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Barcelona, Spain. E-mail: amadeu@ma1.upc.es, tere@ma1.upc.es
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Abstract: We consider fast quasiperiodic perturbations with two frequencies (1/ε, γ/ε)
of a pendulum, whereγ is the golden mean number. The complete system has a two-
dimensional invariant torus in a neighbourhood of the saddle point. We study the splitting
of the three-dimensional invariant manifolds associated to this torus. Provided that the
perturbation amplitude is small enough with respect toε, and some of its Fourier coeffi-
cients (the ones associated to Fibonacci numbers), are separated from zero, it is proved
that the invariant manifolds split and that the value of the splitting, which turns out to be
exponentially small with respect toε, is correctly predicted by the Melnikov function.

1. Introduction

At the end of the last century, H. Poincaré [Poi99] discovered the phenomenon of the
splitting of separatrices, which seems to be the main cause of the stochastic behaviour in
Hamiltonian systems. He formulated thegeneral problem of dynamicsas a perturbation
of an integrable Hamiltonian

H(I, ϕ, ε) = H0(I) + εH1(I, ϕ),

whereε is a small parameter,I = (I1, I2, . . . , In), ϕ = (ϕ1, ϕ2, . . . , ϕn). The values of
the actionsI, such that the unperturbed frequenciesωk(I) = ∂H0/∂Ik are rationally
dependent, are calledresonances.

As a model for the motion near a resonance, Poincaré studied the pendulum with a
high-frequency perturbation, which can be described by the Hamiltonian

y2

2
+ cosx + µ sinx cos

t

ε
.

His calculations of the splitting, originally validated only for|µ| exponentially small with
respect toε, predicted correctly the splitting up to|µ| ≤ εp for any positive parameterp
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[Gel97, Tre97]. The main problem in studying such kinds of systems is that the splitting
is exponentially small with respect toε. Namely, Neishtadt’s theorem [Nei84] implies
that in a Hamiltonian of the form

H
(
x, y, t/ε

)
= H0(x, y) + H1

(
x, y, t/ε

)
,

where the Hamiltonian system ofH0 has a saddle and an associated homoclinic orbit,
and the perturbationH1 is a periodic function of time with zero mean value, the splitting
can be bounded from above byO(e−const/ε). For this estimate to be valid all the functions
have to be real analytic inx andy, butC1 dependence on time is sufficient. Lately, the
constant in the exponent was related to the position of complex time singularities of the
unperturbed homoclinic orbit [HMS88, Fon93, Fon95].

The above-mentioned systems provide a realistic model for the motion near a reso-
nance only in the case of two degrees of freedom. If one considers simple resonances of
systems with more than two degrees of freedom, one can choose all the angles except
one to be fast variables.

The simplest case is a quasiperiodic perturbation of a planar Hamiltonian system.
Neishtadt’s averaging theorem was generalized to this case by C. Simó [Sim94], but
the upper bounds provided for the splitting depend in an essential way on the frequency
vector of the perturbation. For a perturbation of the pendulum depending on two frequen-
cies, C. Siḿo [Sim94] checked numerically that a proper modification of the Melnikov
method gives the correct prediction for the splitting.

Autonomous models with perturbations that depend on time in a quasiperiodic way
appear in several problems of Celestial Mechanics. For instance, the motion of a space-
craft in the Earth–Moon system can be modeled assuming that Earth and Moon revolve
in circles around their common centre of masses (this gives an autonomous model),
and the main perturbations (difference between the circular and the real motion of the
Moon, effect of the Sun, etc.) are modeled as a time-dependent quasiperiodic function.
For more details, see [DJS91, GJMS91].

In the present paper we consider a quasiperiodic high-frequency perturbation of the
pendulum, described by the Hamiltonian function

ω · I

ε
+ h(x, y, θ, ε), (1.1)

where

ω · I = ω1I1 + ω2I2, h(x, y, θ, ε) =
y2

2
+ cosx + εpm(θ1, θ2) cosx,

with symplectic form dx ∧ dy + dθ1 ∧ dI1 + dθ2 ∧ dI2. We assume thatε is a small
positive parameter andp is a positive parameter. Mainly due to a technical limitation
imposed by the Extension Theorem (Theorem 3), we will restrict ourselves to the case
p > 3. We also assume that the frequency is of the formω/ε for

ω = (1, γ), γ =

√
5 + 1
2

. (1.2)

The numberγ is the famous golden mean number, which is the “most irrational" number
[Khi63, Lan91]. The equations of motion associated with Hamiltonian (1.1) are
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ẋ = y, ẏ = (1 +εpm(θ1, θ2)) sinx,

θ̇1 =
1
ε
, İ1 = −εp cosx

∂m

∂θ1
(θ1, θ2),

θ̇2 =
γ

ε
, İ2 = −εp cosx

∂m

∂θ2
(θ1, θ2).

(1.3)

ActionsI1 andI2 have only been introduced to put the Hamiltonian in autonomous form,
but are not relevant from a dynamical point of view (note that they do not appear in the
right-hand sides of the equations of motion).

The functionm is assumed to be a 2π-periodic function of two variablesθ1 andθ2.
Thus, it can be represented as a Fourier series:

m(θ1, θ2) =
∑
k1,k2

mk1k2e
i(k1θ1+k2θ2). (1.4)

We assume that, for some positive numbersr1 andr2,

sup
k1,k2

∣∣∣mk1k2e
r1|k1|+r2|k2|

∣∣∣ < ∞, (1.5)

and that there are positive numbersa andk0, such that

|mk1k2| ≥ ae−r1|k1|−r2|k2|, (1.6)

for all |k1|/|k2|, which are continuous fraction convergents ofγ with |k2| ≥ k0. In fact,
k1 andk2 are consecutive Fibonacci numbers:k1 = ±Fn+1 andk2 = ∓Fn. The Fibonacci
numbers are defined by the recurrence:F0 = 1, F1 = 1, Fn+1 = Fn + Fn−1 for n ≥ 1.
We call the corresponding terms in the perturbation to beresonantor Fibonacci terms.

For example, the function

m(θ1, θ2) =
cosθ1 cosθ2

(coshr1 − cosθ1)(coshr2 − cosθ2)

satisfies these conditions.
The upper bound (1.5) implies that the functionm is analytic on the strip{| Im θ1| <

r1} × {| Im θ2| < r2}. Equation (1.6) implies that this function can not be prolonged
analytically onto a larger strip. Let us selectα ∈ (0, 1]. Estimate (1.5) implies that

|m(θ1, θ2)| ≤ Kε−2α (1.7)

on the strip
|Im θ1| ≤ r1 − εα, |Im θ2| ≤ r2 − εα. (1.8)

Formula (1.6) implies that the upper bound (1.7) can not be improved. The value of
the splitting depends essentially on the width of these strips. The functionm under
consideration has a singularity “of second order” in the sense that the upper bound (1.7)
for the maximum of the modulus is quadratic with respect to the inverse of the distance
to the boundary of the strip. In a similar way the case of a singularity of any “order”q
can be considered. In this casemk1k2 should be replaced bymk1k2/|k|q−2 in (1.5) and
(1.6).

An example from [DGJS97b] shows that the Melnikov function and the splitting of
separatrices can be of the order of some power ofε if the functionm is not analytic,
but has only a finite number of continuous derivatives. This makes a first qualitative
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difference between periodic and quasiperiodic perturbations. Indeed, in the periodic
case, only theC1 dependence with respect toθ of the perturbed Hamiltonian is needed
to prove that the splitting isO( e−const/ε). (In both cases, the analyticity with respect to
x, y is essential.)

The Hamiltonian (1.1) can be considered as a singular perturbation of the pendulum

h0 =
y2

2
+ cosx. (1.9)

The unperturbed system has a saddle point (0, 0) and a homoclinic trajectory given by

x0(t) = 4 arctan(et), y0(t) = ẋ0(t). (1.10)

The complete system (1.3) has a whiskered torusT : (0, 0, θ1, θ2). The whiskers are 3D-
hypersurfaces in the 4D-extended phase space (x, y, θ1, θ2). These invariant manifolds
are close to the unperturbed pendulum separatrix.

Our main resultis that forp > 3 and smallε > 0 the invariant manifolds split, and
that the value of the splitting is correctly predicted by the Melnikov function

M (θ1, θ2; ε) =
∫ ∞

−∞
{h0, h}(x0(t), y0(t), θ1 + t/ε, θ2 + γt/ε, ε) dt. (1.11)

To give a more precise statement, we need to introduce a 2 logγ-periodic functionc
defined by

c(δ) = C0 cosh

(
δ − δ0

2

)
for δ ∈ [δ0 − logγ, δ0 + logγ], (1.12)

where

C0 =

√
2π(γr1 + r2)

γ + γ−1
, δ0 = logε∗, ε∗ =

π(γ + γ−1)
2γ2(r1γ + r2)

,

and continued by 2 logγ-periodicity onto the whole real axis. The functionc is piecewise-
analytic and continuous.

Theorem 1 (Main Theorem). Given positive constantsT1 < T2, there exists a canon-
ical coordinate system(H, T, θ1, θ2), such that forp > 3, T1 ≤ T ≤ T2 and realθ1
andθ2, the stable manifold has the equationH = 0, and the unstable manifold can be
represented as the graph of a functionH = Hu(T, θ1, θ2; ε), where the functionHu

depends2π-periodically onθ1 andθ2 and is close to the Melnikov function:∣∣Hu(T, θ1, θ2; ε) − M
(
θ1 − T/ε, θ2 − γT/ε; ε

)∣∣ ≤ constε2p−4 exp

(
−c(logε)√

ε

)
,

(1.13)
with c(δ) as defined in (1.12). If condition(1.6) is fulfilled, then there existsε0 > 0 such
that, for 0 < ε < ε0, the maximum of the modulus of the Melnikov function is larger
than the right hand side of (1.13).

This result, which was already announced in [DGJS97a], is not trivial since the
Melnikov function is exponentially small with respect toε. As we will see, for a fixed
small ε the resonant terms withk1, k2 ∼ const/

√
ε are the ones that give the largest

contribution to the Melnikov function. Condition (1.6) is not needed to get an upper
bound for the Melnikov function of the form
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constεp−1 exp

(
−c(logε)√

ε

)
, (1.14)

as well as the upper bound (1.13), which provide together an upper estimate for the
splitting of separatrices.

We need condition (1.6) to ensure alowerbound for the maximum of the Melnikov
function of the same form (1.14), which dominates the error bound (1.13) and gives rise
to a lower estimate for the splitting of separatrices. If condition (1.6) is not satisfied, we
only get an upper bound for the splitting. In particular, this happens ifm is a trigonometric
polynomial or an entire function. Nevertheless, if the inequality (1.6) is satisfied for a
sufficiently large (but finite) number of consecutive resonant terms, we can still find
small positive numbersε′

0, ε0 > 0, such that the Melnikov function is greater than the
error for small finiteε ∈ (ε′

0, ε0). Then, from a practical point of view, the Melnikov
theory gives a good approximation, but not an asymptotic formula.

It is remarkable that the exponent of the asymptotic expression (1.14) for the Mel-
nikov function is different from the case of a periodic perturbation. There appears not
only a different power ofε, but a periodic functionc(logε) instead of a constant.

In the case of an entire functionm, we think that the method used in the present
paper can be modified in order to improve the estimate of the error and to prove that the
Melnikov function gives an actual asymptotic at least when the resonant terms decrease
not faster than 1/k!.

We note that the Melnikov function is not invariant with respect to canonical changes
of variables. After a change, e.g. after a step of the classical averaging procedure, a lot
of non-zero harmonics, which were not present in the original system, can appear. If
in the original system the Fibonacci terms were not big enough, these new harmonics
may give larger contribution to the splitting. This idea was used in [Sim94] to detect the
splitting for a system with only 4 terms initially present.

The assumption (1.2) thatω in the frequency vector is just (1, γ) can be relaxed.
The generalization of the present result to the case whenγ is a quadratic number is
straightforward, with a similar expression (1.14) for the size of the Melnikov function.
The case in whichω = (ω1, ω2), with the ratioω1/ω2 being of constant type (the con-
tinued fraction expansion has bounded coefficients), but not quadratic, can be similarly
analyzed, but in this casec(δ) is no longer a periodic function. In some sense one can
say, properly speaking, that there are no asymptotics. But it seems that there still exist
upper and lower bounds, with the factor

√
ε in the denominator of the exponential term.

The case of two frequencies whose ratioω1/ω2 is not of constant type, as well as the
case of more than two perturbing frequencies, is more complicated.

Our model is based on the paper [Sim94] by C. Simó, where a lot of semi-numerical
computations were presented. It can be thought of as an intermediate step between a
Hamiltonian with one and a half degrees of freedom and a Hamiltonian withn degrees
of freedom like the following generalization of Arnold’s example:

H(x, φ, y, I, ε, µ) =
1
2
y2 +

1
2
I2 + ε(cosx − 1) +µF (x, φ), (1.15)

wherex ∈ T , φ ∈ T n−1 are the coordinates,y ∈ R, I ∈ Rn−1 are the momenta, which
was introduced by P. Lochak. It is remarkable that in his paper [Loc92, V§2], P. Lochak
was already putting emphasis on perturbationsF with arbitrarily high harmonics, in
contrast with the original Arnold’s example [Arn64], in order to get realistic estimates
for the splitting of separatrices. A similar Hamiltonian (the fast rotator-pendulum model)
was studied by L. Chierchia and G. Gallavotti [CG94], and by G. Gallavotti [Gal94],
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working to all orders of perturbation theory, and expressing the coefficients of theµth

order contribution to the splitting of separatrices as improper time integrals fromt = −∞
to t = +∞. However, by using a perturbationF with finite harmonics, they only were
able to get upper estimates for the splitting.

A related result is the Jeans–Landau–Teller approximation for adiabatic invariants,
where the change of actions is given in first order by a sort of Melnikov function.
Exponentially small upper bounds for the change of actions were obtained by G. Benettin,
A. Carati and G. Gallavotti [BCG97], proving cancellations through tree–like diagrams.
A numerical study performed by G. Benettin, A. Carati and F. Fassò [BCF97] for the case
of a large asymptotic frequencyλ(1, γ) (λ = 1/ε in our notation) withγ =

√
2, a quadratic

number, shows a good agreement between the numerical values of the Melnikov function
and the change of actions.

While we were revising this paper, we became aware of a new version of a remarkable
preprint [RW97b] by M. Rudnev and S. Wiggins, devoted also to the Hamiltonian (1.15).
Assuming similar conditions to (1.5), (1.6) for an even perturbationF (in particular,F
possesses arbitrarily high harmonics), they give exponentially small upper and lower
bounds for the splitting of separatrices forµ = O(εp). It is important to notice that their
results apply ton ≥ 3 degrees of freedom. It is interesting to remark here that since we
restrict ourselves to a more concrete model, we obtain more information about the limit
behaviour of the Melnikov function and the splitting of separatrices, for a lower value
of the exponentp.

The rest of the paper is devoted to the proof of the Main Theorem. In contrast
with the above-mentioned papers, the method used in the present paper is based on the
geometrical ideas proposed by Lazutkin [Laz84] for the study of the separatrix splitting
for the standard map, and adapted to differential equations by the authors [Gel90, DS92,
Gel93]. In Sect. 2, the Melnikov function is carefully analyzed, to provide its asymptotic
behaviour. In Sect. 3, like in [DS92, DS97], and as a first step to give a description of
the dynamics near the 2D-dimensional hyperbolic invariant torusT , the existence of a
convergent normal form is established. This result on the normal form theorem is similar
to Moser’s theorem [Mos56] on the normal form near a periodic hyperbolic orbit, and
to [CG94] and [RW97a] in more general situations. However, our proof (see Sect. 8) is
based on a quadratically convergent scheme, which allows us to show that the loss of
domain in the phasesθ is bounded by

√
ε, as required to obtain an asymptotic formula

for the Melnikov function.
Besides, the Normal Form Theorem ensures that the local unstable manifold is

O
(
εp−1

)
-close to the unperturbed separatrix. In Sect. 4, the Extension Theorem, proved

in Sect. 9, extends this local approximation for solutions of system (1.3) to a global one,
on a suitably chosen complex domain. Since the unperturbed homoclinic orbit comes
back to the domain of the normal form, the same happens to the unstable manifold,
which can be compared with the local stable manifold. This comparison is performed in
Sect. 5, where Theorem 4 is proved, implying immediately the Main Theorem. Finally,
Sect. 6 is devoted to the arithmetic properties of the golden mean numberγ, and in
Sect. 7 some analytic properties of the quasiperiodic functions are studied.

2. Melnikov Function

As is well-known, the Melnikov function (1.11) gives a first order approximation of the
difference between the values of the unperturbed pendulum energyh0 on the stable and
unstable manifolds. The next lemma describes its main features.



Splitting of Separatrices Under Fast Quasiperiodic Forcing 41

Lemma 1 (Properties of the Melnikov function). The Melnikov function defined by
(1.11)is a2π-periodic function ofθ1 andθ2, such that

1) M
(
θ1 − T/ε, θ2 − γT/ε; ε

)
is analytic on the product of strips

{| Im θ1| < r1} × {| Im θ2| < r2} × {| Im T | < π/2};

2) the maximum of the modulus of the Melnikov function,max(θ1,θ2)∈T 2 |M (θ1, θ2; ε)|,
taken on the real arguments, can be bounded from above and from below by terms
of the form

constεp−1 exp

(
−c(logε)√

ε

)
with differentε-independent constants, where the functionc in the exponent is defined
by (1.12);

3) for a fixed smallε only 4 terms dominate in the Fourier series for the Melnikov
function and the rest can be estimated from above byO(e−C1/

√
ε), where the constant

C1 > maxc(δ) = C0 cosh(log
√

γ).

Remark 1.The number of leading terms depends onε. In fact, the largest terms cor-
respond to (k1, k2) = ±

(
Fn(ε)+1, −Fn(ε)

)
, whereFn(ε) is the Fibonacci number closest

to F ∗(ε) =
√

φ0/ε, φ0 being a constant to be defined later in this section. Except for
a small neighbourhood ofε = ε∗γ−n, there is only one Fibonacci number closest to
F ∗(ε), and then only two corresponding terms dominate in the Fourier series.

Proof of the lemma.Taking into account the explicit formula (1.10) forx0(t) andy0(t)
we obtain easily that

M (θ1, θ2; ε) = εp

∫ ∞

−∞
y0(t) sin(x0(t))m(θ1 + t/ε, θ2 + γt/ε) dt

= −εp

∫ ∞

−∞

4 sinht

cosh3 t
m(θ1 + t/ε, θ2 + γt/ε) dt.

To prove the assertion 1) of the lemma we note that

M
(
θ1 − T/ε, θ2 − γT/ε; ε

)
= −εp

∫ ∞

−∞

4 sinh(t + T )

cosh3(t + T )
m(θ1 + t/ε, θ2 + γt/ε) dt,

and the last integral is analytic with respect toθ1, θ2 andT . For the Fourier coefficients
of the Melnikov function we have

Mk1,k2(ε) = −εp

∫ ∞

−∞

4 sinht

cosh3 t
ei(k1+γk2)t/ε dt mk1k2.

Calculating the integral by residues we obtain

Mk1,k2(ε) = − 2πiεp(k1 + γk2)2

ε2 sinh
(

π(k1+γk2)
2ε

) mk1k2. (2.1)

All these coefficients are exponentially small with respect toε, but the constant in the
exponent depends, in an essential way, on the coefficient index. The dependence on
the largest Fourier coefficients onε is represented in Fig. 1 in logarithmic scale for a
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Fig. 1. Each dashed line represents a Fourier coefficient of the Melnikov function as a function ofε:
−√

ε log10 |Mk1k2(ε)| versus− log10 ε. The solid line represents the maximum of the modulus of the Mel-
nikov function in the same scale.

perturbation with|mk1k2| = 1. In this figure for a fixed first coordinate the lower is a
point, the larger is the value. The scale is chosen in such a way that a horizontal line
corresponds to the function exp(−C/

√
ε) for some constantC.

The most important resonant terms correspond to Fibonacci numbers, that is|k1| =
Fn+1, |k2| = Fn. Taking into account (1.5), (1.6) and (6.3) we bound these coefficients
from below and from above by the terms of the form

const
εp−2

F 2
n

exp

(
− πCF

2εFn
− (r1γ + r2)Fn

)
.

For a fixed value ofε the first term in the exponent is an increasing function ofFn and
the second one is decreasing. In order to describe this competition it is convenient to
rewrite the last formula as

const
εp

ε2F 2
n

exp

(
−

C0 cosh
(

1
2 log(εF 2

n) − 1
2 logφ0

)
√

ε

)
,

where

C0 =
√

2πCF (r1γ + r2), φ0 =
πCF

2(r1γ + r2)
.

For a fixedε, the largest term corresponds to the minimal value of the numerator or,
equivalently, minimizes| log(εF 2

n) − logφ0|. This happens forFn closest to

F ∗(ε) =

√
φ0

ε
.

That is, the index of the most important terms in the Fourier series for the Melnikov
function grows as 1/

√
ε. Except whenF ∗(ε) lies exactly in the centre of an interval

[Fn, Fn+1] there is only one Fibonacci number closest toF ∗(ε). The index of the leading
term changes whenε crosses this value. In a small neighbourhood of this value two terms
are of the same order. In fact, the number of leading terms is two or four, respectively,
since we have to take into account complex conjugate coefficients, (−k1, −k2).

SinceFn = CF (γn+1 + (−1)nγ−n−1) we have

log(εF 2
n) = logε + 2(n + 1) logγ + logCF + 2 log

(
1 + (−1)nγ−2n−2

)
.
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The value of this expression repeats with the error of the orderO(γ−2n−2) = O(F−2
n ) =

O(ε) when we increasen by 1 and simultaneously decrease logε by 2 logγ. Thus we
obtain that supk1k2

|Mk1k2(ε)| can be estimated from below and from above by

constεp−1 exp

(
−c(logε)√

ε

)
,

where the functionc was defined by (1.12). In the exponent the numerator oscillates
betweenC0 andC0 cosh

(
log

√
γ
)

with the period 2 logγ in logε.
In particular, this gives the lower bound for the maximum of the Melnikov function

modulus, since a Fourier coefficient of a function cannot be larger than the maximum
value of the function.

The Fourier coefficients which are not related to the Fibonacci numbers, can be
estimated in the same manner, but with a constant larger thanCF . That implies that they
are exponentially small with respect to the Fibonacci ones for small values ofε. The
proof of the fact that the sum of these terms is also exponentially small is straightforward,
and we omit it since it literally repeats the proof of Lemma 4.�

As we have established that for most small values ofε only the terms with (k1, k2) =
±(Fn(ε)+1, −Fn(ε)) are important, the Melnikov function is essentially

M (θ1, θ2; ε) ≈ 2
∣∣MFn(ε)+1,−Fn(ε) (ε)

∣∣ sin
(
Fn(ε)+1θ1 − Fn(ε)θ2 + ϕ(ε)

)
.

The zeros of the Melnikov function correspond to homoclinic trajectories. The above
formula implies that the zeros of the Melnikov function form two lines on the torus. As
already noticed by C. Siḿo [Sim94], the averaged slopes of those lines approachγ when
ε → 0.

3. Normal Form and Local Manifolds

As we have seen during the analysis of the Melnikov function, the size of the splitting
depends essentially on the widths of the analyticity strip (r1, r2) of the angular variables
θ1, θ2, as well as on the width of the analyticity strip of the separatrix (x0(t), y0(t)).
Therefore, to detect the splitting in the quasiperiodic case the loss of domain in the
angular variables must be very small (i.e.,O(εα), whereα depends on the Diophantine
properties of the frequencies). This makes another difference with the periodic case,
where the size of the splitting doesnot depend on the width of the analyticity strip of
the angular variableθ, but only on the width of the analyticity strip of the separatrix
(x0(t), y0(t)). When dealing with the frequencies (1/ε, γ/ε) one needs a reduction of
O(

√
ε) at most. Hence, during the proof of the convergence of the normal form one has

to bound carefully the loss of domain (with respect to the angular variables) in order to
achieve such a small reduction.

Finally, we want to stress that if the amount of reduction is something bigger, one
can only produce upper bounds for the splitting of separatrices.

Theorem 2 (Normal Form Theorem). Let ε ∈ (0, ε0). In a neighbourhood of the hy-
perbolic torusT there is a canonical change of variables(x, y) 7→ (X, Y ), which
depends2π-periodically onθ1 andθ2, such that the Hamiltonian(1.1) takes the form

H(XY, ε) = H0(XY ) + εp−1H1(XY, ε),
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whereH0 is the normal form Hamiltonian for the unperturbed pendulum. Moreover, the
change of variables has the form

x = x(0)(X, Y ) + εp−1x(1)(X, Y, θ1, θ2, ε),
y = y(0)(X, Y ) + εp−1y(1)(X, Y, θ1, θ2, ε),

(3.1)

where(x(0), y(0)) are normal form coordinates for the unperturbed pendulum.
The functionsH0, H1, x(0), y(0), x(1) andy(1) are analytic and uniformly bounded in

the complex domain defined by

|X|2 + |Y |2 < r2
0, | Im θ1| < r1 −

√
ε, | Im θ2| < r2 −

√
ε,

for r1 andr2 from (1.5)and some positive constantr0 > 0.

We prove this theorem in a more general form in Sect. 8.
In the normal form coordinates the stable whisker is given by the equationX = 0 and

the unstable one by the equationY = 0. Letλ = H ′(0, ε). The Normal Form Theorem
provides a convenient parameterization for the invariant manifolds:

x = xs(T, θ1, θ2, ε) ≡ x(0, e−λT , θ1, θ2, ε),
y = ys(T, θ1, θ2, ε) ≡ y(0, e−λT , θ1, θ2, ε),

(3.2)

and
x = xu(T, θ1, θ2, ε) ≡ x(eλT , 0, θ1, θ2, ε),
y = yu(T, θ1, θ2, ε) ≡ y(eλT , 0, θ1, θ2, ε),

(3.3)

where we have used the change (3.1). Theorem 2 also implies that there is a positive
ε-independent numberT0, such that

|xu(T, θ1, θ2, ε) − x0(T )| ≤ Cεp−1

|yu(T, θ1, θ2, ε) − y0(T )| ≤ Cεp−1 for T ≤ −T0, (3.4)

and
|xs(T, θ1, θ2, ε) − x0(T )| ≤ Cεp−1

|ys(T, θ1, θ2, ε) − y0(T )| ≤ Cεp−1 for T ≥ T0. (3.5)

4. Extension Theorem

By the Normal Form Theorem, the unstable manifold isO
(
εp−1

)
-close to the unper-

turbed separatrix. The next theorem extends this local approximation to a global one.
Since the unperturbed separatrix (x0(T ), y0(T )) has a singularity onT = ±π/2, we
will restrict ourselves to|Im T | ≤ π/2 −

√
ε, i.e., up to a distance to the singularity

T = ±π/2 of the same order as the loss of domain in the angular variables. Besides, the
extension timet + T will be chosen big enough in order that the unperturbed separatrix
reaches again the domain of convergence of the normal form.

Theorem 3 (Extension Theorem).Let (x0(t), y0(t)) be the unperturbed homoclinic
trajectory given in (1.10), letα ∈ (0, 1), s = 2α, and assumep − s − 2α > 0. Then,
there existsε0 > 0 such that the following extension property holds:

For any positive constantsC andT0 there exists a constantC1, such that for any
ε ∈ (0, ε0), every solution of system(1.3) that satisfies the initial conditions
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|x(t0) − x0(t0 + T )| ≤ Cεp−s, |y(t0) − y0(t0 + T )| ≤ Cεp−s, (4.1)

|Im θ1(t0)| ≤ r1 − εα, |Im θ2(t0)| ≤ r2 − εα,

for someT ∈ C, t0 ∈ R with

|Im T | ≤ π/2 − εα, −T0 ≤ t0 + ReT ≤ 0,

can be extended for−T0 ≤ t + ReT ≤ T0 and verifies there

|x(t) − x0(t + T )| ≤ C1ε
p−s−2α, |y(t) − y0(t + T )| ≤ C1ε

p−s−2α.

The proof is given in Sect. 9. From now on we fixα = 1/2. Theorem 3 can be
applied to get an approximation for the stable and the unstable manifold. As we will see
in Sect. 7, constructing the approximation for the invariant manifolds in such a complex
domain enables us to bound the error on the real axis in a way sufficiently precise to
detect the splitting.

Corollary 1. The following estimate holds:

h0(xu, yu) − h0(xs, ys) = M (θ1 − T/ε, θ2 − γT/ε; ε) + O
(
ε2(p−2)

)
, (4.2)

where the value ofh0 is evaluated at points of the invariant manifolds corresponding to
(T, θ1, θ2, ε) such that

ReT ∈ (T0 −R, T0), | Im T | ≤ π/2−
√

ε, | Im θk| ≤ rk −
√

ε, k = 1, 2, (4.3)

for any positive constantsT0 andR, R < T0. The constant in the estimate(4.2)depends
on these two constants.

Proof of Corollary 1.Sinceḣ0 = {h0, h}, we have

h0(xu, yu) =
∫ 0

−∞
{h0, h}(xu, yu, θ + ωt/ε, ε) dt

and

h0(xs, ys) = −
∫ +∞

0
{h0, h}(xs, ys, θ + ωt/ε, ε) dt.

Inside the above integrals the functionsxu,yu,xs,ys are evaluated on (T +t, θ+ωt/ε, ε),
with θ + ωt/ε = (θ1 + t/ε, θ2 + γt/ε). We can write the difference in the form

h0(xu, yu) − h0(xs, ys) =
∫ +∞

−∞
{h0, h}(x0(t + T ), y0(t + T ), θ + ωt/ε, ε) dt

+
∫ 0

−∞

(
{h0, h}(xu, yu, θ + ωt/ε, ε) − {h0, h}(x0, y0, θ + ωt/ε, ε)

)
dt

+
∫ +∞

0

(
{h0, h}(xs, ys, θ + ωt/ε, ε) − {h0, h}(x0, y0, θ + ωt/ε, ε)

)
dt.

We have three integrals in this expression. The first one is the Melnikov integral, and we
have to bound the second and third one. We note that
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{h0, h}(x, y, θ1, θ2, ε) = εp y sinx m(θ1, θ2)

and, consequently, since by (1.7)|m(θ1, θ2)| ≤ K/ε holds on (4.3), we get∣∣∣{h0, h}(xu,s, yu,s, θ1, θ2, ε) − {h0, h}(x0, y0, θ1, θ2, ε)
∣∣∣

≤ Kεp−1
(
|yu,s − y0| | sinxu,s| + |y0| | sinxu,s − sinx0|

)
.

We note that sinxu,s decrease exponentially ast goes to±∞, respectively, as well asy0
ast goes to both±∞. Then the extension theorem and the estimates (3.4–3.5) imply that
the second and third integrals are bounded byO

(
ε2(p−2)

)
andO

(
ε2(p−1)

)
, respectively.

Indeed, for the third integral we only have to use the estimate (3.4) to get aO(ε2(p−1))-
bound, and for the second integral, we only have to use the extension theorem to get a
O(ε2(p−2))-bound. (See Lemma 10 for related bounds.)�

5. First return

A trajectory with initial conditions on the local unstable manifold leaves the domain
of the normal form. Such a trajectory remains close to the homoclinic trajectory of the
unperturbed pendulum at least during the time sufficient for the unperturbed trajectory
to come back to the domain of the normal form. This part of the unperturbed separatrix,
and, consequently, the corresponding part of the unstable manifold are close to the local
stable manifold.

In order to describe the difference between the unstable and local stable manifolds it
is convenient to takeH andT = − logY/

(
H ′(XY )

)
as canonical coordinates near the

stable separatrix. The equation of the local stable manifold isH = 0. In this coordinate
system the unstable separatrix is a graph of a quasiperiodic function. This function is
approximately the Melnikov function with the errorO

(
ε2p−4

)
. We use Fourier series

arguments to show that on the real value of the arguments the remainder is exponentially
small. It is less than the amplitude of the Melnikov function, as shown in the next theorem,
which contains the Main Theorem.

Theorem 4. There exist positive constantsT0 andR, R < T0, such that in the coordi-
nate system(H, T, θ1, θ2) the unstable manifold can be represented as the graph of the
functionH = Hu(T, θ1, θ2; ε), where the functionHu depends2π-periodically onθ1
andθ2. In the domain

ReT ∈ (T0 − R, T0), | Im T | ≤ π

2
−

√
ε,

| Im θ1| < r1 −
√

ε, | Im θ2| < r2 −
√

ε,
(5.1)

this function is analytic and close to the Melnikov function:

Hu(T, θ1, θ2; ε) = M (θ1 − T/ε, θ2 − γT/ε; ε) + O
(
ε2p−4

)
. (5.2)

Moreover,
Hu(T, θ1, θ2; ε) = Hu(0, θ1 − T/ε, θ2 − γT/ε; ε), (5.3)

and its mean value is zero:
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T 2

Hu(0, θ1, θ2; ε) dθ1dθ2 = 0. (5.4)

Furthermore, forp > 3 and realT , θ1 andθ2,∣∣Hu(T, θ1, θ2; ε) − M
(
θ1 − T/ε, θ2 − γT/ε; ε

)∣∣ ≤ constε2p−4 exp

(
−c(logε)√

ε

)
,

(5.5)
wherec(δ) is defined in (1.12). If the condition(1.6)is fulfilled then the Melnikov function
is larger than the right-hand side of (5.5).

Proof. The equation of the unstable manifold is

x = xu(Tu, θ1, θ2, ε), y = yu(Tu, θ1, θ2, ε).

The Extension Theorem implies that they areεp−2-close to the pendulum separatrix for
| ReTu| < T0. ChoosingT0 large enough we ensure that the segment of the unstable
separatrix, which correspond toT0 − R < ReTu < T0, belongs to the domain of the
normal form. Then we can represent this segment in the parametric form

H = H̃u(Tu, θ1, θ2, ε), T = T̃ (Tu, θ1, θ2, ε), (5.6)

evaluatingH andT at a pointx = xu(Tu, θ1, θ2, ε), y = yu(Tu, θ1, θ2, ε). Denote byXu

andY u the value of the normal form coordinates at the corresponding point. As it was
pointed out previously, the stable manifold is given byXs = 0 andY s(T, θ1, θ2) = e−λT .
Using the Normal Form theorem, we obtain

H̃u(Tu, θ1, θ2, ε)

= H(XuY u, ε) = H(XuY u, ε) − H(XsY s, ε)

= H0(XuY u) − H0(XsY s) + εp−1
(
H1(XuY u, ε) − H1(XsY s, ε)

)
= H0(XuY u) − H0(XsY s) + O

(
ε2(p−2)

)
= H0(X (0)(xu, yu)Y (0)(xu, yu)) − H0(X (0)(xs, ys)Y (0)(xs, ys)) + O

(
ε2(p−2)

)
= h0(xu, yu) − h0(xs, ys) + O

(
ε2(p−2)

)
,

whereX (0) andY (0) denote the normal form coordinates of the unperturbed pendulum.
Here the parameterizations of both invariant manifolds are taken at a point (Tu, θ1, θ2, ε).
Together with the estimate (4.2) this implies

H̃u(Tu, θ1, θ2, ε) = M
(
θ1 − Tu/ε, θ2 − γTu/ε; ε

)
+ O

(
ε2(p−2)

)
. (5.7)

Now we have to eliminate the parameterTu. From

T̃ (Tu, θ1, θ2, ε) = T (Xu(Tu, θ1, θ2, ε), Y u(Tu, θ1, θ2, ε))

= T (X (0)(xu, yu), Y (0)(xu, yu)) + O(εp−2)

= T
(
X (0)(x0(Tu), y0(Tu)), Y (0)(x0(Tu), y0(Tu))

)
+ O(εp−2)

= Tu + O(εp−2)

on the domain (5.1), we get, by Cauchy estimates, that

∂T̃

∂Tu
(Tu, θ1, θ2, ε) = 1 +O(εp−5/2).
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If p > 5/2, the Implicit Function Theorem allows us to eliminateT̃ from the first
equation in (5.6) and to obtain the estimate (5.2).

Suppose for a moment that the mean value of the functionHu(T, θ1, θ2; ε) with
respect to the angle variables is equal to zero. Then the estimate (5.5) for realT , θ1 and
θ2, is a consequence of the quasiperiodicity ofHu, the estimate (5.2) and of Lemma 4
of Sect. 7. In the last lemma one has to replacer1 andr2 by r1 −

√
ε andr2 −

√
ε,

respectively, and takeρ = π/2 −
√

ε.
Lemma 1 shows that forp > 3 the amplitude of the Melnikov function is larger than

the error term in (5.5). The exponentially small upper bound for the error is proved for
p > 5/2. So what we have for 5/2 < p ≤ 3 is a very sharp upper bound for the splitting.

To use Lemma 4 we have to prove that the mean value of the functionHu(T, θ1, θ2; ε)
with respect to the angle variables is equal to zero. Indeed, in the variablesH, T, θ1, θ2
the equations of motion have the form

Ḣ = 0, Ṫ = 1, θ̇1 =
1
ε
, θ̇2 =

γ

ε
,

SinceH is an integral of motion we obtain (5.3).
The proof of the equality (5.4) is completely analogous to the case of periodic

perturbation. Consider the part of the phase space bounded by a KAM torus and the
segments of the stable and unstable separatrices. Since the flow is Hamiltonian the
volume of this subset is time-invariant, that is, the volume of the trajectories which enter
the subset equals the volume of the trajectories which leave it. The trajectories may enter
or leave this subset only through the “turnstile” formed by the split separatrices. The
algebraic value of the volume, which passes through the “turnstile” during a small time
interval1t, may be evaluated in the coordinate system (H, T, θ1, θ2) as

1t

∫ ∫
T 2

Hu(T, θ1, θ2; ε) dθ1dθ2.

By (5.3), this integral does not depend onT , and thus it should be zero.
In other words, the equality (5.4) means that in average there is no diffusion in the

direction of theT -axis. �

6. Rational Approximation of γ

In this section we discuss the approximations of the numberγ =
√

5+1
2 by rational

numbers. The best approximation is given in terms of Fibonacci numbers, which are
defined by the following recurrent formula

F0 = 1, F1 = 1 Fn+1 = Fn + Fn−1, n > 1.

It is easy to check the following:

Fn−1 =
γn − (−1)nγ−n

γ + γ−1
, (6.1)

and

Fn − γFn−1 =
(−1)n

γn
=

(−1)n

Fn + γ−1Fn−1
. (6.2)

For large values ofn this implies
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Fn − γFn−1 = (−1)n
CF

Fn−1
+ O

(
1

F 3
n−1

)
, CF =

1
γ + γ−1

. (6.3)

The estimation of the following lemma is not sharp, but it is sufficient for our purposes.

Lemma 2. If N ∈ N is not a Fibonacci number, then for all integersk,

|k − γN | >
γCF

N
. (6.4)

Proof. The first Fibonacci numbers areF1 = 1,F2 = 2,F3 = 3 andF4 = 5. Let us define

dn = min
1≤j<Fn

min
k

|k − γj|.

Equation (6.2) implies thatd2 = γ−2 andd3 = γ−3.
Suppose thatd′

n = γ−n′
for all n′, 2 ≤ n′ ≤ n. First, consider an integer numberj,

Fn < j < Fn+1, and letj′ = j − Fn. Obviously, 1≤ j′ < Fn+1 − Fn = Fn−1 and we
have for allk

|k − γj| = |k − Fn+1 − γj′ + (Fn+1 − γFn)|
≥ |k − Fn+1 − γj′| − |Fn0+1 − γFn|
≥ dn−1 − γ−n−1 = γ−n+1 − γ−n−1 = γ−n. (6.5)

Then takej = Fn,
min

k
|k − γj| = |Fn+1 − γFn| = γ−n−1.

Comparing with the previous inequality, we see that the minimum is reached at the
Fibonacci numbers. So we havedn+1 = γ−n−1. Consequently, by induction we obtain
that

dn = γ−n for all n ≥ 2.

Now consider a non Fibonacci numberN , let Fn < N < Fn+1. Formula (6.1)
implies that ifN > Fn, thenN > γ+1

γ+2γ
n. The estimates, (6.5) withj = N implies that

|k − γN | > γ−n ≥ γ + 1
γ + 2

1
N

,

which is equivalent to the desired estimate (6.4).�

7. Exponentially Small Upper Bounds

The following two lemmas provide a tool to pass from estimate (5.2) to the sharp esti-
mate (5.5). The proof of the first lemma is standard.

Lemma 3. LetF (θ1 + s/ε, θ2 +γs/ε) be a2π-periodic function of the variablesθ1, θ2,
analytic in the product of strips|Im θ1| ≤ r1, |Im θ2| ≤ r2 and|Im s| ≤ ρ, and|F | ≤ A
for these values of the variables. Then for allk1, k2 ∈ Z,

|Fk1k2| ≤ Ae−|k1|r1−|k2|r2e−ρ|k1+γk2|/ε. (7.1)
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Consider the (2 logγ)-periodic functioncρ,r1,r2(δ) defined on the interval [logε∗ −
logγ, logε∗ + logγ] by

cρ,r1,r2(δ) = C0 cosh

(
δ − logε∗

2

)
, (7.2)

ε∗ =
ρ(γ + γ−1)

(γr1 + r2)γ2
, C0 = 2

√
(γr1 + r2)ρ
γ + γ−1

, (7.3)

and continued by 2 logγ-periodicity.
The following lemma gives the exponentially small upper bound for the functionF

for real values of the variables.

Lemma 4. Let F satisfy the conditions of Lemma 3. Ifγ = (
√

5 + 1)/2 is the golden
mean number and the mean value of the functionF is zero, then

|F (θ1, θ2)| ≤ constA exp

(
−cρ,r1,r2(logε)√

ε

)
(7.4)

on the real values of its arguments. The constant depends continuously onr1 andr2 on
r1 > 0 andr2 > 0.

Proof. If the arguments of the functionF are real, then

|F (θ1, θ2)| ≤
∑

|k1|+|k2|6=0

|Fk1k2|

≤ A
∑

|k1|+|k2|6=0

exp(−|k1|r1 − |k2|r2 − ρ|k1 + γk2|/ε),
(7.5)

due to the estimate (7.1). In order to estimate the last sum in (7.5) we separate it into
two parts. The first one contains non-resonant terms, that is, all the terms such that
|k1 + γk2| ≥ 1/2. We easily obtain the upper estimate∑

|k1+γk2|≥1/2

e−|k1|r1−|k2|r2−ρ|k1+γk2|/ε

< e−ρ/(2ε)
∑

|k1|+|k2|6=0

e−|k1|r1−|k2|r2 =
2(e−r1 + er2 − e−r1−r2)e−ρ/(2ε)

(1 − e−r1)(1 − e−r2)
. (7.6)

For the resonant terms we have|k1+γk2| < 1/2. Obviously, for everyk2 there exists
exactly one integerk1 = k1(k2) such that this inequality holds. Since the coefficients of
the sum (7.5) are even with respect to (k1, k2) we can assume thatk2 is positive and, at
the end, multiply the estimates by 2.

The sum of the resonant terms withk2 ≥ ε−1 can be easily estimated:∑
k2≥ε−1

e−|k1|r1−|k2|r2−ρ|k1+γk2|/ε ≤
∑

k2≥ε−1

e−|k1|r1−|k2|r2

≤
∑

k2≥ε−1

er1/2−(γr1+r2)k2 ≤ er1/2e−(γr1+r2)/ε

1 − e−(γr1+r2)
. (7.7)
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Now we estimate the resonant terms with 1≤ k2 < ε−1. The number of such terms is
large, but finite. We will show that all of them, except at most 4, can be estimated by
O(e−C1/

√
ε) with a constantC1 > maxδ cρ,r1,r2(δ) = C0

(
γ1/2 + γ−1/2

)
/2.

Let B denote the following expression from the exponent of the right hand of (7.5),
obtained after substituting|k1| = γk2:

B(k2, ε) = (γr1 + r2)k2
√

ε +
ρ|k1 + γk2|√

ε
.

It is sufficient to provide an appropriate lower bound for this function.
If k2 is not a Fibonacci number, then we use Lemma 2:

B(k2, ε) ≥ (γr1 + r2)k2
√

ε +
ργCF

k2
√

ε
≥ 2

√
(γr1 + r2)ργCF ≡ C1 =

√
γC0.

If k2 is a Fibonacci number, then instead of (6.4), we use (6.2)

|k1 + γk2| =
1

|k1 + γ−1k2|
≥ 1

γk2 + 1 +γ−1k2
=

CF

k2 + CF

to obtain

B(k2, ε) ≥ (γr1 + r2)k2
√

ε +
ρCF

(k2 + CF )
√

ε
.

Providedε is small, 0< ε < ε0, there are two positive numbersK1 andK2, such that
the right hand side of the last inequality is larger thanC1 for k2 outside the interval
(K1/

√
ε, K2/

√
ε). Moreover, this interval contains at most 2 Fibonacci numbers, that

is,
B(k2, ε) ≥ C1 (7.8)

for all except at most 2 terms. For these exceptional terms

B(k2, ε) ≥ (γr1 + r2)k2
√

ε +
ρCF

k2
√

ε
−

√
ε

ρC2
F

K1(K1 + CF
√

ε)
,

and it is convenient to rewrite

B(k2, ε) ≥ C0 cosh

(
log(k2

√
ε) − log

√
ρCF

γr1 + r2

)
− O(

√
ε).

The aboveO(
√

ε) term affects only the constant in front of the estimate (7.4), since the
terms in the sum of the right hand of (7.5) are of the form exp(−B(k2, ε)/

√
ε). Sincek2

is a Fibonacci number,k2 = Fn for somen and taking into account (6.1), we obtain

B(k2, ε) ≥ C0 cosh

(
1
2

logε + n logγ + log
γ + 1
γ + 2

− log

√
ρCF

γr1 + r2

)
− O(

√
ε).

The envelope of this family of curves is the functioncρ,r1,r2(δ) defined by Eq. (7.2).
Thus, in the sum of the resonant terms there is one leading term which is exponentially

larger than the others except in the neighbourhoods ofε = ε∗γn, when the index of the
leading term changes, and there are two terms of the same order. Moreover, we have
established that for all resonant terms, withk2 < ε−1,

B(k2, ε) ≥ cρ,r1,r2(logε) − O(
√

ε).

Together with the estimates (7.6), (7.7) and (7.8), this completes the proof.�
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8. Normal Form Theorem

This theorem gives a convergent normal form in a neighbourhood of a hyperbolic torus
of a one degree of freedom Hamiltonian system under quasiperiodic time-dependent
perturbations (with two frequencies). The main contribution is that the convergence is
ensured in a wide domain of the angle variablesθ of the perturbation: the loss of domain
is onlyO

(√
ε
)

in the complex direction ofθ.

Theorem 5 (Normal Form Theorem). LetK be a Hamiltonian of the form

K(x, y, θ, p, ε) =
ω

ε
· p + h0(x, y, ε) + εqh1(x, y, θ, ε), (8.1)

with regard to the symplectic formdx∧ dy+ dθ∧ dp, withh0,h1 analytic in the variables
x, y, θ and with continuous (and bounded) dependence onε, on the set|x| , |y| < r0,
|Im θi| < ρi −

√
ε (i = 1, 2), 0 < ε < ε0, for some positive constantsr0, ρ = (ρ1, ρ2)

andε0. Assume also:

1. There existsc > 0 such that|k · ω| ≥ c/ |k|, ∀k ∈ Z2 \ {0}.
2. The origin is a saddle point of the Hamiltonianh0(x, y, 0).
3. h1(0, 0, θ, ε) = ∂xh1(0, 0, θ, ε) = ∂yh1(0, 0, θ, ε) = 0.

Then, there existsε1 (0 < ε1 < ε0), r1 (0 < r1 < r0) and a canonical change of
variables

x = x(0)(X, Y, ε) + εqx(1)(X, Y, θ, ε),

y = y(0)(X, Y, ε) + εqy(1)(X, Y, θ, ε),

θ = θ,

p = p(X, Y, θ, P, ε),

analytic in the variablesX, Y , θ, P , and bounded and continuous inε, on the set
|x| , |y| < r1, |Im θi| < ρi − 2

√
ε (i = 1, 2), 0 < ε < ε1, which transforms Hamilto-

nian (8.1) into its normal form:

K(X, Y, P, ε) =
ω

ε
· P + H0(XY, ε) + εqH1(XY, ε).

Moreover, the canonical change of variables

x = x(0)(X, Y, ε),

y = y(0)(X, Y, ε),

transforms the unperturbed Hamiltonianh0 into its normal formH0.

8.1. Idea of the Proof.The proof is based on a quadratically convergent scheme, similar
to the one used in the proof of KAM Theorem (see [Arn63]).

The first step is to put the Hamiltonian in the action-angle variables ofH0:

ω

ε
· p + H0(z, ε) + εqH1(z, ϕ, θ, ε),

where the couples (z, ϕ) and (p, θ) correspond to canonically conjugated variables. Here
H0(z, 0) is the normal form of the unperturbed Hamiltonian.
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The next step is to start a sequence of changes of variables to kill the termεqH1, in
the same way as it is done in the proof of the KAM Theorem. The main difference is
due to the fact that the “small” divisors we will obtain are of the form

ε`λ0(z, ε) +
√

−1k · ω, ` ∈ Z, k ∈ Z2, |`| + |k| 6= 0,

where bothλ0(z, ε) := ∂zH0(z, ε) and ω are real. This makes that all the divisors
with ` 6= 0 are separated from zero, so they do not produce convergence problems.
The only small divisors correspond to the case` = 0, so we will askω to satisfy a
suitable Diophantine condition. In this case,as ω is fixed in all the iterative process
(see Lemma 7), the initial Diophantine condition will be satisfied in all the steps of
the iterative scheme. This also implies that we can have convergence on an open set
of the phase space. This makes a difference with standard KAM problems: there it is
usual that frequencies depend on actions and then they have to be controlled at each step
of the proof. This leads us to take out a Cantor-like set of actions, so the convergence
is only proved on sets with empty interior. Finally, let us comment that the quadratic
convergence allows us to be very strict in the amount of domain lost at each step, so we
have been able to show that the loss of domain in theθ variables is bounded by

√
ε.

We want to stress that the good properties of this case are due to the fact that
the unperturbed problem has a saddle point with one degree of freedom. If the saddle
is replaced by a centre (with one or more degrees of freedom) we obtain a standard
KAM Theorem valid only on a set with empty interior (see [JS96]). If the unperturbed
Hamiltonian has a saddle point with more than one degrees of freedom we obtain new
small divisors (the resonances between the eigenvalues of the saddle whenk = 0), that
require to be controlled by using the actions of the Hamiltonian. This produces a KAM
Theorem on the conservation of hyperbolic invariant manifolds.

There is another detail worth comment: if we proceed exactly in the way mentioned
above, we have technical problems due to the lack of definition of action-angle variables
at the origin (we want to show convergence on a neighbourhood of that point!). To
avoid this difficulty, we will work all the time with spatial (cartesian) coordinates, but
grouping them as if they were the action and angle ones. One can see that (some of)
these groupings have poles at the origin (as expected), but they also have factors that
cancel those singularities (as expected too). So, bounding them together we can show
that the whole thing is well defined and it is convergent in a neighbourhood of the origin.

Now, let us go on to the details.

8.2. Technical lemmas.This section contains the lemmas used during the proof of
Theorem 5.

Lemma 5. Let ω = (ω1, ω2) ∈ R2 such that|k · ω| ≥ c/ |k|, ∀k ∈ Z2 \ {0}, for some
constantc > 0. Then there exists a constantβ = β(ω) > 0 such that the following
inequality holds for allα ∈ (0, 1]:∑

k∈Z2\{0}

e−α|k|

|k · ω| ≤ β

α2
.

Proof. Assume, for instance, that|ω1| ≤ |ω2|. Given an integerk1 6= 0, there exists
a unique integerk2 = k∗

2(k1) such that|k1ω1/ω2 + k2| < 1/2, and in particular, such
that |k1ω1 + k2ω2| < |ω2| /2. Moreover,|k∗

2(k1)| ≤ |k1ω1/ω2| + |k1ω1/ω2 + k∗
2(k1)| <

|k1| + 1/2. Therefore,
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∑
k∈Z2\{0}

e−α|k|

|k · ω| =
∑
k1∈Z

∑
k2 6=k∗

2 (k1)

e−α|k|

|k · ω| +
∑

k1 6=0, k2=k∗
2 (k1)

e−α|k|

|k · ω|

<
2

|ω2|
∑

k∈Z2

e−α|k| +
1
c

∑
k1 6=0

e−α|k1|
(

2 |k1| +
1
2

)

=
2

|ω2|

(
coth

α

2

)2
+

2
c

∞∑
n=1

e−αn

(
2n +

1
2

)
=

(
2

|ω2|
+

5 − e−α

4c

) (
coth

α

2

)2
≤ β

α2
. �

Lemma 6. Let us consider the change of variablesx = x(X, Y, θ, ε), y = y(X, Y, θ, ε)
given implicitly by

X = x + εm ∂S

∂Y
(x, Y, θ, ε),

y = Y + εm ∂S

∂x
(x, Y, θ, ε),

 (8.2)

whereS(z1, z2, θ, ε) is defined on the setε ∈ (0, ε0], |zi| < r, | Im θi| ≤ ρi, i = 1, 2,
with z = (z1, z2) ∈ C2 andReθ = (Reθ1, Reθ2) ∈ T 2. Moreover, it depends onz1, z2
andθ in an analytic way, and has continuous and bounded dependence onε. Let us also
assume that|S(z1, z2, θ, ε)| ≤ M on this set and letη be such that0 < η < 1. Then, if

εm
0 ≤ r2η2(1 − η)

2M
, (8.3)

Eq.(8.2)defines the changex = x(X, Y, θ, ε), y = y(X, Y, θ, ε) analytic in the variables
X, Y , θ and bounded and continuous inε, on the set|X| < r(1− η)2, |Y | < r(1− η)2,
| Im θi| ≤ ρi. Besides, the following bounds hold:

|X − x| ≤ εm M

rη
, |Y − y| ≤ εm M

rη
. (8.4)

The proof of this lemma is omitted, since it is straightforward. Now let us introduce
some notations to be used in this section.

Let f (θ) be a periodic function,θ ∈ T 2, analytic on a (complex) strip of width
ρ = (ρ1, ρ2), that is, analytic on|Im θ| < ρ and continuous on the boundary. We denote
by ‖f‖ρ the sup norm on that set, this is,

‖f‖ρ = sup
| Im θ|≤ρ

|f (θ)|,

where| Im θ| ≤ ρ means| Im θ1| ≤ ρ1 and | Im θ2| ≤ ρ2. Moreover, ifF (z, θ) is an
analytic periodic function with respect toθ ∈ T 2 on a strip of widthρ, and analytic with
respect toz on |z| ≤ r, we define the norm

‖F‖r,ρ = sup
|z|≤r

‖F (z, ·)‖ρ = sup
|z|≤r

| Im θ|≤ρ

|F (z, θ)|.

If F depends only onz, we simply denote‖F‖r,0 = sup|z|≤r |F (z)|. Here we have
assumed thatz ∈ C or z ∈ C2. Of course, in this last case the notation|z| ≤ r means
|z1| ≤ r and|z2| ≤ r.
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For the sake of the simplicity (and without loss of generality), we will assume that
ε0 ≤ 1,λ ≤ 1, r ≤ 1,A0 ≥ 1 andA1 ≥ 1. This will be used along this section to avoid
cumbersome bounds.

Lemma 7 (Inductive Lemma). Let us consider the Hamiltonian

ω

ε
· p + K0(xy, ε) + εmK1(x, y, θ, ε), (8.5)

where

1. K0(z, ε) is an analytic function ofz on |z| ≤ r2 and0 < ε ≤ ε0.
2. |∂zK0(z, ε)| ≥ λ > 0, on |z| ≤ r2, 0 < ε ≤ ε0.
3. K0(z, ε) andK1(x, y, θ, ε) depend onε in a continuous and bounded way, if0 <

ε ≤ ε0.
4. K1(x, y, θ, ε) is analytic on|x| ≤ r, |y| ≤ r, | Im θi| ≤ ρi, i=1,2.
5. K1(0, 0, θ, ε) = ∂xK1(0, 0, θ, ε) = ∂yK1(0, 0, θ, ε) = 0.

Moreover, let us defineA0 = ‖K0‖r,0 andA1 = ‖K1‖r,ρ, and let us consider0 < η <
1/2 and0 < δ < 1. Then, forε0 small enough (which is detailed below), there exists a
canonical change of variables, given implicitly by a generating functionθ · P + Y x +
εmS(x, Y, θ, ε) such that the new Hamiltonian takes the form

ω

ε
· P + K̂0(XY, ε) + ε2mK̂1(X, Y, θ, ε), (8.6)

where

1. The “normal form” K̂0(Z, ε) is an analytic function ofZ on |Z| ≤ r2(1 − η)6,
0 < ε ≤ ε0.

2. |∂ZK̂0(Z, ε)| ≥ λ − εm
0 A1/η > 0, on |Z| ≤ r2(1 − η)6.

3. K̂0(Z, ε) andK̂1(X, Y, θ, ε) depend onε in a continuous and bounded way, if0 <
ε ≤ ε0.

4. K̂1(X, Y, θ, ε) is analytic on|X| ≤ r(1 − η)3, |Y | ≤ r(1 − η)3, | Im θi| ≤ ρ̂i =
ρi − δ

√
ε, i=1,2.

5. K̂1(0, 0, θ, ε) = ∂xK̂1(0, 0, θ, ε) = ∂yK̂1(0, 0, θ, ε) = 0.

If we defineÂ0 = ‖K̂0‖r(1−η)3,0 andÂ1 = ‖K̂1‖r(1−η)3,ρ̂
, the following bounds hold:

Â0 ≤ A0 + εm
0

A1

η
, Â1 ≤ C

A0A
2
1

λ2r4δ4η8
,

whereC is a constant that only depends onω. The generating function is bounded by

‖S(x, Y, θ, ε)‖
r(1−η),ρ̂ ≤ BA1

λδ2η2
, (8.7)

where the constantB only depends onω.
Finally, in order to apply this lemma,ε0 must satisfy (8.3), whereM is the right

hand size of (8.7).
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Proof. In order to facilitate the reading, the proof has been split in several parts.
1. Rearranging the initial Hamiltonian.Let us start by expandingK1 in Taylor series
with respect tox andy,

K1(x, y, θ, ε) =
∑

i+j≥2

aij(θ, ε)xiyj ,

whereaij(θ, ε) is a periodic function ofθ, that can be expanded in Fourier series,

aij(θ, ε) =
∑

k∈Z2

ak
ij(ε)ek·θ

√
−1.

Moreover, the following bounds hold:

‖aij‖ρ ≤ A1

ri+j
, |ak

ij | ≤ A1

ri+j
e−|k1|ρ1−|k2|ρ2, 0 < ε ≤ ε0.

Let us writeK1 in the following form:

K1(x, y, θ, ε) =
∑

i+j≥2

∑
k∈Z2

ak
ij(ε)(xy)jxi−jek·θ

√
−1.

Now, we definè = i− j. The conditionsi ≥ 0, j ≥ 0 andi+ j ≥ 2 are simply replaced
by ` + j ≥ 0, j ≥ 0 and 2̀ + j ≥ 2 in terms of̀ andj, so

K1(x, y, θ, ε) =
∑

k∈Z2, `∈Z

 ∑
j≥max{0,1−`/2,−`}

ak
`+j,j(ε)(xy)j

 x`ek·θ
√

−1,

and definingak,`(xy, ε) as the expression between brackets, one obtains

K1(x, y, θ, ε) =
∑

k∈Z2, `∈Z

ak,`(xy, ε)x`ek·θ
√

−1.

For the moment, we will handle these expressions as formal series and, once the change
of variables is (formally) computed we will check that everything is well defined on the
suitable domains.
2. Computing the generating function.We will look for a change of variables given by
a generating function of the type

P · θ + Y x + εmS(x, Y, θ, ε).

So, the corresponding change is

p = P + εm ∂S

∂θ
, θ = θ,

y = Y + εm ∂S

∂x
, X = x + εm ∂S

∂Y
.

 (8.8)

We want this change to transform (8.5) into (8.6), so we insert (8.8) into (8.5), asking
the result to be equal to (8.6):
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ω

ε
· P + εm ω

ε
· ∂S

∂θ
+ K0

(
x

(
Y + εm ∂S

∂x

)
, ε

)
+ εmK1

(
x, Y + εm ∂S

∂x
, θ, ε

)
=

ω

ε
· P + K̂0

((
x + εm ∂S

∂Y

)
Y, ε

)
+ ε2mK̂1

(
x + εm ∂S

∂Y
, Y, θ, ε

)
.

This equation is automatically satisfied at order 0 inε, if we chooseK̂0(z, ε) = K0(z, ε)+
O(εm). If we take the terms of orderεm and we ask them to cancel out we obtain an
equation that determinesS:

ω

ε
· ∂S

∂θ
+ λ0(xY )

[
x

∂S

∂x
− Y

∂S

∂Y

]
+ K1(x, Y, θ, ε) = 0, (8.9)

whereλ0(z, ε) = ∂zK0(z, ε). We will try to solve this equation in the sense of the formal
series. We look forS of the same type asK1:

S(x, Y, θ, ε) =
∑

k∈Z2, `∈Z

sk,`(xY, ε)x`ek·θ
√

−1,

being

sk,`(xY, ε) =
∑

j≥max{0,1−`/2,−`}
sk

`+j,j(ε)(xY )j .

The next step is to substituteS into (8.9), to obtain∑
k∈Z2, `∈Z

√
−1sk,`(xY, ε)x`k · ω

ε
ek·θ

√
−1

+λ0(xY )
∑

k∈Z2, `∈Z

`sk,`(xY, ε)x`ek·θ
√

−1 +
∑

k∈Z2, `∈Z

ak,`(xY, ε)x`ek·θ
√

−1 = 0.

Equating terms, we obtain the following set of equations:

√
−1k · ω

ε
sk,`(xY, ε) + λ0(xY, ε)`sk,`(xY, ε) + ak,`(xY, ε) = 0, k ∈ Z2, ` ∈ Z.

So, if k 6= 0 or` 6= 0, the generating functionS is defined (formally) by the coefficients

sk,`(xY, ε) = − εak,`(xY, ε)

ε`λ0(xY, ε) +
√

−1k · ω
.

Hence, this implies that we can not killak,` with k = 0 and` = 0 and then Eq. (8.9) has
no solution. So, we solve Eq. (8.9) but witha0,0(xY, ε) instead of 0 in the right-hand
side (this is not a problem becausea0,0(xY, ε) is already in normal form). Sinces0,0 can
be chosen arbitrarily, we simply takes0,0(xY, ε) = 0.
3. Bounds on the generating function.Let us reduce the analyticity strip with respect to
θ from ρ = (ρ1, ρ2) to ρ̂ = (ρ1 − δ

√
ε, ρ2 − δ

√
ε) and the analyticity ball with respect to

x andy from r to r(1 − η).
Now, let us boundS:
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‖S‖
r(1−η),ρ̂ ≤

∑
k∈Z2, `∈Z
|k|+|`|6=0

‖sk,`(xY, ε)x`‖r(1−η),0e
(ρ1−δ

√
ε)|k1|+(ρ2−δ

√
ε)|k2|

≤
∑

k∈Z2, `∈Z
|k|+|`|6=0

ε‖ak,`(xY, ε)x`‖r(1−η),0

|ε`λ0(xY ) +
√

−1k · ω|
e(ρ1−δ

√
ε)|k1|+(ρ2−δ

√
ε)|k2|.(8.10)

To bound‖ak,`(xy, ε)x`‖r(1−η),0 we recall that

ak,`(xY, ε) =
∑

j≥max{0,1−`/2,−`}
ak

`+j,j(xY )j .

Hence,

‖ak,`(xY, ε)x`‖r(1−η),0 ≤
∑

j≥max{0,1−`/2,−`}
|ak

`+j,j ||xY |j |x|`

≤ A1e
−ρ1|k1|−ρ2|k2|(1 − η)`

∑
j≥max{0,1−`/2,−`}

(1 − η)2j .

Here we distinguish several possibilities, according to the values of`:

a) ` ≤ −2, that impliesj ≥ −`. Since
∑

j≥−`(1 − η)2j < (1 − η)−2`/η, one has

‖ak,`(xY, ε)x`‖r(1−η),0 ≤ A1e
−ρ1|k1|−ρ2|k2|(1 − η)−`/η.

b) ` = −1, that impliesj ≥ 2. Since
∑

j≥2(1 − η)2j < (1 − η)4/η,

‖ak,`(xY, ε)x`‖r(1−η),0 ≤ A1e
−ρ1|k1|−ρ2|k2|(1 − η)3/η.

c) ` = 0, 1 that impliesj ≥ 1. Since
∑

j≥1(1 − η)2j < (1 − η)2/η,

‖ak,`(xY, ε)x`‖r(1−η),0 ≤ A1e
−ρ1|k1|−ρ2|k2|(1 − η)2+`/η. (8.11)

d) ` ≥ 2 that impliesj ≥ 0. Since
∑

j≥0(1 − η)2j < 1/η,

‖ak,`(xY, ε)x`‖r(1−η),0 ≤ A1e
−ρ1|k1|−ρ2|k2|(1 − η)`/η.

Now, putting these bounds into (8.10), separating the casesk = 0 andk 6= 0, and taking
into account that|ε`λ0(xY ) +

√
−1k · ω| ≥ |k · ω| one obtains

‖S‖
r(1−η),ρ̂ ≤

∑
`6=0

‖a0,`(xY, ε)x`‖r(1−η),0

|`|λ

+
∑
k 6=0

∑
`∈Z

ε‖ak,l(xY, ε)x`‖r(1−η),0e
(ρ1−δ

√
ε)|k1|+(ρ2−δ

√
ε)|k2|

|ε`λ0(xY ) +
√

−1k · ω|
.

To bound the first sum we start using a), b), c) and d) for the different values of`, and
then we apply the bound
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∑
`≥2

(1 − η)`

`
≤ | ln η| − (1 − η),

to obtain ∑
`6=0

‖a0,`(xY, ε)x`‖r(1−η),0

|`|λ <
2A1(1 +λβ)

λδ2η2
.

With a similar scheme one can show that∑
k 6=0

∑
`∈Z

ε‖ak,l(xY, ε)x`‖r(1−η),0e
(ρ1−δ

√
ε)|k1|+(ρ2−δ

√
ε)|k2|

|ε`λ0(xY ) +
√

−1k · ω|
<

2εA1

η2

∑
k 6=0

e−δ
√

ε|k|

|k · ω| .

As δ
√

ε < 1, we can apply Lemma 5 to control this sum. So, the final bound on the
generating function is

‖S‖
r(1−η),ρ̂ ≤ 2A1(1 +λβ)

λδ2η2
≤ BA1

λδ2η2
, (8.12)

whereβ only depends onω andB = 2(1 +β).
4.The transformed Hamiltonian.Up to now, we have found a functionS(x, Y, θ, ε) such
that Eq. (8.9) holds, but witha0,0(xY, ε) instead of 0 in the right-hand side:

ω

ε
· ∂S

∂θ
(x, Y, θ, ε) + λ0(xY, ε)

[
x

∂S

∂x
(x, Y, θ, ε) − Y

∂S

∂Y
(x, Y, θ, ε)

]
+K1(x, Y, θ, ε) = a0,0(xY, ε). (8.13)

This functionS satisfies the bound (8.12) and it generates implicitly the canonical
change (8.8), whose explicit expression is of the form

p = P +εmf0(X, Y, θ, ε), x = X +εmf1(X, Y, θ, ε), y = Y +εmf2(X, Y, θ, ε). (8.14)

Applying this change to the initial Hamiltonian (8.5) and expanding it in power series
one obtains

ω

ε
· P + εm ω

ε
· f0(X, Y, θ, ε) + K0(XY, ε)

+εmλ0(XY, ε)(Xf2(X, Y, θ, ε) + Y f1(X, Y, θ, ε)) + εmK1(X, Y, θ, ε) + O(ε2m).

Let us defineε2mK̃1(X, Y, θ, ε) as the remainderO(ε2m) in this formula. Then,ε2mK̃1
can be obtained in terms of the initial Hamiltonian by computing the remainder of the
corresponding Taylor expansion with respect toεm. Indeed, let us callR1 the contribution
to ε2mK̃1 that comes fromK1 andR2 the one that comes fromK0 (this is,ε2mK̃1 =
R1 + R2). Then, it is straightforward to check that

R1 = ε2mf1
∂K1

∂x
(X + τεmf1, Y + τεmf2)

+ ε2mf2
∂K1

∂y
(X + τεmf1, Y + τεmf2), (8.15)

R2 =
ε2m

2
K ′′

0 (XY + τεm[Xf2 + Y f1] + τ2ε2mf1f2)(Xf2 + Y f1 + 2τεmf1f2)2

+ ε2mK ′
0(XY + τεm[Xf2 + Y f1] + τ2ε2mf1f2)f1f2, (8.16)
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where 0< τ < 1. Moreover, let us define

Rp = εm ω

ε
·
(

f0(X, Y, θ, ε) − ∂S

∂θ
(X, Y, θ, ε)

)
,

Rx = εmλ0(XY, ε)Y

(
∂S

∂Y
(X, Y, θ, ε) + f1(X, Y, θ, ε)

)
,

Ry = εmλ0(XY, ε)X

(
f2(X, Y, θ, ε) − ∂S

∂x
(X, Y, θ, ε)

)
.

So, with these notations and using (8.13) (replacing the valuex by X), the Hamiltonian
can be rewritten as

ω

ε
· P + K0(XY, ε) + εma0,0(XY, ε) + ε2mK̂1(X, Y, θ, ε),

whereε2mK̂1(X, Y, θ, ε) = R1 + R2 + Rp + Rx + Ry.
5.Bounds on the transformed Hamiltonian.The bound ona0,0 has already been done in
(8.11):

‖a0,0‖r(1−η),0 ≤ A1(1 − η)2

η
<

A1

η
.

The bounds onR1 and R2 are obtained bounding directly (8.15) and (8.16), since
bounds onf1 andf2 are given by (8.4) but taking into account that the actual func-
tion S(z1, z2, θ, ε) is defined on|z1| ≤ r(1 − η) and |z2| ≤ r(1 − η). Of course, the
constantM that appears in (8.4) must be replaced by the bound (8.12). The bounds on
∂xK1 and∂yK1 are produced applying Cauchy estimates, reducing the analyticity do-
main ofK1 from r to r(1−η) (we can reduce it more, but this is enough and it produces
simpler bounds). Hence, for|X| ≤ r(1 − η)3, |Y | ≤ r(1 − η)3, | Im θi| ≤ ρ̂i, i = 1, 2
and 0< ε ≤ ε0 (this is the domain where the change is defined, see Lemma 6) we have

‖R1‖r(1−η)3,ρ̂
≤ ε2m 4BA2

1

λδ2η4r2
.

Similarly (but with a little more work), one can derive the corresponding bound forR2:

‖R2‖r(1−η)3,ρ̂
≤ ε2m 72B2A0A

2
1

λ2r4δ4η8
.

To boundRp, Rx andRy we note that

f0(X, Y, θ, ε) =
∂S

∂θ
(x(X, Y, θ, ε), Y, θ, ε), (8.17)

f1(X, Y, θ, ε) = − ∂S

∂Y
(x(X, Y, θ, ε), Y, θ, ε), (8.18)

f2(X, Y, θ, ε) =
∂S

∂x
(x(X, Y, θ, ε), Y, θ, ε), (8.19)

wherex(X, Y, θ, ε) is the change of variables for thex coordinate given in (8.14). Our
purpose is to apply the mean value Theorem plus (8.4) to derive the desired bounds.

Before continuing, let us give a bound to be used later:∥∥∥∥ω

ε
· ∂2S

∂x∂θ

∥∥∥∥ ≤ C
A0A1

r4λδ2η5
, (8.20)
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whereC is a constant that only depends on the initial Hamiltonian. This has been
obtained from (8.13), differentiating both sides with respect tox and then applying
Cauchy estimates. Now it is not difficult to produce bounds forRp, Rx andRy, applying
the mean value theorem:

‖Rp‖r(1−η)3,ρ̂
≤ Cpε

2m A0A
2
1

r4λ2δ4η8
,

‖Rx‖
r(1−η)3,ρ̂

≤ Cxε2m A0A
2
1

r2λ2δ4η8
,

‖Ry‖
r(1−η)3,ρ̂

≤ Cyε2m A0A
2
1

r2λ2δ4η8
,

where constantsCp,Cx andCy only depend on the initial Hamiltonian. Of course, (8.20)
has been used to bound‖Rp‖r(1−η)3. The final bound is obtained by taking the biggest
factors of these two bounds (we recall thatr ≤ 1, λ ≤ 1 andA0 ≥ 1). �

8.3. Proof of Theorem 5.The first step is to transform the autonomous Hamiltonian
h0(x, y, ε) into its normal form. This can be done because it is an integrable Hamiltonian.
The domain of definition ofh0 may be reduced, but in that case we rename this new
domain in order to keep the same notation.

Now, assume we have donen changes of variables like the ones of Lemma 7, so the
Hamiltonian has the form

H (n)(x, y, θ, p, ε) =
ω

ε
· p + H (n)

0 (xy, ε) + εq2n

H (n)
1 (x, y, θ, ε), (8.21)

where we have kept the same notation for the variables. This Hamiltonian is defined on
some set|x| ≤ rn, |y| ≤ rn, | Im θi| ≤ ρ(n)

i , i = 1, 2 and 0< ε ≤ ε0. On this set, we
define the following constants (bounds):

A(n)
0 = ‖K0‖rn

, A(n)
1 = ‖K1‖rn,ρ(n) , λn = inf

|z|≤r2
n

|∂zK0(z, ε)|.

Now, let us define the domains. Letδn beδ0/(n+1)2, with δ0 = 6/π2. Then, the reduction
of the analyticity strip with respect toθ done toH (n) in order to compute the generating
function will beδn

√
ε (see Lemma 7). Note that in this way the total reduction of the

domain is exactly
√

ε. For the domain with respect to the spatial variablesx andy we
define the sequence{rn} asrn = rn−1(1 − ηn−1)3, whereηn = 1 − exp(−η/(n + 1)2)
andη = (2 ln 2)/π2. As the total reduction of domain is given by∏

n≥1

(1 − ηn−1)

3

,

one can check that, with this selection ofηn andη, this makes a reduction fromr0 to
r0/2. From Lemma 7 we obtain the following inequalities:

A(n)
0 ≤ A(n−1)

0 + εq2n−1

0
A(n−1)

1

ηn−1
, (8.22)

A(n)
1 ≤ C

A(n−1)
0

(
A(n−1)

1

)2

λ2
n−1r

4
n−1δ

4
n−1η

8
n−1

, (8.23)
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λn ≥ λn−1 − εq2n−1

0
A(n−1)

1

ηn−1
. (8.24)

Let us assume thatλi ≥ λ0/2 andA(i)
0 ≤ 2A(0)

0 , i = 1, . . . , n − 1. Then, from (8.23)
one obtains

A(n)
1 ≤ En24

(
A(n−1)

1

)2
,

whereE is a constant that only depends on the initial Hamiltonian. Taking logarithms
to both sides of the expression above one gets (see [JS92, lemma 5] for the details):

A(n)
1 ≤ E1+2+···+2n−1

[
n−1∏
i=0

(n − i)2i

]24 (
A(0)

1

)2n

≤ 1
E

[(
5
3

)24

EA(0)
1

]2n

.

Now it is easy to finish the proof. It is immediate that there exist a sufficiently small (but
different from zero) value ofε0 such that

εq2n

0 A(n)
1 ≤ D

80
(1/2)2

n

, (8.25)

whereD = max{A0, λ0/2}. This valueε0 does not depend onn and only depends on
the initial Hamiltonian. It has been chosen in this way because it satisfies∑

n≥1

εq2n−1

0
A(n−1)

1

ηn−1
≤ D.

Then, from (8.22) and (8.24) one getsλn ≥ λ0/2 andA(n)
0 ≤ 2A(0)

0 . Then, using
induction, the proof of the convergence of the normal form is finished.

To show the convergence of the sequence of changes of variables we use (8.4), where
the boundM on the generating function is given by (8.7). Then, at stepn (n ≥ 1), we
are applying a change of variables whose distance to the identity is bounded by

εq2n−1

0
BA(n−1)

1

rn−1λn−1δ2
n−1η

3
n−1

.

Now, using (8.25), the convergence of the sequence of changes of variables is straight-
forward. �

9. Proof of the Extension Theorem

Before proceeding to the proof of this theorem, we will introduce some notations as well
as some auxiliary lemmas.

In the sequel,α > 0, t0, T0 > 0, will be the real parameters introduced in the
Extension Theorem,T thecomplexparameter in the strip|Im T | ≤ π/2− εα andt will
be thereal time.K will denote a generic positive constant independent ofε, andτ will
denote|t + T − πi/2|.

In order to bound the solution (x(t), y(t)), we will compare it with the homoclinic
solution of the unperturbed system, and thus we introduce the functions:

ξ(t) := x(t) − x0(t + T ), η(t) := ξ̇(t) = y(t) − y0(t + T ),
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which satisfy the system of differential equations with respect to the variablet:

ξ̇ = η,

η̇ = sin(x0(t + T ) + ξ) − sin(x0(t + T ))

+ εp sin(x0(t + T ) + ξ) · m(θ1(t), θ2(t)).

In order to study this system is very convenient to write it as:

ż = A(t + T )z + εpG(x0(t + T ), t) + F (ξ, t + T, t), (9.1)

wherez = (ξ, η)>, A(u) is the matrix

A(u) =

(
0 1

cos(x0(u)) 0

)
,

and the functionsG = (0, g)> andF = (0, f )>, that depend also onε, are given by:

g(x, t) = sinx · m(θ1(t), θ2(t)),

f (ξ, u, t) = sin(x0(u) + ξ) − sin(x0(u)) − cos(x0(u)) · ξ (9.2)

+ εp [g(x0(u) + ξ, t) − g(x0(u), t)] .

From the initial condition (4.1), our goal is to bound solutionsz(t) of system (9.1)
with z(t0) = O(εp−s). To this purpose, first of all we seek for a fundamental matrix of
the corresponding homogeneous linear system

dz

du
= A(u)z, (9.3)

which can be integrated using the fact that (y0(u), ẏ0(u)) is a solution of Eq. (9.3). Another
independent solution can be obtained in the formξ(u) = y0(u)W (u), η(u) = ξ̇(u), with

W (u) =
∫ u

b

dσ

y0(σ)2
,

b being an arbitrary complex number. It is very important to choose adequately this
parameterb to get a functionW (u) as regular as possible, near the singularities ofy0.

We will consider first the case 0≤ Im T ≤ π/2 and we chooseb = πi/2. In this
way, at the pointu = πi/2, sincey0(u) has a simple pole,W (u) has a triple zero and
y0(u)W (u) has a double zero.

Introducing:

9(u) = y0(u) = ẋ0(u),

8(u) = y0(u)W (u) = 9(u)W (u),

a fundamental matrix of the linear Eq. (9.3) is

M (u) =

(
9(u) 8(u)
9′(u) 8′(u)

)
,

which has determinant 1:9(u)8′(u) − 8(u)9′(u) = y0(u)2W ′(u) = 1.
Expanding the functions9, 8 nearu = πi/2 we get:
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9(u) =
−2i

(u − πi/2)

(
1 + O((u − πi/2)2)

)
,

8(u) =
i

6
(u − πi/2)2

(
1 + O((u − πi/2)2)

)
,

(9.4)

and that means that the fundamental matrixM (u) behaves nearu = πi/2 as:
−2i

(u − πi/2)
i

6
(u − πi/2)2

2i

(u − πi/2)2
i

3
(u − πi/2)

 .

In passing, from formula (9.4) one gets easily the following bounds that will be used
later on.

Lemma 8. For 0 ≤ Im T ≤ π/2 and 0 ≤ τ := |t + T − πi/2| ≤ T0, the following
bounds hold:

|9(t + T )| ≤ K

τ
, |8(t + T )| ≤ Kτ2,

|9′(t + T )| ≤ K

τ2
, |8′(t + T )| ≤ Kτ.

Since the fundamental solutionϕ(u, σ) of the linear Eq. (9.3) satisfying the initial
conditionϕ(u, u) = Id is given byϕ(u, σ) = M (u)M−1(σ), we can now easily write the
solutionz(t) = (ξ(t), η(t)) of system (9.1) with initial conditionz(t0) as:

z(t) = zin(t0, t) +
∫ t

t0

ϕ(t + T, σ + T )N (ξ(σ), σ + T, σ) dσ,

with
zin(t0, t) = ϕ(t + T, t0 + T )z(t0) = M (t + T )M−1(t0 + T )z(t0),

and
N (ξ, u, t) = εpG(x0(u), t) + F (ξ, u, t).

The integral equation forz(t) can be also written as

z(t) = M (t + T )M−1(t0 + T )z(t0)

+ M (t + T )
∫ t

t0

M−1(σ + T )N
(
ξ(σ), σ + T,

σ

ε

)
dσ

= z1(t) + M (t + T )
∫ t

t0

M−1(σ + T )F
(
ξ(σ), σ + T,

σ

ε

)
dσ,

with

z1(t) := M (t + T )
[
M−1(t0 + T )z(t0)

+ εp

∫ t

t0

M−1(σ + T )G
(
x0(σ + T ),

σ

ε

)
dσ

]
.
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Writing this equation forz(t) in components, we obtain

ξ(t) = ξ1(t) − 9(t + T )
∫ t

t0

8(σ + T )f (ξ(σ), σ + T, σ) dσ

+ 8(t + T )
∫ t

t0

9(σ + T )f (ξ(σ), σ + T, σ) dσ, (9.5)

η(t) = ξ̇(t) = ξ̇1(t) − 9′(t + T )
∫ t

t0

8(σ + T )f (ξ(σ), σ + T, σ) dσ

+ 8′(t + T )
∫ t

t0

9(σ + T )f (ξ(σ), σ + T, σ) dσ, (9.6)

where

ξ1(t) = 9(t + T )

[
8′(t0 + T )ξ(t0) − 8(t0 + T )η(t0)

− εp

∫ t

t0

8(σ + T )g(x0(σ + T ), σ) dσ

]
+ 8(t + T )

[
9′(t0 + T )ξ(t0) − 9(t0 + T )η(t0)

+ εp

∫ t

t0

9(σ + T )g(x0(σ + T ), σ) dσ

]
. (9.7)

We have now a suitable expression (9.5) forξ, and we need to bound the functions
f , g, defined in Eqs. (9.2), that appear therein.

Lemma 9. If εα ≤ τ ≤ T0 + π/2, it follows that

|g(x0(t + T ), t)| ≤ Kε−s

τ2
. (9.8)

Moreover, if|ξj | ≤ λ/τβ ≤ 1, j = 1, 2, then

|f (ξ1, t + T, t) − f (ξ2, t + T, t)| ≤ K

(
λ

τβ+2
+

εp−s

τ2

)
|ξ1 − ξ2| . (9.9)

Proof of the lemma.We first recall that, at±πi/2, y0(u) = 2/coshu has a simple pole,
sinx0(u) = ẏ0(u) has a double pole, as well as cosx0(u) = 1 − y0(u)2/2. In the bound
of g it appears also the bound (1.7) ofm(θ1, θ2) for the complex values (1.8) ofθ1, θ2.
In order to boundf it is enough to apply Taylor’s Theorem to the function sinx. �

Finally here is a technical lemma that will be needed later on. Its proof is straight-
forward (and can be found in [DS92, lemma 7.1] forβ = 3).

Lemma 10. Let t, t0 real, T complex, such that

|Im T | < π/2, −T0 ≤ t0 + ReT ≤ t + ReT ≤ T0.

Then, givenβ ∈ R, the following inequality holds:
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∫ t

t0

dσ

|σ + T − πi/2|β
≤ K · ρ−(β−1)

[t0,t] (T ),

with K = K(T0, β) > 0, and

ρ−β
[t0,t] (T ) :=

 sup
1

|σ + T − πi/2|β
, if β 6= 0,

sup|ln(|σ + T − πi/2|)| , if β = 0,

where the supremum is taken forσ ∈ [t0, t].

The proof of the Extension Theorem, for the moment forT ∈ D+ = {T ∈ C : 0 <
Im T ≤ π/2− εα}, is based on the next two propositions. In the first one, the solutions
of system (9.1) with initial conditions (4.1) will be extended up tot = t1(T ). In the
second proposition, we taket = t1(T ) as the initial time.

We divide the complex stripD+ in two parts

Dup = {T ∈ C : π/2 − ε2α/3 ≤ Im T ≤ π/2 − εα}, (9.10)

Ddown = {T ∈ C : 0 ≤ Im T ≤ π/2 − ε2α/3}, (9.11)

and define the separation pointt1(T ) by

t1(T ) + ReT =

{
ε2α/3, for T ∈ Dup,
0, for T ∈ Ddown.

(9.12)

Proposition 1. Let z = (ξ(t), η(t)) be a solution of system (9.1) with initial conditions
satisfying

|ξ(t0)| ≤ Cεp−s, |η(t0)| ≤ Cεp−s. (9.13)

Then, ifp − s − 2α > 0, there existsε0 > 0 such that, for0 < ε < ε0, (ξ(t), η(t)) can
be extended fort ∈ [t0, t1(T )] and satisfies there the following bound:

|8′(t + T )ξ(t)| + |8(t + T )η(t)| ≤ Kεp−s. (9.14)

Proof of the proposition.We shall use the method of successive approximations. We
begin the iteration process withξ0(t) = 0, and consider forn ≥ 0, the recurrence
suggested by Eq. (9.5):

ξn+1(t) = ξ1(t) − 9(t + T )
∫ t

t0

8(σ + T )f (ξn(σ), σ + T, σ) dσ

+ 8(t + T )
∫ t

t0

9(σ + T )f (ξn(σ), σ + T, σ) dσ. (9.15)

The first iterate isξ1(t), as given by Eq. (9.7), and can be bounded easily, using the initial
conditions (9.13), and Lemmas 8, 9, and 10:

|ξ1(t)| ≤ K

τ

[
εp−s + εp−s

]
+ Kτ2

[
εp−s + εp−sρ−2

[t0,t] (T )
]
. (9.16)

An analogous bound for8′(t + T )ξ1(t) follows immediately
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|8′(t + T )ξ1(t)| ≤ K
[
εp−s + εp−s

]
+ Kτ3

[
εp−s + εp−sρ−2

[t0,t] (T )
]
.

Now, for T ∈ Ddown we haveρ−2
[t0,t] (T ) ≤ Kτ−2α, and forT ∈ Dup we have

ρ−2
[t0,t] (T ) ≤ Kτ−2, for t0 ≤ t ≤ − ReT,

ρ−2
[t0,t] (T ) ≤ Kε−2α, τ3 ≤ Kε2α, for − ReT ≤ t ≤ t1(T ),

and, consequently, in all the stripD+: T ∈ D+, and fort ∈ [t0, t1(T )], it follows that

τ3ρ−2
[t0,t] (T ) ≤ K. (9.17)

Let us remark that the value oft1(T ) has been chosen just in order that bound (9.17)
holds. In this way, we can bound|8′(t + T )ξ1(t)| in a uniform way:|8′(t + T )ξ1(t)| ≤
Kεp−s, or, in other words,|ξ1(t)| ≤ Kεp−s/τ .

To begin the iteration process, we introduce the norm

‖ξ‖ := sup|8′(t + T )ξ(t)| ,

where the supremum is taken forT ∈ D+ and t ∈ [t0, t1(T )]. The above bound on
8′(t + T )ξ1(t) reads now as

‖ξ1‖ ≤ Kεp−s.

Assuming that‖ξn−1‖ , ‖ξn‖ ≤ Kεp−s, we now consider

ξn+1(t) − ξn(t) = − 9(t + T )
∫ t

t0

8(σ + T )
[
fn − fn−1

]
dσ

+ 8(t + T )
∫ t

t0

9(σ + T )
[
fn − fn−1

]
dσ,

wherefk denotesf (ξk(σ), σ + T, σ). Applying Lemmas 8, 9 (withλ = Kεp−s and
β = 1) and 10, as well as inequality (9.17), we obtain

|8′(t + T )(ξn+1(t) − ξn(t))|

≤ K

∫ t

t0

τ (σ)2 εp−s

τ (σ)3
|ξn(σ) − ξn−1(σ)| dσ

+ Kτ3
∫ t

t0

1
τ (σ)

· εp−s

τ (σ)3
|ξn(σ) − ξn−1(σ)| dσ

≤ K

[∫ t

t0

εp−sdσ

τ (σ)2
+ τ3

∫ t

t0

εp−sdσ

τ (σ)5

]
‖ξn − ξn−1‖

≤ K
[
εp−sρ−1

[t0,t] (T ) + εp−sτ3ρ−4
[t0,t] (T )

]
‖ξn − ξn−1‖

≤ Kεp−s−2α ‖ξn − ξn−1‖ ,

whereτ (σ) denotes|σ + T − πi/2|. Sincep − s − 2α > 0, if we choose nowε0 =
ε0(K, p− s− 2α) small enough, it follows, by induction, that the following inequalities

‖ξk‖ ≤ 2‖ξ1‖ ≤ Kεp−s, ‖ξk+1 − ξk‖ ≤ 1
2

‖ξk − ξk−1‖ , (9.18)
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are valid fork ≥ 1, 0 < ε ≤ ε0, and consequently (ξk)n≥0 converges uniformly for
T ∈ D+ andt ∈ [t0, t1(T )] to the first componentξ(t) of a solution of system (9.1),
satisfying

|8′(t + T )ξ(t)| ≤ Kεp−s.

For the second componentη(t), we simply use its integral Eq. (9.6), and it is straight-
forward to check that

|8(t + T )η(t)| ≤ Kεp−s,

and consequently the bound (9.14) is proved.�
From bound (9.14) we get the following global estimates

|ξ(t)| ≤ Kεp−s−α, |η(t)| ≤ Kεp−s−2α,

for t ∈ [t0, t1(T )]. On the final pointt = t1(T ), bound (9.14) gives a better estimate

|ξ(t1(T ))| ≤ K
εp−s

τ1
≤ Kεp−s−2α/3, |η(t1(T ))| ≤ K

εp−s

τ2
1

≤ Kεp−s−4α/3,

(9.19)
where we have denotedτ1 = |t1(T ) + T − πi/2|, and we have used thatτ1 ≥ ε2α/3.
These are the initial conditions for the next proposition.

Proposition 2. Let (ξ(t), η(t)) be a solution of system (9.1) with initial conditions sat-
isfying (9.19). Then, ifp − s − 2α > 0, there existsε0 > 0 such that, for0 < ε < ε0,
(ξ(t), η(t)) can be extended fort ∈ [t1(T ), T0 − ReT ] and satisfies there the following
bound:

|9′(t + T )ξ(t)| + |9(t + T )η(t)| ≤ Kεp−s−2α. (9.20)

Proof of the proposition.We shall use exactly the same method of successive approxi-
mations as in Proposition 1, but replacing the initial conditiont0 by t1(T ):

ξn+1(t) = ξ1(t) − 9(t + T )
∫ t

t1(T )
8(σ + T )f (ξn(σ), σ + T, σ) dσ

+ 8(t + T )
∫ t

t1(T )
9(σ + T )f (ξn(σ), σ + T, σ) dσ. (9.21)

The first iteration givesξ1(t) as provided by Eq. (9.7), but witht1(T ) instead oft0.
Proceeding like in Proposition 1, but using now the initial conditions (9.19), we can
bound the first iterateξ1(t) as in (9.16):

|ξ1(t)| ≤ K

τ

[
εp−s + εp−s

]
+ Kτ2

[
εp−s

τ3
1

+ εp−sρ−2
[t1(T ),t] (T )

]
.

Now the following inequalities hold

ρ−β
[t1(T ),t] (T ) ≤ Kτ−β

1 , ρ0
[t1(T ),t] (T ) ≤ K |ln τ1| , ρβ

[t1(T ),t] (T ) ≤ Kτβ , (9.22)

and consequently we can bound9′(t + T )ξ1(t) as

|9′(t + T )ξ1(t)| ≤ K

(
εp−s

τ3
+

εp−s

τ3
1

)
≤ εp−s−2α,



Splitting of Separatrices Under Fast Quasiperiodic Forcing 69

where we have used thatτ ≥ τ1 ≥ ε2α/3. In view of this bound, we define now the norm

‖ξ‖ := sup|9′(t + T )ξ(t)| ,

with the supremum taken forT ∈ D+ and t ∈ [t1(T ), T0 − ReT ]. With this new
terminology we have proved that

‖ξ1‖ ≤ Kεp−s−2α,

and therefore
|ξ1(t)| ≤ Kεp−s−2ατ2.

For the successive iterates we apply Lemmas 8, 9 (withλ = Kεp−s−2α andβ = −2)
and 10, as well as inequalities (9.22), obtaining

|9′(t + T )(ξn+1(t) − ξn(t))|

≤ K

τ3

∫ t

t1(T )
τ (σ)2

(
εp−s−2α +

εp−s

τ (σ)2

)
|ξn(σ) − ξn−1(σ)| dσ

+ K

∫ t

t1(T )

1
τ (σ)

(
εp−s−2α +

εp−s

τ (σ)2

)
|ξn(σ) − ξn−1(σ)| dσ

≤ K

[
1
τ3

∫ t

t1(T )

(
εp−s−2ατ (σ)4 + εp−sτ (σ)2

)
dσ

+
∫ t

t1(T )

(
εp−s−2ατ (σ) +

εp−s

τ (σ)

)
dσ

]
‖ξn − ξn−1‖

≤ K

[
εp−s−2α

τ3
ρ5 +

εp−s

τ3
ρ3 + εp−s−2αρ2 + εp−sρ0

]
‖ξn − ξn−1‖

≤ Kεp−s−2α ‖ξn − ξn−1‖ ,

whereτ (σ) has denoted|σ + T − πi/2|, andρβ has denotedρβ
[t1(T ),t] (T ). Sincep − s −

2α > 0, choosing nowε0 = ε0(K, p − s − 2α) small enough, it follows by induction
that forn ≥ 1,

‖ξn‖ ≤ Kεp−s−2α, ‖ξn+1 − ξn‖ ≤ 1
2

‖ξn − ξn−1‖ ,

and consequently (ξn)n≥0 converges uniformly forT ∈ D+ andt ∈ [t1(T ), T0 − ReT ]
to the first componentξ(t) of a solution of system (9.1), satisfying the required bound.

As in Proposition 2, we can now boundη(t) from its integral Eq. (9.5), and we finally
obtain bound (9.20). �

Proof of the Extension Theorem.First consider 0≤ Im T ≤ π/2− εα. Putting Proposi-
tions 1 and 2 together, as well as the bound (9.20) produced by this last proposition, we
immediately obtain the Extension Theorem for 0≤ Im T ≤ π/2−εα, with the required
estimates.

For−π/2 + εα ≤ Im T ≤ 0 we only have to chooseb = −πi/2 in the definition of
W (u), in order to get a second solution8(u) of the linear system (9.3) with a double zero
atu = −πi/2. Lemma 8, as well as Propositions 1 and 2 are also valid for−π/2 +εα ≤
Im T ≤ 0, and consequently the Extension Theorem follows for|Im T | ≤ π/2 − εα.
�
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