems that the Hamiltonian point of view is somewhat more convenient.
Hence, this is the formalism that we will consider.

The Hamiltonian phase space of the geodesic flow isT∗
T

2 = R
2 × T

2. We will
denote the coordinates inT2 by q and the cotangent directions byp. Note that we are
taking some advantage – but mainly in the notation – of the fact that the cotangent bundle
of T

2 is trivial.
We point out that, as it is well known, the phase space, being a cotangent bundle

admits a canonical symplectic form, which moreover is exact.
It is well known that for a cotangent bundle such asT∗

T
2 there is a unique 1-formθ

such thatα∗θ = α for any one formα onT
2. (Here we think of forms as maps fromT2

to T∗
T

2.)
Then,� = dθ is a symplectic form. In local coordinates,θ = ∑

i pidqi , � =∑
i dpi ∧ dqi .
With respect to the form�, the geodesic flow is Hamiltonian and the Hamiltonian

function is

H0(p, q) = 1

2
gq(p, p),

wheregq is the metric inT∗
T

2. We will denote by8t this geodesic flow.
For eachE, we will denote6E = {(p, q) |H0(p, q) = E}, and observe that, for any

E0 > 0 (later, we will use this for largeE0), 6̃E0 = ∪E≥E06E ' [E0,∞)× T
1 × T

2,
that is, we can take the energy as a part of a coordinate system. Note that the energy
is one half the square of|p| so that the energy can be used as a radial coordinate inp.
This is quite convenient. We will also need an angle coordinate, to complete the polar
coordinate system.

We also note that6E – a three dimensional manifold diffeomorphic toT
1 × T

2 – is
invariant under the geodesic flow.

Given an arbitrary geodesic “λ” : R → T
2 we will denote byλE(t) = (λ

p
E(t), λ

q
E(t))

the orbit of the geodesic flow that lies in the energy surface6E , and whose projection
overq runs along the range of “λ”. Moreover, we fix the origin of time inλE so that
it corresponds to the origin of the parameterization in “λ”. (FormallyH0(λE(t)) = E,
and Range(“λ”) = Range(λqE), “λ”(0) = λ

q
E(0).)

It is easy to check that the above conditions determine uniquely the orbit of the
geodesic flow, in particular determineλpE(t).
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Note that
(
λ
p
E(t), λ

q
E(t)

) =
(√

2Eλp1/2

(√
2Et

)
, λ
q
1/2

(√
2Et

))
, (3.1)

so that, for the geodesic, the rôle ofE is just a rescaling of time. Since31/2 has period 1
with our conventions (see the remarks after Theorem 2.1), then3E has period 1/

√
2E .

3.2. Hyperbolicity properties.Extending the methods of Morse-Hedlund for Theo-
rem 2.1, J. N. Mather showed:

Theorem 3.1.For a Cr generic metric,r = 2, . . . ,∞, ω, and for any value of the
HamiltonianH0(p, q) = E > 0, there exists a periodic orbit3E(t), as in (3.1), of
the geodesic flow whose range3̂E is a normally hyperbolic invariant manifold in the
energy surface. Its stable and unstable manifoldsW

s,u
3̂E

are two dimensional, and there

exists a homoclinic orbitγE(t), that is, its rangeγ̂E satisfies

γ̂E ⊂
(
W s
3̂E

\ 3̂E
)

∩
(
Wu
3̂E

\ 3̂E
)
.

Moreover, this intersection is transversal as an intersection of invariant manifolds in the
energy surface alonĝγE .

For E = 1/2, we have that, for somea± ∈ R,

dist(31/2(t + a±), γ1/2(t)) → 0 as t → ±∞. (3.2)

We note that (3.2) is a general property of homoclinic orbits to hyperbolic manifolds
and follows readily from the exponential convergence ofγ1/2 to31/2 and the comparison
of the flow restricted to31/2 andγ1/2.

We also note that sincêγE is one dimensional,W s
3̂E

,Wu
3̂E

are two dimensional, and

the ambient manifold6E is three dimensional, we haveTxγ̂E = TxW
s
3̂E

∩ TxWu
3̂E

for

all the pointsx ∈ γ̂E . Hence, by the implicit function theorem,γ̂E is the locally unique
intersection. Since we are considering manifolds invariant under flows, their intersection
has to contain orbits andγE is locally the only possible – up to change in the origin of
the parameter – orbit in the intersection ofW s

3̂E
andWu

3̂E
.

For the geodesic flow, the energy is preserved and therefore the dynamics can be
analyzed on each energy surface. This, however, will not be useful when we consider
the external periodic potential which changes the energy. Hence, it will be useful to
discuss what happens for all energy surfaces. The following lemma is a description of
the behavior of3 = ⋃

E≥E0
3̂E for all values of the energy.

Lemma 3.2.Define3 = ⋃
E≥E0

3̂E . This is a manifold with boundary which is diffeo-
morphic to[E0,∞) × T

1, and the canonical symplectic form� on T∗
T

2 � restricted
to3 is non-degenerate. The form�|3 is invariant under the geodesic flow8t .

We have for someC, α > 0 and for allx ∈ 3̂E ,

Tx6E = Es
x ⊕ Eu

x ⊕ Tx3̂E

with ||D8t(x)|Es
x
|| ≤ Ce−αt for t ≥ 0, ||D8t(x)|Eu

x
|| ≤ Ceαt for t ≤ 0 and

||D8t(x)|Tx3̂E || ≤ C for all t ∈ R.
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The stable and unstable manifolds to3: W s
3,Wu

3, are three dimensional manifolds
diffeomorphic to[E0,∞)× T

1 × R, and

γ =
⋃
E≥E0

γ̂E ⊂ (
W s
3 \3) ∩ (

Wu
3 \3)

is diffeomorphic to[E0,∞)× R.

We also note that, since the definition of transversal intersection of manifolds only
requires that the tangent spaces span the ambient space, when we add an extra dimension
(in this case the energy, but later we will consider other parameters) the intersection of
the extended manifolds is still transversal. The intersection of the extended manifolds
will not be just one orbit but we will have

Txγ = TxW
s
3 ∩ TxWu

3.

Hence,γ will still be a locally unique intersection.
We note that the only properties of the geodesic flow that we will use are the conclu-

sions of Theorem 3.1 and Lemma 3.2.

3.3. Extended phase spaces.Since we are going to consider periodic perturbations, it
will be convenient to introduce an extra angle variable, which we will denote bys, which
moves at a constant rate 1. Then, the phase space will beT∗

T
2 × T

1.
We will introduce the notatioñ3 = 3×T

1, and analogouslỹγ = γ ×T
1, to denote

the corresponding objects in the extended phase space.
In the case that we do not have any external potential, the dynamics in this extended

phase space is just the product of the geodesic flow inT∗
T

2 and the motion with constant
speed 1 in the circle (corresponding to the extra variable).

In this extended phase space the results of Sect. 3.2 immediately imply:

• 3̂E × T
1 is a two dimensional invariant manifold. Its (un)stable manifold is a three

dimensional manifold. They intersect transversally in6E × T
1. (Of course, they are

not transversal in the whole extended space since they lie on the energy surface.)
• When we consider the results for all the energies, we obtain normal hyperbolicity:
3̃ = 3 × T

1 is a 3-dimensional manifold, and it is normally hyperbolic for the
extended flow8̃t (see Definition A.1 in Appendix A). The (un)stable manifolds of3̃

areWu,s
3 × T

1, and are 4-dimensional.
• Moreover,γ̃ = γ × T

1 lies in the intersection ofW s
3× T

1 = W s
3̃

and ofWu
3× T

1 =
Wu
3̃

, and the intersection is transversal.

• The extended flow̃8t restricted to the invariant manifold̃3 is neither contracting nor
expanding:

||D8̃t (x)|Tx3̃|| ≤ C ∀t ∈ R, x ∈ 3̃. (3.3)

These observations will be important because they will allow us to use the rich
theory of hyperbolic invariant manifolds summarized in Appendix A when we consider
the problem with the external potential.

This extended phase space is obviously not symplectic (it has odd dimension). In
order to perform some other calculations, we will find it convenient to perform a sym-
plectic extension. This is accomplished by adding another real variablea symplectically
conjugate tos, which does not change with time.
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Then, the symplectically extended phase space isT∗
T

2 × R × T
1. The symplectic

form in this space is̃� = � + da ∧ ds. The flow is Hamiltonian and its Hamiltonian
function ish(a, s, p, q) = a +H0(p, q).

Sincea is conserved, the restriction of the flow ofh to each of the manifoldsa = cte. is
identical to the flow ofH0 in the extended phase space. In this case, the neutral direction
given by a spoils all the hyperbolicity properties. This situation is very common in
Hamiltonian systems since the neutrality along a manifold as in (3.3) implies similar
bounds for the symplectic conjugate space.

3.4. The inner map.We will considerF , the time 1 map of the geodesic flow restricted
to 3, i. e.,F = 81|3. (This will make it easier to analyze the time periodic external
forcing.) As we are dealing with the autonomous case, we note:

1. It is still true that3 is a normally hyperbolic surface for81.
2. The stable and the unstable manifolds for81 are the same as for the flow8t . In

particular, they are still transversal.
3. �|3 is a symplectic form on3.
4. 81

∗� = �. HenceF ∗�|3 = �|3.
5. We have the canonical 1-formθ , called the symplectic potential, such thatdθ = �.

We note that�|3 = dθ |3.
6. 81

∗θ = θ + dS. Hence,F ∗θ |3 = θ |3 + dS|3. Therefore, the mapF restricted to
3 is an exact symplectic map.

Remark 3.3.Note that the rescaling properties (3.1) of the geodesic flow imply scaling
properties for the variational equations. As a consequence of them, the angle〈T

3̂E
W s
3̂E

,

T
3̂E
Wu
3̂E

〉 between the stable and the unstable bundles in3̂E , remains bounded inde-

pendently ofE. On the other hand, the Lyapunov exponents scale with
√

2E . Therefore,∥∥∥∥D81|T
3̂E
W s
3̂E

∥∥∥∥ ≤ α
√

2E,

∥∥∥∥D8−1|T
3̂E
Wu
3̂E

∥∥∥∥ ≤ α
√

2E,

whereα < 1 is independent ofE, even if it depends on the metric.

3.5. A coordinate system on3. Now we want to describe a coordinate system in3
that can be used to compute the motions on it as well as their perturbations. We want
coordinate functions that are not only defined on3 but also on a neighborhood of
it. This will be particularly important for us mainly in the calculation of the Poincaré
function. Since the manifolds we are going to consider are cylinders, we will take one
real coordinate (momentum) and one angle coordinate (position).

The real coordinate will beJ = √
2H0 ≥ √

2E0. For the angle coordinate, we will
takeϕ ∈ T

1, which is determined bydJ ∧ dϕ = �|3, andϕ = 0 corresponds to the
origin of the parameterization in “3". Henceθ |3 = Jdϕ.

If we express the motion in3 in these variables, it will be a Hamiltonian system
of Hamiltonian 1

2J
2 and therefore the equations of motion will bėJ = 0; ϕ̇ = J .

Hence the geodesic3E(t) of formula (3.1) is given in these coordinates byJ = √
2E ,
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ϕ = √
2Et . Note that for anyϕ0 ∈ R,3E(t + ϕ0/

√
2E) is another periodic orbit that

in these coordinates is given byJ = √
2E , ϕ = ϕ0 + √

2Et .
For emphasis, when we consider the geodesic flow, the inner map of Sect. 3.4 (the

time one map restricted to3) will be denoted byF0. Its expression in these coordinates
is

F0(J, ϕ) = (J, ϕ + J ). (3.4)

Note thatF0 is a twist map and that

F ∗
0 θ |3 = θ |3 + d

(
J 2/2

)
.

3.6. The outer map.Another important ingredient in our approach is the mapS : 3 →
3 that we will call the “scattering map” (in analogy with a similar object in quantum
mechanics) or the “outer map” associated toγ . This mapS will transform the asymptotic
point at−∞ of a homoclinic orbit to3 into the asymptotic point at+∞. For emphasis,
we will denoteS0 : 3 → 3 the scattering map of the geodesic flow.

We definex+ = S0(x−) if

W s(x+) ∩Wu(x−) ∩ γ 6= ∅.
More precisely,x+ = S0(x−) means that∃z ∈ γ ⊂ T∗

T
2, such that

dist(8t (x±),8t (z)) → 0 , as t → ±∞.

We note that, as it is obvious from the definition, the mapS0 depends on theγ we
have chosen. We have not included it in the notation to avoid typographical clutter, since
in the rest of the paper,γ will be fixed.

For the unperturbed case of the geodesic flow, this map can be computed explicitly.
To computeS0, we note that, from Theorem 3.1, we have:

dist(31/2(t + a±), γ1/2(t)) → 0, as t → ±∞ (3.5)

or, by the rescaling properties (3.1),

dist
(
3E

(
t/

√
2E + a±/

√
2E

)
, γE

(
t/

√
2E

))
→ 0 as t → ±∞, (3.6)

therefore, and for anyϕ0 ∈ R,

dist

(
3E

(
t + ϕ0 + a±√

2E

)
, γE

(
t + ϕ0√

2E

))
→ 0 as t → ±∞. (3.7)

Hence, the pointsx± = 3E

(
(ϕ0 + a±) /

√
2E

)
are asymptotically connected through

z = γE

(
ϕ0/

√
2E

)
. (We note thatz is not unique: it can be replaced by

γE

(
(ϕ0 + n) /

√
2E

)
, for anyn ∈ Z.)

In the internal coordinates(J, ϕ) of Sect. 3.5, the mapS0 is expressed as

S0(J, a− + ϕ) = (J, a+ + ϕ),
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or more simply, calling1 = a+ − a− the phase shift:

S0(J, ϕ) = (J, ϕ +1) . (3.8)

Note that the phase shift1 is uniquely defined in spite of the fact that the pointz is not
unique and that thea± are defined only up to the simultaneous addition of an integer.

The result of the previous calculation – thatx+ can indeed be defined as a function
of x− and henceS0 is a well defined function – , can be explained geometrically by
noting that the monodromy of the local definition ofx+ is trivial. Besides using the
previous calculation, we can appeal to the general argument, which we will use later,
that if the monodromy was non trivial, we could findx+ 6= x+ ∈ 3 in such a way that
W s(x+) ∩W s(x+) 6= ∅. This is impossible.

Note thatz can be defined locally as a function ofx−: z = Z(x−) (this follows from
the fact that the stable and the unstable manifolds intersect transversally). This local
definition in neighborhoods ofx− ∈ 3 cannot be made into a global definition on3
since there is a monodromy. Note that ifx− moves around a non-trivial circle in the
annulus3, the localz changes fromz to8T (z), whereT is the period of the orbit in3
throughx−. Later, when we have to consider perturbations, even if the direct calculation
is impossible, the geometric argument will go through and it will establish that anS

defined in a fashion analogous toS0 is indeed a smooth map.

4. The Problem with External Potential

4.1. Summary.The main idea is that, for high energy, the external potential is a small
(and slow) perturbation of the geodesic flow.

Therefore, all the geometric structures that we constructed based on normal hyper-
bolicity and transversality persist for high energy. In particular, the manifold3 will
persist as well as the transversality of the intersection of its stable and unstable mani-
folds. This will allow us to defineF, S analogues of the mapsF0, S0, and to compute
them perturbatively.

Using the information that we have of these maps, we will construct a sequence
n1, . . . , nk, . . . , such that there is some pointx with

xk = Fnk ◦ S ◦ · · · ◦ Fn1 ◦ S(x) → ∞. (4.1)

This sequence of pointsxk will be used as the skeleton for orbits of the perturbed geodesic
flow whose energy grows to infinity. The pointsxk constitute a chain of heteroclinic con-
nections between whiskered tori. Hence the existence of escape orbits can be described
and established using the usual geometric methods for whiskered tori and their hete-
roclinic connections. Heuristically, these orbits can be described as follows: the orbits
make excursions roughly along the homoclinic orbit when the external potential has a
phase that helps to gain energy, but they bid their time between jumps staying close to
the unperturbed periodic orbits till the phase of the external potential becomes favorable
again. By choosing the time when to perform the jumps, it will be possible for the orbits
to keep on gaining energy.

Therefore, the main technical goal will be to compute perturbatively, for high energy,
the inner and the outer mapsF andS, show that applying them alternatively we can
construct sequencesxk as in (4.1) and then, show that these orbits can be shadowed by
real orbits.

The existence of the pointsxk will require some non-degeneracy assumptions on
the external potential (namely, that there are times at which jumping produces a gain
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in energy). It turns out that the gain in energy is expressed by an integral – commonly
termed the Poincaré function – which depends on the phase at which the jump takes
place (relative to the phase of the potential). If this function, as a function of the jumping
time, is not constant, it is indeed possible to make jumps that gain energy.

Rather remarkably, the same integral and the same condition appears in J. N. Mather’s
approach even if with a very different motivation. Moreover, it is interesting to note that
the variational construction in [Mat95] also involves jumps roughly alongγ separated
by orbits that stay close to3.

Remark 4.1.We recall attention to the fact that the problem has two different smallness
parameters. One is how close is the metric to the integrable one. Another one is the
inverse of the energy. For large values of the energy, the potential can be considered as
a perturbation of the geodesic flow. We also note that there are two different time scales
involved. One is the time scale of the period of the perturbation (O(1)) and the second
one is that of the period of the geodesic (1/

√
2E ), which is also a characteristic time of

the homoclinic trajectory.

4.2. The scaled problem.In order to make the perturbative structure of the problem
more apparent we will scale the variables and the time. Thus, we pick a (large) number
E∗ and introduceε = 1/

√
E∗.

Recall that the original Hamiltonian isH(p, q, t) = 1
2gq(p, p) + U(q, t), hence

ε2H(p, q, t) = 1
2gq(εp, εp) + ε2U(q, t). If we denoteεp = p̄ and consider the sym-

plectic form�̄ = dp̄ ∧ dq = ε�, we note thatq, p̄ are conjugate variables in̄�. We
also introduce a new timēt = t/ε. We see that the equations

dp

dt
= −∂H

∂q
= −1

2

∂gq

∂q
(p, p)− ∂U

∂q
(q, t),

dq

dt
= ∂H

∂p
= gq(p, ·),

are equivalent to

dp̄

dt̄
= −1

2

∂gq

∂q
(p̄, p̄)− ε2∂U

∂q
(q, εt̄),

dq

dt̄
= gq(p̄, ·),

which are Hamiltonian equations in̄�, for the timet̄ , with respect to the Hamiltonian

H̄ε(p̄, q, εt̄) = 1

2
gq(p̄, p̄)+ ε2U(q, εt̄). (4.2)

We also introducēE = E/E∗. For our purposes, it suffices to analyze a fixed range in
scaled energies (which we will fix arbitrarily to be[1/2,2]) and establish that for large
enoughE∗, we can find pseudo-orbits which are often close to3 and whose energy
increases from≈ 1/2 to≈ 2. Then, using that the result is valid for all the large enough
energies, we can construct a pseudo-orbit whose energy grows unboundedly.

From now on and until further notice, we will drop the bar from the problem. We will
refer to the bar variables as the rescaled variables and the original ones as the physical
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variables. Then the HamiltonianHε and all the functions derived from it will be 1/ε
periodic in time. In order to make this more apparent we will use the notation given
in 4.2.

Since we have introduced the scaling, it will be convenient to expressS0, F0 in these
rescaled variables. BecauseS0 was defined through geometric considerations it does not
change when rescaled:

S0(J, ϕ) = (J, ϕ +1).

On the other hand,F0 becomes the time 1/ε of the geodesic flow. Hence, we introduce
the notationf ε0 : 3 → 3 for its rescaled expression, that becomes

f ε0 (J, ϕ) = (J, ϕ + J/ε).

Similarly, we can study the hyperbolic properties of3 under the rescaled flow. It is easy
to note that the stable and unstable bundles do not change under rescaling of time, and
that the exponents get multiplied by 1/ε.

4.3. The perturbed invariant manifold.Using the hyperbolicity properties of the man-
ifold 3 for the geodesic flow (see Sect. 3.2), we will apply the results of hyperbolic
perturbation theory summarized in Appendix A.

In order to do perturbation theory for the manifold3, it will be more convenient to
use the flow rather than the time 1/ε map. Notice that the Lyapunov exponents of the
unperturbed map are±∞. Even if this does not interfere with stability (roughly, the
larger the Lyapunov exponents are, the more stable the system is), it is cumbersome to
write the arguments.

We note that in the Hamiltonian (4.2),ε enters in two different ways, both as a per-
turbation parameter in the Hamiltonian and as the frequency of the perturbing potential.
To distinguish these two different rôles ofε, we find it more convenient to introduce the
autonomous flow

ṗ = −∂H0

∂q
(p, q)− δ

∂H1

∂q
(p, q, s/T ),

q̇ = ∂H0

∂p
(p, q)+ δ

∂H1

∂p
(p, q, s/T ), (4.3)

ṡ = 1,

defined on the extended phase spaceT∗
T

2 × T T
1. This problem is equivalent to our

original one if we setδ = ε2, T = 1/ε, andH1(p, q, s/T ) = U(q, εs).
We will denote the flow of (4.3) bỹ8t,T ,δ(p, q, s) = (0

s,s+t
T ,δ (p, q), s + t), where

0
t,t ′
T ,δ(p, q) is the non-autonomous flow. Note that as usual0

t ′,t ′′
T ,δ ◦ 0t,t ′T ,δ = 0

t,t ′′
T ,δ in the

domains where these compositions make sense.
We note that settingδ = 0 in (4.3) we have that

3̃ := 3× T T
1 ' [J0,∞)× T

1 × T T
1

is a manifold locally invariant for the flow, whereJ0 = √
2E0. This manifold is also

normally hyperbolic in the sense of Definition A.1.
Using Theorem A.14 and observation 1 after it, we have:
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Theorem 4.2.Assume that we have a system of equations as in(4.3), where the Hamil-
tonianH = H0 + δH1 is Cr , 2 ≤ r < ∞. Then, there exists aδ∗ > 0 such that for
|δ| < δ∗, there is aCr−1 function

F : [J0 +Kδ,∞)× T
1 × T T

1 × (−δ∗, δ∗) −→ T∗
T

2 × T T
1

such that

3̃T ,δ = F
(
[J0 +Kδ,∞)× T

1 × T T
1 × {δ}

)
(4.4)

is locally invariant for the flow of(4.3). Therefore,3̃T ,δ is δ-close to3̃T ,0 = 3̃ in the
Cr−2 sense.

Moreover,3̃T ,δ is a hyperbolic manifold. We can find aCr−1 function

Fs : [J0 +Kδ,∞)× T
1 × T T

1 × [0,∞)× (−δ∗, δ∗) −→ T∗
T

2 × T T
1

such that its (local) stable invariant manifold takes the form

W s,loc(3̃T ,δ) = Fs
(
[J0 +Kδ,∞)× T

1 × T T
1 × [0,∞)× {δ}

)
. (4.5)

If x = F(J, ϕ, s, δ) ∈ 3̃T ,δ, thenW s,loc(x) = Fs({J } × {ϕ} × {s} × [0,∞)× {δ}).
ThereforeW s,loc(3̃T ,δ) is δ-close toW s,loc(3̃) in the Cr−2 sense. Analogous results
hold for the (local) unstable manifold.

Remark 4.3.SinceW s(3̃),Wu(3̃) are transversal at̃γ ⊂ W s(3̃)∩Wu(3̃), we see that
there exists a locally uniquẽγT ,δ which is δ-close toγ̃ in the Cr−2 sense, such that
γ̃T ,δ ⊂ W s(3̃T ,δ)∩Wu(3̃T ,δ), and thatγ̃T ,δ can be parameterized by aCr−1 function
on γ̃ × (−δ∗, δ∗) to the extended phase space.

Notation 4.4.From now on, we are going to fix our attention to the caseδ = ε2 andT =
1/ε, and we will call3̃ε = 3̃1/ε,ε2, γ̃ε = γ̃1/ε,ε2, 8̃t,ε = 8̃t,1/ε,ε2 and0t,t

′
ε = 0

t,t ′
1/ε,ε2.

Remark 4.5.Even if Theorem 4.2 only guarantees local invariance for3̃ε, we will show
later that KAM theory will provide invariant boundaries consisting of KAM tori. There-
fore, it is possible to takẽ3ε invariant. Since the results in hyperbolic theory for locally
invariant manifolds are somewhat sharper for invariant manifolds (they include unique-
ness statements and a geometric definition of stable and unstable manifolds), this will
allow us later to state slightly sharper results. The main results in this paper can be
obtained without this improvement, hence we will just develop it in remarks.

Since the theory of normally invariant manifolds ignores symplectic structures, which
will play an important rôle in our considerations, it will be useful to supplement the above
considerations with a study of symplectic structure.

For a fixeds, we denote3sε ⊂ T∗
T

2 the manifold obtained by fixings in 3̃ε given
by (4.4):

(3sε, s) = F
(
[E0 +Kε2,∞)× T

1 × {s} × {ε2}
)
.

By Theorem 4.2,3sε is ε2-close to the unperturbed manifold3 in theCr−2 sense. In
particular, if we denote by�sε the restriction of the symplectic form� to these manifolds,
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it is a symplectic form. We also have�sε = dθsε , whereθsε is the restriction of the
symplectic potential form to3sε.

The classical results of adiabatic perturbation theory we want to use in Sect. 4.4.1
refer to time dependent Hamiltonian flows on a fixed manifold with a fixed symplectic
structure, whereas we have a time dependent manifold. Thus, we introduce changes of
variables that keep the manifold fixed and study the flow induced in the fixed manifold.
Since the Hamiltonian character is important in adiabatic perturbation theory, we pay
attention to the Hamiltonian structure of the changes of variables.

Since3̃ε is invariant by the flow8̃t,ε(p, q, s) = (0s,s+tε (p, q), s + t) of (4.3), we
have that0t,t

′
ε : ϒtε ⊂ 3tε → 3t

′
ε (whereϒtε excludes a neighborhood of orderε2

outside the boundary of3tε). Moreover, this flow transforms the symplectic structure

in one manifold to the one of the image0t,t
′

ε

∗
�tε = �t

′
ε . Furthermore, it is an exact

transformation, that is,0t,t
′

ε

∗
θ tε = θ t

′
ε + dSt,t

′
ε , whereSt,t

′
ε is a real valued function in

3t
′
ε and thed refers to the exterior differential in that manifold.
Now, since the manifolds3sε are close to the standard one3 we can find coordinate

mapsCsε : 3sε → 3. We claim that it is possible to choose theseCsε in such a way that
they transform the symplectic form into the standard one. In effect, if we push forward
the symplectic forms�sε, we obtain a family of symplectic forms in3 which are close
to�. These symplectic forms are also exact. Applying Moser’s method [Wei77], we can
find maps from3 to3 that transform these symplectic forms into the standard one. We
will just redefine theCsε to include the composition with these mappings in3. A proof
that these maps can be chosen to beCr−2 jointly with the parameters can be found in
complete detail in [BLW96].

If we now considerCt
′
ε ◦ 0t,t ′ε ◦ (Ctε)−1 we see that it is a flow of exact symplectic

mappings in3. The Hamiltoniankε(J, ϕ, εs) generating this flow is the push-forward
by Csε of the HamiltonianHε(p, q, s/T ) = Hε(p, q, εs) generating the flow of (4.3)
(T = 1/ε). In particular, it is aCr−2 flow, 1/ε periodic and it is a small perturbation of
the constant flowJ̇ = 0, ϕ̇ = J of Hamiltonian1

2J
2.

4.4. The perturbed inner map.Givens ∈ 1
εT

1, the perturbed inner map is the time 1/ε
flow on3sε:

0s,s+1/ε
ε : 3sε → 3s+1/ε

ε .

In the coordinate system(J, ϕ) on3 introduced at the end of Sect. 3.5, we study the
mapf εε : 3 → 3, obtained settingτ = ε in:

f τε = C1/τ
ε ◦ 00,1/τ

ε ◦ (C0
ε )

−1.

This map is the time 1/ε flow of the Hamiltoniankε(J, ϕ, εs). Note that this map is a
small perturbation of the mapf ε0 introduced in Sect. 4.2. (The notationf εε is designed
to be a mnemonic of this fact: the upperε indicates the frequency of the perturbation
and the lowerε is a measure of the size of the perturbation.)

Our goal is to study this map and show that it possesses KAM curves with very small
gaps. If we applied KAM theory directly, we would obtain gaps significantly bigger
than those desired for our purposes. Therefore, we will take advantage of the fact that
the perturbation is slow so that we can apply several steps of averaging theory (see, for
example [AKN88,LM88]) and reduce the perturbation. If we apply KAM to the map
after averaging (which is significantly closer to integrable than the original one), the
KAM tori have small enough gaps for our purposes.
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4.4.1. Averaging theory.The result that allows us to reduce the perturbation by a change
of variables is:

Theorem 4.6.Let kε(J, ϕ, εs) be aCn Hamiltonian,1-periodic inϕ andεs, such that
kε(J, ϕ, εs) = 1

2J
2 + ε2k1(J, ϕ, εs; ε).

Then, for any0 < m < n, there exists a canonical change of variables(J, ϕ, s) 7→
(I, ψ, s), 1-periodic inϕ andεs, which isε2-close to the identity in theCn−m topology,
such that transforms the Hamiltonian system of Hamiltoniankε(J, ϕ, εs) into a Hamil-
tonian system of HamiltonianKε(I, ψ, εs). This new Hamiltonian is aCn−m function
of the form:

Kε(I, ψ, εs) = K0
ε (I, εs)+ εm+1K1

ε (I, ψ, εs),

whereK0
ε (I, εs) = 1

2I
2 + OC1(ε2), and the notationOC1(ε) means a function whose

C1 norm isO(ε).

Proof. The proof of this theorem is standard. For more details and applications of the
analytic case, one can see [AKN88]. We will just go over the proof to show that it works
for finite differentiable Hamiltonians.

Callinga the action conjugate of times, we have the 2-degrees of freedom Hamilto-
niana + kε(J, ϕ, εs), which has a fast angleϕ and a slow oneεs.

We look for a canonical change of variables which eliminates the fast angleϕ. The
change will be obtained through a composition of changes of variables. Each of these
changes will be generated through a generating function of the form:

Ps + Iϕ + εq+2Sq(I, ϕ, εs; ε), (4.6)

whereSq is 1-periodic onϕ andεs.
In this way, through the implicit equations

J = I + εq+2∂Sq

∂ϕ
(I, ϕ, εs; ε),

a = P + εq+3∂Sq

∂εs
(I, ϕ, εs; ε),

ψ = ϕ + εq+2∂Sq

∂I
(I, ϕ, εs; ε),

we obtain a canonical change of variables(J, ϕ, a, εs) → (I, ψ, P, εs), where

(J, ϕ, a) = (I, ψ, P )+ εq+2ψq(I, ψ, εs; ε) (4.7)

which, by the implicit function theorem, has one degree less of differentiability than its
generating function (4.6).

We will apply the following inductive lemma:

Lemma 4.7.Consider a Hamiltonian of the form

a +Kq(J, ϕ, εs; ε) = a +K0
q (J, εs; ε)+ εq+2K1

q (J, ϕ, εs; ε),
whereK0

q = J 2/2+ OC1(ε2) is Cn−q+1 andK1
q is Cn−q , 0 ≤ q ≤ n− 1. We can find a

functionSq(I, ϕ, εs; ε) verifying

∂

∂I
K0
q (I, εs; ε)

∂Sq

∂ϕ
(I, ϕ, εs; ε)+K1

q (I, ϕ, εs; ε) = K
1
q(I, εs; ε), (4.8)
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where

K
1
q(I, εs; ε) =

∫ 1

0
K1
q (I, ϕ, εs; ε)dϕ.

Then, the change (4.7) generated by (4.6) transforms the Hamiltoniana+Kq(Jϕ, εs; ε),
into a Hamiltonian

a +Kq+1(I, ψ, εs; ε) = a +K0
q+1(I, εs; ε)+ εq+3K1

q+1(I, ψ, εs; ε),
where

K0
q+1(I, εs; ε) = K0

q (I, εs; ε)+ εq+2K
1
q(I, εs; ε) = I2

2
+ OCn−q (ε2)

is Cn−q andK1
q is Cn−q−1.

Proof. Note that a solution of (4.8) isSq = ∫
dϕ

(
K1
q − K̄1

q

)
/∂IK

0
q . It follows thatSq

and∂Sq/∂ϕ areCn−q . The new Hamiltonian is given by

P + εq+3∂Sq

∂εs
(I, ϕ, εs; ε)

+K0
q

(
I + εq+2∂Sq

∂ϕ
(I, ϕ, εs; ε), εs; ε

)

+εq+2K1
q

(
I + εq+2∂Sq

∂ϕ
(I, ϕ, εs; ε), ϕ, εs; ε

)

= P +K0
q+1(I, εs; ε)+ εq+3K1

q+1(I, ψ, εs; ε),

where, Taylor expandingK0
q andK1

q and using Definition (4.8) of the generating func-
tion, we get:

K0
q+1(I, εs; ε) = K0

q (I, εs; ε)+ εq+2K
1
q(I, εs; ε)

and

εq+3K1
q+1(I, ψ, εs; ε) = K0

q

(
I + εq+2∂Sq

∂ϕ
(I, ϕ, εs; ε), εs; ε

)

−K0
q (I, εs; ε) − ∂

∂I
K0
q (I, εs; ε)εq+2∂Sq

∂ϕ
(I, ϕ, εs; ε)

+ εq+2
(
K1
q

(
I + εq+2∂Sq

∂ϕ
(I, ϕ, εs; ε), ϕ, εs; ε

)
−K1

q (I, ϕ, εs; ε)
)

+ εq+3∂Sq

∂εs
(I, ϕ, εs; ε),

where, in these formulas,ϕ has to be expressed in terms of the variables(I, ψ, εs; ε)
using the change of variables (4.7).

SinceK0
q isCn−q+1 andK1

q isCn−q , it is clear thatSq , ∂ϕSq areCn−q , and the change
of variables (4.7) isCn−q−1. (Note that in the equation above, only the termεq+3∂εsSq

is Cn−q−1.) Then one has thatK0
q+1 is Cn−q andK1

q+1 is Cn−q−1. ut
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To finish the proof of Theorem 4.6, we only need to apply the inductive Lemma 4.7
for q = 0,1, . . . m − 1, and we obtain the desired result. Forq = 0, it is important to
note thatK0

0(J, εs; ε) = 1
2J

2 is C∞, andK1
0(J, ϕ, εs; ε) = k1(J, ϕ, εs; ε) is Cn. Then

the last Hamiltonian will be of classCn−m. ut
Lemma 4.8.In the conditions of Theorem 4.6 withn = r − 2, the mapf εε : 3 →
3, which is exact symplectic, can be written in the coordinates(I, ψ) introduced in
Theorem 4.6 as

f εε (I, ψ) =
(
I, ψ + 1

ε
A(I, ε)

)
+ εmR(I, ψ; ε), (4.9)

whereA(I, ε) = ε
∫ 1/ε

0 D1K
0
ε (I, εs)ds = I + OC0(ε2), andR is aCr−m−4 function.

Proof. Recall thatf εε in the (I, ψ) coordinates is the time 1/ε map of theCr−2−m
HamiltonianKε whose flow isCr−3−m. The flow, in these coordinates, is the flow of
an integrable HamiltonianK0

ε plus some Hamiltonian of orderO(εm+1). Hence, using
variational equations, we obtain that the time 1/εmap differs from that of the integrable
part by an amount not larger thanεm in theCn−4−m topology. ut

4.4.2. K.A.M. theory.We now recall a quantitative version of the KAM Theorem. The
version below is somewhat weaker than that of [Her83] (we do not use fractional regular-
ities so we lose whole integer number of derivatives in the conclusion while an arbitrary
real positive number would suffice), but is enough for our purposes. We recall that a real
numberω is called a Diophantine number of exponentθ if there exists a constantC > 0
such that|ω − p/q| ≥ C/qθ+1 for all p ∈ Z, q ∈ N.

Theorem 4.9.Let f : [0,1] × T
1 7→ [0,1] × T

1 be an exact symplecticCl map, with
l ≥ 4.

Assume thatf = f0 + δf1, wheref0(I, ψ) = (I, ψ + A(I)), A is Cl ,
∣∣∣∣dAdI

∣∣∣∣ ≥ M,

and‖f1‖Cl ≤ 1.
Then, ifδ1/2M−1 = ρ is sufficiently small, for a set ofω of Diophantine numbers of

exponentθ = 5/4, we can find invariant tori which are the graph ofCl−3 functionsuω,
the motion on them isCl−3 conjugate to the rotation byω, and‖uω‖Cl−3 ≤ cte. δ1/2,
and the tori cover the whole annulus except a set of measure smaller thancte. M−1δ1/2.

Moreover, ifl ≥ 6we can find expansionsuω = u0
ω+δu1

ω+rω, with‖r‖Cl−4 ≤ cte. δ2,
and

∥∥u1
∥∥Cl−4 ≤ cte. .

Applying Theorem 4.9 to the mapf εε given in (4.9), we obtain KAM invariant tori of
the system (4.3), as long as this map isCl with l := r −m− 4 ≥ 6. Note that according
to (4.9), the frequencies off ε0 are roughly(1/ε)A(I, ε) with A(I,0) the frequencies of
the unperturbed Hamiltonian flow. Hence, theCl−4 distance between invariant tori is not
bigger thanεm/2+1. We note that these invariant circles forf εε correspond to invariant
two dimensional tori for the extended flow. An invariant circle forf εε with frequencyω
corresponds to a two dimensional invariant torus for8̃t,ε with frequency(ω, ε).

Remark 4.10.Note that these KAM tori that we have produced for the mapf εε are
really whiskered tori for the extended flow̃8t,ε. They could have been produced also
by appealing to the Graff-Zehnder Theorem.
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In particular, proceeding as in Zehnder [Zeh75,Zeh76] we can obtain a normal form
for the HamiltonianHε(p, q, εs) in a neighborhood of these KAM tori:

G(I, a, ϕ, s, zs, zu) = ωI + a + 0

2
I2+ < zs, �(ϕ, s)zu >

+ g(I, ϕ, s, zs, zu). (4.10)

Such normal forms are commonly used in the study of inclination lemmas for
whiskered tori. However, we will perform our study of inclination lemmas in the normal
form for whiskered tori with one dimensional whiskers introduced in [FM98, Sect. 4.1].
This normal form does not require that the motion on the tori satisfies Diophantine
conditions – only that it is an irrational rotation – and requires much less regularity.

Remark 4.11.When the metric and the potential areC∞ or Cω, even if the argument
using the hyperbolic invariant manifold only allows to construct finitely differentiable
tori, appealing to the results in [Zeh75,Zeh76], we can conclude that these tori we
constructed are indeedC∞ or Cω.

Remark 4.12.Note that KAM tori produced by Theorem 4.9 are of codimension 1 inside
3̃ε. If we choose a submanifold whose boundary consists of two KAM tori, this sub-
manifold will be an invariant manifold for the extended flow. The results of hyperbolic
perturbation theory ofAppendixA can be extended to include uniqueness as is explained
in observation 4 after Theorem A.14.

Once we have the existence of the invariant tori of system (4.3), it is worthwhile
to obtain some explicit approximations for them in the coordinate system given by the
phases(ϕ, s) and the value of the HamiltonianHε. (Note that since the HamiltonianHε
is close toJ 2/2, (Hε, ϕ, s) constitute a good system of coordinates.)

We will find it convenient to write

U(q, τ) = Ū (τ )+ Ũ (q, τ ),

where the functions̄U(τ), andŨ (q, τ ) are given by

Ū (τ ) =
∫ 1

0
U(31/2(ϕ), τ )dϕ, Ũ(q, τ ) = U(q, τ)− Ū (τ ). (4.11)

This decomposition is natural because of the different scales involving the problem.
We are separating explicitly the average on the fast variables. We call attention to the
fact thatŪ (τ ), being independent ofq, does not affect the dynamics.

Lemma 4.13.Let ω be one of the frequencies allowed in Theorem 4.9. Then, in the
coordinate system(Hε, ϕ, s), we can write the torus of frequency(ω, ε) as the graph of
a functionG(ϕ, s; ε). Moreover, we can write

G(ϕ, s; ε) = ω2

2
+ ε2Ū (εs)+ ε3g̃(ϕ, s; ε)+ OCl−4(ε

4), (4.12)

whereg̃(ϕ, τ ; ε) is a1-periodic in(ϕ, τ ) function which verifies
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ωD1g̃(ϕ, τ ; ε)+ εD2g̃(ϕ, τ ; ε) = D2Ũ (3
q
1/2(ϕ), τ )+ OCl−4(ε

3) (4.13)

and||g̃(·, ·; ε)||Cl−4 is bounded uniformly inε.
Furthermore, we can chooseg̃ in such a way that̃g = D2h̃.Thish̃satisfies (obviously)

ωD1h̃(ϕ, τ ; ε)+ εD2h̃(ϕ, τ ; ε) = Ũ (3
q
1/2(ϕ), τ )+ OCl−4(ε

3) (4.14)

and||h̃(·, ·; ε)||Cl−4 is bounded uniformly inε.

We call attention to the fact that the functionsg̃, h̃ are not unique. On the other hand,
as we will see later, the ambiguities only arise in subdominant terms.

Proof. We will first present a formal proof and then we will work out the relation with
perturbative methods such as Lindstedt–Poincaré, which are somewhat subtle since the
problem involves singular perturbations. (One frequency is much larger than the other.)

The KAM Theorem 4.9 provides us with parameterizations

(p(ψ, εs), q(ψ, εs), s)

of the invariant torus in the original variables(p, q), in terms of the internal variables
ψ, s which satisfyψ̇ = ω, ṡ = 1.

These parameterizations are OCl−4(ε3) close to constant when expressed in terms of
the averaged variables.

We denote by

G(ψ, εs; ε) = Hε(p(ψ, εs), q(ψ, εs), εs) (4.15)

and note that the derivative with respect to the flow of this equation is

d

dt
G ◦8t,ε|t=0 = ωD1G(ψ, εs; ε)+ εD2G(ψ, εs; ε)

= ε3D2U(q(ψ, εs; ε), εs). (4.16)

We note that the first two terms of the averaging transformations areJ 2/2+ε2Ū (εs)

and that, as a consequence of the hyperbolic perturbation theory, the averaging method
and the KAM theory, the KAM tori are close to an orbit3E , with E = J 2/2, of the
unperturbed system. If we perform this substitution in (4.16), we obtain the desired
result. ut
Remark 4.14.The previous calculation can be also understood as a modification of
Lindstedt–Poincaré method. Since the Lindstedt–Poincaré method is a commonly used
tool in singularly perturbed systems, we thought it could be interesting to some readers
to develop a comparison. We refer to [Gal94] for a survey of Lindstedt methods for
analytic systems that includes a treatment of singularly perturbed systems through the
use of tree-like diagrams.

Since we are considering a system with two time scales, the most standard method,
which fixes the frequency and, then, seeks parameterizations of tori with the prescribed
frequency as expansions in powers ofε, cannot work since the frequency dependence
in ε will cause the composed frequency to go through resonances on which we do not
expect tori to exist.

Nevertheless, we will see that it is possible to compute systematically parameteriza-
tionsp(ψ, εs; ε), q(ψ, εs; ε) that satisfy the equations of motion to a very high accuracy
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and whose coefficients are, furthermore, of moderate size. Once we have that, the Newton
method started on them will lead to a true solution which is close to these approximate
solutions. (See [Zeh75,Zeh76].)

If we seek a parameterization of the torus with frequency vector(ω, ε), as above, we
obtain a system of equations

[ωD1 + εD2] p(ψ, εs; ε) = −DqHε(p(ψ, εs; ε), q(ψ, εs; ε), s),
[ωD1 + εD2] q(ψ, εs; ε) = DpHε(p(ψ, εs; ε), q(ψ, εs; ε), s). (4.17)

Even if, as we will soon see, it is a bad idea to try to obtain solutions that are just
powers ofε with coefficients that are functions only of the other variables, it is quite
feasible to obtain expansions in powers ofε with coefficients that are functions of all
the variables – includingε – which solve (4.17) up to a high order power inε and such
that all the coefficients are of order 1. These coefficients are not unique since the term
of a certain order is only defined up to terms of higher order.

The main observation is that, given0 with
∫
T
0(ψ, εs; ε) dψ = 0 and smooth, the

equation forη

[ωD1 + εD2]η(ψ, εs; ε) = 0(ψ, εs; ε) (4.18)

can be satisfied up to high order error inε by functions whose size is comparable to0.As
it is well known, this is the homology equation and the Lindstedt series can be computed
by recursively solving this equation on expressions that involve only previously computer
quantities.

If we try to solve (4.18) using Fourier analysis, we find that it is equivalent to

η̂k1,k2 = (2π i(ωk1 + εk2))
−1 0̂k1,k2. (4.19)

If we chooseη in such a way that its Fourier coefficients with|k| ≤ ε−1/2 are obtained
according to (4.19) and the other ones are zero, we note that:

a) If 0 is Cm then
|0̂k1,k2| ≤ C|k|−m||0||Cm.

Hence,η solves Eq. (4.18) up to an error whoseCl norm can be bounded byC||0||Cm ·∑
|k|≥ε1/2 |k|l−m, which can, in turn, be bounded byC||0||Cmε(−l+m−2)/2 whenl −

m+ 1< −1.
b) Since0 has no Fourier coefficients withk1 = 0, then the denominators of (4.19)

are uniformly bounded from below and we have, using the same estimates as above,
||η||Cl ≤ C||0||Cm whenl −m+ 1< −1.

By repeating this construction in all the steps that we have to solve (4.18) in the
calculation of the Lindstedt series, we obtain functions of size bounded uniformly inε

which satisfy (4.17) up to an error which can be bounded by a power ofε. This power can
be made arbitrarily high if we are considering systems that are differentiable enough.

Note that these approximate solutions – in contrast to those of the standard Lindstedt
method – are not unique since they include choices such as the level of truncation (we
took |k| ≤ ε−1/2 but could have made other choices).

The above procedure makes it clear that it is a bad idea solving Eqs. (4.18) exactly. If
we considered in (4.19) the coefficients with|k| ≈ ε−1 or bigger we would indeed have
to consider small divisors. This is a reflection of the fact that there is no numberω such
that (ω, ε) is a nonresonant vector for an interval ofε around zero. Since the goal of
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this equation was to eliminate terms from the perturbation, we have decided to respect
those modes corresponding to|k| ≥ ε−1/2 since the regularity assumptions guarantee
that they are small.

Once we have parameterizations that solve (4.17) with a very small error, we can
apply an appropriate version of the KAM theorem to produce an exact solution. Indeed,
this Lindstedt method is an alternative to the averaging method that we used in the main
text.

We emphasize that for the applications that we have in mind here, it suffices to
compute only a finite number of terms to obtain approximations toO(εn). Hence, there
is no need to discuss convergence and we only need that the functions involved are
finitely differentiable.

4.5. The perturbed outer map. Theoretical results.The goal of this section is to define
and to compute the outer mapS which characterizes intersections of stable and unstable
manifolds for the perturbed flow. This will be done in a very similar way to the one used
to define the outer mapS0 for the geodesic flow in Sect. 3.6. We recall that, according to
Theorem 4.2 and Remark 4.3, when we consider the perturbed flow (4.3) in the extended
phase space, we can find3̃ε,W s,u(3̃ε), γ̃ε, continuing those of the unperturbed system.
Then, given(x̃+, x̃−) ∈ 3̃ε, we sayx̃+ = S(x̃−) when

W s(x̃+) ∩Wu(x̃−) ∩ γ̃ε 6= ∅. (4.20)

That is, there exists̃z ∈ γ̃ε such that

dist
(
8̃t,ε(x̃±), 8̃t,ε(z̃)

)
→ 0 as t → ±∞, (4.21)

which, by the hyperbolicity properties is equivalent to

dist
(
8̃t,ε(x̃±), 8̃t,ε(z̃)

)
≤ cte. e−βt for ± t ≥ 0. (4.22)

Note that, if we writex̃± = (x±, s±), z̃ = (z, sz), since the flow (4.3) satisfieṡs = 1,
we see that (4.21) impliess+ = s− = sz, which we will henceforth denote bys.

Now, we want to argue that the mapS is indeed well defined and that it is smooth in
thex̃− argument. If we fixε small enough, we see that, because of the differentiability of
W s,u(x̃−)with respect tõx− and the transversality ofW s,u(3̃) at γ̃ , the condition (4.20)
defines̃z as a local function of̃x−.(Note that we have severalz̃ that satisfy (4.21) so that
z̃(x̃−) cannot be defined as a function.) Using that, we can definex̃+ as a local function
of x̃−.

As in Sect. 3.6 we argue that the monodromy ofx̃+(x̃−) is trivial, (even if that of̃z(x̃−)
is not).We just observe that if we could find two differentx̃+, x̃∗+ ∈ 3̃which satisfy (4.20)
for the samẽx−, we should haveW s(x̃+) ∩W s(x̃∗+) 6= ∅, which is impossible.

In order to perform explicit calculations, we will express the mapS in terms of the
explicit coordinates that we have introduced before. We will use the mapsCsε : 3sε →
3 introduced at the end of Sect. 4.3, the coordinate system(J, ϕ) for 3 introduced
in Sect. 3.5 and the mapF given by the perturbation theory for normally hyperbolic
manifolds (Theorem 4.2). We introduce the coordinate systemK by:

x̃ = (x, s) = F
(
(Csε)

−1(J, ϕ), s, ε2
)

=
(
K

(
J, ϕ, s, ε2

)
, s

)
. (4.23)
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In these coordinates, if we considerx̃+ = S(x̃−) connected through a pointz̃ verify-
ing (4.22), and set̃x± = (x±, s), with x± = K(J±, ϕ±, s, ε2), we have

ϕ± = ϕ0 + a± +O(ε2),

J± = J0 + O(ε2),

wherea± were introduced in Theorem 2.1, for someϕ0 ∈ R, J0 ∈ R. Moreover, we
have

8̃t,ε(x̃±) =
(
3E

(
t + ϕ0 + a±√

2E

)
+ O(ε2), s + t

)
,

8̃t,ε(z̃) =
(
γE

(
t + ϕ0√

2E

)
+ O(ε2), s + t

)
(4.24)

with E = J 2
0 /2. In the formulas (4.24), theO(ε2) is uniform for t ∈ R. This follows

from the hyperbolicity theory and Remark 4.3.

4.6. The perturbed outer map. The Poincaré function.The main goal of this section is
to define and to compute a function which characterizes and quantifies the existence of
heteroclinic intersections between the KAM tori for the inner map (whiskered tori for
the perturbed flow) obtained in Sect. 4.4.2. That is, we will need to characterize when,
given KAM tori τ1, τ2 in 3̃ε, we have thatS(τ1) is tranversal toτ2 in 3̃ε.

The main idea is to use the fact that(Hε, ϕ, s) constitutes a good system of coor-
dinates in the manifold̃3ε. The KAM tori as given in Lemma 4.13 correspond very
approximately toHε = cte. and indeed, we have expressions on their dependence.

If x̃− lies on a KAM torusτ1 we will be interested in computingHε(x̃+) − Hε(y),
wherey is the projection of̃x+ = S(x̃−) on the KAM torusτ1 (see Fig. 1). The function
Hε(x̃+)−Hε(y) will be our desired measurement. Its main term will be the Melnikov
function (which is the gradient of the Melnikov potential). Following [Tre94], we will
computeHε(x̃+)−Hε(y) as

Hε(x̃+)−Hε(x̃−)+Hε(x̃−)−Hε(y).

The first term will be computed by means of a classical calculation that goes back
to Poincaré. Indeed, sincẽx+ and x̃− are connected through an orbit, we can use the
fundamental theorem of calculus and obtain the difference by integrating the derivative
and taking appropriate limits. This will be done in detail in Lemma 4.15. The term
Hε(x̃−) − Hε(y) can be computed using the explicit expansions of KAM tori that we
computed in Lemma 4.13.

For the system at hand, we can take advantage of the slow dynamics and we can use
the fact that the point̃81/ω,ε(x−) ≡ u has the same phases(ϕ, εs) asy up to orderε.
Using this fact, in Lemma 4.19 we will give an explicit formula for the leading term of the
Melnikov potential in terms of the potentialU and the unperturbed geodesics which will
be called Poincaré function, with no need to solve any small divisors equation to obtain
Hε(y). This explicit expression will be quite important to establish that, for high enough
energies – in the scaled variables for small enoughε – the KAM tori have transversal
heteroclinic intersections.
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Fig. 1. Illustration of the perturbed tori and the outer map

Lemma 4.15.Let x̃− and x̃+ be two points oñ3ε such thatx̃+ = S(x̃−). Then

Hε(x̃+)−Hε(x̃−) = ε3 lim
(T1,T2)→∞

[∫ T2

−T1

dt D2Ũ

(
γ
q
E

(
t + ϕ0√

2E

)
, εs + εt

)

−
∫ 0

−T1

dt D2Ũ

(
3
q
E

(
t + ϕ0 + a−√

2E

)
, εs + εt

)

−
∫ T2

0
dt D2Ũ

(
3
q
E

(
t + ϕ0 + a+√

2E

)
, εs + εt

)]

+ O(ε5), (4.25)

where

x̃± = (x±, s) =
(
K

(
J±, ϕ±, s, ε2

)
, s

)
=

(
3E

(
ϕ0 + a±√

2E

)
+ O(ε2), s

)

for someϕ0 ∈ R,J0 ∈ R, whereE = J 2
0 /2, K is introduced in (4.23), and̃U , introduced

in (4.11), is the forcing potential minus its average on the periodic orbit31/2.

Proof. Recall that if a trajectorỹλ(t) = (λp(t), λq(t), s + t) satisfies (4.3) then:

d

dt
Hε ◦ λ̃(t) = ε3D2U(λ

q(t), εs + εt).

Therefore, for any two trajectoriesλ̃ = (λp, λq, s+ t)), µ̃ = (µp, µq, r+ t) of (4.3),
we have, by the fundamental theorem of Calculus,

Hε(λ̃(T ))−Hε(µ̃(T )) = Hε(λ̃(0))−Hε(µ̃(0)) (4.26)

+ ε3
∫ T

0
dt D2U(λ

q(t), εs + εt)− ε3
∫ T

0
dt D2U(µ

q(t), εr + εt).
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As x̃+ = S(x̃−), we know that there exists̃z ∈ T∗
T

2 × T T
1, T = 1/ε, such that the

trajectoryγ̃(ε)(t) = 8̃t,ε(z̃) and3̃±,(ε)(t) = 8̃t,ε(x̃±), verify (4.22).
Now we can use (4.26) and, by (4.22), taking limits at±∞ as appropriate,

0 = Hε(x̃+)−Hε(z̃)

+ lim
T2→∞ ε

3
∫ T2

0
dt

(
D2U

(
3
q

+,(ε)(t), εs + εt
)

−D2U
(
γ
q

(ε)(t), εs + εt
))
,

0 = Hε(x̃−)−Hε(z̃)

+ lim
T1→∞ ε

3
∫ −T1

0
dt

(
D2U

(
3
q

−,(ε)(t), εs + εt
)

−D2U
(
γ
q

(ε)(t), εs + εt
))
.

Subtracting these two equations we obtain:

Hε(x̃+)−Hε(x̃−) =
− ε3 lim

(T1,T2)→∞

[∫ T2

0
dt

(
D2U

(
3
q

+,(ε)(t), εs + εt
)

−D2U
(
γ
q

(ε)(t), εs + εt
))

−
∫ 0

−T1

dt
(
D2U

(
3
q

−,(ε)(t), εs + εt
)

−D2U
(
γ
q

(ε)(t), εs + εt
))]

. (4.27)

By (4.22), these limits are reached uniformly inε. (They are reached exponentially fast
and the constants are uniform inε.) We also note that the dependence of the trajectories
onε is uniform on compact intervals of time. Hence, at the expense only of introducing an
error of higher order inε, we can substitute in (4.27) for3±,(ε) andγ(ε) the unperturbed
orbits given by (4.24).

We note that the right-hand side of (4.27) is linear inU . Hence if we use the decom-
positionU(q, τ) = Ū (τ ) + Ũ (q, τ ) given in (4.11), and observe that computing the
right-hand side of (4.27) in̄U gives zero, we obtain (4.25).ut
Lemma 4.16.Let y be a point with the phases ofx̃+ and which lies on the invariant
torus for the perturbed flow which containsx̃−, where

x̃+ =
(
K(J+, ϕ+, εs, ε2), s

)
=

(
3E

(
ϕ0 + a+√

2E

)
+ O(ε2), s

)
,

withE = J 2
0 /2. Then:

Hε(x̃+)−Hε(y) = ε3 lim
(T1,T2)→∞

[ ∫ T2

−T1

dtD2Ũ

(
γ
q
E

(
t + ϕ0√

2E

)
, εs + εt

)

− g̃
(
ϕ0 + a+ + √

2E T2, εs + εT2; ε
)

− g̃
(
ϕ0 + a− − √

2E T1, εs − εT1; ε
) ]

+ O(ε5), (4.28)

whereg̃ is the function given in Lemma 4.13 verifying (4.13), associated to the invariant
torus of the perturbed flow which containsx̃−.
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Proof. We use Lemma 4.15 forHε(x̃+)−Hε(x̃−) and Lemma 4.13 forHε(x̃−)−Hε(y):
Hε(x̃+)−Hε(y) = Hε(x̃+)−Hε(x̃−)+Hε(x̃−)−Hε(y)

= ε3 lim
(T1,T2)→∞

[ ∫ T2

−T1

dt D2Ũ

(
γ
q
E

(
t + ϕ0√

2E

)
, εs + εt

)

−
∫ 0

−T1

dt D2Ũ

(
3
q
E

(
t + ϕ0 + a−√

2E

)
, εs + εt

)

−
∫ T2

0
dt D2Ũ

(
3
q
E

(
t + ϕ0 + a+√

2E

)
, εs + εt

)

+ g̃(ϕ0 + a−, εs; ε)− g̃(ϕ0 + a+, εs; ε)
]

+ O(ε5). (4.29)

Now, callingA−(t) = g̃
(
ϕ0 + a− + √

2Et, εs + εt; ε
)
, we have, using the functional

equation (4.13) verified bỹg:

Ȧ−(t) = √
2ED1g̃

(
ϕ0 + a− + √

2Et, εs + εt; ε
)

+ εD2g̃
(
ϕ0 + a− + √

2Et, εs + εt; ε
)

= D2Ũ
(
31/2

(√
2Et + ϕ0 + a−

)
, εs + εt

)
+ O(ε3)

= D2Ũ

(
3E

(
t + ϕ0 + a−√

2E

)
, εs + εt

)
+ O(ε3),

and a similar identity holds forA+(t) = g̃
(
ϕ0 + a+ + √

2Et, εs + εt; ε
)
, which ver-

ifies:

Ȧ+(t) = D2Ũ

(
3E

(
t + ϕ0 + a+√

2E

)
, εs + εt

)
+ O(ε3).

Then, using the fundamental theorem of Calculus, we have for anyT :

A±(T )− A±(0) =
∫ T

0
dt D2Ũ

(
3E

(
t + ϕ0 + a±√

2E

)
, εs + εt

)
+ O(ε3),

and using these identities to express the second and third integrals in (4.29) withT1 and
T2 we obtain formula (4.28).ut
Remark 4.17.The function provided by Lemma 4.16:

M(ϕ0, εs, E; ε) = lim
(T1,T2)→∞

[ ∫ T2

−T1

dtD2Ũ

(
γ
q
E

(
t + ϕ0√

2E

)
, εs + εt

)

− g̃
(
ϕ0 + a+ + √

2ET2, εs + εT2; ε
)

(4.30)

+ g̃
(
ϕ0 + a− − √

2ET1, εs − εT1; ε
) ]



Geometric Approach to the Existence of Orbits with Unbounded Energy 379

is usually called the Melnikov function associated to the perturbed torus. As

Hε(x+)−Hε(y) = ε3M(ϕ0, εs, E; ε)+ O(ε5), (4.31)

M is the leading term of the function we will use to study the existence of heteroclinic
intersections among tori. Even if we will not be concerned with homoclinic intersections,
we note that the non-degenerate zeros of this function lead to homoclinic intersections.

Remark 4.18.Note that in (4.30) in general, neither the integral nor the other terms reach
a limit asT1, T2, but rather oscillate quasiperiodically. Only their combination converges.

The meaning of this phenomenon can be clearly understood when we realize that
g̃ measures the displacement of the invariant torus under the perturbation. If we are
interested in the intersections of the manifolds of perturbed tori, we need to consider the
changes induced in the stable manifolds of the perturbed tori, not on the unperturbed
ones.

We warn the reader that in many places in the literature, this term is omitted. This
omission is incorrect, unless special circumstances (e.g. symmetries, that the perturbation
vanishes on the torus, etc.) justify it.

As a matter of fact, the Melnikov function is the derivative of the Melnikov potential
(see [DR97]) defined by:

L(ϕ0, εs, E; ε) = lim
(T1,T2)→∞

[ ∫ T2

−T1

dt Ũ

(
γ
q
E

(
t + ϕ0√

2E

)
, εs + εt

)

− h̃
(
ϕ0 + a+ + √

2ET2, εs + εT2; ε
)

(4.32)

+ h̃
(
ϕ0 + a− − √

2ET1, εs − εT1; ε
) ]
,

whereD2h̃ = g̃ andh̃ verifies (4.14).
The Melnikov potential satisfies the following properties:

1. M(ϕ0, εs, E; ε) = D2L(ϕ0, εs, E; ε).
Note that the uniform convergence of the difference of two integrals by (4.22) readily
justifies the computation of derivatives by computing the derivative of each term
separately and also taking derivatives by taking them under the integral sign.

2. L(ϕ0, εs, E; ε) is 1/ε-periodic ins.
3. For anyu ∈ R one has:

L
(
ϕ0 + √

2Eu, εs + εu,E; ε
)

= L(ϕ0, εs, E; ε),

and, takingu = −ϕ0/
√

2E :

L(ϕ0, εs, E; ε) = L
(
0, ε(s − ϕ0/

√
2E),E; ε

)
,

that is,L is a
√

2E/ε-periodic function ofϕ0.

In the following lemma we are going to give an approximation of the Melnikov
potentialL(ϕ0, εs, E; ε) in terms of a functionL(τ ), which will be called Poincaré
function.
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Lemma 4.19.

L(ϕ0, εs, E; ε) = 1√
2E

L
(
ε

(
s − ϕ0√

2E

))
+ OC2(ε), (4.33)

where

L(τ ) = lim
(T1,T2)→∞

[∫ +T2

−T1

dt Ũ(γ1/2(t), τ )−
∫ +T2+a+

−T1+a−
dt Ũ(31/2(t), τ )

]
. (4.34)

Proof. In order to obtain the first order terms in the Melnikov potential we write (4.32)
as

L(0, τ, E; ε) = lim
(T1,T2)→∞

[ ∫ T2

−T1

dt Ũ
(
γ
q
E(t), τ + εt

)

− h̃
(
a+ + √

2E T2, τ + εT2; ε
)

+ h̃ (a+, τ ; ε)
+ h̃

(
a− − √

2E T1, τ − εT1; ε
)

− h̃ (a−, τ ; ε)
− h̃ (a+, τ ; ε)+ h̃

(
a− +1, τ + ε1/

√
2E; ε

)

− h̃
(
a− +1, τ + ε1/

√
2E; ε

)
+ h̃(a−, τ ; ε)

]
.

The fourth line in this expression is of orderε in the C1 norm due to the fact that
h̃(·, ·; ε) is a bounded function with bounded derivatives, (see Lemma 4.13) anda−+1 =
a+. In order to obtain integral expressions for the other three, we only need to use the
fundamental Theorem of Calculus and the functional equation (4.14) verified byh̃. Thus,

L(0, τ, E; ε)
= lim

(T1,T2)→∞

[ ∫ 0

−T1

dt Ũ
(
γ
q
E(t), τ + εt

) − Ũ

(
3
q
E

(
t + a−√

2E

)
, τ + εt

)

+
∫ T2

0
dt Ũ

(
γ
q
E(t), τ + εt

) − Ũ

(
3
q
E

(
t + a+√

2E

)
, τ + εt

)

−
∫ 1/

√
2E

0
dt Ũ

(
3
q
E

(
t + a−√

2E

)
, τ + εt

) ]
+ O(ε),

or equivalently, by the rescaling properties (3.1), and the change of variableu = √
2Et ,

L(0, τ, E; ε) = 1√
2E

×

lim
(T1,T2)→∞

[ ∫ 0

−T1

du Ũ

(
γ
q
1/2(u), τ + εu√

2E

)
− Ũ

(
3
q
1/2(u+ a−), τ + εu√

2E

)

+
∫ T2

0
du Ũ

(
γ
q
1/2(u), τ + εu√

2E

)
− Ũ

(
3
q
1/2(u+ a+), τ + εu√

2E

)

−
∫ 1

0
du Ũ

(
3
q
1/2(u+ a−), τ + εu√

2E

) ]
+ O(ε),
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and taking the dominant terms inε,

L(0, τ, E; ε)
= 1√

2E
lim

(T1,T2)→∞

[ ∫ 0

−T1
√

2E
du Ũ

(
γ
q
1 (u), τ

) − Ũ
(
3
q
1/2(u+ a−), τ

)

+
∫ T2

√
2E

0
du Ũ

(
γ
q
1/2(u), τ

)
− Ũ

(
3
q
1/2(u+ a+), τ

)

−
∫ 1

0
du Ũ

(
3
q
1/2(u+ a−), τ

) ]
+ 1√

2E
R(τ, ε)+ O(ε)

= 1√
2E

L(τ )+ 1√
2E

R(τ, ε)+ O(ε),

whereR(τ, ε) is defined so that the above is an identity. Note that it only involves
the difference of integrals whose integrands have second arguments that are slightly
different.

One can boundR(τ, ε), using the properties (4.22) and the fact thatŨ (q, τ ) is a
periodic function with respect to its second variableτ , as

|R(τ, ε)| ≤ Kε

(∫ +∞

−∞
du e−β|u| +

∫ 1

0
du

)
≤ Cε.

Similarly, one can bound the first and second derivatives because one can take derivatives
under the integral sign (the convergence of the integrand is exponentially fast) and then,
similar cancellations than those used above, establish the result.

Then takingτ = ε(s − ϕ0/
√

2E), we have the lemma.ut
Proposition 4.20.Given a metric that satisfies the genericity conditions of Theorem3.1,
the set of periodic potentials for which the Poincaré functionL(τ ) in Lemma 4.19 is
identically constant is aCl closed subspace of infinite codimension forl > 0.

Proof. We note that, for everyτ τ ′, the mappingU 7→ L(τ ) − L(τ ′) is a continuous
linear functional map if we giveU theCl topology,l > 0. This functional is non-trivial
as can be observed by noting that, since “3” and “γ ” do not coincide, it is possible to
choose potentialsU with support near “γ ” so that the functional does not vanish.ut

4.7. Transition chains and transition lemmas.We recall that according to [Arn64],
[AA67], a transition chain for a Hamiltonian flow is a sequence of transition tori such
that the unstable manifold of one intersects transversally the stable manifold of the next.

The definition of transition tori in [Arn64] is topological, but for our purposes we
note that it has been shown in several places (we will follow [FM98] in Lemma 4.24)
that all whiskered tori with one dimensional whiskers and with irrational motion are
transition tori. This includes the tori produced applying Theorem 4.9 to the inner map
f εε of our problem.

The importance of transition chains is that there are orbits that follow them closely.
Therefore, our first step will be to verify that there exists a sequence of tori ob-

tained by applying Theorem 4.9 tof εε and such that the stable manifold of one crosses
transversally the unstable manifold of the previous one. Then, we will discuss some small
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modifications needed to the standard arguments (they only apply to finite sequences)
that show that indeed there are orbits that follow them.

We note that, in the notation that we have introduced in this paper, the assertion that
the unstable manifold of a torus contained in3̃ε intersects the unstable manifold of
another one is equivalent to the assertion that the image of the first torus under the outer
mapS intersects the second.

We will refer to the invariant tori obtained applying Theorem 4.9 tof εε simply as
KAM tori.

Lemma 4.21.Assume thatr ≥ 15. If the Poincaré functionL(τ ) is not constant, we can
findK > 0 such that forε sufficiently small, given a KAM torusT , we can find other
KAM tori T +, T − such that

Wu
T t W s

T + , Wu
T t W s

T − ,

minHε(T ) ≥ maxHε(T −)+Kε3,

maxHε(T ) ≤ minHε(T +)−Kε3.

Proof. Observe that, sinceL is periodic andC2, if it is not constant, we can find two
numbersτ± such thatL′(τ+) > 0, L′(τ−) < 0, L′′(τ±) 6= 0. SinceL is C2 the same
inequalities are true for small intervals aroundτ±.

We study the dynamics oñ3ε using the coordinatesHε, ϕ, s.
SinceL approximates in theC2 sense the Melnikov potential, and the derivative of this

function measures the increase inHε under the mapS, it follows that for small enoughε,
given any KAM torusT , its image underS has to include segmentsρ± (corresponding
to the intervals aroundτ± above) such that maxHε(ρ±)− minHε(ρ±) ≥ K1ε

3. On the
other hand, the projection of these intervals over theϕ variable has a length not more
thanK2ε.

We note that in the averaged coordinates, the KAM tori are not more thanεm/2+1

apart and that they correspond very approximately to surfaces of constant action. Hence,
in the original coordinates, they will be graphs of functions in theϕ, s,Hε coordinates
which are not more thanεm/2+1 apart in theCl−4 sense.

Since the interpretation of the functionM (see Fig. 1) was the increment in energy
over a torus of the mapS, we see that the image of one torus has to cross two KAM tori,
one of higher energy and another one of lower energy.

Moreover, this intersection has to be transversal. The fact thatL′′(τ±) 6= 0 implies
that the derivative of the gain in energy with respect to the angle is bounded from below
by a constant timesε3. That is, if we express the torusT , S(T ) andT +, T − as graphs
of functions9,9S,9± respectively, we have|9 ′

S −9 ′±| ≥ Kε3 in a neighborhood of
the intersectionS(T ) ∩ T ±, which is therefore transversal iñ3ε: S(T ) t T ± in 3̃ε.

On the other hand, by the definition of the outer mapS,Wu
T ∩ γ̃ε = W s

S(T ) ∩ γ̃ε, and
hence

(
Wu

T ∩ γ̃ε
)

t
(
W s

T ± ∩ γ̃ε
) =

(
W s
S(T ) ∩ γ̃ε

)
t

(
W s

T ± ∩ γ̃ε
)

in γ̃ε.

Finally, the transversal intersection ofWu
3̃ε

withW s
3̃ε

alongγ̃ε implies that
(
Wu

T ∩ γ̃ε
)

t(
W s

T ± ∩ γ̃ε
)

if and only ifWu
T t W s

T ± . ut
Remark 4.22.The lemma above does not assert the existence of transverse homoclinic
orbits to any of the toriT , T − andT +. The existence of transverse homoclinic orbits
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O(εm/2+1)
O(ε3)

τ

S(τ)

Fig. 2. Illustration of the action of the mapS on a torusτ

is related to the existence of nondegenerate critical points of the Poincaré function. We
emphasize that, for the purposes of this paper, what we need are transverse heteroclinic
intersections.

As an immediate consequence, we have:

Lemma 4.23.Assume that the metricg satisfies the assumptions of Theorem 3.1 and that
the potentialU is such that the Poincaré functionL is not constant. Assume moreover
that bothg andU areC15. Then, there existM > 0, α > 0, such that if

Ii = [Ei−, Ei+] i = 1, . . .

is any sequence of intervals such that

Ei− ≥ M,

(Ei+ − Ei−) ≥ M(Ei+)−α.

Then, we can find a sequence{Ti} of KAM tori such that

W s
Ti+1

t Wu
Ti ,

and a subsequence{Tji } of those tori in such a way that

H(Tji ) ∩ Ii 6= ∅.
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Our next goal is to show that the pseudo orbits obtained by interspeding the KAM
homoclinic jumps with the motion along the torus can be shadowed by true orbits of
the system. As it is usual in the literature for Arnol’d diffusion, the key step is to find an
appropriate inclination lemma (also called sometimesλ-lemma).

In the literature, one can find very sharp inclination lemmas – including even some
estimates of the times needed to do the shadowing – for analytic maps, when the rotation
is Diophantine, in [Mar96,Cre97,Val98]. (Related results appear in [CG94]). The result
that we have found best adapted to our purposes is that of [FM98] for whiskered tori
with one dimensional strong (un)stable directions – as is the case in the problem we are
considering – which works forC1 maps and only requires that the torus has an irrational
rotation.

A particular case of the results of [FM98] is:

Lemma 4.24.Let f be aC1 symplectic mapping in a2(d + 1) symplectic manifold.
Assume that the map leaves invariant aC1 d-dimensional torusT and that the motion
on the torus is an irrational rotation. Let0 be a d + 1 manifold intersectingWu

T
transversally.

Then

W s
T ⊂

⋃
i>0

f−i (0).

An immediate consequence of this is that any finite transition chain can be shadowed
by a true orbit. The argument for infinite chains requires some elementary point set
topology.

Lemma 4.25.Let {Ti}∞i=1 be a sequence of transition tori. Given{εi}∞i=1 a sequence of
strictly positive numbers, we can find a pointP and a increasing sequence of numbers
Ti such that

8Ti (P ) ∈ Nεi (Ti ),
whereNεi (Ti ) is a neighborhood of sizeεi of the torusTi .
Proof. Let x ∈ W s

T1
. We can find a closed ballB1, centered onx, and such that

8T1(B1) ⊂ Nε1(T1). (4.35)

By the Inclination Lemma 4.24,

W s
T2

∩ B1 6= ∅.
Hence, we can find a closed ballB2 ⊂ B1, centered in a point inW s

T2
such that, besides

satisfying (4.35):
8T2(B2) ⊂ Nε2(T2).

Proceeding by induction, we can find a sequence of closed balls

Bi ⊂ Bi−1 ⊂ · · · ⊂ B1,

8Tj (Bi) ⊂ Nεj (Tj ), i ≤ j.

Since the balls are compact,∩Bi 6= ∅. A point P in the intersection satisfies the
required property.ut

Putting together Lemma 4.23 and Lemma 4.25, we obtain the following result, which
clearly implies Theorem 1.1.
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Theorem 4.26.Assume that the metricg satisfies the assumptions of Theorem 3.1 and
that the potentialU is such that the Poincaré functionL is not constant. Assume moreover
that bothg andV areC15. Then, there existM > 0, α > 0, such that if

Ii = [Ei−, Ei+] i = 1, . . .

is any sequence of intervals such that

Ei− ≥ M,

(Ei+ − Ei−) ≥ M(Ei+)−α.

Then, we can find an orbitp(t), q(t) of the Hamiltonian flow and an increasing
sequence of timest1 < t2 < · · · < tn < · · · , such that

H(p(ti), q(ti), ti) ∈ Ii,
and(p(ti), q(ti)) is in a neighborhood of sizeM(Ei−)−2 of the periodic orbit3Ei− .

Note.By assuming more differentiability in the hypothesis of the theorem, we can get
α to be arbitrarily large.

Remark 4.27.A question that has often been asked us, and which is indeed quite relevant
for physical applications, is what is the measure of the diffusing orbits.

We do not know at the moment of this writing how to produce a set of positive measure
of diffusing orbits. (The set of orbits we have produced here is uncountable, but we do
not know how to show what is its measure.)

Of course, the mechanism described here is presumably not the only mechanism that
contributes to diffusion.

Remark 4.28.Another physically relevant question is what is the speed of diffusion that
can be reached by these orbits.

A heuristic argument – which at the moment we cannot even raise as a conjecture –
suggests that the orbit following the mechanism studied in this paper can perform≈ E1/2

heteroclinic excursions in a unit of time and in each of them it can gain≈ E−3/2 rescaled
energy which is equivalent to a gain ofE−1/2 of energy per heteroclinic excursion. Hence,
the gain in energy per unit time could be about constant and thereforeE(t) ≈ t .

Note that this argument implicitly assumes that the proportion of times that are
favorable for the jump and indeed the average gain in energy per jump reach a limit as
the energy grows and that the time that one needs to bid preparing for the next jump is
a fixed proportion of the total time.

Note that sinced
dt
H(x(t), t) = ∂2V (q(t), t) and, by compactness, the right hand

side term is uniformly bounded, we have that the energy of any orbit cannot grow faster
than linearly in time, so that, up to multiplicative constants, the rate above would be
optimal.

The rigorous justification (and indeed a non-rigorous but reliable assessment) of this
assumption seems like a daunting task, but we hope some reader may be motivated to
investigate this question.

Remark 4.29.Another question that is relevant for physical applications but, to our
knowledge, remains open is whether the quantum mechanical analogues of our sys-
tem can have states with energy unbounded with time.
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A. Appendix: Brief Summary of Hyperbolicity Theory

In this appendix we collect some of the results from the rich theory of hyperbolic (or
normally hyperbolic or further qualifications) invariant manifolds.

The results we present are quite standard and can be found in many places, (indeed
the theory seems to have been developed several times) so we will just highlight some
of the more subtle points of the conclusions which affect some of the statements of
the theorems we will prove. We just recommend [Fen74,HP70,Wig94] as readable and
complete references.Another version – somewhat more demanding in notation and style
– is in [HPS77].Yet another point of view can be found in [SS74] and following papers.
We refer to [Wig94] for a discussion of original references.

We discuss only three aspects: the regularity properties of invariant manifolds and
foliations, their persistence properties and the smooth dependence on parameters.

We will present here the theory for flows. Using the standard suspension trick, all
the general results for flows imply corresponding results for invertible maps. There are
aspects of the theory of hyperbolic non-invertible maps without flow counterparts, but
the aspects of the theory we are discussing are identical for flows and for maps. The
theory of non-invertible maps is still somewhat incomplete even in the aspects we discuss
here.

Definition A.1. Let M be a manifold and8t a Cr , r ≥ 1, flow on it. We say that a
manifold3 ⊂ M – possibly with boundary – invariant under8t is hyperbolic when
there is a bundle decomposition

TM = T3⊕ Es ⊕ Eu (A.1)

invariant under the flow, and numbersC > 0, 0< β < α, such that forx ∈ 3,

v ∈ Es
x ⇐⇒ |D8t(x)v| ≤ Ce−αt |v| ∀ t > 0,

v ∈ Eu
x ⇐⇒ |D8t(x)v| ≤ Ceαt |v| ∀ t < 0, (A.2)

v ∈ Tx3 ⇐⇒ |D8t(x)v| ≤ Ceβ|t ||v| ∀ t.
Remark A.2.In this paper, we will refer to (A.2) as saying that the manifold is “hy-
perbolic". In some references where more precision is needed, names such asα − β

hyperbolic or normally hyperbolic are used.
The hypotheses (A.2) are often referred to by saying that the bundle decomposi-

tion (A.1) satisfies exponential dichotomies.

Remark A.3.There are two different ways of developing hyperbolicity theory. One is,
as we stated, to assume that the constants in (A.2) are uniform in the bundle. Another
one is to assume bounds such as those in (A.2) along an orbit and that the ratios along
several constants along the orbit are bounded. The first method is the basis of [HP70]
and [HPS77]. The second one was used in [Fen74,Fen77].

Clearly, the hypothesis of the bundle approach imply those of the orbit method. The
difference in the bounds can be particularly significant in systems in which a geometric
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structure implies relations between expansion and contraction rates along an orbit but
not on a bundle. One example of this situation is the study of the horospheric foliation
in geodesic flows in manifolds of negative curvature ([HK90]). Moreover, the study of
individual orbits leads naturally to the non-uniform hyperbolic theory [Pes76,Pes77].

For the applications we have in mind, we do not need the sharper results, so that we
will state the results in the somewhat simpler language of bundles.

Remark A.4.Note that if the inequalities (A.2) are established for|t | ≤ T with T suf-
ficiently large to overcome the constantC (i.e.Ceβ−αT < 1), then we can recover the
definition we have given because we can bound||D8nT+s || ≤ ||D8T ||n · ||D8s ||.

This observation is useful when we want to study the persistence of these structures
for sufficiently small perturbations.

Remark A.5.Similarly, we note that, by redefining the metric inM, one can get rid of
the constantC in Definition A.1. A metric satisfyingC = 1 is called the adapted metric
or sometimes, specially in the East, Lyapunov metric. We refer to the general references
above.

Remark A.6.If we construct an splitting between bundles in such a way that the bundles
are not assumed to be invariant but that they satisfy the inequalities in (A.2) for|t | ≤ T ,
with T large enough with respect toC,α andβ, then one can construct invariant bundles
that satisfy similar inequalities with slightly worse constants.

Intuitively, Definition A.1 means that the normal infinitesimal perturbations grow
faster (either in the future or in the past) than the infinitesimal perturbations along the
manifold.

The first result we quote is about the existence of invariant stable and unstable man-
ifolds for hyperbolic manifolds.

Theorem A.7.Let3 be a compact hyperbolic manifold (possibly with boundary) for the
Cr flow8t , satisfying Definition A.1. Then, there exists a sufficiently small neighborhood
U , and a sufficiently smallδ > 0, such that:

1. The manifold3 is Cmin(r,r1−δ), wherer1 = α/β.
2. For anyx in 3, the set

W s
x = {y ∈ U : dist(8t (y),8t (x)) ≤ Cye

(−α+δ)t for t > 0}
= {y ∈ U : dist(8t (y),8t (x)) ≤ Cye

(−β−δ)t for t > 0}
is aCr manifold andTxW s

x = Es
x ,8t(W

s
x ) = W s

8t (x)
.

3. For appropriately chosenC > 0, for anyx ∈ 3,

W s,loc
x = {y ∈ U : dist(8t (y),8t (x)) ≤ Ce(−α+δ)t for t > 0}

= {y ∈ U : dist(8t (y),8t (x)) ≤ Ce(−β−δ)t for t > 0}

is aCr manifold andTxW
s,loc
x = Es

x ,8t(W
s
x ) ⊂ W s

8t (x)
for t ≥ T0.

4. Moreover, we haveW s
x = ∪t>08−tW s,loc

8t (x)
.

5. The bundleEs
x is Cmin(r,r0−δ) in x, wherer0 = (α − β)/β.
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6. The set

W s
3 = {y ∈ U : dist(8t (y),3) ≤ Cye

(−α+δ)t for t > 0}
= {y ∈ U : dist(8t (y),3)) ≤ Cye

(−β−δ)t for t > 0}
is aCmin(r,r0−δ) manifold. Clearly,8t(W s

3) = W s
3 for all t ∈ R.

7. For appropriately chosenC > 0, the set

W
s,loc
3 = {y ∈ U : dist(8t (y),3) ≤ Ce(−α+δ)t for t > 0}

= {y ∈ U : dist(8t (y),3)) ≤ Ce(−β−δ)t for t > 0}
is aCmin(r,r0−δ) manifold.8t(W

s,loc
3 ) ⊂ W

s,loc
3 for t > t0,W s

3 = ∪t>08−tW s,loc
3 .

8. TxW
s
3 = Es

x .
9. Lip8t |W s,loc

3
≤ Ce(−β−δ)t .

10.W s
3 = ∪x∈3W s

x , and this union is disjoint (i.e.W s
x ∩ W s

y 6= ∅, x, y ∈ 3 implies
x = y).

11. Moreover, we can find aρ > 0 sufficiently small and aCmin(r,r0−δ) diffeomorphism
from the bundle of balls of radiusρ in Es

3 toW s,loc
3 .

Remark A.8.We note thatW s
x ,W

s
3 may fail to be embedded manifolds since they may

accumulate on themselves. (But they do not intersect themselves.) Also, we note that
their boundaries may be rather complicated sets (often they are fractal sets) so that,
when considering global properties of these sets one has to be careful on what is the
precise definition of a manifold. If the definition is very restrictive in terms of what is
the possible boundary, they may fail to be manifolds in that sense.

An analogous theorem can be stated forWu
3 considering the flow generated by−X.

Notice that the definition ofW s
x includes that the convergence is somewhat fast, not

just convergence. There could be other points in3 whose orbit approaches that ofx
albeit at a slower rate. Even if it is customary – and we follow the custom – to refer to
W s
x as the stable manifold forx we note that it would be more appropriate to refer to it

as the strong stable manifold.
The last part of the conclusions state, roughly, that all the orbits that approach the

manifold3 fast enough, approach an orbit in3. Moreover, for the points approaching
3 fast enough and in a sufficiently small neighborhood of3, the point whose orbit is
approached is a well defined function inW s

3 and isCmin(r,r0−δ).
We point out that compactness enters only mildly in the assumptions. We only need

that the flow is uniformlyCr in a neighborhood of3.

Remark A.9.Whenβ = 0, r0 andr1 have zero denominator. This cannot be interpreted
as∞ without care. Even ifr = ∞, ω, we cannot conclude that min(r, r0) = ∞ and that
the manifolds areC∞ or Cω. The best that can be said is that there areCk manifolds for
everyk. There are examples where theC∞ conclusions are false even for polynomial
perturbations.

Remark A.10.We emphasize that, even if the manifoldsW s
x are as smooth as the flow, the

dependence onx is not claimed to be smoother thanr0, which depends on the contraction
factors in the tangent and (un)stable bundles. Indeed, it is sometimes the case that these
bounds are sharp inCr0 open sets. Similarly, the regularity of the manifold3 and that
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ofW s
3 can be sharp even if the flow is assumed to be analytic. An example for maps can

be obtained setting
f : T

2 × R 7→ T
2 × R

given by

f (x, y) =
((

2 1
1 1

)
x, h(x)+ 1

50
y

)
.

with h : T
2 7→ R a conveniently chosen trigonometric polynomial. Using the standard

suspension trick, similar examples can be obtained for flows. More examples in this line
and a more detailed analysis can be found in [Lla92].

Remark A.11.Even if the above examples show that the regularity numbersr0, r1 cannot
be improved in general, it is possible to obtain sharper results if we introduce more
parameters to characterize the exponential rates of the different bundles. Here we have
used onlyα andβ, but one obtains sharper results if one introduces different parameters
for the contraction rate of the unstable bundle in the past and the stable bundle in the
future.

The above theorem has as a corollary the smooth dependence on parameters of the
(un)stable manifolds. The trick is completely elementary and will be used later several
times.

Corollary A.12. Assume that8t,ε is a family of flows which is jointlyCr in all its
variables (the base pointx, the timet and the parameterε) and that for all the values
of the parameter in a ball8t,ε leaves invariant the manifold3. Then, for sufficiently
small |ε|, it is possible to apply Theorem A.7. Moreover, the manifoldsW s

3,ε,W
s
x,ε are

Cmin(r,r0−δ) jointly in x andε.

The idea of the proof is very simple. We just consider the extended flow8̃t (x, ε) =
(8t,ε(x), ε), onM × B with B a sufficiently small ball inε. It is easy to check that the
manifold3× B is invariant for the flow and that, for a finite time the flow satisfies the
exponential dichotomy bounds in the stable and unstable subspaces. Using Remark A.6
we conclude that there are invariant bundles with very close constants. A moment’s
reflection shows that the dependence of manifolds of the extended system on the base
point gives the dependence on parameters and the base point in the original system.ut
Remark A.13.We note that the dependence on parameters cannot be more differentiable
than the dependence on the base point and, indeed, the examples alluded to in Re-
mark A.10 can be easily made into examples in which the dependence with respect to
parameters is optimal. Take, for example8t,ε(x) = 8t(x − εv) + εv so that the in-
variant objects of the8t,ε(x) are just translates byεv of the invariant objects for8t
and, therefore, the dependence on parameters is the same as the space dependence in the
original problem.

This is in sharp contrast with the results of the usual implicit function theorem so
that the formulations of these problems in terms of implicit function theorems need to
involve specialized implicit function theorems that do not have the same properties as
the usual one.

Now, we continue to discuss persistence. Roughly, we state that any perturbation
of a system admitting a hyperbolic manifold has to carry another hyperbolic invariant
manifold which is a perturbation of that of the original system.
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Theorem A.14.Let3 ⊂ M – not necessarily compact – be hyperbolic for the flow8t
generated by the vector fieldX, which is uniformlyCr in a neighborhoodU of3 such
that dist(M \ U,3) > 0. Let9t be the flow generated by another vector fieldY which
is Cr and sufficiently close toX in the C1 topology. Then, we can find a manifold0
which is hyperbolic forY and close to3 in theCmin(r,r1−δ) topology. The constants in
Definition A.1 for0 are arbitrarily close to those of3 if Y is sufficiently close toX in
theC1 topology.

The manifold0 is the onlyC1 manifold close to3 in theC0 topology, and invariant
under the flow ofY .

There are several extensions of this result that can be readily obtained. We will just
sketch the method of proof and refer to the sources mentioned above.

1. Similarly to Corollary A.12, one can obtain smooth dependence on parameters in
Theorem A.14 by extending the system by another one with trivial dynamics. Again,
we obtain only min(r, r1 − δ) regularity and this is optimal in examples.
A convenient way of formulating this smooth dependence on parameters is using the
implicit function theorem and finding aCmin(r,r1−δ) mappingF : 3 × B → M in
such a way thatF(3, ε) = 3ε, andF(·,0) is the identity.

2. Using the remark above, given a family of flows, we can use the mapF to identify
all the local invariant manifolds of all the flows. Extending the mappingF to a
neighborhood and changing coordinates to it, we obtain that we can reduce the study
of a family of flows to the problem of a family of flows which preserve a common
manifold. This is precisely the case considered in Corollary A.12.
Hence, we can obtain that there is aCmin(r,r1−δ) mappingFs : W s,loc

3 × B → M

in such a way thatFs(W
s,loc
3 , ε) = W

s,loc
3ε,ε

, Fs(·, ε)|3 = F(., ε), Fs(W
s,loc
x , ε) =

W
s,loc
F(x,ε),ε.

3. It is also possible to discuss persistence of manifolds with boundary and locally
invariant manifolds.
The idea is that we can extend the flow to a globally defined one, withCr bounds
which are close to the ones of the original problem and with bounds on the bundles
which are also close to the ones we assumed and which agrees with our original flow
in the points of the original manifold which are sufficiently far from the boundary.
Then, we can apply Theorem A.14 to the extended system. The invariant manifold
for the extended system will be locally invariant for the original one.

4. Even if Theorem A.14 includes uniqueness in its conclusions and, therefore the
manifold produced is unique (under appropriate conditions) for the extended system,
the extension process is not unique and the manifold produced does depend on the
extension used. Hence, one cannot claim uniqueness for the locally invariant manifold
produced for the original system.
On the other hand, it follows from the uniqueness conclusions of Theorem A.7, that
all the orbits that remain in a sufficiently small neighborhood of3 and away from
the boundary should be present in all the extensions that do not modify the vector
field away from this neighborhood of the boundary.
Similarly, note that the definition of stable manifold of a pointx or of a manifold
3 involves discussing what happens for arbitrarily large times of the time in the
evolution. Such long time orbits depend on the extension used if the orbit ofx is not
contained in the manifold3 away from the boundary.
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On the other hand, for the orbits that indeed remain inside of3, the definition identifies
the points of the stable manifold. Hence, the germs of these stable manifolds have to
agree in all the extensions.

5. The above extension process can be combined with the dependence on parameters.
We just remark that given a family of perturbations, one can perform the extension
in such a way that it depends smoothly on parameters. (The extension only involves
elements such as cut-off functions, mappings to identify spaces, etc., that can be used
for all the values of the parameter.)
Again, the extension process is not unique and the smooth dependence on parameters
should be interpreted as the possibility of finding a mapF or Fs so that its range
produces the invariant manifolds.
As before, we note that the orbits that are contained in a small neighborhood of3

away from the boundaries and the germs of their stable and unstable manifolds should
be present in all the extended systems.
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