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Abstract: We consider fast quasiperiodic perturbations with two frequencjes{¥ <)

of a pendulum, where is the golden mean number. The complete system has a two-
dimensional invariant torus in a neighbourhood of the saddle point. We study the splitting
of the three-dimensional invariant manifolds associated to this torus. Provided that the
perturbation amplitude is small enough with respeet nd some of its Fourier coeffi-
cients (the ones associated to Fibonacci numbers), are separated from zero, it is proved
that the invariant manifolds split and that the value of the splitting, which turns out to be
exponentially small with respect tg is correctly predicted by the Melnikov function.

1. Introduction

At the end of the last century, H. PoinédqiPoi99] discovered the phenomenon of the
splitting of separatrices, which seems to be the main cause of the stochastic behaviour in
Hamiltonian systems. He formulated theneral problem of dynami@s a perturbation

of an integrable Hamiltonian

H(I7 9075) = HO(I) + Efll(la 90)7

wheree is a small parametef, = (I1, I, ..., 1,), © = (v1, 2, . . ., ©n). The values of
the actionsl, such that the unperturbed frequenciggl) = 0H,/01; are rationally
dependent, are calledsonances
As a model for the motion near a resonance, Poistudied the pendulum with a

high-frequency perturbation, which can be described by the Hamiltonian

e . t

= +cosz + psinx cos-—.
2 €
His calculations of the splitting, originally validated only fat exponentially small with
respect te, predicted correctly the splitting up tp| < e? for any positive parameter
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[Gel97, Tre97]. The main problem in studying such kinds of systems is that the splitting
is exponentially small with respect to Namely, Neishtadt's theorem [Nei84] implies
that in a Hamiltonian of the form

H (I,y,t/&') = H()(.’I},y) +H (l‘,y,t/E) )

where the Hamiltonian system éfy has a saddle and an associated homoclinic orbit,
and the perturbatioH; is a periodic function of time with zero mean value, the splitting
can be bounded from above Bye—°"S"<). For this estimate to be valid all the functions
have to be real analytic in andy, butC* dependence on time is sufficient. Lately, the
constant in the exponent was related to the position of complex time singularities of the
unperturbed homoclinic orbit [HMS88, Fon93, Fon95].

The above-mentioned systems provide a realistic model for the motion near a reso-
nance only in the case of two degrees of freedom. If one considers simple resonances of
systems with more than two degrees of freedom, one can choose all the angles except
one to be fast variables.

The simplest case is a quasiperiodic perturbation of a planar Hamiltonian system.
Neishtadt's averaging theorem was generalized to this case by ©.[Sim94], but
the upper bounds provided for the splitting depend in an essential way on the frequency
vector of the perturbation. For a perturbation of the pendulum depending on two frequen-
cies, C. Sind [Sim94] checked numerically that a proper modification of the Melnikov
method gives the correct prediction for the splitting.

Autonomous models with perturbations that depend on time in a quasiperiodic way
appear in several problems of Celestial Mechanics. For instance, the motion of a space-
craft in the Earth—Moon system can be modeled assuming that Earth and Moon revolve
in circles around their common centre of masses (this gives an autonomous model),
and the main perturbations (difference between the circular and the real motion of the
Moon, effect of the Sun, etc.) are modeled as a time-dependent quasiperiodic function.
For more details, see [DJS91, GIMS91].

In the present paper we consider a quasiperiodic high-frequency perturbation of the
pendulum, described by the Hamiltonian function

Lo, 60.9), (1)

where

2

w-I=wili+walp, h(zx,y,0,¢e)= % + cosz + ePm(61, 62) cosz,

with symplectic form d A dy + df; A dIy + df; A dI,. We assume thatis a small
positive parameter angis a positive parameter. Mainly due to a technical limitation
imposed by the Extension Theorem (Theorem 3), we will restrict ourselves to the case
p > 3. We also assume that the frequency is of the forfa for

w=({L"), ~= \/52+ 1, (1.2)

The numbery is the famous golden mean number, which is the “most irrational” number
[Khi63, Lan91]. The equations of motion associated with Hamiltonian (1.1) are
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=y, y = (L +ePm(bs, 62)) sinz,
;1 : am
0r==, I1=—c’cosz_ (01,0
1= 1 € COSxael( 1,62), (1.3)
0, = 1, Iy= —¢P COSxa—m(Gl, 62).
€ 00,

Actions; andl; have only been introduced to put the Hamiltonian in autonomous form,
but are not relevant from a dynamical point of view (note that they do not appear in the
right-hand sides of the equations of motion).

The functionm is assumed to be ar2periodic function of two variableg; and,.
Thus, it can be represented as a Fourier series:

m(B1,02) = Y Mgy 1020, (1.4)
k1,k2
We assume that, for some positive numbegrandr,,

sup ri|ki|+r2| k2|

k,k2

Mk, € < o0, (15)

and that there are positive numberandkg, such that
‘mk1k2| > ae—mlkll—rz\kﬂ’ (16)

for all |k1|/|k2|, which are continuous fraction convergentsyafiith |k,| > k. In fact,

k1 andk, are consecutive Fibonacci numbets= +F;,+; andk, = FF,,. The Fibonacci

numbers are defined by the recurrentg= 1, F, =1, Fj,s1 = F,, + F,,_; forn > 1.

We call the corresponding terms in the perturbation teesenantor Fibonacci terms
For example, the function

c0sf; cosh,
(coshry — cosf;)(coshr, — coshy)

m(61,62) =

satisfies these conditions.

The upper bound (1.5) implies that the functieris analytic on the strig|Im 6,| <
r1} x {|Im 62| < r;}. Equation (1.6) implies that this function can not be prolonged
analytically onto a larger strip. Let us select (0, 1]. Estimate (1.5) implies that

|m(f1, 02)] < Ke™2@ (1.7)

on the strip
|Im01| STl—éa, |Im02| §T2—€a. (18)

Formula (1.6) implies that the upper bound (1.7) can not be improved. The value of
the splitting depends essentially on the width of these strips. The funetiomder
consideration has a singularity “of second order” in the sense that the upper bound (1.7)
for the maximum of the modulus is quadratic with respect to the inverse of the distance
to the boundary of the strip. In a similar way the case of a singularity of any “order”
can be considered. In this casg, ., should be replaced by.,1,/|k|7~2 in (1.5) and
(1.6).

An example from [DGJS97b] shows that the Melnikov function and the splitting of
separatrices can be of the order of some power ibthe functionm is not analytic,
but has only a finite number of continuous derivatives. This makes a first qualitative
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difference between periodic and quasiperiodic perturbations. Indeed, in the periodic
case, only th&?! dependence with respectdf the perturbed Hamiltonian is needed
to prove that the splitting i©(e~°°"s¥¢). (In both cases, the analyticity with respect to
x, y is essential.)
The Hamiltonian (1.1) can be considered as a singular perturbation of the pendulum
2

ho = % + cosz. (1.9

The unperturbed system has a saddle poif@@nd a homoclinic trajectory given by
xo(t) = 4arctané?),  yo(t) = zo(t). (1.10)

The complete system (1.3) has a whiskered tarug, 0, 61, 6,). The whiskers are 3-
hypersurfaces in theld-extended phase space ¢, 61, 6,). These invariant manifolds
are close to the unperturbed pendulum separatrix.

Ourmain resultis that forp > 3 and smalk > 0 the invariant manifolds split, and
that the value of the splitting is correctly predicted by the Melnikov function

oo

M(01,62;¢) = / {ho, h}(xo(t), yo(t), 01 + t/c, 02 + vt /<, €) dt. (1.11)

To give a more precise statement, we need to introduce a2pagiodic functionc
defined by

d—do

c(0) = Co cosh( ) for ¢ €09 — log~, dg +l0gH], (1.12)

2r(yry +17) m(y+77h)
Co=4) ——— = on = loge™* [T
T R I CRE T

and continued by 2 log-periodicity onto the whole real axis. The functiois piecewise-
analytic and continuous.

where

Theorem 1 (Main Theorem). Given positive constantg < 75, there exists a canon-
ical coordinate systenH, T, 61, 62), such that forp > 3, 71 < T < T, and realf;
and 6, the stable manifold has the equatidéh= 0, and the unstable manifold can be
represented as the graph of a functiéh = H"(T, 61, 0,; ¢), where the functior{*
depend2r-periodically onf; and#, and is close to the Melnikov function:

c(loge)
5 ) ’

(1.13)
with ¢(9) as defined in (1.12). If conditiofi.6)is fulfilled, then there existsy > 0 such
that, forO < € < &g, the maximum of the modulus of the Melnikov function is larger
than the right hand side of (1.13).

This result, which was already announced in [DGJS97a], is not trivial since the
Melnikov function is exponentially small with respect4oAs we will see, for a fixed
smalle the resonant terms withy, k, ~ const/,/e are the ones that give the largest
contribution to the Melnikov function. Condition (1.6) is not needed to get an upper
bound for the Melnikov function of the form

|H”(T, 01,02;¢) — M (91 —T/e, 0, — 7T/5;5)| < const=»~4 exp (
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(1.14)

const=""texp (— c(log E)) ,

NG

as well as the upper bound (1.13), which provide together an upper estimate for the
splitting of separatrices.

We need condition (1.6) to ensurdoaver bound for the maximum of the Melnikov
function of the same form (1.14), which dominates the error bound (1.13) and gives rise
to a lower estimate for the splitting of separatrices. If condition (1.6) is not satisfied, we
only getan upper bound for the splitting. In particular, this happenssfa trigonometric
polynomial or an entire function. Nevertheless, if the inequality (1.6) is satisfied for a
sufficiently large (but finite) number of consecutive resonant terms, we can still find
small positive numbersy, e > 0, such that the Melnikov function is greater than the
error for small finites € (g5, £0). Then, from a practical point of view, the Melnikov
theory gives a good approximation, but not an asymptotic formula.

It is remarkable that the exponent of the asymptotic expression (1.14) for the Mel-
nikov function is different from the case of a periodic perturbation. There appears not
only a different power of, but a periodic functior(loge<) instead of a constant.

In the case of an entire functian, we think that the method used in the present
paper can be modified in order to improve the estimate of the error and to prove that the
Melnikov function gives an actual asymptotic at least when the resonant terms decrease
not faster than Ak!.

We note that the Melnikov function is not invariant with respect to canonical changes
of variables. After a change, e.g. after a step of the classical averaging procedure, a lot
of non-zero harmonics, which were not present in the original system, can appear. If
in the original system the Fibonacci terms were not big enough, these new harmonics
may give larger contribution to the splitting. This idea was used in [Sim94] to detect the
splitting for a system with only 4 terms initially present.

The assumption (1.2) that in the frequency vector is just (4) can be relaxed.

The generalization of the present result to the case whimna quadratic number is
straightforward, with a similar expression (1.14) for the size of the Melnikov function.
The case in whiclv = (w1, wy), with the ratiow; /w, being of constant type (the con-
tinued fraction expansion has bounded coefficients), but not quadratic, can be similarly
analyzed, but in this cas€d) is no longer a periodic function. In some sense one can
say, properly speaking, that there are no asymptotics. But it seems that there still exist
upper and lower bounds, with the factgk in the denominator of the exponential term.
The case of two frequencies whose ratig/w, is not of constant type, as well as the
case of more than two perturbing frequencies, is more complicated.

Our model is based on the paper [Sim94] by C. &imhere a lot of semi-numerical
computations were presented. It can be thought of as an intermediate step between a
Hamiltonian with one and a half degrees of freedom and a Hamiltonianwdggrees
of freedom like the following generalization of Arnold’s example:

H, 6,9, 1e,i) = 397+ 317 +ecose — 1) 4 pF(e, ), (119)
wherex € T, ¢ € T" ! are the coordinates,c R, I € R"~*are the momenta, which
was introduced by P. Lochak. It is remarkable that in his paper [Loc§2], V. Lochak
was already putting emphasis on perturbatidhwith arbitrarily high harmonics, in
contrast with the original Arnold’s example [Arn64], in order to get realistic estimates
for the splitting of separatrices. A similar Hamiltonian (the fast rotator-pendulum model)
was studied by L. Chierchia and G. Gallavotti [CG94], and by G. Gallavotti [Gal94],
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working to all orders of perturbation theory, and expressing the coefficients pf'the
order contribution to the splitting of separatrices as improper time integralg froroso
to t = +oo. However, by using a perturbatidn with finite harmonics, they only were
able to get upper estimates for the splitting.

A related result is the Jeans—Landau—Teller approximation for adiabatic invariants,
where the change of actions is given in first order by a sort of Melnikov function.
Exponentially small upper bounds for the change of actions were obtained by G. Benettin,
A. Carati and G. Gallavotti [BCG97], proving cancellations through tree—like diagrams.
Anumerical study performed by G. Benettin, A. Carati and F. F§BEF97] for the case
of alarge asymptotic frequengyl, +) (A = 1/¢in our notation) withy = 1/2, aquadratic
number, shows a good agreement between the numerical values of the Melnikov function
and the change of actions.

While we were revising this paper, we became aware of a new version of aremarkable
preprint [RW97b] by M. Rudnev and S. Wiggins, devoted also to the Hamiltonian (1.15).
Assuming similar conditions to (1.5), (1.6) for an even perturbafidimn particular,F’
possesses arbitrarily high harmonics), they give exponentially small upper and lower
bounds for the splitting of separatrices fo= O(¢P). It is important to notice that their
results apply tov > 3 degrees of freedom. It is interesting to remark here that since we
restrict ourselves to a more concrete model, we obtain more information about the limit
behaviour of the Melnikov function and the splitting of separatrices, for a lower value
of the exponenp.

The rest of the paper is devoted to the proof of the Main Theorem. In contrast
with the above-mentioned papers, the method used in the present paper is based on the
geometrical ideas proposed by Lazutkin [Laz84] for the study of the separatrix splitting
for the standard map, and adapted to differential equations by the authors [Gel90, DS92,
Gel93]. In Sect. 2, the Melnikov function is carefully analyzed, to provide its asymptotic
behaviour. In Sect. 3, like in [DS92, DS97], and as a first step to give a description of
the dynamics near the/2dimensional hyperbolic invariant tords, the existence of a
convergent normal form is established. This result on the normal form theorem is similar
to Moser’s theorem [Mos56] on the normal form near a periodic hyperbolic orbit, and
to [CG94] and [RW97a] in more general situations. However, our proof (see Sect. 8) is
based on a quadratically convergent scheme, which allows us to show that the loss of
domain in the phasesis bounded by/z, as required to obtain an asymptotic formula
for the Melnikov function.

Besides, the Normal Form Theorem ensures that the local unstable manifold is
O (eP~1)-close to the unperturbed separatrix. In Sect. 4, the Extension Theorem, proved
in Sect. 9, extends this local approximation for solutions of system (1.3) to a global one,
on a suitably chosen complex domain. Since the unperturbed homoclinic orbit comes
back to the domain of the normal form, the same happens to the unstable manifold,
which can be compared with the local stable manifold. This comparison is performed in
Sect. 5, where Theorem 4 is proved, implying immediately the Main Theorem. Finally,
Sect. 6 is devoted to the arithmetic properties of the golden mean numlaed in
Sect. 7 some analytic properties of the quasiperiodic functions are studied.

2. Melnikov Function
As is well-known, the Melnikov function (1.11) gives a first order approximation of the

difference between the values of the unperturbed pendulum ehggythe stable and
unstable manifolds. The next lemma describes its main features.
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Lemma 1 (Properties of the Melnikov function). The Melnikov function defined by
(1.11)is a2x-periodic function of); and 6., such that

1) M (61— T/e,0o, — vT/<; ) is analytic on the product of strips
(1M 61] < 11} x {|Imby] < 2} x {|ImT| < 7/2};

2) the maximum of the modulus of the Melnikov functioaxg, ¢,)c 72 | M (01, 02; €)|,
taken on the real arguments, can be bounded from above and from below by terms

of the form
c(loge)
NG
with different-independent constants, where the functionthe exponent is defined

by (1.12)
3) for a fixed smalls only 4 terms dominate in the Fourier series for the Melnikov

function and the rest can be estimated from abov@ ey */ V<), where the constant
C1 > maxc(9) = Co cosh(log, /7).

const="" L exp (—

Remark 1.The number of leading terms dependsconn fact, the largest terms cor-
respond tokq, kp) = + (Fn(5)+1, —Fn(s)), whereF), is the Fibonacci number closest
to F*() = \/o/e, ¢o being a constant to be defined later in this section. Except for
a small neighbourhood af = £*y~", there is only one Fibonacci number closest to
F*(¢g), and then only two corresponding terms dominate in the Fourier series.

Proof of the lemmaTaking into account the explicit formula (1.10) fos(t) andyo(t)
we obtain easily that

ge.°

M(Gl, 0; 8) =gP / yo(t) Sin(xo(t))m(al + t/é‘, 0, + ’yt/&) dt

— 00

= —ep/ 4smhtm(91+t/€,92+7t/5) dt.
— oo COSI ¢

To prove the assertion 1) of the lemma we note that

M (61— /2,02 — 7 T/ese) = —&P / ASNNEHT) | 0, + 1/, 0, + 1)) dt,

oo COSH(t +T)

and the last integral is analytic with respecttof, andT. For the Fourier coefficients
of the Melnikov function we have

> 4sinht
Mkl7k2(6) = _Ep/ 761(1@1-'—7,{)2)75/6 dt Mk k,-
_ oo COSP' ¢

Calculating the integral by residues we obtain

Zﬁiép(kl + ’yk’z)z

M )= — " 2.1
k1,k2( ) 62 Siﬂh(”(hé‘?h)) Mk, ( )

All these coefficients are exponentially small with respect,tbut the constant in the
exponent depends, in an essential way, on the coefficient index. The dependence on
the largest Fourier coefficients anis represented in Fig. 1 in logarithmic scale for a
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Fig. 1. Each dashed line represents a Fourier coefficient of the Melnikov function as a functian of
—+/€logyq | My, 1, (e)| versus—logge. The solid line represents the maximum of the modulus of the Mel-
nikov function in the same scale.

perturbation withimg,x,| = 1. In this figure for a fixed first coordinate the lower is a
point, the larger is the value. The scale is chosen in such a way that a horizontal line
corresponds to the function exp(/+/<) for some constarf'.

The most important resonant terms correspond to Fibonacci numbers, [thatsis
F,41, |k2| = F,. Taking into account (1.5), (1.6) and (6.3) we bound these coefficients
from below and from above by the terms of the form

g2 7Crg
const—-—exp| — — +ry)F, | .
Fg p( 2€Fn (7’17 TZ) n)
For a fixed value of the first term in the exponent is an increasing functiogfand

the second one is decreasing. In order to describe this competition it is convenient to
rewrite the last formula as

ep Cocosh(3 log(eF2) — 1 log ¢o)
constEZ—Fﬁ exp (— NG ,

where o
TUF
Co=+/27C + , = —.
0=V2rCr(r1y +r2), ¢o 207 +12)
For a fixede, the largest term corresponds to the minimal value of the numerator or,
equivalently, minimizeslog(e ) — log ¢o|. This happens foF), closest to

F*(e) = %.

That is, the index of the most important terms in the Fourier series for the Melnikov
function grows as A,/c. Except whenF*(¢) lies exactly in the centre of an interval
[F,., Fy+1] there is only one Fibonacci number closesttde). The index of the leading
term changes whencrosses this value. In a small neighbourhood of this value two terms
are of the same order. In fact, the number of leading terms is two or four, respectively,
since we have to take into account complex conjugate coefficients, € k»).

SinceF,, = Cp(y™* + (-1)"y~"~1) we have

log(eF2) = loge + 2(n + 1) logy + log C + 2 log (1 + (_1)"7—2"—2) .
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The value of this expression repeats with the error of the abder2»—2) = O(F,2) =
O(g) when we increase by 1 and simultaneously decrease 4dgy 2 logy. Thus we
obtain that sup,, | My,,(¢)| can be estimated from below and from above by

c(loge)
).

where the functiore was defined by (1.12). In the exponent the numerator oscillates
betweenCy andCy cosh(log /7) with the period 2 logy in loge.

In particular, this gives the lower bound for the maximum of the Melnikov function
modulus, since a Fourier coefficient of a function cannot be larger than the maximum
value of the function.

The Fourier coefficients which are not related to the Fibonacci numbers, can be
estimated in the same manner, but with a constant largeipafhat implies that they
are exponentially small with respect to the Fibonacci ones for small valuesTdfe
proof of the fact that the sum of these terms is also exponentially small is straightforward,
and we omit it since it literally repeats the proof of Lemma 4]

As we have established that for most small valuesaily the terms with1, k) =
+(Fhe)+1, —Fn(e)) are important, the Melnikov function is essentially

const=""1 exp (—

]\4(917 05; E) ~ 2 |MFn(g)+1,*Fn(a) (5)‘ sin (Fn(5)+191 — Fn(g)ez + (p(E)) .

The zeros of the Melnikov function correspond to homoclinic trajectories. The above
formula implies that the zeros of the Melnikov function form two lines on the torus. As
already noticed by C. SiaSim94], the averaged slopes of those lines approaehen

e — 0.

3. Normal Form and Local Manifolds

As we have seen during the analysis of the Melnikov function, the size of the splitting
depends essentially on the widths of the analyticity strjpr(;) of the angular variables
01, 62, as well as on the width of the analyticity strip of the separatrix#), yo(t)).
Therefore, to detect the splitting in the quasiperiodic case the loss of domain in the
angular variables must be very small (i®(¢*), wherea depends on the Diophantine
properties of the frequencies). This makes another difference with the periodic case,
where the size of the splitting doest depend on the width of the analyticity strip of
the angular variablé, but only on the width of the analyticity strip of the separatrix
(zo(t), yo(t)). When dealing with the frequencies/€l~y/e) one needs a reduction of
O(y/€) at most. Hence, during the proof of the convergence of the normal form one has
to bound carefully the loss of domain (with respect to the angular variables) in order to
achieve such a small reduction.

Finally, we want to stress that if the amount of reduction is something bigger, one
can only produce upper bounds for the splitting of separatrices.

Theorem 2 (Normal Form Theorem). Lete € (0, ¢p). In a neighbourhood of the hy-
perbolic torus7 there is a canonical change of variablés, y) — (X,Y), which
depend2r-periodically onf; and#,, such that the Hamiltonia(l.1)takes the form

H(XY,e) = Ho(XY) + e’ Hy(XY, ),
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whereH is the normal form Hamiltonian for the unperturbed pendulum. Moreover, the
change of variables has the form

T = I(O)(X? Y) + €p71x(1)(X7 Ya 017 927 5)7 (3 1)
Y= y(O)(X7 Y) + €P*1y(1)(X7 Yv 617 027 6)7 '
where(z©, y(©) are normal form coordinates for the unperturbed pendulum.

The functionddo, Hy, 2@, y©@, z® andy® are analytic and uniformly bounded in
the complex domain defined by

IX2+|YP <73, |Imby| <ri— e, |[Imby] <rp— /e,
for r, andr, from (1.5)and some positive constant > 0.

We prove this theorem in a more general form in Sect. 8.

Inthe normal form coordinates the stable whisker is given by the equ&tie® and
the unstable one by the equatitn= 0. Let\ = H'(0, ). The Normal Form Theorem
provides a convenient parameterization for the invariant manifolds:

T = xS(T7 917 92) E) = .TJ(O, 6_>\T7 Hla 927 E)a

y= yS(T7 9176275) = y(oae_/\T79179275)7 (32)

and
€= xu(Ta 917 023 6) = x(e)\Ta 07 91a 027 6))
y = y*“(T,601,02,¢) = y(e*”,0,01,05,¢),

where we have used the change (3.1). Theorem 2 also implies that there is a positive
e-independent numbédr, such that

(3.3)

“/L‘U(Ta 017 027 8) - I'O(T)| S Cgp71 B
(T, 01, 2. ) — yo(T)| < Cer-2 O T'==To, (3.4)
and

|25(T, 01, 02, €) — xo(T)| < CeP~t

ly*(T. 01, 02, ) — yo(T)| < Cer—2 107 T2 To. (3.5)

4. Extension Theorem

By the Normal Form Theorem, the unstable manifol@®ié*~*)-close to the unper-
turbed separatrix. The next theorem extends this local approximation to a global one.
Since the unperturbed separatri(7’), yo(7T)) has a singularity o" = +7/2, we

will restrict ourselves tdimT'| < «/2 — /e, i.e., up to a distance to the singularity

T = +m /2 of the same order as the loss of domain in the angular variables. Besides, the
extension time + 7" will be chosen big enough in order that the unperturbed separatrix
reaches again the domain of convergence of the normal form.

Theorem 3 (Extension Theorem).Let (xo(t), yo(t)) be the unperturbed homoclinic
trajectory given in (1.10), letv € (0, 1), s = 2«, and assume@ — s — 2« > 0. Then,
there existgo > 0 such that the following extension property holds:

For any positive constants’ and Ty there exists a constaidiy, such that for any
e € (0, g9), every solution of syste(ii.3) that satisfies the initial conditions
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|2(to) — wo(to + T)| < CeP™,  |y(to) — yolto + T)| < CeP™*, (4.1)

[Im61(to)| < r1—e®, [Imba(to)] < 72 — e,
for someTl” € C, tg € R with

IMT|<w/2—-e% —To<to+ReT <0,
can be extended forTy < ¢t + ReT < Ty and verifies there

|2(t) — wo(t + T)| < CreP~*72,  |y(t) — yo(t + T)| < CyeP™ 72>

The proof is given in Sect. 9. From now on we fix= 1/2. Theorem 3 can be
applied to get an approximation for the stable and the unstable manifold. As we will see
in Sect. 7, constructing the approximation for the invariant manifolds in such a complex
domain enables us to bound the error on the real axis in a way sufficiently precise to
detect the splitting.

Corollary 1. The following estimate holds:
ho(z",y") — ho(a®,y°) = M(61 — T/e,02 —=4T/e;e) + O (2072) , (4.2)

where the value 0fj is evaluated at points of the invariant manifolds corresponding to
(T, 01, 02, €) such that

ReT € (To— R, Tp), |IMT|<w/2—+z, |Imy| <rp—ve, k=12, (4.3)

for any positive constantg and R, R < Tp. The constant in the estima 2)depends
on these two constants.

Proof of Corollary 1.Sinceho = {ho, h}, we have
0
hO(xu?yu) = / {hOa h}’(-ruvyu79 +Wt/57€) dt

and oo
ho(a®, %) = — / {ho k) (@, 0 + wt/e, £) dt.
0

Inside the above integrals the functiarts y*, z*, y° are evaluated orf{+t,  +wt /¢, €),
with § + wt/e = (01 + t/e, 02 + vt /). We can write the difference in the form

+oo
hO(Iuv yu) - hO(xS7 ys) = {h07 h}(xO(t + T)7 yO(t + T)7 0+ Wt/ga 5:) dt
. _
+ / ({h07 h}(xu7 yu, 0+ Wt/gv 6) - {hOa h}(ZOa Yo, 0+ Wt/ga 5)) dt

+o0
+ / ({ho, W}, y°, 0+ wt/z, &) — {ho, h}(z0, yo, 0 + wt 2, <)) dt.
0

We have three integrals in this expression. The first one is the Melnikov integral, and we
have to bound the second and third one. We note that
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{h07 h}(‘ra Y, ela 027 8) =eP Y sinz m(ela 02)

and, consequently, since by (1|%)(61, 62)| < K/e holds on (4.3), we get

{hOv h}(xu,s’ yu,s’ 017 92, E) - {h01 h}(l’o, Yo, 017 92» E)’

< Kspfl(\yw — yol | sinz™*| + |yo| | sinz®* — sinxo|).

We note that sin** decrease exponentially agoes totoo, respectively, as well ag

ast goes to bothtco. Then the extension theorem and the estimates (3.4-3.5) imply that
the second and third integrals are bounde@ty?*~?) andO (£2¢~1), respectively.
Indeed, for the third integral we only have to use the estimate (3.4) to@&t?&—1))-

bound, and for the second integral, we only have to use the extension theorem to get a
O(e2P—2))-bound. (See Lemma 10 for related bounds[)]

5. First return

A trajectory with initial conditions on the local unstable manifold leaves the domain
of the normal form. Such a trajectory remains close to the homoclinic trajectory of the
unperturbed pendulum at least during the time sufficient for the unperturbed trajectory
to come back to the domain of the normal form. This part of the unperturbed separatrix,
and, consequently, the corresponding part of the unstable manifold are close to the local
stable manifold.

In order to describe the difference between the unstable and local stable manifolds it
is convenient to také/ andT = —logY/ (H'(XY’)) as canonical coordinates near the
stable separatrix. The equation of the local stable manifald 0. In this coordinate
system the unstable separatrix is a graph of a quasiperiodic function. This function is
approximately the Melnikov function with the err6r (521’*4). We use Fourier series
arguments to show that on the real value of the arguments the remainder is exponentially
small. Itis less than the amplitude of the Melnikov function, as shown in the next theorem,
which contains the Main Theorem.

Theorem 4. There exist positive constarits and R, R < Ty, such that in the coordi-
nate systeniH, T, 61, 62) the unstable manifold can be represented as the graph of the
function H = HY(T, 01, 6,; ), where the functiorH* depend®r-periodically oné;
andé.. In the domain

ReT € (Ip — R, Tp), |ImT| g%—ﬁ,

(5.1)
||m91‘<’l"17\/g, \Im02|<r27ﬁ,
this function is analytic and close to the Melnikov function:
H™(T,01,0p;€) = M(61 — T/c,0, — 4T /e;) + O (*77). (5.2)
Moreover,
H"(T,01,02;¢) = H*(0,0, — T /e, 0, — vT/c; €), (5.3)

and its mean value is zero:
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// HU(O, 01, 0; 6) df1df, = 0. (54)
T2

Furthermore, forp > 3 and realT’, 8, andf,,

|H(T,01,02;€) — M (01— T/e, 0, — T /e;e)| < const=2~*exp (— C(I?/g;)) ,
(5.5)

wherec(d) is defined in (1.12). If the conditida.6)is fulfilled then the Melnikov function
is larger than the right-hand side of (5.5).

Proof. The equation of the unstable manifold is
x :xu(Tu7017027€)a Yy :yu(Tu79170276)'

The Extension Theorem implies that they afe?-close to the pendulum separatrix for
|ReT™| < Tp. Choosingly large enough we ensure that the segment of the unstable
separatrix, which correspond 1@ — R < ReT" < Tp, belongs to the domain of the
normal form. Then we can represent this segment in the parametric form

H=HYT"61,05,¢), T=T(T"01,0¢), (5.6)

evaluatingH andT ata pointc = 2% (T, 01, 02, ¢),y = y*“(T", 01, 02, €). Denote byX
andY™ the value of the normal form coordinates at the corresponding point. As it was
pointed out previously, the stable manifold is givenby = 0 andY (T, 61, 6,) = e 7.
Using the Normal Form theorem, we obtain

HY(T", 61,03, ¢)
= H(X"Y", &) = HX"Y", e) — H(X*Y",¢)
= Ho(X"Y") — Ho(X°Y*) + sp*1<H1(X“Y“, €) — Hi(X°Y?, 5))
= Ho(X"Y™") — Ho(X*Y*) + O(2¢~2)
= Ho(XO@", y*)Y Oz, y*)) — Ho(XO(a®, y*)Y Oa®, y*)) + O (¢ ?)
= ho(z",y") — ho(z*,y*) + O (2?2,
whereX© andY© denote the normal form coordinates of the unperturbed pendulum.

Here the parameterizations of both invariant manifolds are taken at apéirt(, 6, ).
Together with the estimate (4.2) this implies

HY(T",01,02,6) = M (01 — T%/e,0, —T"/e;¢) + O (2¢72) . (5.7)
Now we have to eliminate the parameiét. From
T(T, 01, 02,€) = T(X“(T", 01, 62,€), Y (T", 61, 02, €))
= T(XO",y*), YO(z", y*) + O )
=T (XOao(T™), yo(T)), Y Ozo(T), yo(T™))) + O(eP~?)
=T" +O(eP7?)
on the domain (5.1), we get, by Cauchy estimates, that
or

T (T",01,02,€) = 1 +O(e"~°/?).
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If p > 5/2, the Implicit Function Theorem allows us to eliminafefrom the first
equation in (5.6) and to obtain the estimate (5.2).

Suppose for a moment that the mean value of the functi®r’, 61, 6,; €) with
respect to the angle variables is equal to zero. Then the estimate (5.5) fot feand
6, is a consequence of the quasiperiodicityf, the estimate (5.2) and of Lemma 4
of Sect. 7. In the last lemma one has to replacandr, by r; — /e andr; — /g,
respectively, and take= /2 — \/z.

Lemma 1 shows that fgr > 3 the amplitude of the Melnikov function is larger than
the error term in (5.5). The exponentially small upper bound for the error is proved for
p > 5/2. Sowhat we have for/2 < p < 3is a very sharp upper bound for the splitting.

To use Lemma 4 we have to prove that the mean value of the fun@ti¢i, 61, 6,; €)
with respect to the angle variables is equal to zero. Indeed, in the varidbi&s),, 6,
the equations of motion have the form

H=0 T=1 ==, 6=

SinceH is an integral of motion we obtain (5.3).

The proof of the equality (5.4) is completely analogous to the case of periodic
perturbation. Consider the part of the phase space bounded by a KAM torus and the
segments of the stable and unstable separatrices. Since the flow is Hamiltonian the
volume of this subset is time-invariant, that is, the volume of the trajectories which enter
the subset equals the volume of the trajectories which leave it. The trajectories may enter
or leave this subset only through the “turnstile” formed by the split separatrices. The
algebraic value of the volume, which passes through the “turnstile” during a small time
interval At, may be evaluated in the coordinate systémT, 61, 6,) as

At// H™(T, 01, 65; ) df1db,.
T2

By (5.3), this integral does not dependBnand thus it should be zero.
In other words, the equality (5.4) means that in average there is no diffusion in the
direction of theT-axis. [

6. Rational Approximation of ~

In this section we discuss the approximations of the number f%*l by rational
numbers. The best approximation is given in terms of Fibonacci numbers, which are
defined by the following recurrent formula

=1 Fi=1 Fu=F,+F, 1, n>1
It is easy to check the following:

_t = (=)
F, 1= W (6.1)

and
G A G

F, —~F,_1= = . 6.2
Y 1 o Fn+7_an—1 (6.2)

For large values of this implies
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Cr 1 1
F, —~F,_ 1= (—1)" + , = . .
n = He1= (1) Fn 1 O<F31> Cr v+t (6:3)

The estimation of the following lemma is not sharp, but it is sufficient for our purposes.
Lemma 2. If N € N is not a Fibonacci number, then for all integéts

vCr
N
Proof. The first Fibonacci numbers af¢ = 1, F, = 2, F3 = 3andF, = 5. Let us define

|k — yN| > (6.4)

dn = 15?2’}7” min |k — ~jl.
Equation (6.2) implies that, = v~2 andds = v 5.

Suppose that/, = v~ for all n/, 2 < n’ < n. First, consider an integer numbgr
F, < j < F,+1, and letj’ = j — F,,. Obviously, 1< j' < F,+1 — F,, = F,,_; and we
have for allk

|k - ’Y]| = |k - Fn+1 - 7]/ + (FVL+1 - VFTL)‘
> |k — For— 74| = [ Fng+1 — 7|
,y—n+1 _ ,y—n—l - ,y—n. (65)

—-n—1_

Z dnfl -7

Then takej = F),,
min |k — | = |Fws = vFa| =777

Comparing with the previous inequality, we see that the minimum is reached at the
Fibonacci numbers. So we haxg.; = v~"~1. Consequently, by induction we obtain
that

d,=~"" foral n>2.

Now consider a non Fibonacci numbat, let F,, < N < F,+1. Formula (6.1)
implies that if N > F,,, thenN > %7". The estimates, (6.5) with= NN implies that

+
S 11

k—~AN|>~" —
|k —yN| >~ 2N

which is equivalent to the desired estimate (6.4)]

7. Exponentially Small Upper Bounds

The following two lemmas provide a tool to pass from estimate (5.2) to the sharp esti-
mate (5.5). The proof of the first lemma is standard.

Lemma 3. Let F(01 +s/¢, 0, +s/e) be a2r-periodic function of the variable®, 65,
analytic in the product of strip8m 61| < 71, |Im 6| < r; and|Ims| < p, and|F| < A
for these values of the variables. Then forfall k, € Z,

‘Fk1k2| < Aef‘k‘l"l“l*|k2|7’2€*p‘k1+7k‘2‘/6' (71)
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Consider the (2 log)-periodic functiorc, ., »,(5) defined on the interval [log" —
log~,loge™ + log~] by

— *
Cpra,r2(0) = Co cosh<52098) : (7.2)

. _ ply+ty™h _ . (it
=T Gritrn? o= 2\/ vyt 79

and continued by 2 log-periodicity.
The following lemma gives the exponentially small upper bound for the funétion
for real values of the variables.

Lemma 4. Let F satisfy the conditions of Lemma 3lf= (v/5 + 1)/2 is the golden
mean number and the mean value of the funchian zero, then

_ Cpﬂ‘lﬂ’z(log 5)
NG

on the real values of its arguments. The constant depends continuouslaondr, on
ry > 0andr, > 0.

|F'(01,62)] < constA exp( (7.4)

Proof. If the arguments of the functiof are real, then

|F(017 02)| < Z |Fk1k2|
[k1|+[k2|70

<A Y explkalry — |kalra — plky + k2| /¢),
s |+|k2|70

(7.5)

due to the estimate (7.1). In order to estimate the last sum in (7.5) we separate it into
two parts. The first one contains non-resonant terms, that is, all the terms such that
|k1 +vk2| > 1/2. We easily obtain the upper estimate

E e~ Ikilri—lka|ra—pllityka| /e
|k1+yko|>1/2
— 6—7‘1—7"2)6—/)/(26)

—p/(@2) ~alra—lkolr, = 20T+ €™

<e Z e = Ty = . (7.6)
[k1[+| k2|70

For the resonant terms we ha¥g+~k,| < 1/2. Obviously, for every:, there exists
exactly one integet; = k1(k2) such that this inequality holds. Since the coefficients of
the sum (7.5) are even with respect tg,(k2) we can assume thas is positive and, at
the end, multiply the estimates by 2.

The sum of the resonant terms with > <~ can be easily estimated:

§ e~ |kalri=lka|ra—plkityko| /e < E e~ |kilri=lkz|r
ko>e—t kp>e—1

r1/2 ,—(yritry)/e
< Z e/ 2=(yritra)ks < er/?e w2/

kzza_l

1_ e Qritrd) (7.7)
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Now we estimate the resonant terms witkc 1k, < ¢~1. The number of such terms is
large, but finite. We will show that all of them, except at most 4, can be estimated by
O(e~“/ V%) with a constanCy > max; ¢, ,(6) = Co (42 +y~/2) /2.

Let B denote the following expression from the exponent of the right hand of (7.5),
obtained after substituting: | = vk.:

plk1 + ks

—Z

It is sufficient to provide an appropriate lower bound for this function.
If ko is not a Fibonacci number, then we use Lemma 2:

C
Bk, ) > (yr1 + ro)kov/e + 2L > 2\/(yr1 +12)pyCr = C1 = /7Co.

B(kz,€) = (yr1 + r2)koy/e +

kov/E
If k5 is a Fibonacci number, then instead of (6.4), we use (6.2)
b+ vke] = k1 + iflkﬂ - ko + 11+’771k2 ) kzc‘:FCF
to obtain
Bk, e) > (yr1+ r2)kzy/e + O
(k2 + Cr)\/e

Providede is small, 0< ¢ < gq, there are two positive numbef§;, and K, such that
the right hand side of the last inequality is larger th@nfor &, outside the interval
(K1/+/e, K2/+/€). Moreover, this interval contains at most 2 Fibonacci numbers, that
is,

B(kz,e) > C1 (7.8)

for all except at most 2 terms. For these exceptional terms
pCr pC%
B(kz,e) > (yr1+m)kove+ ——= —Ve——r———F—,
(k2,€) > (yr1+ r2)kav/e W (K1t Cry2)
and it is convenient to rewrite

B(ks,e) > Cy cosh(log(kzﬁ) —logy/ pCF) — 0(Ve).
yritrs

The above)(,/z) term affects only the constant in front of the estimate (7.4), since the
terms in the sum of the right hand of (7.5) are of the form exB(k,, €)/+/<). Sincek;
is a Fibonacci numbek;, = F;, for somen and taking into account (6.1), we obtain

T
y+2 yr1+

B(kz,e) > Co cosh(i loge + nlog~y + log

The envelope of this family of curves is the functian,, ,,(6) defined by Eq. (7.2).

Thus, inthe sum ofthe resonantterms there is one leading term which is exponentially
larger than the others except in the neighbourhoodsof*~", when the index of the
leading term changes, and there are two terms of the same order. Moreover, we have
established that for all resonant terms, with< 1,

B(kZa 6‘) Z cp,?"1,7‘2(log 8) - O(\/g)
Together with the estimates (7.6), (7.7) and (7.8), this completes the praof.
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8. Normal Form Theorem

This theorem gives a convergent normal form in a neighbourhood of a hyperbolic torus
of a one degree of freedom Hamiltonian system under quasiperiodic time-dependent
perturbations (with two frequencies). The main contribution is that the convergence is
ensured in a wide domain of the angle varialle$ the perturbation: the loss of domain

is only O (1/2) in the complex direction of.

Theorem 5 (Normal Form Theorem). Let K be a Hamiltonian of the form
K(@,y.0,p.€) = = - p+hola,y, ) + < ha(e,y.6.,2), 8.1)

with regard to the symplectic formhz A dy+ dd A dp, with b, 1 analytic in the variables
z, y, # and with continuous (and bounded) dependence,an the setz|, |y| < ro,
[Imé;] < pi — /e (i =1,2),0 < e < &, for some positive constants, p = (p1, p2)
andeg. Assume also:

1. There exists > 0 such thatlk - w| > ¢/ |k|, Vk € 22\ {0}.
2. The origin is a saddle point of the Hamiltoniag(z, v, 0).
3. h1(0,0,6,¢) = 0;h1(0,0,6,¢) = 0,h1(0,0,0,¢) = 0.

Then, there exists; (0 < g1 < €g), 71 (0 < r1 < rg) and a canonical change of
variables

z =2 O(X,Y, ) +e12W(X, Y, 0, ¢),
y =y X, Y,e) + Y (X, Y, 0, ¢),
0=29,
p=p(X,Y,0,Pe),
analytic in the variablesX, Y, 4, P, and bounded and continuous 4n on the set

lz], ly| < r1, |Im6;| < p; — 2/ (i = 1,2),0 < € < &1, which transforms Hamilto-
nian (8.1)into its normal form;

K(X,Y,P,e) = g - P+ Ho(XY,£) + e Hy(XY, £).

Moreover, the canonical change of variables

y =y O(X,Y,e),

transforms the unperturbed Hamiltoni&sg into its normal formHj.
8.1. Idea of the ProofThe proof is based on a quadratically convergent scheme, similar
to the one used in the proof of KAM Theorem (see [Arn63]).

The first step is to put the Hamiltonian in the action-angle variablggyof

g ‘pt HO(Z7€) + qul(Z7 P, 9) 6),
g

where the couplesg(y) and {p, 8) correspond to canonically conjugated variables. Here
Ho(z,0) is the normal form of the unperturbed Hamiltonian.
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The next step is to start a sequence of changes of variables to kill the t&fmin
the same way as it is done in the proof of the KAM Theorem. The main difference is
due to the fact that the “small” divisors we will obtain are of the form

elho(z,e) +vV—1k-w, L€ Z, ke 22 |{|+]|k|l#0,

where bothAg(z,¢) = 0,Ho(z,¢) andw are real. This makes that all the divisors
with £ # 0 are separated from zero, so they do not produce convergence problems.
The only small divisors correspond to the c#se 0, so we will askw to satisfy a
suitable Diophantine condition. In this cassw is fixed in all the iterative process

(see Lemma 7), the initial Diophantine condition will be satisfied in all the steps of
the iterative scheme. This also implies that we can have convergence on an open set
of the phase space. This makes a difference with standard KAM problems: there it is
usual that frequencies depend on actions and then they have to be controlled at each step
of the proof. This leads us to take out a Cantor-like set of actions, so the convergence
is only proved on sets with empty interior. Finally, let us comment that the quadratic
convergence allows us to be very strict in the amount of domain lost at each step, so we
have been able to show that the loss of domain irdtheriables is bounded by.

We want to stress that the good properties of this case are due to the fact that
the unperturbed problem has a saddle point with one degree of freedom. If the saddle
is replaced by a centre (with one or more degrees of freedom) we obtain a standard
KAM Theorem valid only on a set with empty interior (see [JS96]). If the unperturbed
Hamiltonian has a saddle point with more than one degrees of freedom we obtain new
small divisors (the resonances between the eigenvalues of the saddlé wh®nthat
require to be controlled by using the actions of the Hamiltonian. This produces a KAM
Theorem on the conservation of hyperbolic invariant manifolds.

There is another detail worth comment: if we proceed exactly in the way mentioned
above, we have technical problems due to the lack of definition of action-angle variables
at the origin (we want to show convergence on a neighbourhood of that point!). To
avoid this difficulty, we will work all the time with spatial (cartesian) coordinates, but
grouping them as if they were the action and angle ones. One can see that (some of)
these groupings have poles at the origin (as expected), but they also have factors that
cancel those singularities (as expected too). So, bounding them together we can show
that the whole thing is well defined and it is convergent in a neighbourhood of the origin.

Now, let us go on to the details.

8.2. Technical lemmasThis section contains the lemmas used during the proof of
Theorem 5.

Lemma 5. Letw = (w1, wz) € R? such thatk - w| > ¢/ |k|, Vk € 22\ {0}, for some
constantc > 0. Then there exists a constafit= F(w) > 0 such that the following
inequality holds for alkx € (0, 1]:

—alk|
Z © <5

|k-w| ~ a?
kez2\{0}
Proof. Assume, for instance, th&b;| < |w»|. Given an integek; ¥ 0, there exists
a unique integek, = k3 (k1) such thatkiwi/wy + k2| < 1/2, and in particular, such
that|k1w1 + k2w2| < ‘wz‘ /2 Moreover,|k§‘(k1)| < \klwl/w2| + |k1&)1/&)2 + k;(k1)| <
|k1] + 1/2. Therefore,
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>

kez2\{0}

e—oz\k\ alk| —alk|

WZZ|ZTW

k1€ Z ko7k3 (k1) k170, ko=k; (k1)

Z e olkl 4+ = Z e clkl <2|k1|+ )

kezz k170
_|wz|(Oth ) +7;e (2n+ >

2 5_g@° aN2
—_— h-) < —. |
(|wz| 4c ) (COt 2) ~a?

Lemma 6. Let us consider the change of variables x(X,Y,0,¢), y = y(X,Y,0,¢)
given implicitly by
X=a+em 22 0¥,0,9),
gg (8.2)
y= Y+ Emi(xv Ya 97 8)7
ox

whereS(z1, 22, 0, €) is defined on the sete (0,20], |2i| < 7, [IMm6;] < p;,i =12,
with z = (21, 22) € C? andRed = (Ref1, Ref,) € T2. Moreover, it depends ofy, 2z,
and@ in an analytic way, and has continuous and bounded dependencé.ehus also
assume thaltS(z1, 22, 0, )| < M on this set and lety be such tha® < n < 1. Then, if

m T2772(1 - 77)
TV
Eq.(8.2)defines the change= z(X, Y, 6,¢),y = y(X, Y, 6, ) analytic in the variables

X, Y, 6 and bounded and continuousdnon the setX| < r(1—n)?, |Y| < 7(1—1n)?,
|Im6;| < p;. Besides, the following bounds hold:

(8.3)

X —al<eml |y oy <em (8.4)
n rn
The proof of this lemma is omitted, since it is straightforward. Now let us introduce
some notations to be used in this section.
Let f(#) be a periodic functiony € 7?2, analytic on a (complex) strip of width
p = (p1, p2), that is, analytic onlm 6| < p and continuous on the boundary. We denote
by || f|l, the sup norm on that set, this is,

Ifl,= sup |f©),
[Imo|<p
where|Im | < p means|Im6;| < p; and|Im6,| < p,. Moreover, ifF(z,0) is an
analytic periodic function with respectéoc 7?2 on a strip of widthp, and analytic with
respect to: on|z| < r, we define the norm

[F0lrp = sup |z, )ll, = sup [|F(z6)|.
l=l<r 1<
[Imo|<p

If F depends only or, we simply denoté|F'||..0 = sup, <, |F'(z)|. Here we have

assumed that € C or z € C2. Of course, in this last case the notatieh < » means
|z1] < rand|z| <r.
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For the sake of the simplicity (and without loss of generality), we will assume that
o<1, A<1,r<1, Ay > 1andA; > 1. This will be used along this section to avoid
cumbersome bounds.

Lemma 7 (Inductive Lemma). Let us consider the Hamiltonian
= p+ Kolay, &) + " K, .6, 2), (8.5)

where

1. Ko(z,¢) is an analytic function of on|z| < 2 and0 < ¢ < &.
2. 10.Ko(z,€)] > A >0,0n|z| <7?,0< ¢ < «o.
3. Ko(z,¢) and K1(x,y, 0, <) depend orx in a continuous and bounded wayif<
e < egp.
4. Ki(z,y,0,¢) is analyticon|z| <, |y| <, [Im6;| < p;,i=1,2.
5. K1(0,0,0,¢) = 0, K1(0,0,0,¢) = 0,K1(0,0,0,¢) = 0.
Moreover, let us defindy = || Kol 0 and Ay = || K1l ,, and let us consided < n <
1/2and0 < ¢ < 1. Then, foreg small enough (which is detailed below), there exists a

canonical change of variables, given implicitly by a generating fundiio® + Yz +
e™S(x,Y, 0, ) such that the new Hamiltonian takes the form

Y P+ Ro(XY,e) + 2 Ki(X, Y, 0, ¢), (8.6)
19

where

1. The “normal form” Ko(Z,¢) is an analytic function ofZ on |Z| < r?(1 — n)S,
0 < e <eyp.

2. 102K0(Z,€)| = A — el Ay /n > 0,0n|Z| < r2(1— n)S.

3. IA(O(Z, ) and IA(l(X, Y, 0, ¢) depend orz in a continuous and bounded wayif
e < ep.

4. K1(X,Y,0,¢) is analytic on|X| < r(1 — n)3, |Y] < r(1 — n)3, |Im6;| < p; =
Pi — 5\[, i:1,2.

5. K1(0,0,6,¢) = 8,K1(0,0,0,¢) = ,K1(0,0,0,¢) = 0.

If we defined, = HIA(OHT(PH);O andA; = ||IA(1||T(1777)3$, the following bounds hold:

~ Ag ~ ApA?
Ao < Ap+ep 2t pof
0= Ao e o 1= 5024548

where(' is a constant that only depends enThe generating function is bounded by

(8.7)

BA,
|S(x,Y,0, 5)||T(1_7]),; < )\52772’

where the constanB only depends ow.
Finally, in order to apply this lemmagy must satisfy (8.3), wher&/ is the right
hand size of (8.7).
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Proof. In order to facilitate the reading, the proof has been split in several parts.
1. Rearranging the initial HamiltonianlLet us start by expanding(, in Taylor series
with respect tar andy,

K]_(I, Y, 97 8) = Z aij(97 g)xiyja
i+j>2
wherea;;(9, €) is a periodic function o#, that can be expanded in Fourier series,

ai;(0,¢€) = Z afj(s)ek'e‘/jl.
kez?

Moreover, the following bounds hold:

Ay

Al _ _
—=, lak.| < e~ Ikalor=lkelpz 0<e<eo.
,rl+]

Hainﬂ < il =

Let us write K in the following form:
Kiw,y,0,)= Y > alj(e)(@y) 2’ 7ML
i+j>2 ke 22

Now, we defing = i — j. The conditiong > 0, > 0 andi+j > 2 are simply replaced
by¢+j>0,7>0and Z+j > 2interms off andj, so

K@, y,0,€) = Z Z a]g+j,j(5)($y)j $€€k'0‘/jl,
kezZ?2,¢eZ | j>max{0,1-¢/2,—(}

and defining:**(xy, ) as the expression between brackets, one obtains

keZ2 teZ

For the moment, we will handle these expressions as formal series and, once the change
of variables is (formally) computed we will check that everything is well defined on the
suitable domains.

2. Computing the generating functiovle will look for a change of variables given by

a generating function of the type

P-0+Yx+cmS(x,Y,0,¢).

So, the corresponding change is

Py (8.8)
y=Y +e o X=x+¢ Iy

We want this change to transform (8.5) into (8.6), so we insert (8.8) into (8.5), asking
the result to be equal to (8.6):
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w mw 0S8 m0S m m 08
g'P"‘E 6-89+Ko(x<Y+€ 8x>,5>+5 Kl<x,Y+5 33:7976>

_w = maS om > maS
—E'P+Ko<(£lf+€ a}/)Y7€>+€ Kl($+€ W,KG,E).

This equation is automatically satisfied at order §,ifiwe ChOOSdA(o(z, g) = Ko(z,e)+
O(g™). If we take the terms of order™ and we ask them to cancel out we obtain an
equation that determines

w 08
P + Ao(zY) {

oS oS
Tor T Y@Y} + K1(z,Y,0,¢) =0, (8.9)

wherelo(z, €) = 0, Ko(z, €). We will try to solve this equation in the sense of the formal
series. We look folS of the same type a&;:

S(z,Y,0,¢) = Z sk’e(xY,a)xzek'e‘/?l,
keZ2 (ecZ
being

Py, €) = Z séﬂjyj (e)(zY) .
j>max{0,1—£/2,— ¢}

The next step is to substitutginto (8.9), to obtain

Z V—=1sP (Y, €)'k - Y ekov=1
k€22 (ecZ <

oY) Do M@y etV 3T at ey etV =0
keZ2,0eZ keZ2 ez

Equating terms, we obtain the following set of equations:
V—=1k - %sk’e(mY, ) + do(@Y, e)ls* (xY,e) + " (xY,e) =0, ke Z? (€ Z.

So, ifk Z0 or¢ Z 0, the generating functiofi is defined (formally) by the coefficients

eakt(xY,¢)
elho(zY,e) +vV—1k-w

P xY,e) = —

Hence, this implies that we can not kilt-* with £ = 0 and/ = 0 and then Eq. (8.9) has
no solution. So, we solve Eq. (8.9) but with°(zY, ¢) instead of 0 in the right-hand
side (this is not a problem becaus¥’(xY, ¢) is already in normal form). Sine€-° can
be chosen arbitrarily, we simply tak&°(zY’, ¢) = 0.
3. Bounds on the generating functidret us reduce the analyticity strip with respect to
6 from p = (p1, p2) 10 p = (p1 — 6+/2, p2 — §+1/) and the analyticity ball with respect to
z andy fromr to r(1 — 7).

Now, let us bounds:
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1Shaps < D0 1sH@Y, 20 oy ocsr—0VANItb2—0valka

r(1-mn),
kezZ? tez
[k|+[¢|70

ella™* (@Y, €)2 Ira-1.0 _(o1—sy2) ksl (00— svANRa|
E e (8.10)
letro(2Y) + v =1k - w|

IN

kezZ? ez
[k|+[¢|70

To bound||a**(zy, £)x*||1—n),0 We recall that

ab*(xY,e) = Z aZj’j (xY)’.
j>max{0,1—¢/2,—¢}

Hence,

la* @Y, €)2" |l a0 < > |ags; jllzY ||
j>max{0,1—¢/2,— ¢}

< Ale—ﬂllkll—/}z\kz\(l _ 77)( Z (1- 77)2'j~
j>max{0,1—¢£/2,—¢}

Here we distinguish several possibilities, according to the valués of
a) ¢ < -2, thatimpliesj > —(. Since}_ . _,(1 — )% < (1—n)~*/n, one has
la®“@Y, )z’ |lsa—ny0 < Aze”tll=ralel(1 — )=t /.
b) £= -1, thatimpliesj > 2. Since}_ . ,(1 — n)¥ < (1 —n)*/n,
" (@Y, €)a’ (|0 < Age~PrRal=ralkel (1 )3/
c) £=0,1thatimpliesj > 1. Since}".,(1 - n)¥ < (1 —n)*/n,
™ (@Y, )2t || rany.0 < AgePrlRrl=ralkal(q 2+ /gy (8.11)
d) ¢ > 2 thatimpliesj > 0. Since)_ .. o(1 — )% < 1/1,
la®“@Y, )z’ llsa—ny0 < Aze”2l=ralRel(1 — ) /.

Now, putting these bounds into (8.10), separating the dase8 andk % 0, and taking
into account thalz¢A\o(zY) + v—1k - w| > |k - w| ONe obtains

0,¢

|a®(zY, €)a*||ra—n),0
HS”T(lfn),? < Z |g‘)\
70

. Z Z ella® (@Y, €)x! || (1) 0?2 OV RalHpz— 0 VE el
o te lelrho(zY) + -1k - w|

To bound the first sum we start using a), b), ¢) and d) for the different valuésaofl
then we apply the bound
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Y
> ES < il - @ -,

>2

to obtain

Z a%(zY, )" || ra—n).0 < 2A1(1 +)B)
2 1) NZE

With a similar scheme one can show that

2.2

k70 (€2

el|ab (@Y, €) 2t | pa_ny 0ePr—OVANRIHP=6VANkl 224y L e~ OVEIKI
- < .
letro(zY) +/—1k - W] n? po |k - wl

As § /e < 1, we can apply Lemma 5 to control this sum. So, the final bound on the
generating function is

241(1+18) _ BA

S ~<
IS5 < "2z < 3522

r(1-n),p

(8.12)

where( only depends o andB = 2(1 +0).
4. The transformed Hamiltoniatlp to now, we have found a functidi(z, Y, 6, ) such
that Eq. (8.9) holds, but with®%(zY, ) instead of 0 in the right-hand side:

w 0S8 oS oS
g . %({E,Y,Q,E) + )‘O(xK 5) x%(:v,Y,Q,s) - Y@T(x7y7975)

+K1(z,Y,0,¢) = a®°(zY, &). (8.13)

This function S satisfies the bound (8.12) and it generates implicitly the canonical
change (8.8), whose explicit expression is of the form

p=P+e" fo(X,Y,0,¢), x = X+ f1(X,Y,0,¢), y=Y +™ fo(X,Y,0,¢). (8.14)

Applying this change to the initial Hamiltonian (8.5) and expanding it in power series
one obtains

ZPHe T fo(X,Y.6,2) + Ko(XY,<)
+e™A(XY, e)(X f2(X, Y, 0,e) + Y f1(X, Y, 0,¢)) + ™K1 (X, Y, 0, ) + O(?™).

Let us define?™ K1(X,Y, 0, <) as the remainde?(2™) in this formula. Thens2™ K,
can be obtained in terms of the initial Hamiltonian by computing the remainder of the
corresponding Taylor expansion with respeettolndeed, let us calR; the contribution

to e2m K, that comes fromk; and R, the one that comes frotfy (this is, 2" K; =
R; + Ry). Then, it is straightforward to check that

0K
Ry= e frs H(X + e 1Y + 7™ fy)
€T

0K

+€27”f278 1(X +7'€m/f17Y+7'5mf2)a (815)
Y

6Zm

Ro= 5 K§(XY +7e"[X fo+ Y ]+ 72" fuf)(X fo+ Y o+ 20 o)

+ 2 KY(XY + 7™ [X fo + Y fi] + 722" frfo) ffa, (8.16)
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where 0< 7 < 1. Moreover, let us define
W oS
Rp =& g . (fO(X7K97€) - %(X,Y,H,E)) ’
” oS
Ra:=5 L)‘O(XYNS)Y aT(XaK97E)+fl(X7Y5955) )
. aS
Ry =e"N(XY,e)X | f2(X,Y,0,¢) — %(X,Y,G,E) :

So, with these notations and using (8.13) (replacing the valmeX), the Hamiltonian
can be rewritten as

Y.p+ Ko(XY,e) +ema®0(XY,e) + szmIA(l(X, Y, 0,¢),
€

wheres?mK1(X,Y,0,¢) = Ry + Ry + R, + R, + R,,.
5. Bounds on the transformed Hamiltonidrhe bound om?° has already been done in
(8.11): ,
A(1—n) < ﬂ

n n
The bounds onR; and R, are obtained bounding directly (8.15) and (8.16), since
bounds onf; and f, are given by (8.4) but taking into account that the actual func-
tion S(z1, 22,0, ¢) is defined onz;| < r(1 — n) and|z,| < r(1 — 7). Of course, the
constant)M that appears in (8.4) must be replaced by the bound (8.12). The bounds on
0, K1 andg, K, are produced applying Cauchy estimates, reducing the analyticity do-
main of K3 from r to (1 — n) (we can reduce it more, but this is enough and it produces
simpler bounds). Hence, foX | < (1 — )3, |Y| < r(1—n)3 [Imb;| < p;,i= 1,2
and 0< e < gq (this is the domain where the change is defined, see Lemma 6) we have

8%l @—n.0 <

4BA?
2m 1
||R1HT(1,,])37; <e N2
Similarly (but with a little more work), one can derive the corresponding bouné&for
72B?AgA?
2m 0441
1Bzl 5 = " Sz,
To boundRz,, R, andR, we note that
0S8
fO(X7 ngvg) = %({E(X, ngvs)axaag)v (817)
FUXY,0,2) = — 90 (0(X,Y,0,2), Y,0,2), 819)
FoX.Y,0,2) = 92 (a((X, ¥,0,2).¥,0,2). 819)

wherex(X,Y, 0, ¢) is the change of variables for thecoordinate given in (8.14). Our
purpose is to apply the mean value Theorem plus (8.4) to derive the desired bounds.
Before continuing, let us give a bound to be used later:

w 625 H AQA]_

e 0x00 r4NG2n>’ (8.20)
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where C' is a constant that only depends on the initial Hamiltonian. This has been
obtained from (8.13), differentiating both sides with respect tand then applying
Cauchy estimates. Now it is not difficult to produce boundsiprR, andR,, applying
the mean value theorem:

ApA?
7“4)\2547787

ApA?
742)\254778’

ApA?

2m 0411

ra—npp = Cue 12\25%8°

2
1Byl < Cpe™

r(i—nPp =

2
IRell ooy < Cae?™

12yl

where constaniS,,, C;, andC,, only depend on the initial Hamiltonian. Of course, (8.20)
has been used to boutd, ||,;_,)s. The final bound is obtained by taking the biggest
factors of these two bounds (we recall that 1, A < 1andA4, > 1). O

8.3. Proof of Theorem 5The first step is to transform the autonomous Hamiltonian
ho(x, y, €) into its normal form. This can be done because itis an integrable Hamiltonian.
The domain of definition ohg may be reduced, but in that case we rename this new
domain in order to keep the same notation.

Now, assume we have donehanges of variables like the ones of Lemma 7, so the
Hamiltonian has the form

H(n)(xa Y, 0apv 5) = g P + Hé")(wy, 5) + qunHin)(l', Y, 9, 5), (821)

where we have kept the same notation for the variables. This Hamiltonian is defined on
some setz| < 7, [y| < 7, [IMO;] < p{™, i = 1,2 and 0< & < &. On this set, we
define the following constants (bounds):

A = | Kol AP =Kl o0, An = inf [0.Ko(z, ).

|z|<r2

Now, let us define the domains. Lgtbedy/(n+1)?, with 6 = 6/72. Then, the reduction

of the analyticity strip with respect tbdone toH ™ in order to compute the generating
function will be §,,\/¢ (see Lemma 7). Note that in this way the total reduction of the
domain is exactly/c. For the domain with respect to the spatial variablendy we
define the sequende,,} asr,, = r,_1(1 — 1,_1)°, wheren,, = 1 — exp(=7/(n + 1)%)
andn = (21In 2)/72. As the total reduction of domain is given by

3
H(l_ 77n—1) )

n>1

one can check that, with this selectionsgf and, this makes a reduction fromy to
ro/2. From Lemma 7 we obtain the following inequalities:

A0 < A1) 4 2 AT
o) < Ag €6 , (8.22)
n—1
2
AW < o ( ) (8.23)

2 4 4 8 ’
)\n—lTn—l(Sn—lnn—l
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qznfl Ag_n_l)

S v (8.24)
n—1

Let us assume that; > \g/2 andA{) < 249, i =1,...,n — 1. Then, from (8.23)
one obtains

2
A(ln) < En? (Agnfl)) 7

whereF is a constant that only depends on the initial Hamiltonian. Taking logarithms
to both sides of the expression above one gets (see [JS92, lemma 5] for the details):

2’” 1 5 24
()" <5|(3) ar

Now it is easy to finish the proof. It is immediate that there exist a sufficiently small (but
different from zero) value of, such that

1 24 on

Ag_") < El+2+~--+2"71 [H(n — ’i)zi
=0

w oo D .
el A < 87)(1/2)2 7 (8.25)

whereD = max{ Ao, \o/2}. This valueso does not depend om and only depends on
the initial Hamiltonian. It has been chosen in this way because it satisfies

w1 A
S - <D

n>1 Mn—1

Then, from (8.22) and (8.24) one gets > Xo/2 and ASY < 240, Then, using
induction, the proof of the convergence of the normal form is finished.

To show the convergence of the sequence of changes of variables we use (8.4), where
the bound)M on the generating function is given by (8.7). Then, at st€p > 1), we
are applying a change of variables whose distance to the identity is bounded by

g2t BA(ln_l)
€o

2 3
r"—l)‘n—lan—lnn—l

Now, using (8.25), the convergence of the sequence of changes of variables is straight-
forward. O

9. Proof of the Extension Theorem

Before proceeding to the proof of this theorem, we will introduce some notations as well
as some auxiliary lemmas.

In the sequelpy > 0, tg, To > 0, will be the real parameters introduced in the
Extension Theorend, thecomplexparameter in the stripm 7| < /2 — ¢> andt will
be thereal time. K will denote a generic positive constant independent, ahdr will
denotelt + T — 7i/2].

In order to bound the solutior:(t), y(t)), we will compare it with the homaoclinic
solution of the unperturbed system, and thus we introduce the functions:

E() = a(t) — xo(t + 1), n(t) = &(t) = y(t) — yolt +T),
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which satisfy the system of differential equations with respect to the variable
£=1,
1 = sin(zo(t +T) + &) — sin(zo(t + 1))
+e?sin(ro(t + 1) +&) - m(01(t), 02(t)).

In order to study this system is very convenient to write it as:
2= At +T)z +ePG(ao(t +T1),t) + F(E,t +T,1), (9.1)

wherez = (¢,1) ", A(u) is the matrix

o 1
Aw) = (Cos(mo(u)) o) )

and the function&: = (0,¢) " andF = (0, f) T, that depend also an are given by:

g(x,t) = sinz - m(01(t), 02(1)),
f(&,u,t) = sin(zo(u) + €) — sin(zo(u)) — cos(xo(u)) - § (9.2)
+eP [g(xo(u) +&,1) — g(zo(u), )] .

From the initial condition (4.1), our goal is to bound solutiaiig) of system (9.1)
with z(tp) = O(¢P~*). To this purpose, first of all we seek for a fundamental matrix of
the corresponding homogeneous linear system

dz = A(u)z, (9.3)
du
which can be integrated using the fact thga{(), yo(u)) is a solution of Eq. (9.3). Another
independent solution can be obtained in the fgfm) = yo(u)W (u), n(w) = &(u), with

W) :/b“ do

yo(0)?’

b being an arbitrary complex number. It is very important to choose adequately this
parameteb to get a functionV (u) as regular as possible, near the singularitiegof

We will consider first the case & ImT < /2 and we choosé = 7i/2. In this
way, at the pointu = 7i/2, sinceyo(u) has a simple pold} (u) has a triple zero and
yo(u)W (u) has a double zero.

Introducing:

Y(u) = yo(u) = wo(u),
@(u) = yo(w)W (u) = W(u)W (u),

a fundamental matrix of the linear Eq. (9.3) is

- V() P(u)
]V[(u) - (lp/(q,i) CI)/(’Z)) 5

which has determinant 1(u)®’ (u) — ®(u)¥' (u) = yo(u)*W’ (u) = 1.
Expanding the functiong’, ® nearu = 7i/2 we get:
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1+0((u — i/2)%)
9.4)

W(u) = (11—_7721'2/2) (
®(u) = %(u —mi/2 (1 +0((u — 7i/2)%))
and that means that the fundamental matrxu) behaves near = 7i/2 as:
(“_2;/2) %(u — 7i/2)?
(w—ni)2F §(u —7i/2)
In passing, from formula (9.4) one gets easily the following bounds that will be used

later on.
Lemma8. For0 < Im7T < n/2and0 < 7 = |[t+T — wi/2| < Ty, the following

bounds hold:

[W(t+T)| < Dt +T)| < K72,

)

|®'(t+T) < K.

)

K
T
K
W't +T)| < prs

Since the fundamental solutigs(u, o) of the linear Eq. (9.3) satisfying the initial
conditiony(u, 1) = Id is given byy(u, o) = M (u)M ~1(c), we can now easily write the

solutionz(t) = (£(¢), n(t)) of system (9.1) with initial condition(to) as:

2(t) = zin(to, 1) + /t pt+T,c+T)N(E(0),0 +T,0)do,

to

with
zin(to, 1) = (t + T, to + T)z(to) = M(t + T)M ~Y(to + T)z(to),

and
N(& u,t) = e’ G(zo(u), ) + F(&, u, 1).
The integral equation foz(t) can be also written as
2(t) = M(t + T)M~*(to + T)z(to)
t
+ M(t+ T)/ M Yo +T)N ({(0),0 +T, g) do
to

= 23(0) + M(t +T) / t M~Yo +T)F (g(a), o+T, g) do,

with
At = M(t+T) [M‘l(to +T)2(to)

t
+e? | MY o +T)G (mo(a +7), 3) do] .
to €
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Writing this equation for(t) in components, we obtain

t
€)= &a(t) — W(E+T) / ®(0 +T)f(E(0), 0 + T, 0) do

+®(t+7) t (o +T)f(E(0), 0 + T, 0) do, (9.5)
to
0(t) = E(t) = &) — W (E+T) [ S0 +T)f(E(0),0+T,0)do

to

L0+ T) / W + TV HE), 0 + T, 0) do, 9.6)
where

§u(t) = (it +T) {qy(to +T)E(to) — ®(to + T)n(to)
t
— &P / ®O(o +T)g(xo(c +T),0) da]
to
+d(t+1T) {‘I’/(to +T)E(to) — W(to + T)n(to)
t
+ P / V(o +T)g(zo(c +T),0) da] . 9.7)
to

We have now a suitable expression (9.5)§pand we need to bound the functions
f, g, defined in Egs. (9.2), that appear therein.

Lemma9. If e < 7 < Tp +7/2, it follows that

Ke™*

(ot +T), 1)l < — (9.8)

Moreover, if|¢;| < A\/77 < 1,j=1,2,then

e+ T - e+ Tl <& (Dn+ 25 ) la-al. ©9)

Proof of the lemmaWe first recall that, at-7i/2, yo(u) = 2/coshu has a simple pole,
sinzo(u) = 3o(v) has a double pole, as well as egu) = 1 — yo(u)?/2. In the bound
of ¢ it appears also the bound (1.7)@{0,, 6,) for the complex values (1.8) @, 0,.
In order to boundf it is enough to apply Taylor's Theorem to the functionsin O

Finally here is a technical lemma that will be needed later on. Its proof is straight-
forward (and can be found in [DS92, lemma 7.1] foe 3).

Lemma 10. Lett, tg real, T' complex, such that
ImT| <w/2, —Tp<to+ReT <t+Rel <Ty.

Then, givers € R, the following inequality holds:
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¢ do

5 <K, (),
to |o+T —7i/2° [to.f]

with K = K(Tp, 5) > 0, and

1
. sup——————,  ifBF0,
p[tc’ft](T) = lo+T —7i/2|"
sup|in(le +T — 7i/2|)|, if 8=0,

where the supremum is taken o [to, t].

The proof of the Extension Theorem, for the momentffoe D* = {T € C:0<
ImT < w/2—¢“},is based on the next two propositions. In the first one, the solutions
of system (9.1) with initial conditions (4.1) will be extended uptte t1(7). In the
second proposition, we take= ¢1(7") as the initial time.

We divide the complex stri* in two parts

D ={TeC:1/2—*<ImT < 71/2—¢e}, (9.10)
DM = (T cC:0<ImT < r/2— 23, (9.11)

and define the separation pota€T’) by

g22/3 for T € D,

() +ReT'= { 0, forT e Dl

(9.12)
Proposition 1. Let z = (£(¢), n(t)) be a solution of system (9.1) with initial conditions

satisfying
o) < CP7°, n(to)] < CeP~°. (9.13)

Then, ifp — s — 2a. > 0, there existgy > 0 such that, fol0 < ¢ < &g, (£(¢), n(t)) can
be extended far € [to, t1(T")] and satisfies there the following bound:

|®'(t +T)E@)] + | @(t+T)n(t)] < KeP™. (9.14)

Proof of the propositionWe shall use the method of successive approximations. We
begin the iteration process witfy(t) = 0, and consider fon > 0, the recurrence
suggested by Eq. (9.5):

Enna(t) =&(t) —W(E+T) | (o +T)[f(En(0),0 +T,0)do
to

+o(+T) [ V(o+T)f(En(o),0+T,0)do. (9.15)

to

The firstiterate ig1(¢), as given by Eq. (9.7), and can be bounded easily, using the initial
conditions (9.13), and Lemmas 8, 9, and 10:

K
O] < = [ v K2 [t e 2y (D)) (9.06)

An analogous bound fab’(t + T)&1(¢) follows immediately
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|/ (t+T)er(t)| < K [P 5+ ] + K73 [P + s”fsp[;f)t](T)] .
Now, for 7' € D" we havep;,”4(T) < K7-2*, and forT € D"? we have
to,t](T) < Kr? ,fortg <t < —ReT,
pig(T) < Ke™?, 73 < Ke* for —ReT <t < ty(T),
and, consequently, in all the strip*: T' € D*, and fort € [to, t1(T)], it follows that
ol g(T) < K. (9.17)

Let us remark that the value of(7") has been chosen just in order that bound (9.17)
holds. In this way, we can boun@’ (¢ + T)&1(t)| in a uniform way:|®'(t + T)&1(2)] <
KeP~5, or, in other words|¢;(t)| < KeP~5 /7.

To begin the iteration process, we introduce the norm

1€]] = sup|@'(t + T)E(H)]

where the supremum is taken for € D™ andt € [to, t1(T)]. The above bound on
®'(t + T)&4(t) reads now as

1€a]l < KeP™.

Assuming that|&,_1]|, [|€,]] < KeP~*, we now consider
t
Eul) = 6,0 = —W(+T) [ O +T) [ = fuoa] do
t
FOU+T) [ Wo+T) [fn — foa] do
to

where f;, denotesf(£x(0), o + T, o). Applying Lemmas 8, 9 (with\ = KeP~* and
6 = 1) and 10, as well as inequality (9.17), we obtain

@' (t + T)(€n+1(t) - £n(t))|

t

<K 7-(0')2 (o )3 |£n(0—) fn71(0)| do
1
R /to (o) 7(0)3 \Sn( )= bl o

b er=sdo 3 eP=sdo
S K |:/t0 W"‘T /to (0_)5:| ||§n_§n71||

< K [0 ppt g (1) + 753002 (D] [|€n — &nal
< K‘Sp_s_za ||§n - fnfl‘l )

wherer(c) denoteso + 1" — 7i/2|. Sincep — s — 2a. > 0, if we choose nowgg =
eo(K, p— s — 2) small enough, it follows, by induction, that the following inequalities

. 1
€]l < 2||&ll < KeP™*, |1k — &kl < 5 1€k — &r—1ll, (9.18)



68 A. Delshams, V. Gelfreicid. Jorba, T. Seara

are valid fork > 1, 0 < € < o, and consequentlyf),>o converges uniformly for
T € D" andt € [to, t1(T)] to the first componen{(t) of a solution of system (9.1),
satisfying

@' (t + T)E(H)] < Ker™.

For the second componefit), we simply use its integral Eq. (9.6), and itis straight-
forward to check that
[Pt +Tn(t)| < KeP™*,

and consequently the bound (9.14) is proved.
From bound (9.14) we get the following global estimates
@) < KeP=mo, [n(t)] < KePom2,
for ¢ € [to, ta(1)]. On the final point = ¢,(7), bound (9.14) gives a better estimate

—S —S

eP eP

—s—4a/3
< Kepms4a/3)

|E(tu(T))| < K—— < KeP™*7 23 |n(ty(T))| < K —

1 T1

(9.19)

where we have denoted = |t1(T) +T — mi/2|, and we have used that > £2*/3,
These are the initial conditions for the next proposition.

Proposition 2. Let (£(t), n(t)) be a solution of system (9.1) with initial conditions sat-
isfying (9.19). Then, if — s — 2a > 0, there existgy > 0 such that, fol0 < ¢ < ¢y,
(&(t),m(t)) can be extended fare [t1(T"), To — ReT] and satisfies there the following
bound:

W/ (t + T)EW)| + [W(t +T)p(t)] < KeP——2, (9.20)

Proof of the propositionWe shall use exactly the same method of successive approxi-
mations as in Proposition 1, but replacing the initial conditighy ¢,(7):

t
Enia(t) = &a(t) — W(t+T) ) ®(o +T)f(én(0),0 +T,0)do

+o@t+1T) /tt(T) Yo +T)f(n(0),0+T,0)do. (9.22)

The first iteration givegi(t) as provided by Eg. (9.7), but with(T) instead ofto.
Proceeding like in Proposition 1, but using now the initial conditions (9.19), we can
bound the first iteraté; (¢) as in (9.16):

K _ s gb™s e —
|€1(t)| < — (P75 + %] + K72 { = +eP p[tf(T),t](T)] .

Now the following inequalities hold
iy a@ <K’ pfma@ <K Inml, pf @ <K (9.22)

and consequently we can bouddt + T)¢1(t) as

/ eb™s eb™s p—s—2x
W' (t+T))| < K T+t 3 <e ,
T Tl
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where we have used that> 7, > £22/3, In view of this bound, we define now the norm

€]l = sup[W'(t + T)E()] ,

with the supremum taken fdF € D* andt¢ € [t1(T),To — ReT]. With this new
terminology we have proved that

lea]l < KePmem2e,

and therefore
|E1(t)| < KeP=572272,

For the successive iterates we apply Lemmas 8, 9 (Withi{ P~52> andj3 = —2)
and 10, as well as inequalities (9.22), obtaining

(W't + T)(Enea(t) — &ulD))]

t
T(U)2 (Ep s— 2a+

) |§n(0) §n71(0')| do

=" 2
t 1 2
vx 1L (e, E ) £n(0) — &u-a(0)] do
(T (o) < 7(0)? | 1 |
1t
<K {3 / (77 7(0)! + 77" 7(0)%) do
T Jtu(T)
t
+/ <€p s5— ZaT(O,)+ > do’] an *fn—l”
t1(T) 7(©)
gp—s—2x epb—s p—s—2a -
SK{ i AR po] 60 &l

< KeP™ 2 |g, — &l

wherer(c) has denotetb + T — 7i/2|, andp® has denoted (Tt (T). Sincep — s —
2a > 0, choosing nowg = go(K,p — s — 2a) small enough it gollows by induction
that forn > 1,

- eon 1
HEHH S Kep 2 ) ||£n+l - an S E an - gnfl” 9

and consequently),,>o converges uniformly fof” € D* andt € [t1(T), To — ReT]

to the first componer(t) of a solution of system (9.1), satisfying the required bound.
As in Proposition 2, we can now boun@) from its integral Eq. (9.5), and we finally

obtain bound (9.20). O

Proof of the Extension Theoreffirst consider 6< Im 7' < 7/2 — . Putting Proposi-
tions 1 and 2 together, as well as the bound (9.20) produced by this last proposition, we
immediately obtain the Extension Theorem foxdm 7' < «/2— &<, with the required
estimates.
For—m/2 +e* < ImT < 0 we only have to choode= —7i/2 in the definition of
W (u), in order to get a second solutidr{u) of the linear system (9.3) with a double zero
atu = —mi/2. Lemma 8, as well as Propositions 1 and 2 are also validfgl2 +c* <
ImT < 0, and consequently the Extension Theorem followglforT"| < 7/2 — .
O
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