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Abstract

Consider the Restricted Planar Circular 3 Body Problem. If the trajectory of the body of zero mass is 
defined for all time, it can have the following four types of asymptotic motion when time tends to infinity 
forward or backward in time: bounded, parabolic (goes to infinity with asymptotic zero velocity), hyperbolic 
(goes to infinity with asymptotic positive velocity) or oscillatory (the position of the body is unbounded 
but goes back to a compact region of phase space for a sequence of arbitrarily large times). We consider 
realistic mass ratio for the Sun-Jupiter pair and Jacobi constant which allows the massless body to cross 
Jupiter’s orbit. This is a non-perturbative regime. We prove the existence of all possible combinations of past 
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M.J. Capiński, M. Guardia, P. Martín et al. Journal of Differential Equations 320 (2022) 316–370
and future final motions. In particular, we obtain the existence of oscillatory motions. All the constructed 
trajectories cross the orbit of Jupiter but avoid close encounters with it.

The proof relies on analyzing the stable and unstable invariant manifolds of infinity and their intersec-
tions. We construct orbits shadowing these invariant manifolds by the method of correctly aligned windows. 
The proof is computer assisted.
© 2022 Elsevier Inc. All rights reserved.
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1. Introduction

The planar circular restricted three body problem (PCR3BP) models the motion of a body 
of zero mass under the Newtonian gravitational force exerted by two bodies of masses μ and 
1 − μ which evolve in circular motion around their center of mass on the same plane. In rotating 
coordinates, if we denote by q ∈ R2 the position of the zero mass body and p ∈R2 its associated 
momentum, the PCR3BP is a Hamiltonian system with respect to

H(q,p;μ) = ‖p‖2

2
− q1p2 + q2p1 − 1 − μ

‖q + μ‖ − μ

‖q − (1 − μ)‖ . (1)

Since the Hamiltonian is autonomous, it is a first integral which correspond to the Jacobi 
constant in non-rotating coordinates. (Often the Jacobi constant is defined as J = −2H .)

In the 1922, J. Chazy classified the possible final motions the massless body in the PCR3BP 
may possess [1] (see also [2]), that is, the possible “states” that q(t) may possess as t → ±∞. 
They can be:

• H± (hyperbolic): ‖q(t)‖ → ∞ and ‖q̇(t)‖ → c > 0 as t → ±∞.
• P ± (parabolic): ‖q(t)‖ → ∞ and ‖q̇(t)‖ → 0 as t → ±∞.
• B± (bounded): lim supt→±∞ ‖q‖ < +∞.
• OS± (oscillatory): lim supt→±∞ ‖q‖ = +∞ and lim inft→±∞ ‖q‖ < +∞.

Examples of all these types of motion, except the oscillatory ones, were already known by Chazy. 
Chazy conjectured that oscillatory motions existed. He also conjectured that the past final mo-
tion should determine the future one. Namely, he conjectured that there were no orbits having 
different past and future final motion.

Oscillatory motions were proven to exist for the first time by Sitnikov [3] in the 1960’s for 
the nowadays called Sitnikov model, which is a symmetric restricted spatial 3 body problem. 
Moreover he disproved Chazy conjecture by constructing orbits with any prescribed past and 
future final motions.

The approach by Sitnikov and by most of the subsequent references (see below) to construct 
oscillatory motions strongly rely on perturbative methods (see for instance [4,5]). As a con-
sequence, the motions obtained are either confined to “small” regions of the phase space or 
only exist in certain narrow ranges of some parameters where the system can be seen as near-
integrable.
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The purpose of this paper is to develop techniques to prove such behaviors in non-perturbative
regimes. These techniques will rely on Computer Assisted Proofs. This will allow to deal with 
physical ranges of parameters and regions of the phase space (that is regions “close to” the orbits 
of the Sun and Jupiter).

We consider the PCR3BP and apply these techniques to prove the existence of any combina-
tion of past and future motions, including the oscillatory ones, for some explicitly given values of 
the mass parameter μ and energy level H (equivalently for a given value of the Jacobi constant). 
More concretely, we consider μ = 0.0009537 which corresponds to the mass ratio for the pair 
Sun-Jupiter and H = −1.

Theorem 1. Consider the PCR3BP, that is, (1) with μ = 0.0009537. Then,

X+ ∩ Y− ∩ {H = −1} �= ∅,

where X, Y = H, P, B, OS.
In particular, for r0 := 0.5002,

• There exist trajectories (q(t), p(t)) such that

lim sup
t→±∞

‖q(t)‖ = +∞ and lim inf
t→±∞ ‖q(t)‖ ≤ r0. (2)

• For every sufficiently large K � 1, there exists a periodic orbit (q(t), p(t)) such that

sup
t∈R

‖q(t)‖ ≥ K and inf
t∈R

‖q(t)‖ ≤ r0.

This theorem gives the possibility of combining any past and future final motions at a given 
energy level and with a realistic mass ratio. Moreover, Item 1 in the theorem implies that there 
exist oscillatory motions which reach points which are closer to the Sun than Jupiter. That is, 
these oscillatory orbits cross the orbit of Jupiter (but stay away from collision with it). Item 2 of 
the theorem gives the existence of periodic orbits of the PCR3BP (in the rotating frame) which 
encircle Jupiter and goes very far from the primaries.

Remark 2. This result focuses on the energy level H = −1 since it is far from the limit cases 
where oscillatory motions can be proven analytically (see [4,5], where the value of −H needs 
to be taken sufficiently large). Our methodology can be applied also to different energy levels 
and there is nothing special about H = −1. (In fact, from our proof it follows that there are 
orbits with oscillatory motions at any energy level sufficiently close to H = −1.) The constant 
r0, which is slightly greater than one half, follows from the fact that the orbits approaching from 
infinity used in our construction pass right between the Sun and Jupiter. This is depicted in the 
right hand side plot of Fig. 1.

The analysis of final motions, and in particular of oscillatory motions, has drawn consider-
able attention in the last decades since the pioneering work by Sitnikov [3]. In 1968, Alekseev 
extended the results of Sitnikov constructing all possible combinations of future and past final 
motions (and thus oscillatory motions) for the full three body problem assuming the third mass 
is small enough [6].
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Fig. 1. Parabolic motion from infinity for H = −1.8 on the left (which is the case considered in [14–16]), and on the 
right for H = −1 as is considered in the current paper. The circle represents the path of Jupiter and the Sun is positioned 
in the origin. The plots are for the limit case μ = 0, but are very close to the trajectories in the Jupiter-Sun system.

Later, J. Moser [7] gave a new proof which related the existence of oscillatory motions to 
symbolic dynamics. Moser’s main idea was to show that the stable and unstable manifolds of 
infinity (which, in suitable variables called McGehee coordinates [8], can be seen as a fixed 
point of a suitable Poincaré map) intersect transversally and use these intersections to prove the 
existence of symbolic dynamics. His approach has been very influential and has been applied 
to different Restricted 3 Body Problems [9,4,5,10] and, roughly speaking, it is also applied in 
the present paper. Moeckel has also proved the existence of oscillatory motions via symbolic 
dynamics for the three body problem relying on dynamics close to triple collision [11] (and 
therefore for sufficiently small total angular momentum). Oscillatory motions have been also 
constructed relying on other techniques closer to those of Arnold diffusion [12,13].

Concerning the PCR3BP, [9] gives the existence of oscillatory motions and symbolic dynam-
ics for arbitrarily large Jacobi constant assuming the mass ratio to be exponentially small with 
respect to the Jacobi constant. The paper [5] proved the result for any mass ratio and large enough 
Jacobi constant. As mentioned before, both references strongly rely on perturbative methods and 
only apply to nearly integrable regimes. Note that, in particular, the last result is non-perturbative
with respect to the mass but requires large Jacobi constant which implies that the oscillatory or-
bits are extremely far from the orbits of the Sun and Jupiter.

As far as the authors know, the only papers which deal with realistic values of both the mass 
ratio and energy level are [14–16] which are also computer assisted. Relying on completely 
different techniques from those of [7], Kaloshin and Galante construct trajectories whose initial 
conditions are “within the range of the Solar system” and become oscillatory as t → +∞. These 
orbits have energy H ≤ −1.52 (the needed conditions are rigorously verified with the aid of 
computers for H = −1.8). See Fig. 1 for the difference between their choice of energy and ours. 
From Fig. 1 we see that our orbits cross the path of Jupiter. The stable and unstable manifolds of 
infinity, which we use for our construction, collide with Jupiter. We make use though of certain 
intersections between these manifolds which are away from the collisions. Thus the energy level 
H = −1 allows for collisions with Jupiter, but our construction ensures that our orbits never 
approach such collisions.
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Not only the methods by Kaloshin and Galante are very different from ours, but also the orbits 
they construct are very different from those constructed in the present paper. In particular, their 
orbits undergo a drastic change in eccentricity whereas they stay away from the orbits of the 
primaries (note that the condition H ≤ −1.52 implies that the outer Hill region is disconnected 
from the inner ones). On the contrary, the oscillatory trajectories in the present paper have rather 
high eccentricity but can cross the trajectory of Jupiter.

1.1. The Moser approach and its implementation

Let us finish the introduction by explaining in more detail the approach that Moser developed 
to prove the existence of oscillatory motions for the Sitnikov problem and how his ideas are 
adapted in the present paper to prove Theorem 1.

The Sitnikov problem is a Hamiltonian system of one a half degrees of freedom (one degree of 
freedom plus periodic time dependence). Let us denote it by H = H(q, q̇, t) (its particular form 
is now not important). If one performs a suitable change of coordinates (McGehee coordinates) 
and considers the stroboscopic Poincaré map, the “parabolic infinity” q = +∞, q̇ = 0, can be 
seen as a fixed point. The linearization of the stroboscopic map at this point is degenerate (equal 
to the identity).

The first step of Moser’s approach is to prove that, even if the fixed point is degenerate, 
it possesses one-dimensional stable and unstable invariant manifolds, which correspond to the 
parabolic orbits P ±. For the Sitnikov and the PCR3BP this fact had been proven previously in 
[8].

The second step is to prove that these invariant manifolds intersect transversally. This is the 
step which crucially relies on classical perturbative techniques such as Melnikov Theory [17] (as 
in [7,9]) or singular perturbative techniques to deal with exponentially small phenomena (as in 
[5]). Both techniques require the system to be near-integrable.

If the fixed point at infinity was hyperbolic, a standard adaptation of Smale Theorem [18]
(based on the classical Lambda Lemma) would lead to symbolic dynamics and oscillatory mo-
tions. However, since it is degenerate one needs to analyze carefully the dynamics close to the 
fixed point by a specific “parabolic Lambda lemma”.

1.2. The main steps in the proof of Theorem 1 and structure of the paper

In this paper, relying on the just explained Moser approach, we develop techniques which can 
be implemented in a computer to prove the existence of oscillatory motions.

First, in Section 3, we prove an abstract theorem of existence of local invariant manifolds 
for degenerate (parabolic) invariant objects (fixed points, periodic orbits) and obtain quantitative 
estimates of its graph parameterizations (see Theorems 17 and 18). The local existence proof is 
reminiscent of [8]. We consider cone-shaped isolating blocks where the vertex of the cone is the 
degenerate invariant object. Then, using classical inflowing/outflowing and cone conditions, we 
show that the isolating block contains the local invariant manifold.

Then, in Sections 4 and 5, these techniques are applied to the fixed points at the “parabolic 
infinity” of the PCR3BP. First, in Section 4, we perform several changes of coordinates to the 
PCR3BP so that it fits into the framework of Section 3. Then, in Section 5, we obtain estimates 
of the local invariant manifolds (see Theorem 33). In this section, we also extend them by the 
flow (see Theorem 36). This extension, computer assisted, is done in a way that one obtains fine 
rigorous estimates for the global invariant manifolds.
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The computer assisted proof is based on the CAPD6 library [19]. The code which was used 
for the proof is available on the web page of M. Capiński.7

The invariant manifolds intersect thanks to the Hamiltonian structure, and moreover, one can 
easily locate (some of) the intersections thanks to the reversibility of the PCR3BP with respect 
to the involution

(q1, q2,p1,p2) → (q1,−q2,−p1,p2).

Our method does not require proving that the invariant manifolds intersect transversally. How-
ever, the method to construct oscillatory motions explained in the next paragraph implicitly relies 
on the fact that these invariant manifolds have intersections which are topologically transverse.

Finally, in Section 6, we use the methods of correctly aligned windows (covering relations) 
[20–22] to construct the motions described in Theorem 1. More precisely, we construct a se-
quence of windows which go from a small neighborhood of the fixed point at infinity to a 
neighborhood of one of the intersections between the stable and unstable invariant manifolds. 
Relying on the analysis of the local dynamics close to infinity in Sections 4 and 5 and integrat-
ing with rigorous numerics the flow of the PCR3BP, we show that these windows are correctly 
aligned. Different choices of sequence of windows lead to different final motions. If one chooses 
a sequence such that (some of) the windows get closer and closer to the invariant manifolds of 
infinity, the orbits “hitting” this sequence of windows are oscillatory. On the contrary, if one 
chooses the windows uniformly away from the invariant manifolds (for instance one can take 
a fixed loop of correctly aligned windows), the corresponding orbits are bounded. Moreover, 
we also show that orbits passing through the edges of some of our windows lead to hyperbolic 
motions and that orbits reaching the parabolic stable/unstable manifolds lead to parabolic mo-
tions. From our topological construction it follows that we can link all these types of motions in 
forward and backward time and prove Theorem 1.

Acknowledgments. The authors would like to thank the referee for helpful suggestions and 
comments.

2. Preliminaries

First we introduce some notation, which will be used throughout the paper. We write Bk for a 
open unit ball in Rk , centered at zero, under some norm of our choice. (In our application we will 
use the max norm, but many of the arguments can be made norm independent.) We will write Bk

for the closure of Bk .
For a given norm ‖ · ‖ on Rn and for a matrix A ∈Rn×n we define

m(A) = min
p∈Rn,‖p‖=1

‖Ap‖ ,

l (A) = lim
h→0+

‖Id + hA‖ − ‖Id‖
h

,

ml (A) = lim
h→0+

m(Id + hA) − ‖Id‖
h

.

(3)

6 Computer Assisted Proofs in Dynamics: http://capd .ii .uj .edu .pl.
7 http://wms .mat .agh .edu .pl /~mcapinsk /Papers .html.
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The l(A) is the logarithmic norm of A [23,24]. It is known that l(A) is a convex function. The 
number m(A) is useful to us since it can be used to obtain the lower bound ‖Ap‖ ≥ m (A)‖p‖. 
The number ml (A) can be thought of as a ‘lower bound version’ of the logarithmic norm.

If s > 0, then

l(sA) = sl(A), ml(sA) = sml(A).

Lemma 3 ([25]). We have

m(A) =
{

1∥∥A−1
∥∥ if detA �= 0,

0 otherwise,
ml (A) = −l (−A) .

We now give two technical lemmas that allow us to obtain upper and lower bounds on l and 
ml , respectively, for a weighted average of a family of matrices.

Lemma 4. Let h : [0,1] →R+ be a continuous function and let A : [0,1] → Rn×n be a measur-
able function such that l (A (s)) ≤ L for s ∈ [0,1]. Then

l

⎛⎝ 1∫
0

h(s)A(s) ds

⎞⎠≤ L

1∫
0

h(s) ds.

Proof. From Jensen’s inequality applied to the convex function l we obtain

l

⎛⎝ 1∫
0

h(s)A(s)ds

⎞⎠≤
1∫

0

l(h(s)A(s))ds =
1∫

0

h(s)l(A(s))ds ≤ L

1∫
0

h(s)ds,

as required. �
Lemma 5. Let h : [0,1] →R+ be a continuous function and let A : [0,1] → Rn×n be a measur-
able function such that ml (A(s)) ≥ M for s ∈ [0,1]. Then

ml

⎛⎝ 1∫
0

h(s)A(s) ds

⎞⎠≥ M

1∫
0

h(s) ds.

Proof. Since A 
→ l (−A) is convex, ml(A) = −l(−A) is concave, so from Jensen’s inequality

ml

⎛⎝ 1∫
0

h(s)A(s)ds

⎞⎠≥
1∫

0

ml(h(s)A(s))ds

=
1∫

0

h(s)ml(A(s))ds ≥ M

1∫
0

h(s)ds,
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as required. �
3. Topologically hyperbolic manifolds

Let � be a smooth compact c-dimensional manifold without boundary. We will consider a 
vector field

F : Ru ×Rs × � → Ru ×Rs × T �

(here T � is the tangent space) and an ODE

p′ = F(p). (4)

We shall write �t for the flow induced by (4). We shall assume that

�̃ = {(0,0)} × �

is invariant under the flow. We will be in the context where for p ∈ �̃ the derivative DF(p) can 
be zero.

The objective of this section will be to provide sufficient conditions for the existence and the 
construction of stable and unstable manifolds of �̃.

Let us introduce the following notation for coordinates: x ∈ Ru, y ∈ Rs , λ ∈ �. The coor-
dinate x is towards the expanding direction, y is towards the contracting direction and λ is the 
center direction. We do not need to assume though that the coordinates x and y are perfectly 
aligned with the unstable and stable bundles of our system, respectively. A ‘rough alignment’ 
will turn out good enough, provided that the conditions needed for our construction are fulfilled.

Let L ∈ (0, 1] be a fixed constant, let βu ⊂ {1, . . . , u}, βs ⊂ {1, . . . , s} (the sets βu, βs can be 
empty) and consider the following sets

Su = Su
L = {(x, y,λ) : λ ∈ �,‖y‖ < L‖x‖ ,‖x‖ < 1, xi > 0 for i ∈ βu} ,

Ss = Ss
L = {(x, y,λ) : λ ∈ �,‖x‖ < L‖y‖ ,‖y‖ < 1, yi > 0 for i ∈ βs} .

We define

Su− = {(x, y,λ) ∈ Su : ‖x‖ = 1 or xi = 0 for some i ∈ βu

}
,

Ss− = {(x, y,λ) ∈ Ss : ‖y‖ = 1 or yi = 0 for some i ∈ βs

}
.

We shall refer to Su−, Ss− as exit sets. We also define

Su+ = {(x, y,λ) ∈ Su : ‖y‖ = L‖x‖ and ‖x‖ < 1
}
,

Ss+ = {(x, y,λ) ∈ Ss : ‖x‖ = L‖y‖ and ‖y‖ < 1
}
.

We shall refer to Su+, Ss+ as entry sets. Note that

∂Su = Su− ∪ Su+ and ∂Ss = Ss− ∪ Ss+.
323
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Definition 6. We say that Su is an unstable sector if for every p ∈ Su the forward trajectory 
leaves Su through Su− and enters through Su+. More precisely, if the following two conditions are 
satisfied:

1. If p ∈ Su− then �[0,t] (p) /∈ Su for some t > 0,
2. If p ∈ Su+ then �(0,t] (p) ∈ Su for some t > 0.

Definition 7. We say that Ss is a stable sector, if it is a unstable sector for the flow with reversed 
time.

The sets Su and Ss will provide bounds for the domains in which the manifolds are positioned. 
To simplify the statements, we will sometimes refer to Su and Ss as sectors.

Remark 8. Depending on the particular system the sets βu, βs can be empty. We consider them 
since in the equations of the PRC3BP at infinity, some of the coordinates will only have physical 
meaning when they are greater or equal to zero.

Definition 9. We will define the unstable and stable sets as

Wu(�̃) =
{
p ∈ Su : �t (p) ∈ Su for t ∈ (−∞,0] and lim

t→−∞ dist
(
�t (p) , �̃

)
= 0

}
,

Ws(�̃) =
{
p ∈ Ss : �t (p) ∈ Ss for t ∈ [0,+∞) and lim

t→+∞ dist
(
�t (p) , �̃

)
= 0

}
,

respectively.

In our work we will present tools which will allow us to establish the existence of unstable 
and stable sets which are graphs of Lipschitz functions

wu : πx,λS
u → Su,

ws : πy,λS
s → Ss,

Wu(�̃) = graph
(
wu
)= wu

(
πx,λS

u
)
, Ws(�̃) = graph

(
ws
)= ws

(
πy,λS

s
)
,

where wu, ws satisfy

πx,λw
u (x,λ) = (x,λ) , πy,λw

s (y,λ) = (y,λ) .

This will in particular mean that Wu(�̃) and Ws(�̃) are Lipschitz manifolds.
We now define what we will mean by saying that �̃ is a topologically hyperbolic manifold.

Definition 10. Assume that the unstable and stable sets are manifolds. If we have a neighborhood
U of �̃ in which all points whose forward trajectories remain in U are in Ws(�̃), and all points 
from U whose backward trajectories remain in U are contained in Wu(�̃), then we call �̃ a 
topologically hyperbolic manifold.
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We will be working under the assumption that in Su and Ss we can factor out suitable terms 
from the derivative of F . From now on let us focus on the sector Su within which we will 
establish the existence of the manifold Wu(�̃). (The results for Ws(�̃) within Ss will follow by 
reversing the sign of the vector field, and swapping the roles of the coordinates x, y.)

For the factorization of the suitable terms in Su we will assume that there exist functions h :
Su → R and G : Su → L (Ru ×Rs × T �), (here L(X) stands for the space of Linear operators 
on X), such that

h(x, y,λ) > 0, for all (x, y,λ) ∈ Su, (5)

and

DF (x,y,λ) = h(x, y,λ)G(x, y,λ) . (6)

Remark 11. Note that we allow h = 0 on �̃. We also note that the case of (4)–(6) is fun-
damentally different from considering the case where we have an ODE with a vector field 
F (p) = h (p)g(p) and where h > 0 and g has a NHIM. The latter case is trivial since the 
NHIM for g and its associated stable and unstable manifolds become invariant manifolds for F
by a simple rescaling of time.

Our objective will be to impose some normally-hyperbolic-type conditions on G in (6), from 
which we will be able to deduce the existence Wu(�̃) in Su. Our methods will lead to establishing 
the existence of the function wu, which will be Lipschitz. They can be applied in a more general 
context, but to simplify the arguments we restrict to the case where � is a c-dimensional torus 
� = Sc = (R/ (mod 2π))c . Then we are in a convenient situation, since we have a covering

ϕ :Rc → (R/ (mod 2π))c , (7)

which gives us local charts as restrictions of ϕ to balls, provided that the radius of such balls is 
smaller than π .

3.1. Cone conditions and outflowing along cones

Let Lu, Lcu, Ls, Lcs > 0

Qu,Qcu,Qs,Qcs : Ru+s+c → R, (8)

defined as

Qu (x, y,λ) := Lu ‖x‖ − ‖(y,λ)‖ ,

Qcu (x, y,λ) := Lcu ‖(x,λ)‖ − ‖y‖ ,

Qs (x, y,λ) := Ls ‖y‖ − ‖(x,λ)‖ ,

Qcs (x, y,λ) := Lcs ‖(y,λ)‖ − ‖x‖ .

We slightly abuse notations by referring to Qu, Qcu, Qs and Qcs as cones. We do so since for 
any point p ∈Ru+s+c the sets
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Fig. 2. A cone Q+
u (p) at p = (0,1,−1), in the case when Lu = 1

2 , ‖x‖ = |x| and ‖(y,λ)‖ = |y| + |λ|.

Q+
κ (p) := {q : Qκ (p − q) ≥ 0} , κ ∈ {u, cu, s, cs}

are cones centered at p. (See Fig. 2.) This means that Qu, Qcu, Qs and Qcs define cones that 
can be attached to any point p ∈Ru+s+c.

We will assume that Ls, Lu ∈ (0,π). We do so for convenience: We are working in the 
simplified setting where � is a torus (R/(2π))c . When Lu ∈ (0,π) and p ∈ Scs , then the set 
Q+

u (p) ∩ Scs is contained in a single chart, since for any q ∈ Q+
u (p) with ‖πxq‖ ≤ 1 and ∥∥πyq

∥∥≤ 1 we will have

‖πθ (q − p)‖ ≤ ∥∥πy,θ (q − p)
∥∥≤ Lu ‖πx (q − p)‖ ≤ Lu (‖πxq‖ + ‖πxp‖) ≤ 2Lu < 2π.

A mirror argument can be made that for p ∈ Scu the set Q+
s (p)∩Scu is also contained in a single 

chart.
We note though that for a given point p ∈ Scu the set Q+

cu (p) is only locally defined in a 
neighborhood of p, which is small enough to be contained in a single chart. The same is for 
Q+

cs (p).

Remark 12. Whenever we write Qcu (p − q) or Qcs (p − q) we implicitly assume that q and p
are in some common local chart.

Definition 13. Let U ⊂ Ru+s+c and let κ ∈ {u, cu}. We say that a flow �t satisfies (forward) 
Qκ -cone conditions in U if for every p1, p2 ∈ U satisfying Qκ (p1 − p2) ≥ 0 the fact that 
�[0,t] (pi) ⊂ U , for both i = 1, 2 and some t > 0, implies that

Qκ (�t(p1) − �t(p2)) ≥ 0.

Definition 14. Let U ⊂ Ru+s+c and let κ ∈ {s, cs}. We say that a flow �t satisfies (backward) 
Qκ -cone conditions in U if for every p1, p2 ∈ U satisfying Qκ (p1 − p2) ≥ 0 the fact that 
�[−t,0] (pi) ⊂ U , for both i = 1, 2 and some t > 0, implies that

Qκ (�−t (p1) − �−t (p2)) ≥ 0.

Definition 15. We say that �t is (forward) outflowing from Scs along Qu if for every p1, p2 ∈
Scs satisfying Qu (p1 − p2) ≥ 0 there exists a t > 0 such that

�t(pi) /∈ Scs for some i ∈ {1,2} .
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Definition 16. We say that �t is (backward) outflowing from Scu along Qs if for every p1, p2 ∈
Scu satisfying Qs (p1 − p2) ≥ 0 there exists a t > 0 such that

�−t (pi) /∈ Scu for some i ∈ {1,2} .

Intuitively, if �t satisfies cone conditions then any two points which are aligned by the cones 
will flow to points, which are also aligned by the cones. The outflowing condition states that at 
least one of two such points will eventually flow out of the considered set.

3.2. Construction of stable and unstable manifolds

The aim of this section is to prove the following two theorems.

Theorem 17. Let Su be a sector (see Definition 6) and denote by �t the flow induced by F . 
Assume that:

1. The flow �t satisfies forward cone conditions for Qcu in Su and backward cone conditions 
for Qs in Su.

2. Every forward trajectory starting from a point in the sector Su must exit the sector.
3. The flow �t is backward outflowing from Su along Qs .

Then the unstable manifold Wu(�̃) is contained in Su. Moreover, wu is Lipschitz, with Lips-
chitz constant Lcu. (The Lcu is the constant in the cone Qcu; see (8).)

Theorem 18. Let Ss be a sector (see Definition 7) and denote by �t the flow induced by F . 
Assume that:

1. The flow �t satisfies backward cone conditions for Qcs in Ss and forward cone conditions 
for Qu in Ss .

2. Every backward trajectory starting from a point in the sector Ss must exit the sector.
3. The flow �t is forward outflowing from Ss along Qu.

Then the stable manifold Ws(�̃) is contained in Ss . Moreover, ws is Lipschitz, with the Lips-
chitz constant Lcs . (The Lcs is the constant in the cone Qcu; see (8).)

We will focus on proving Theorem 17, since Theorem 18 follows from Theorem 17 by revers-
ing the sign of the vector field and swapping the roles of the coordinates x and y.

Before we prove Theorem 17, we need some additional notions and technical lemmas.
To simplify the notation, throughout this section let us write here

x = (x,λ).

Definition 19. We say that h : πxSu → Su is a center-horizontal disc satisfying Qcu cone condi-
tion if

πxh = Idx, (9)
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and for every x1, x2 ∈ πxSu, such that h (x1), h (x2) lie in a single chart,

Qcu (h (x1) − h(x2)) ≥ 0. (10)

For discs h as defined above we will write

graph (h) := h
(
πxSu

)
.

Remark 20. In our proof of Theorem 17 we will show that there exists a center-horizontal disc 
wu satisfying Qcu cone condition such that

Wu(�̃) = graph
(
wu
)
.

The lemma below will be the main building block for the construction of Wu(�̃) in the proof 
of Theorem 17.

Lemma 21. Assume that Su is an unstable sector and �t satisfies forward cone conditions for 
Qcu, then there exists T > 0 such that for every center-horizontal disc satisfying Qcu cone 
condition h : πxS

u → Su there exists a center-horizontal disc satisfying Qcu cone conditions 
h′ : πxS

u → Su such that

�T (graph (h)) ∩ Su = graph
(
h′) .

Moreover, if for q ∈ graph (h) we have �T (q) ∈ Su, then q ∈ graph
(
h′) and �t (q) ∈ Su for 

t ∈ [0, T ].

Proof. Let r ∈ (0,π) be fixed. By the continuity of the flow with respect to time and initial 
conditions, for every q1 ∈ Su there exists a T > 0 such that for all t ∈ [0, T ] and all q2 such that 
‖q1 − q2‖ = r we have

r

2
< ‖�t (q2) − q1‖ < π. (11)

By compactness of Su the T can be chosen to be independent of the choice of q1. Since the points 
in Su− exit the set Su (see Condition 1 from Definition 6), and Su− is compact, we can choose T
small enough so that in addition to (11),

�t (q) /∈ Su, for every t ∈ [0,2T ] and q ∈ Su−. (12)

Condition (12) ensures that if we exit the set Su then we can not return to it in a time shorter than 
2T . This implies that if q ∈ Su and �T (q) ∈ Su, then �t (q) ∈ Su for all t ∈ [0, T ].

Let us introduce the following notation. We will write x = (x,λ) for a point in Ru × �. Let 
us also introduce the following set

Du := πxS
u

Observe that ∂Du := πx∂Su = πxS
u−.
328
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For a given center-horizontal disc h satisfying the Qcu cone condition and fixed t ∈ R, let us 
define gt :Du → Ru × �

gt (x) = πx�t ◦ h(x).

(The function gt depends on the choice of h.) For small t the function gt is close to identity. 
From (11)–(12), for every t ∈ [0, T ],

r

2
< ‖gt (x2) − x1‖ < π for all x1 ∈ Du and x2 ∈ ∂B (x1, r) ∩Du, (13)

gt (x3) /∈ Du for all x3 ∈ ∂Du. (14)

Note that the choice of T is independent from h.
We will show that for every x1 ∈ Du there exists a point x′

1 ∈ Du such that gT

(
x′

1

)= x1. We 
will prove this by using the local Brouwer degree (see Appendix). To do so, we will construct a 
homotopy from gT to the identity map with some good properties. Let U = B (x1, r) ∩Du. Let 
H : [0,1] × U → Ru+c be a homotopy chosen as

H (α,x) = gαT (x) .

Note that

H (0,x) = x, H (1,x) = gT (x) .

From (13)–(14) we see that for x2 ∈ ∂B (x1, r) ∩Du and x3 ∈ ∂Dcu

H (α,xi ) �= x1, for i = 2,3. (15)

Since ∂U = (∂B (x1, r) ∩Du

)∪ (B (x1, r) ∩ ∂Du), (15) implies that for every x ∈ ∂U and every 
α ∈ [0,1]

x1 /∈ H ([0,1] , ∂U) .

By the homotopy property of the Brouwer degree

deg (gT ,U,x1) = deg (H (1, ·) ,U,x1) = deg (H (0, ·) ,U,x1)

= deg (Id,U,x1) = 1,

hence by the solution property of the Brouwer degree we see that there exists an x′
1 ∈ U ⊂ Du

such that

gT

(
x′

1

)= x1.

Above we have shown that Du ⊂ gT (Dcu), hence from the continuity of gT and compactness 
of Du, gT (Du) is compact and Du ⊂ gT (Dcu).
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Now we will show that gT : Du → Ru × � is injective. By choosing small T the map gT is 
close to identity. It is therefore enough to show that for x1 �= x2 close enough so that h(x1) −h(x2)

are in the same chart, we will have gT (x1) �= gT (x2). For x1 �= x2 we know that

Qcu (h(x1) − h(x2)) ≥ 0,

so, by the fact that �t satisfies cone conditions for Qcu we also have

0 ≤ Qcu (�T (h(x1)) − �T (h(x2))) ,

which implies∥∥πy [�T (h(x1)) − �T (h(x2))]
∥∥≤ Lcu ‖πx [�T (h(x1)) − �T (h(x2))]‖ (16)

= Lcu ‖gT (x1) − gT (x2)‖ .

If πy [�T (h(x1)) − �T (h(x2))] �=0, then above implies that gT (x1) �= gT (x2). If πy[�T (h(x1))

− �T (h(x2))] = 0 then we see that since by uniqueness of solutions of ODEs �T (h(x1)) �=
�T (h(x2)) we must also have gT (x1) �= gT (x2).

Above argument shows that also gt is injective, for every t ∈ [0, T ].
Let us now define

h′ (x) := �T

(
h(g−1

T (x))
)

. (17)

By definition of h′ we see that πxh
′ (x) = πx�T

(
h(g−1

T (x))
)

= gT

(
g−1

T (x)
)

= x. From (16)

we see that∥∥πy

[
h′ (x1) − h′ (x2)

]∥∥=
∥∥∥πy

[
�T

(
h(g−1

T (x1))
)

− �T

(
h(g−1

T (x2))
)]∥∥∥

≤ Lcu

∥∥∥πx

[
�T

(
h(g−1

T (x1))
)

− �T

(
h(g−1

T (x2))
)]∥∥∥

= Lcu ‖x1 − x2‖ .

Hence Qcu

(
h′ (x1) − h′ (x2)

)≥ 0, so h′ so satisfies Qcu cone condition.
What remains is to show that graph(h′) ⊂ Su. Points can exit Su along a forward trajectory 

only through the set Su−. Once they exit, due to our choice of T they can not come back to 
Su. Moreover, gT (x) is injective. This means that h′ contains only points �T ◦ h(x) for which 
�[0,T ] ◦ h(x) ⊂ Su, hence h′ ⊂ Su. As required. �

We are now ready to prove Theorem 17.

Proof of Theorem 17. Let T be as obtained in Lemma 21.
For a given center-horizontal disc h satisfying Qcu cone conditions, by Lemma 21 we know 

that there exists the disc h′. Let us introduce the notation G (h) := h′.
We shall now construct wu. The idea is to take h0 (x) = (πxx,0,πλx), inductively define 

hn+1 := G (hn) for n ≥ 0, and show that hn+1 converges to wu.
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Consider hn as defined above. Let x ∈ πxS
u be fixed. By compactness of {p ∈ Su:πxp = x}

and the fact that πxhn (x) = x, there exists a convergent subsequence limk→∞ hnk (x) = q . We 
will show that such q has to be unique. Suppose that for two subsequences mk and nk we have 
limk→∞ hmk (x) = q1 and limk→∞ hnk (x) = q2.

Let us fix t > 0. We have �−t (q1) = limk→∞ �−t (hmk (x)) and �−t (hmk (x)) ∈ Su for mk

large enough (t < mk · T ). Hence �−t (q1) ∈ Su. For q2, by analogous argument, we also obtain 
�−t (q2) ∈ Su.

Since πxq1 = x = πxq2, we see that Qs(q1 − q2) ≥ 0, and since the �−t is outflowing along 
Qs we see that q1 has to be equal to q2, otherwise one of them would exit Su.

We now define wu (x) = limn→∞ hn (x). The conditions (9)–(10) are preserved by passing to 
the limit, which concludes the construction of wu. In particular, the graph of wu is Lcu–Lipschitz.

By construction, the center horizontal disc graph (wu) consists of points, whose backward 
trajectories remain in Su.

By repeating the above argument leading to q1 = q2 we can easily prove that any point whose 
backward trajectory remains in Su has to be in graph (wu). Moreover, since the forward trajectory 
starting from every point from Su must exit the sector, a backward trajectory which remains in Su

must accumulate on a limit set contained in the boundary ∂Su. Note that ∂Su = Su− ∪Su+ ∪ �̃. All 
points from Su− exit Su and all points from Su+ enter Su. This means that any backward trajectory 
which remains in Su must converge to �̃.

This concludes the proof. �
3.3. Validation of cone and outflowing conditions based on contraction/expansion rates

In this section we introduce ‘rates’ of contraction and expansion associated to a matrix and 
show how they can be used to validate cone conditions and outflowing conditions. The con-
ditions follow from estimates on the matrices G appearing in (6). The tools presented in this 
section make the abstract Theorems 17 and 18 a practical tool for establishing the existence of 
the invariant manifolds.

Once again, we focus on the case of the unstable manifold, since the stable manifold follows 
from changing the sign of the vector field and swapping the roles of the coordinates x, y.

Throughout this section we keep the notation

x = (x,λ) .

Assume that (6) is satisfied, i.e. that

DF (x, y) = h(x, y)G(x, y) , for (x, y) ∈ Su,

where

h(x, y) > 0 for (x, y) ∈ Su. (18)

Consider the matrix G of the form

G(p) =
(

Gxx(p) Gxy(p)

G (p) G (p)

)
for p ∈ Su,
yx yy

331
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where Gxx, Gxy , Gyx and Gyy are (c + u)× (c + u), (c + u)× s, s × (c + u) and s × s matrices, 
respectively. Let us define the following constants (see (3)),

ml (Gxx) := infp∈Su ml (Gxx(p)) , l
(
Gyy

) := supp∈Su l
(
Gyy(p)

)
,∥∥Gxy

∥∥ := supp∈Su

∥∥Gxy (p)
∥∥ ,

∥∥Gyx
∥∥ := supp∈Su

∥∥Gyx (p)
∥∥ .

Definition 22. Let ξcu, μs ∈ R be defined as

ξcu := ml (Gxx) − Lcu

∥∥Gxy

∥∥ ,

μs := l
(
Gyy

)+ 1

Lcu

∥∥Gyx
∥∥ .

(19)

We refer to ξcu as the expansion rate of G and to μs as the contraction rate of G.

The lemma below provides a tool for validating cone conditions based on the expansion and 
contraction rates.

Lemma 23. If the constants ξcu, μs defined by (19) have the property

μs < ξcu, (20)

then the flow induced by (4) satisfies Qcu cone conditions in Su.

Proof. By Lemma 8 from [25] we know that m(I + tA) = 1 + tml(A) + O(t2) and the bound 
O(t2) is uniform if we consider matrices A in some compact set. In our case this compact set is 
given as {DF(p), p ∈ Su}.

Let p1 �= p2, pi = (xi , yi) for i = 1, 2, be such that Qcu (p1 − p2) ≥ 0. Since ‖y1 − y2‖ ≤
Lcu ‖x1 − x2‖ and h ≥ 0, by (3) and Lemma 5, for t > 0

1

t
(‖πx (�t (p1) − �t (p2))‖ − ‖x1 − x2‖)

= 1

t

(∥∥∥(x1 − x2) + tπx (F (p1) − F (p2)) + O
(
t2
)∥∥∥− ‖x1 − x2‖

)

=
∥∥∥∥∥∥1

t

⎛⎝Idx + t

1∫
0

πx
∂F

∂x
(p1 + s (p1 − p2)) ds

⎞⎠ (x1 − x2)

+
1∫

0

πx
∂F

∂y
(p1 + s (p1 − p2)) ds (y1 − y2)

∥∥∥∥∥∥− 1

t
‖x1 − x2‖ + O (t)

≥ 1

t

⎛⎝m

⎛⎝Idx + t

1∫
πx

∂F

∂x
(p1 + s (p1 − p2)) ds

⎞⎠− 1

⎞⎠‖x1 − x2‖

0
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−
1∫

0

∥∥∥∥πx
∂F

∂y
(p1 + s (p1 − p2))

∥∥∥∥dsLcu ‖x1 − x2‖ + O (t)

= ml

⎛⎝ 1∫
0

πx
∂F

∂x
(p1 + s (p1 − p2)) ds

⎞⎠‖x1 − x2‖ + O (t) (21)

−Lcu

1∫
0

∥∥∥∥πx
∂F

∂y
(p1 + s (p1 − p2))

∥∥∥∥ds ‖x1 − x2‖ + O (t)

= ml

⎛⎝ 1∫
0

(h · Gxx) (p1 + s (p1 − p2)) ds

⎞⎠‖x1 − x2‖ + O (t)

−Lcu

1∫
0

∥∥(h · Gxy) (p1 + s (p1 − p2))
∥∥ds ‖x1 − x2‖ + O (t)

≥ (ml (Gxx) − Lcu

∥∥Gxy

∥∥) 1∫
0

h(p1 + s (p1 − p2)) ds ‖x1 − x2‖ + O (t)

= ξcu

1∫
0

h(p1 + s (p1 − p2)) ds ‖x1 − x2‖ + O (t) .

So, letting t → 0,

D− ‖πx (�t (p1) − �t (p2))‖ |t=0 ≥ ξcu

1∫
0

h(p1 + s (p1 − p2)) ds ‖x1 − x2‖ , (22)

where

D−f (t0) = lim inf
t→0+

f (t0 + t) − f (t0)

t

is the lower Dini derivative of f .
By Lemma 7 from [25], we know that ‖I + tA‖ = 1 + t l(A) + O(t2) and the bound O(t2)

is uniform is we consider matrices A in some compact set. By using the fact that h ≥ 0 together 
with Lemma 4, for t > 0,

1

t

(∥∥πy (�t (p1) − �t (p2))
∥∥− ‖y1 − y2‖

)
= 1 (∥∥∥(y1 − y2) + tπy (F (p1) − F (p2)) + O

(
t2
)∥∥∥− ‖y1 − y2‖

)

t
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=
∥∥∥∥∥∥1

t

⎛⎝Idy + t

1∫
0

πy

∂F

∂y
(p1 + s (p1 − p2)) ds

⎞⎠ (y1 − y2)

+
1∫

0

πy

∂F

∂x
(p1 + s (p1 − p2)) ds (x1 − x2)

∥∥∥∥∥∥− 1

t
‖y1 − y2‖ + O (t)

≤ 1

t

⎛⎝∥∥∥∥∥∥
⎛⎝Idy + t

1∫
0

πy

∂F

∂y
(p1 + s (p1 − p2)) ds

⎞⎠∥∥∥∥∥∥− 1

⎞⎠Lcu ‖x1 − x2‖

+
1∫

0

∥∥∥∥πy

∂F

∂x
(p1 + s (p1 − p2))

∥∥∥∥ds ‖x1 − x2‖ + O (t)

= l

⎛⎝ 1∫
0

πy

∂F

∂y
(p1 + s (p1 − p2)) ds

⎞⎠Lcu ‖x1 − x2‖ + O (t)

+
1∫

0

∥∥∥∥πy

∂F

∂x
(p1 + s (p1 − p2))

∥∥∥∥ds ‖x1 − x2‖ + O (t)

≤ Lcu

[
l
(
Gyy

)+ 1

Lcu

∥∥Gyx
∥∥]‖x1 − x2‖

1∫
0

h(p1 + s (p1 − p2)) ds + O (t)

= Lcuμs

1∫
0

h(p1 + s (p1 − p2)) ds ‖x1 − x2‖ + O (t) .

So, letting t → 0,

D+ ∥∥πy (�t (p1) − �t (p2))
∥∥ |t=0 ≤ Lcuμs

1∫
0

h(p1 + s (p1 − p2)) ds ‖x1 − x2‖ , (23)

where

D+f (t0) = lim sup
t→0+

f (t0 + t) − f (t0)

t

is the upper Dini derivative of f .
These estimates of the Dini derivatives imply

D− (Lcu‖x1(t) − x2(t)‖ − ‖y1(t) − y2(t)‖)|t=0 > 0. (24)

Indeed, using (18), (20), (22), (23) we obtain
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D− (Lcu‖x1(t) − x2(t)‖ − ‖y1(t) − y2(t)‖)|t=0

≥ LcuD− ‖πx (�t (p1) − �t (p2))‖ |t=0 − D+ ∥∥πy (�t (p1) − �t (p2))
∥∥ |t=0

≥ Lcuξcu

1∫
0

h(p1 + s (p1 − p2)) ds ‖x1 − x2‖

− Lcuμs

1∫
0

h(p1 + s (p1 − p2)) ds ‖x1 − x2‖

= (ξcu − μs)Lcu

1∫
0

h(p1 + s (p1 − p2)) ds ‖x1 − x2‖

> 0.

Finally, if we assume that Lcu‖x1 −x2‖ −‖y1 −y2‖ ≥ 0 (i.e. we are also possibly on the boundary 
of the cone), the inequality (24) implies Qcu forward cone conditions. We have thus proven that 
the flow satisfies Qcu cone conditions on Su. �

We now discuss how to validate backward Qs cone condition (see Definition 14) and outflow-
ing from Su condition (see Definition 16). To this end, we define the following two constants

ξs := ml

(−Gyy

)− Ls

∥∥Gyx
∥∥ ,

μcu := l (−Gxx) + 1

Ls

∥∥Gxy

∥∥ .

Lemma 24. If

μcu < ξs and ξs > 0,

then we have backward cone condition for Qs in Su and the backward outflowing condition from 
Su along Qs .

Proof. If we reverse the sign in the vector field (which then induces the flow with reversed time), 
then ξs plays the role of an expansion rate, and μcu the role of the contraction rate. This means 
that from Lemma 23 we obtain backward cone conditions for Qs in Su.

We now turn to proving the outflowing from Su along Qs condition. From a mirror derivation 
to (21) for p1 = (x1, y1) and p2 = (x2, y2) such that ‖x1 − x2‖ ≤ Ls ‖y1 − y2‖ and for t > 0 we 
obtain

1

t

(∥∥πy (�−t (p1) − �−t (p2))
∥∥− ‖y1 − y2‖

)
= 1 (∥∥∥(y1 − y2) + tπy (−F (p1) + F (p2)) + O

(
t2
)∥∥∥− ‖y1 − y2‖

)

t
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=
∥∥∥∥∥∥1

t

⎛⎝Idy + t

1∫
0

πy

−∂F

∂y
(p1 + s (p1 − p2)) ds

⎞⎠ (y1 − y2)

+
1∫

0

πy

−∂F

∂x
(p1 + s (p1 − p2)) ds (x1 − x2)

∥∥∥∥∥∥− 1

t
‖y1 − y2‖ + O (t)

≥ 1

t

⎛⎝m

⎛⎝Idy + t

1∫
0

πy

−∂F

∂y
(p1 + s (p1 − p2)) ds

⎞⎠− 1

⎞⎠‖y1 − y2‖

−
1∫

0

∥∥∥∥πy

−∂F

∂x
(p1 + s (p1 − p2))

∥∥∥∥dsLs ‖y1 − y2‖ + O (t)

= ml

⎛⎝ 1∫
0

πy

−∂F

∂y
(p1 + s (p1 − p2)) ds

⎞⎠‖y1 − y2‖ + O (t)

− Ls

1∫
0

∥∥∥∥πy

−∂F

∂x
(p1 + s (p1 − p2))

∥∥∥∥ds ‖y1 − y2‖ + O (t)

≥ (ml

(−Gyy

)− Ls

∥∥Gyx
∥∥) 1∫

0

h(p1 + s (p1 − p2)) ds ‖y1 − y2‖ + O (t)

= ξs

1∫
0

h(p1 + s (p1 − p2)) ds ‖y1 − y2‖ + O (t) .

Now, since for p ∈ Su we have h(p) > 0 and ξs > 0, for sufficiently small t > 0 we obtain

∥∥πy (�−t (p1) − �−t (p2))
∥∥> ‖y1 − y2‖ . (25)

Recall that we are assuming that p1 �= p2 satisfy Qs (p1 − p2) ≥ 0. Up to now, we have proven 
that, for t > 0 and as long as �−t (p1), �−t (p2) ∈ Su, the following is satisfied:

• Since Q+
s (p) ∩ Su is in a single chart, for every p ∈ Su and t > 0,

Qs (�−t (p1) − �−t (p2)) ≥ 0.

• The map t → ∥∥πy (�−t (p1) − �−t (p2))
∥∥ is strictly increasing.

We will show that this implies that for some t > 0 either �−t (p1) or �−t (p2) must exit Su.
If this was not the case, by compactness of Su we would have a sequence tn → ∞ and a point 

p∗ = limn→∞ �−tn (p1). From compactness, we can choose a subsequence tn such that p∗ =
1 k 2
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limk→∞ �−tnk
(p2). Since by the Qs -backward cone condition �−tnk

(p1) ∈ Q+
s (�−tnk

(p2)), 
by passing to the limit, we obtain p∗

1 ∈ Q+
s (p∗

2). Also

∥∥∥πy

(
�−tnk

(p1) − �−tnk
(p2)

)∥∥∥ k→∞→ ∥∥πy

(
p∗

1 − p∗
2

)∥∥ ,

and by the strict monotonicity of t 
→ ∥∥πy (�−t (p1) − �−t (p2))
∥∥

∥∥πy (�−t (p1) − �−t (p2))
∥∥<

∥∥πy

(
p∗

1 − p∗
2

)∥∥ , for all t > 0. (26)

Observe that from the above condition it follows that πyp
∗
1 �= πyp

∗
2 . Hence at least one 

of the points p∗
1 , p∗

2 must not belong to �, so that (25) holds and the function t 
→∥∥πy

(
�−t

(
p∗

1

)− �−t

(
p∗

2

))∥∥ is increasing.
Taking any s > 0. We have,∥∥πy

(
p∗

1 − p∗
2

)∥∥>

∥∥∥πy

(
�−tnk

−s (p1) − �−tnk
−s (p2)

)∥∥∥ .

Taking the limit k → ∞, we obtain a contradiction:∥∥πy

(
p∗

1 − p∗
2

)∥∥>
∥∥πy

(
�−s

(
p∗

1

)− �−s

(
p∗

2

))∥∥>
∥∥πy

(
p∗

1 − p∗
2

)∥∥ .

This finishes our proof. �
4. Description of the PCR3BP at infinity

In this section we introduce the Planar Circular Restricted 3-Body Problem and present several 
sets of coordinates that will be useful in our construction.

4.1. Equations at infinity

Let (r, α) be polar coordinates in the plane and let (y, G) be their symplectic conjugate mo-
menta, i.e. y = ṙ is the momentum in the radial direction and G = r2α̇ is the angular momentum. 
Then, the Hamiltonian for the planar circular restricted three body problem (PCR3BP) in the in-
ertial frame, where the primaries are rotating, takes the form

H(r,α, y,G, t) = 1

2

(
G2

r2 + y2
)

− U(r,α − t), (27)

where

U(r,φ) = 1 − μ√
r2 + 2μr cosφ + μ2

+ μ√
r2 − 2 (1 − μ) r cosφ + (1 − μ)2

is the Newtonian potential describing the interaction of the massless body with the primaries, 
which move on circular orbits. In the rotating coordinate frame φ = α − t , the Hamiltonian (27)
becomes the Hamiltonian H in (1) in polar coordinates, that is
337



M.J. Capiński, M. Guardia, P. Martín et al. Journal of Differential Equations 320 (2022) 316–370
H(r,φ, y,G) = 1

2

(
G2

r2 + y2
)

− U(r,φ) − G. (28)

Since we want to study the invariant manifolds of infinity, we consider the McGehee coordi-
nates (x, y, φ, G) where

r = 2

x2 , x > 0. (29)

Taking

U (x,φ) = U
(

2x−2, φ
)

, (30)

we obtain the following ODE

ẋ = −1

4
x3y, (31)

ẏ = 1

8
x6G2 − x3

4

∂U
∂x

,

φ̇ = 1

4
x4G − 1,

Ġ = ∂U
∂φ

,

which is reversible with respect to the involution

S (x, y,φ,G) = (x,−y,−φ,G) . (32)

That is, the flow �t induced by (31) satisfies

�t ◦ S = S ◦ �−t . (33)

Let us use the following notation Ok(x) = O(|x|k). Since (1 + x)−1/2 = 1 − 1
2x + 3

8x2 +
O3(x), one has

U(r,φ) = 1 − μ

r

(
1 + 2

μ

r
cosφ +

(μ

r

)2
)−1/2

+ μ

r

(
1 − 2

(1 − μ)

r
cosφ +

(
1 − μ

r

)2
)−1/2

= 1

r

(
1 − μ(1 − μ)

2

(
1 − 3 cos2 φ

) 1

r2 +O1

(
μ(1 − μ)

r3

))
.

Hence

U(x,φ) = U
(

2/x2, φ
)

= x2 (
1 − μ(1 − μ) (

1 − 3 cos2 φ
) x4

+O
(
μx6

))
. (34)
2 2 4
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Therefore,

∂U
∂x

= x +O5(x),
∂U
∂φ

= β(φ)x6 +O8(x)

where

β(φ) = 3μ(1 − μ)

8
cosφ sinφ.

This means that in (31) in the equation for ẏ the dominant term near x = y = 0 will be − x3

4
∂U
∂x

=
− x4

4 +O6(x).
The manifold at infinity

� = {(x, y,φ,G) ∈R×R×T ×R | x = y = 0},

is invariant and is foliated by periodic orbits

�I = � ∩ {G = −I } . (35)

Observe that H ≡ 0 on �.

Remark 25. In the definition of �I we introduce the minus on the right hand side because then 
the periodic orbit �I will belong to the energy level H = I (see (28)).

4.2. Invariant sector

The system (31) can be written as

ẋ = −1

4
x3y (36)

ẏ = −1

4
x4 + x6O1

φ̇ = 1

4
x4G − 1

Ġ = β(φ)x6 + x8O1,

where β and all O1 functions above are 2π -periodic in φ.
To straighten the lowest order terms, we make the change

q = 1

2
(x − y),

p = 1

2
(x + y),

θ = φ + Gy.

(37)
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The coordinate change θ = φ + Gy, might appear artificial, as we are adding Gy to an angle θ , 
however the system is still 2π -periodic in θ , which means that we can treat this variable as an 
angle.

Note that we are only interested in the region p + q ≥ 0 (see (29)). We do assume this fact 
throughout this section without mentioning it.

Then we have the new system, which has the form

q̇ = 1

4
(q + p)3

(
q + (q + p)3O0

)
, (38)

ṗ = −1

4
(q + p)3

(
p + (q + p)3O0

)
,

Ġ = (p + q)6O0,

θ̇ = (p + q)6O0 − 1.

Let F denote the vector field on the right hand side of (38). We note that the derivative of F
is of the form

DF = (p + q)3

⎛⎜⎜⎜⎜⎝1

4

⎛⎜⎜⎜⎜⎝
1 + 3q

q+p
3q

q+p
0 0

− 3p
q+p

−1 − 3p
q+p

0 0

0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎠+O1

⎞⎟⎟⎟⎟⎠ . (39)

This means that we can factor out the term

h(q,p, θ,G) = (p + q)3 ,

in front of the derivative of the vector field.
On the level set of the Hamiltonian H = I , we have G = G(x, y, θ, I ). From (28) we know 

that

I = x4G2

8
+ 1

2
y2 − U(x,φ) − G. (40)

Since the equation (40) is quadratic in G, it can be explicitly solved for G(x, y, θ, I ). The ana-
lytical formula has a singularity in the denominator for x → 0, hence for the rigorous numerical 
computation of G and its derivatives it is convenient to use a different approach. Let us recall 
that by (34) U(x, φ) = x2O0, hence for x close to zero G can be solved for as G ≈ −I .

Let I be fixed and let �I : R3 × S1 →R be defined as

�I (q,p,G, θ) := (p + q)4 G2

8
+ 1

2
(p − q)2 − U(p + q, θ − G(p − q)) − G − I.

We consider GI = GI (q, p, θ) to be the solution of �I (q, p, GI , θ) = 0, which satisfies 
GI (0, 0, θ) = −I . The lemma below is a tool which we use in our computer assisted proof 
to establish that such GI is well defined and to validate explicit bounds for its values.
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Lemma 26. Let G be a closed interval and let G0 ∈ intG. Let q, p, θ be fixed. If

G0 −
(

∂�I

∂G
(q,p,G, θ)

)−1

�I (q,p,G0, θ) ⊂ G,

then there exists a GI (q,p, θ) ∈ G such that �I (q, p, GI (q,p, θ) , θ) = 0.

Proof. The result follows from the interval Newton method [26, Theorem 13.2]. �
Corollary 27. Lemma 26 works under the implicit assumption that 0 /∈ ∂�I

∂G
(q, p, G, θ), so from 

the implicit function theorem we also obtain that GI (q,p, θ) ∈ C1 and the bounds on its deriva-
tives as

∂GI

∂q
(q,p, θ) ∈ −

(
∂�I

∂G
(q,p,G, θ)

)−1
∂�I

∂q
(q,p,G, θ) ,

∂GI

∂p
(q,p, θ) ∈ −

(
∂�I

∂G
(q,p,G, θ)

)−1
∂�I

∂p
(q,p,G, θ) ,

∂GI

∂θ
(q,p, θ) ∈ −

(
∂�I

∂G
(q,p,G, θ)

)−1
∂�I

∂θ
(q,p,G, θ) .

We see that in a neighborhood of � the coordinate q is “expanding”, p is “contracting”, and 
θ, G are center coordinates. This means that we can expect the set

Su = Su
I,L,R :=

{
(q,p,GI (q,p, θ) , θ) : q ∈ (0,R) , |p| < Lq, θ ∈ S1

}
, (41)

to be an invariant sector (see Definition 6) for suitably chosen R, L > 0.

Remark 28. We fix the energy level H = I , and for such fixed value our system becomes three 
dimensional. We therefore treat the sector Su

I,L,R as a subset of a three dimensional space, with 
coordinates q, p, θ .

The following lemma gives conditions to prove the existence of an unstable sector (according 
to Definition 6).

Lemma 29. Let F = (F1,F2,F3,F4) : R3×S1→R4 stand for the vector field on the right hand 
side of (38). If for every

〈(F1,F2) (z), (L,−1)〉 > 0 for all z ∈ {p = Lq} ∩ Su
I,L,R,

〈(F1,F2) (z), (L,1)〉 > 0 for all z ∈ {p = −Lq} ∩ Su
I,L,R,

F1(z) > 0 for all z ∈ {q = R} ∩ Su
I,L,R,

then Su
I,L,R is an unstable sector.

Proof. The assumptions imply that the flow can not exit Su
I,L,R through |p| = Lq and must exit 

through {q = R}. �
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We define a sector

Ss = Ss
I,L,R :=

{
(q,p,GI (q,p, θ) , θ) : p ∈ (0,R) , |q| < Lp,θ ∈ S1

}
. (42)

The proposition below shows that points exiting a neighborhood of �I (within p + q > 0) 
must do so through the unstable sector. This is a technical result, which will be useful in our 
construction for the proof of oscillatory motions in section 6.

Proposition 30. Assume that Su and Ss defined in (41) and (42) are unstable invariant and stable 
sectors, respectively. Let

B(r) = {(q,p,GI (q,p, θ) , θ) | − r < q <
√

r,0 < p < r, θ ∈ S1, q + p > 0}.

There exists r∗ > 0, such that:

1. For every

z0 ∈ (B(r∗) ∩ {q > 0}) \ (Su ∪ Ss
)

there exists T = T (z0) > 0 such that z(T ) ∈ Su, where z(t) is a solution of (38) with initial 
condition z(0) = z0.

2. For every

z0 ∈ (B(r∗) ∩ {q < 0}) \ Ss

and the solution z(t) starting from z0 we have

lim
t→∞πq,pz (t) = (q∗,p∗) ,

where p∗ ∈ (−πqz0, r
∗) and q∗ + p∗ = 0.

Proof. Below we will choose r∗ sufficiently small so that r∗ < 1, 
√

r∗ < R and (see Fig. 3)

(q = √
r∗,p = r∗) ∈ πq,pSu = πq,pSu

I,L,R.

Observe that we have freedom to decrease r∗ and still the above condition will be satisfied.
Let M be such that for O0 in (38) we have a bound |O0| < M for some macroscopic neigh-

borhood of (0, 0). We choose r∗ small enough so that B(r∗) lies in this neighborhood.
We start by showing that if r∗ is also small enough so that r∗ < 1

64M2 then for every point 

from B (r∗) ∩ {p = r∗} and any t holds

dp

dt
< 0. (43)

In view of (38) and the positivity of p + q , in order to show (43) it is enough to check that 
p + (p + q)3O0 > 0. Since |q| ≤ √

r∗ and r∗ < 1
2 we obtain
64M
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Fig. 3. The set B(r∗) from Proposition 30.

p + (p + q)3O0 ≥ r∗ − M(r∗ + √
r∗)3 > r∗ − M(2

√
r∗)3 > 0.

We can see from (43) that a trajectory can not exit the set B(r∗) \ (Su ∪ Sd
)

through {p = r∗}. 
(See Fig. 3.)

We now show that if we choose r∗ < M−1
(
1 + 1

L

)−3
then for every point from (B(r∗) ∩{q >

0}) \ (Su ∪ Ss) ⊂ B(r∗) ∩ {q ≥ Lp} and any t holds

dq

dt
> 0. (44)

For this it is enough to show that q + (p + q)3O0 > 0. Since q ≥ Lp and q ≤ √
r∗ <√

M−1
(
1 + 1

L

)−3
we see that

q + (p + q)3O0 ≥ q − M(q + 1

L
q)3 = q

(
1 − q2M

(
1 + 1

L

)3
)

> 0.

We are ready to prove the first claim. Let us fix z0 ∈ (B(r∗) ∩ {q > 0}) \ (Su ∪ Ss). Let

c (z0) = min

{
dq

dt
(z) : z = (q,p,G, θ) ∈ B(r∗), such that q ∈

[
πqz0,

√
r∗
]
, q ≥ Lp

}
> 0.

For a trajectory z (t) starting from z0, for t > 0 we will therefore have

πqz (t) > πqz0 + c (z0) t,

as long as z (t) ∈ B (r∗). Since z(t) can not pass through {p = r∗} we will have z (T (z0)) ∈ Su

for some T (z0) <
√

r∗/c (z0).
To prove the second claim, observe that using mirror arguments to the proof of (44) we obtain 

that for every point from B (r∗) ∩ {q < 0} \ Ss = B (r∗) ∩ {q ≤ −Lp} we have

dq

dt
< 0.

For every point z0 ∈ (B(r∗) ∩ {q < 0}) \ Ss the trajectory z (t) which starts from z0 can not 
exit B (r∗) through {p = r∗}. Moreover it cannot exit through the line x = p +q = 0 as it consist 
of the fixed points. Since q(t) is strictly increasing and bounded, it converges to q∗ ∈ [−r∗, πqz0]
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and it is easy to see that then the trajectory must converge to the line x = p + q = 0. We have 
obtained

lim
t→∞πq,pz (t) = (q∗,p∗)

for some (q∗,p∗) ∈ {q + p = 0}. Therefore p∗ = −q∗ ∈ (−πqz0, r
∗). This finishes our 

proof. �
4.3. Bringing the factorized derivative at infinity to diagonal form

In the dominant part of matrix DF given by (39) in the limit of |p|
q

→ 0 (i.e. very tight sector) 

we have 3q
p+q

→ 3 and 3p
p+q

→ 0. Therefore, we obtain there is an off-diagonal “non-small” term 

corresponding to the entry ∂Fq

∂p
. The presence of such term is undesirable, because it makes the 

verification of cone conditions for the parabolic invariant manifold harder.
In this section we discuss a simple change of coordinates of the form u = q + (1 − b)p, for 

some b ∈ R, which leaves the remaining coordinates p, θ, G unchanged. This change will take 
the derivative of the factorized vector field (39) at � to diagonal form.

By taking

u = q + (1 − b)p (45)

we obtain the ODE

u̇ = 1

4
(u + bp)3

(
u − 2 (1 − b)p + (u + bp)3O0

)
,

ṗ = −1

4
(u + bp)3

(
p + (u + bp)3O0

)
,

Ġ = (u + bp)6 O0,

θ̇ = (u + bp)6 O0 − 1.

(46)

Let us denote the vector field on the right hand side in (46) by F = (Fu,Fp,FG,Fθ

)
.

It is easy to see that

∂Fu

∂p
= 1

4
(u + bp)3

(
W + (u + bp)2O0

)
,

where

W = 3b

u + bp
(u − 2(1 − b)p) − 2(1 − b)

= 3b
u

u + bp
− 6b(1 − b)

p

u + bp
− 2(1 − b)

= 3b

(
u − 1

)
− 6b(1 − b)

p + (5b − 2)

u + bp u + bp
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= 3b
−bp

u + bp
− 6b(1 − b)

p

u + bp
+ (5b − 2)

= 3b(b − 2)
p

u + bp
+ (5b − 2).

So if we take b = 2/5, then we get rid of the first term in the bracket and can factor out (u + bp)3

in front of the derivative of the vector field, obtaining

DF (u,p,G, θ) =

(u + bp)3

4

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝

4 + 3 (b − 2)
p

u+bp
3b(b − 2)

p
u+bp

0 0

−3 p
u+bp

−1 − 3 p
u+bp

0 0

0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠+O2 (u + bp)

⎞⎟⎟⎟⎠ ,
(47)

with b = 2/5.
Since for points from a sector |p| ≤ L1q

∣∣∣∣ p

u + bp

∣∣∣∣= ∣∣∣∣ p

q + p

∣∣∣∣≤ L1

1 − L1
,

we see that for small L1 the factorized derivative of the vector field will be close diag (4,−1,0,0), 
when computed at points from the sector.

5. Bounds on the unstable manifold at infinity in the PCR3BP

Let us fix I and consider the manifold {H = I } (see (28)) and the periodic orbit �I introduced 
in (35). Analogously to (41), we consider a sector Su

I,L,R in the coordinates (u, p, θ).
We will work in a setting where, by Lemma 26, for (u, p, G, θ) ∈ {J = I }, we have G =

GI (u, p, θ). This means that (u, p, θ) uniquely define the point (u, p, GI(u, p, θ), θ).
Our aim will be to apply Theorem 17 to establish the existence of a center-horizontal disc 

wu : Bu ×S1 → Su
I,L,R , for Bu = [0,R] ⊂ R, such that the unstable manifold Wu

�I
of �I for the 

flow of (46) projected on to the u, p, θ coordinates is a graph of wu

Wu
�I

= graph
(
wu
)
.

Recalling the change of coordinates (45) and that b = 2/5, we define

GI (u,p, θ) := GI (u − (1 − b)p,p, θ) .

From now on, for points belonging to the sector Su
I,L,R , we denote by �̃t (u,p, θ) the projec-

tion onto the (u, p, θ) coordinates of the flow associated to (46) with initial condition at the point 
(u,p,GI (u,p, θ) , θ).
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Let P and M be the following matrices

P :=
⎛⎝ 1 0 0 0

0 1 0 0
0 0 0 1

⎞⎠ , M :=

⎛⎜⎜⎝
1 0 0
0 1 0

∂GI

∂u
∂GI

∂p
∂GI

∂θ

0 0 1

⎞⎟⎟⎠ .

On the invariant surface J = I , the coordinates are (u, p, θ) and the vector field is F̃ (u, p, θ) =
PF(u, p, GI (u, p, θ), θ). Hence the derivative of the vector field is

DF̃(u,p, θ) := P DF(u,p,GI (u,p, θ) , θ)M. (48)

From DF̃(u, p, θ) we can factorize the term h (u,p, θ) = (u + bp)3. Let us use the notation G
for a 3 × 3 interval matrix, which is an interval enclosure of the factorized DF̃ . In other words, 
for every (u,p, θ) ∈ πu,p,θS

u
I,L,R let

DF̃ (u,p, θ) ∈ (u + bp)3G = (u + bp)3

⎛⎝ Guu Gup Guθ

Gpu Gpp Gpθ

Gθu Gθp Gθθ

⎞⎠ . (49)

Remark 31. The G can be obtained by validating assumptions of Lemma 26 to obtain bounds 
on GI (u,p, θ), bounds on the derivatives of GI via Corollary 27, and using these bounds for 
computing an interval enclosure of (u + bp)−3P DF(z) M for all z ∈ Su

I,L,R .

We now formulate our main result, which is our tool for obtaining the bounds on the unstable 
manifold of �I . First we consider the following notation. As in (8) and (19), we define cones

Qcu (u,p, θ) = Lcu ‖(u, θ)‖ − ‖p‖ ,

Qs (u,p, θ) = Ls ‖p‖ − ‖(u, θ)‖ ,

and consider constants ξcu, μs, ξs, μcu ∈ R satisfying

ξcu ≤ ml

((
Guu Guθ

Gθu Gθθ

))
− Lcu

∥∥∥∥(Gup

Gθp

)∥∥∥∥ ,

μs ≥ l
(
Gpp

)+ 1

Lcu

∥∥(Gpu Gpθ

)∥∥ ,

ξs ≤ ml

(−Gpp

)− Ls

∥∥(Gpu Gpθ

)∥∥ ,

μcu ≥ l

(
−
(

Guu Guθ

Gθu Gθθ

))
+ 1

Ls

∥∥∥∥(Gup

Gθp

)∥∥∥∥ .

The choice of coordinates for Qcu is motivated by the fact that the coordinates u, θ are center 
unstable and p is a stable coordinate for the flow �̃t . The constants ξcu and μs will be used to 
validate Qcu cone conditions (see Lemma 23). The choice of coordinates for Qs is due to the fact 
that p is the unstable and u, θ are center stable coordinates for �̃−t . The constants ξs, μcu and 
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Lemma 24 will be used to validate the backward Qs cone conditions and backward outflowing 
from Su along Qs .

Theorem 32. Let I, R, Lcu, Ls, L ∈ R be fixed and such that R, Lcu > 0, L ∈ (0, 1) and Ls ∈
(0, π). Let Su

I,L,R be an unstable sector for (46) in the energy level J = I . Assume also that every 
forward trajectory starting from it must exit the sector and

ξcu > μs, (50)

ξs > μcu, (51)

ξs > 0. (52)

Then, the unstable manifold Wu
�I

is a graph of a Qcu center horizontal disc wu : πu,θS
u
I,L,R →

Su
I,L,R , which satisfies πu,θw

u = id, and

∣∣πp

(
wu (u1, θ1) − wu (u2, θ2)

)∣∣≤ Lcu ‖(u1, θ1) − (u2, θ2)‖ .

Proof. By Lemma 23 and (50), the flow �̃t induced by F̃ satisfies forward cone conditions for 
Qcu in Su. By Lemma 24 and (51)–(52) the flow satisfies backward cone conditions for Qs in 
Su and is backward outflowing from Su along Qs . The result follows from Theorem 17. �

We have used Theorem 32 to validate the following result.

Theorem 33. Let

I = −1, L = 4 · 10−9, R = 10−4, Lcu = Ls = 10−5.

Then Su
I,L,R is an unstable sector and the unstable manifold Wu

�I
is a graph of a Qcu center 

horizontal disc in Su
I,L,R .

Proof. The proof follows by computer assisted validation of the assumptions of Theorems 29
and 32.

In our computer assisted validation, we obtain the following bound of the factorized derivative 
term G from (49),

G =⎛⎝ [0.9999999,1] [−2.561e-08,1.921e-09] [−3.142e-13,4.011e-21]
[−3.004e-09,1.511e-07] [−0.25,−0.2499999] [−1.003e-20,7.854e-13]
[−9.751e-12,1.593e-15] [−3.903e-12,1.050e-15] [−1.044e-20,2.531e-20]

⎞⎠ ,

which results in

ξcu = −5.288e-12, μcu = 0.00257,

μ = −0.2348, ξ = 0.2499999.
s s

347
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Note that Su
I,L,R ∪ Su

I,L,R − ⊂ {x > 0, y < 0} (in the “original” (x, y) coordinates, see (37)). 
This, by (36), implies that ẋ > 0. This means that every forward trajectory starting from a point 
in the set Su

I,L,R must exit the set.
The computer assisted proof takes a fraction of a second, running on a standard laptop. �

5.1. Extending the unstable manifold

The goal of this section is to extend the unstable manifold beyond πu,p,θS
u
I,L,R . We use an 

argument based on the properties of the vector field, to establish that the unstable manifold of the 
periodic orbit �I (see (35)) stretches away from �I along the corresponding unstable manifold 
of the two body problem. In the case when μ is small, the unstable manifold of the two body 
problem proves to be a sufficiently good approximation.

We start with the description of the system for μ = 0. In the case of the two body problem the 
Hamiltonian is given by

H(r,α, y,G) = 1

2

(
G2

r2 + y2
)

− 1

r
, (53)

(compare with (27)) and the equations of motion are

ṙ = y,

ẏ = G2

r3 − 1

r2 ,

α̇ = G

r2 ,

Ġ = 0.

The equations for r, y form a closed system (with G being a parameter) and we will focus just 
on them. We see that

ṙ = y,

ẏ = G2

r3 − 1

r2 .
(54)

Let us define an effective potential W for (54)

W(r) = G2

2r2 − 1

r
, (55)

and an effective hamiltonian for (54)

H(r, y) = y2

2
+ W(r). (56)

We are interested in the parabolic solution (it has y → 0 for large r), which is a solution with 
H(r, y) = 0. We have
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Fig. 4. The unstable sector Su
I,L,R

ind dark grey, and its extension SI,R1,r2,ε in light grey.

y = ±
√

2

r
− G2

r2 = ±x

√
1 −

(
Gx

2

)2

, (57)

where in the last equality we have used McGehee coordinates (29) r = 2/x2.
The solution with + is the stable manifold of the point at infinity (because ṙ = y > 0 hence it 

will grow to infinity) and with − is the unstable manifold. Since, for r � 1 one has G ≈ −I , we 
expect

γI (x) := −x

√
1 −

(
Ix

2

)2

(58)

to be a good approximation of the unstable manifold in the energy level H = I , when μ is small.
Let I be fixed. We now extend the sector Su

I,L,R further away from zero. Let us consider the 
change of coordinates from (x, y,G,φ) to (x, η,G,φ) defined as

y = γI (x) + η.

Let GI (x, η,φ) be the solution for G of the quadratic equation

I = x4G2

8
+ 1

2
(γI (x) + η)2 − U(x,φ) − G, (59)

for given x, η, φ. Let us now define the following extension of a sector. Let R1, R2, ε ∈ R be 
such that 0 < R1 < R2, ε > 0, and let (see Fig. 4)

SI,R1,R2,ε := {(x, η,G,φ) : x ∈ [R1,R2] , φ ∈ S1,G = GI (x, η,φ) , η ∈ [−ε, ε]}. (60)

Remark 34. The earlier considered sector Su
I,L,R is expressed in the coordinates (q, p, G, θ) and 

is connected with �I . The set SI,R1,R2,ε is in coordinates (x, η, G, φ) and is separated from �I

since points in this set satisfy x ≥ R1.

We now give a theorem which ensures that the unstable manifold passes through SI,R ,R ,ε .
1 2
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Theorem 35. Let all assumptions of Theorem 32 be fulfilled. Let

Fx (x, η,φ) := −1

4
x3 (γI (x) + η) ,

Fη (x, η,φ) := 1

8
x6 (GI (x, η,φ))2 − x3

4

∂U
∂x

(x,φ)

+ ∂γI

∂x
(x)

1

4
x3 (γI (x) + η) .

Assume that there exist ε > 0 and R1, R2 ∈ R, 0 < R1 < R2, for which the following conditions 
hold:

1. The set Su
I,L,R ∩{q = R} is a subset of SI,R1,R2,ε; i.e. if (q,p,G, θ) ∈ Su

I,L,R and q = R then

(p + q,p − q − γI (p + q) ,G, θ − G(p − q)) ∈ SI,R1,R2,ε.

2. We have

Fη (x, ε,G,φ) < 0 for every (x, ε,G,φ) ∈ SI,R1,R2,ε,

Fη (x,−ε,G,φ) > 0 for every (x,−ε,G,φ) ∈ SI,R1,R2,ε.

3. For every (x, η,G,φ) ∈ SI,R1,R2,ε ,

Fx (x, η,G,φ) > 0.

Then, every point from Wu
�I

∩ {q = R} is contained in SI,R1,R2,ε and the flow starting from such 
point exits SI,R1,R2,ε through {x = R2}.

Proof. Since Su
I,L,R is an unstable sector, by Theorem 32 it contains the unstable manifold Wu. 

The first condition therefore ensures that all points on Wu ∩ {q = R} are inside of SI,R1,R2,ε . 
The Fη is the vector field on the coordinate η, so the second condition ensures that trajectories 
starting from Wu ∩ {q = R} cannot exit SI,R1,R2,ε through {η = ε} or {η = −ε}. Since Fx is the 
vector field on the coordinate x, the third condition ensures that the coordinate x increases along 
the flow. This means that a trajectory starting from Wu ∩ {q = R} has to exit SI,R1,R2,ε through 
{x = R2}. �

We have used Theorem 35 to validate the following result:

Theorem 36. Let

I = −1, L = 4 · 10−9, R = 10−4, R1 = R

2
, R2 = 0.4, ε = 2 · 10−5.

Then, every point from Wu
�I

∩ {q = R} is contained in SI,R1,R2,ε and the flow starting from such 
point exits SI,R ,R ,ε through {x = R2}.
1 2
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Proof. The conditions to apply Theorem (35) can be validated by subdividing SI,R1,R2,ε into 105

pieces along the coordinate x and into 50 pieces along the coordinate φ (in total 5 · 106 pieces) 
and by checking the required conditions on each of the “cubes” separately. Such computation 
took under two minutes on a standard laptop. �
6. Proof of the main theorem

Here we shall construct oscillatory motions and, therefore, prove Theorem 1.
Throughout this section we will be working under the assumption that we have a setting in 

which there is an unstable sector Su
I,L,R which is established by means of Lemma 29. Moreover, 

we shall assume that the unstable manifold within it is established by means of Theorem 32. We 
will also assume that the bound on the manifold is extended to SI,R1,R2,ε by means of Theo-
rem 35.

Since Su
I,L,R ∪ SI,R1,R2,ε ⊂ {x > 0, y < 0} by (36) we see that on Su

I,L,R ∪ SI,R1,R2,ε we have 
ẋ > 0. This means that if there is a point in Su

I,L,R ∪SI,R1,R2,ε whose backward trajectory remains 
in this set, then it has to converge to �I (See Fig. 4.)

Remark 37. For the energy level H = I with I = −1 we have validated the existence of Su
I,L,R

and of SI,R1,R2,ε by means of a computer assisted (see Theorems 33 and 36).

Due to the symmetry property of system (33) from the bound on the unstable manifold we 

automatically obtain the bound S
(
Su

I,L,R ∪ SI,R1,R2,ε

)
on the stable manifold.

The oscillatory motions will be established by the method of covering relations [20,27]. We 
start by recalling the method, and then apply it to our problem in the subsequent section.

6.1. Covering relations

We restrict to the case of covering relations for maps on R2, since this is sufficient for our 
application. This allows us to simplify some of the introduced tools and notions. The methods 
from [20,27] though, are general and can be applied to carry out analogous constructions in 
higher dimensional settings.

Definition 38. An h-set is a pair (N, cN) where N ⊂ R2 and cN : R2 → R2 is a homeomorphism 
such that cN (N) = [−1,1] × [−1,1].

For simplicity, when referring to an h-set we will sometimes write only the set N , always 
assuming implicitly that we have an associated homeomorphism cN with it.

For an h-set (N, cN) we define

Nc = [−1,1] × [−1,1] ,

Nl
c = {−1} × [−1,1] ,

Nr
c = {1} × [−1,1] ,

N−
c = Nl

c ∪ Nr
c ,

N+
c = ([−1,1] × {−1}) ∪ ([−1,1] × {1}) ,
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Fig. 5. The covering M
f=⇒ N .

Fig. 6. The back-covering M
f⇐= N .

and

Nl = c−1
N

(
Nl

c

)
, Nr = c−1

N

(
Nr

c

)
, N− = c−1

N

(
N−

c

)
, N+ = c−1

N

(
N+

c

)
.

In this section we use the notation (x,y) ∈ Nc ⊂ R2 for the coordinates. We write πx and πy
for the projections onto the x and y coordinates, respectively. Note that we use a different font 
x, y in order to distinguish these with the coordinates x, y of the PCR3BP.

Definition 39. Let (M,cM) and (N, cN) be two h-sets. Let f : R2 → R2 be a continuous map 
and let fc := cN ◦ f ◦ c−1

M . We say that (M,cM) f -covers (N, cN) (Fig. 5), which we denote as

M
f=⇒ N,

iff

πxfc

(
Ml

c

)
< −1 and πxfc

(
Mr

c

)
> 1, (61)

or

πxfc

(
Mr

c

)
< −1 and πxfc

(
Ml

c

)
> 1, (62)

and

πyfc (Mc) ∩ ([−1,1] × (R\ (−1,1))) = ∅. (63)

The coordinate x plays the role of a local coordinate along which we have a topological 
expansion, and y plays the role of a coordinate along which we have a topological contraction.
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We now introduce the notion of back-covering (Fig. 6).

Definition 40. Let T : R2 → R2 be defined as T (x,y) = (y,x). For an h-set (N, cN) we define 
an h-set 

(
NT , cT

N

)
as

NT = N,

cT
N = T ◦ cN .

Definition 41. Let (M,cM) and (N, cN) be two h-sets. Let f : R2 → R2 be a continuous and 
such that f −1 : N →R2 is well defined. We say that (M,cM) f -back-covers (N, cN), which we 
denote as

M
f⇐= N,

iff

NT f −1=⇒ MT .

For our shadowing theorem we also need the following notions.

Definition 42. Let N be an h-set. Let h : [−1, 1] → N be continuous and let hc = cN ◦h. We say 
that h is a horizontal disk in N if

πxhc(x) = x.

Definition 43. Let N be an h-set. Let v : [−1, 1] → N be continuous and let vc = cN ◦ v. We say 
that v is a vertical disk in N if

πyvc(y) = y.

Definition 44. Let N be an h-set and h and v be horizontal and vertical discs in N , respectively. 
By |h| and |v| we denote the image of h and v, respectively.

The theorem below is our main tool for establishing oscillatory motions.

Theorem 45. [20, Thm. 4][27, Thm. 4] Let k ≥ 1. Assume that Ni , i = 0, . . . , k, are h-sets and 
for each i = 1, . . . , k we have either

Ni−1
fi=⇒ Ni (64)

or

Ni−1
fi⇐= Ni. (65)
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1. If Nk = N0 then there exists an x ∈ intN0 such that

fi ◦ fi−1 ◦ . . . ◦ f1(x) ∈ intNi for every i ∈ {1, . . . , k},

and

fk ◦ fk−1 ◦ . . . ◦ f1(x) = x.

2. Let h be a horizontal disk in N0 and v a vertical disk in Nk . Then there exists a point 
z ∈ intN0, such that

z ∈ |h| ,
fi ◦ fi−1 ◦ · · · ◦ f1(z) ∈ intNi, i = 1, . . . , k (66)

fk ◦ fk−1 ◦ · · · ◦ f1(z) ∈ |v| .

Corollary 46. We have the following results for infinite sequences of coverings:

1. If

Ni−1
fi=⇒ Ni or Ni−1

fi⇐= Ni for i = 1,2 . . .

then, for every horizontal disc h in N0, there exists a forward trajectory z0, z1, . . ., 
fi (zi−1) = zi , such that zi ∈ intNi for i = 1, 2, . . . and z0 ∈ |h|.

2. If

Ni−1
fi=⇒ Ni or Ni−1

fi⇐= Ni for i = 0,−1,−2, . . .

then, for every vertical disc v in N0, there exists a backward trajectory . . . , z−2, z−1, z0, 
fi (zi−1) = zi , such that zi ∈ intNi for i = −1, −2, . . . and z0 ∈ |v|.

3. If

Ni−1
fi=⇒ Ni or Ni−1

fi⇐= Ni for i ∈Z,

there exists full trajectory (zi)i∈Z, fi (zi−1) = zi , such that zi ∈ intNi for i �= 0 and z0 ∈ N0.

Proof. For item 1, from Theorem 45 and a finite sequence of coverings

Ni−1
fi=⇒ Ni or Ni−1

fi⇐= Ni for i = 0,1, . . . , k,

we obtain xk ∈ |h|, such that a trajectory starting from xk visits the successive h-sets Ni , i =
1 . . . k. By compactness of |h|, there exists a convergent subsequence xki

i→∞→ z0 ∈ |h|, which 
proves our claim.

Items 2 and 3 follow from mirror arguments. Item 2 follows by considering finite sequences 
with i ∈ {−k, . . . ,−1,0} and Item 3 by considering finite sequences with i ∈ {−k, . . . , k}. �
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Fig. 7. The covering N1
f0=⇒ N0. The set N0 is the rhombus, with the exit set marked in red. The computer assisted 

bound on the image of N1 is depicted by the diagonally placed rectangles, and the bound on the exit set is depicted in 
red. The figure is in the (x, φ) coordinates, with x on the horizontal axis and φ on the vertical axis. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

6.2. Overview of the proof

The proof will be based on a construction of appropriate h-sets, which will be positioned 
on two dimensional sections along the flow. Note that we fix the energy level at H = I , which 
makes the system three dimensional, so sections transversal to the flow are of dimension two. 
We consider three sections on which we will position our h-sets

�0 = {y = 0} ,

�1 = {x = R2} ,

� = {φ = 0} ,

where R2 ∈ R is a fixed constant (as obtained in Theorem 36). On these sections we consider 
several types of h-sets:

N0 ⊂ �0,

N1 ⊂ �1,

N (r) ,N (r̄, r) ,M (α,β) ⊂ �.

(The r, ̄r, α, β are parameters. The set N0 is defined in (71) and depicted in Fig. 7; the set N1 is 
defined in (72); The set N (r) is defined in (73) and depicted in Fig. 8; The set N (r̄, r) is defined 
in (77) and depicted in Fig. 9; The set M (α,β) is defined in (79) and depicted in Fig. 10. The 
smaller the r, ̄r, α, β the closer the h-sets are to �I .)

Set N0 is self S-symmetric (see Fig. 7). Checking that

N1 =⇒ N0
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Fig. 8. The h-set N(r).

Fig. 9. The h-set N(r̄, r).

Fig. 10. The h-set M(α, β) is in dark grey on the left hand side plot. We see that the exit set Mr(α, β) will enter the 
sector SI,R,L . On the right is a sketch of the covering of N (r̄, r) by M(α, β).

involves computer assisted validation. The rest of coverings is proven by analytic arguments. The 
smaller the parameter r , the closer the left side of the exit set of N (r) is to �I ; see Fig. 8. This 
will allow us to prove in Lemma 55 that if r is sufficiently small then

N (r) =⇒ N1.

In Lemma 58 we prove that

N (r̄, r) =⇒ N (r) ,
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provided that we choose appropriately small r̄ . We also show in Lemmas 60, 61 that we have a 
sequence of coverings

M (r̄, r) =⇒ M (α,β) =⇒ N (r̄, r) ,

for arbitrarily small α, β . The smaller we choose α, β the closer to �I is the h-set M (α,β). 
This means that we can obtain an orbit that passes through the above sequence of coverings to 
approach arbitrarily close to �I . The set M (r̄, r) is an S-symmetric to N (r̄, r), this allows us to 
automatically obtain coverings from N0 to M (r̄, r), this way we obtain a sequence of coverings

N0 =⇒ . . . =⇒ M (α,β) =⇒ . . . =⇒ N0. (67)

The smaller the α, β the closer is the approach to �I for orbits that pass through such sequences. 
We then choose a sequence M (α1, β1) , M (α2, β2) , . . . and glue sequences (67) to obtain oscil-
latory motions.

To prove bounded motions we will glue infinite sequences (67) with fixed α = r̄ and β = r .
To prove parabolic and hyperbolic motions, we will choose appropriate horizontal discs in 

N (r̄, r) and vertical discs in M (r̄, r) and use the connection

N (r̄, r) =⇒ . . . =⇒ N0 =⇒ . . . =⇒ M (r̄, r) .

The discs will be chosen so that when an orbit passes through a given disc, it escapes to infin-
ity (i.e. x = 0 in McGehee variables (29)) according to a given type of motion (hyperbolic or 
parabolic).

6.3. Proof of the main theorem

Throughout this section we consider

I = −1, L = 4 · 10−9, R = 10−4, R1 = R

2
, R2 = 0.4, ε = 2 · 10−5,

(68)
as in Theorems 33 and 36. We focus on the case I = −1, but the method is general and can be 
applied to different energy levels (i.e. values of the Jacobi constant).

Remark 47. When choosing the numbers in (68) we needed to balance two conflicting trends: 
The smaller the choice of the R, R1 and R2 the easier it is to validate the assumptions of The-
orems 33 and 36, which means that we can get better bounds on the sizes of the sectors, which 
are determined by the choice of L and ε. (In short, for small R, R1 and R2 we can choose small 
L and ε.) On the other hand, a choice of small R2 is not desirable, since then the integration 
time from �1 = {x = R2} to �0 = {y = 0} is very long, which means that the computer assisted 
bounds needed for the coverings of h-sets from �1 to �0 become very hard to obtain. We there-
fore needed to balance the choice of the parameters between these two conflicting trends so that 
our local bounds on the sectors are sharp enough, but at the same time the integration times are 
not too long. The choice (68) was reached by trial and error.
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Our objective is to construct a sequence of h-sets, positioned on sections along the flow of the 
PCR3BP. Our objective is to define these h-sets, so that Theorem 45 will lead to the existence 
of orbits which can approach arbitrarily close to infinity and come back to the regions of the 
primaries.

Let GI (x, y,φ) be defined as

GI (x, y,φ) := 1 −
√

1 − x4

2

( 1
2y2 − U(x,φ) − I

)
x4

4

(69)

a solution of the quadratic equation

I = x4G2

8
+ 1

2
y2 − U(x,φ) − G.

Note that lim(x,y)→(0,0) GI (x, y, φ) = −I and

GI (x, y,φ) = GI (x,−y,−φ) . (70)

We consider the first h-set on the section �0 = {y = 0}. We consider the flow restricted to 
energy level H = I , which means that �0 is two dimensional. The points on this section are 
parametrized by x and φ, since the coordinate G is determined by (69). We will therefore specify 
an h-set on �0 in coordinates x, φ.

To define our first h-set N0 we consider two matrices Sα,β and R as

Sα,β := diag (α,β) , R :=
(

cos
(

π
4

) − sin
(

π
4

)
sin
(

π
4

)
cos
(

π
4

) )

with which we define

N0 := Sα,β ◦R ([−1,1] × [−1,1]) + (x0,π) , (71)

cN0 (z) := R−1S−1
α,β (z − (x0,π)) ,

where α, β, x0 are given parameters. We have found that good choices of the parameters are

α = 2 · 10−4, β = 10−1, x0 = 1.9999.

This choice is motivated as follows.

Remark 48. The choice of x0 is motivated by the fact that the point (x0,π) is (roughly) on the 
intersection of the stable and unstable manifolds at �0. The set N0 is constructed by rotating 
counterclockwise the square [−1, 1]2 by the angle π

4 , rescaling it, and shifting it to be centered 
at (x0,π). This way we obtain a rhombus depicted in Fig. 7. The scaling coefficients α, β are 
chosen so that the edges N+ are (roughly) aligned with the intersection of the unstable manifold 
with �0. In Fig. 7 the (rigorous, computer-assisted) bound on this intersection is depicted in blue. 
The ratio between α and β determines the angle at which our rhombus is tilted, and the values 
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of α, β determine the size. We have chosen the size of the rhombus so that our bound on the 
unstable manifold in Fig. 7 crosses N0 without touching N+

0 . The coefficients α, β, x0, which 
define N0, were chosen by trial and error.

Remark 49. The set N0 is S symmetric. To be more precise, if (x, y = 0, φ,G) ∈ �0 is a point 
in N0 then

S (x,0, φ,G) = (x,0,−φ,G)

lies in {y = 0}. The point (x,−φ) lies in the rhombus, since −φ is identified with −φ + 2π , and 
the rhombus is symmetric with respect to the line φ = π (see Fig. 7), and from (70) we see that 
S (x,0, φ,G) ∈ N0 ⊂ �0.

Our second h-set N1 is contained in the section

�1 = {x = R2} .

The points on �1 are parameterized by φ, y, since G can be computed as G = GI (R2, y,φ). 
On the section �1 the role of the exit coordinate is played by φ, and the topologically entry 
coordinate is y. We consider the set N1 ⊂ �1, defined on the φ, y coordinates as

N1 = [φ1, φ2] × [γI (R2) − ε, γI (R2) + ε
]
, (72)

where good choices of parameters φ1, φ2 are

φ1 = 3.45 and φ2 = 3.75.

Remark 50. The angles φ1 and φ2 determine the exit set N−
1 . They have to be chosen so that the 

image of the two components of N−
1 lands to the left and to the right of the set N0, which ensures 

good topological alignment (see Fig. 7). The choice of φ1 and φ2 was determined by trial and 
error.

We consider f0 : �1 → �0 to be the section to section map along the flow of the PCR3BP. 
With the aid of computer assisted computation we validate the following result.

Lemma 51. For I = −1 and the above defined h-sets N0, N1 and the section to section map 
f0 : �1 → �0 we have

N1
f0=⇒ N0.

Proof. The computer assisted bounds that validate Lemma 51 are depicted in Fig. 7. We have 
subdivided the set N1 into ten subsets, along the coordinate φ, and integrated each of them to 
obtain a bound on f0(N1). We checked that f0(N1) does not intersect with N+

0 . The first and 
the last of the ten subsets contain the two components of N−

1 and we checked that they map to 
the left and to the right of the set N0. The computation took under eight seconds on a standard 
laptop. �
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Corollary 52. Let f̃0 : �0 → �1 be section to section map along the flow of the PCR3BP (for 
positive time). From the time reversing symmetry (33) we obtain that (recall that NT was defined 
in Definition 41)

N0
f̃0⇐= S

(
NT

1

)
.

Remark 53. The computation for the proof of Lemma 51, see Fig. 7, shows that the stable 
and unstable manifolds of �I intersect. This follows from the fact that these manifolds are S-
symmetric.

We choose our next h-set on the section

� = {φ = 0} .

The points on � are parameterized by x, y, since G can be computed as G = GI (x, y,0). On �
we can therefore consider h-sets expressed in coordinates x, y. The coordinate y is entry direction 
and x is the exit direction. We define the following h-set, N (r), where r ∈ (0,R) and (for the 
intuition behind the definition see Fig. 8 and the explanation that comes in the next paragraph)

N (r) := {(x, y) : x ∈ [R1,R2] and y ∈ [γI (x) − ε, γI (x) + ε
]}

(73)

∪ {(x, y) : x < R1, x − y ≥ r and |x + y| ≤ L(x − y)} .

The reason for above definition of N(r) is the following. For x ∈ [R1,R2], from the definition 
of SI,R1,R2,ε we know that the unstable manifold on � is enclosed in an ε neighborhood of 
the curve (x, γI (x)). We therefore position our h-set around this curve for x ∈ [R1,R2]. Recall 
also that the coordinates q, p were defined as q = 1

2 (x − y) and p = 1
2 (x + y), so the condition 

|x + y| ≤ L |x − y| ensures that |p| ≤ Lq , so the points in N(r) that have x < R1 lie in the sector 
Su

I,L,R .
The sets N±(r) are depicted on Fig. 8. The formal definition is

N+ (r) = {(x, y) : x ∈ [R1,R2] and y = γI (x) − ε}
∪ {(x, y) : x ∈ [R1,R2] and y = γI (x) + ε}
∪
{
(x, y) : x = R1, − x (1 − L) (1 + L)−1 ≤ y and y ≤ γI (x) + ε

}
∪
{
(x, y) : x = R1, γI (x) − ε ≤ y and y ≤ −x (1 + L) (1 − L)−1

}
∪ {(x, y) : x ≤ R1, x − y ≥ r, and |x + y| = L(x − y)} ,

N− (r) = {(x, y) : x = R2 and y ∈ [γI (x) − ε, γI (x) + ε
]}

∪ {(x, y) : x − y = r, and |x + y| ≤ L(x − y)} .

Let us assume that for every point from the set{
(x, y,φ,G) : (x, y) ∈ N (r) ,φ ∈ S1,G = GI (x, y,φ)

}
(74)
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we have (see (36))

φ̇ < 0. (75)

Remark 54. For a given fixed I (75) can be validated with the aid of a computer and interval 
arithmetic. This can be done by an explicit check that the φ component of the vector field given 
in (36) is negative. We have done this by directly evaluating the vector field in interval arithmetic 
on the set (74).

Let

f1 : � → �1

be the section to section map along the flow.

Lemma 55. There exists an r0 > 0 such that for any r ∈ (0, r0)

N (r)
f1=⇒ N1.

Proof. The flow starting from any point in N (r) will remain in the interior of Su
I,L,R ∪SI,R1,R2,ε

until it exits this set through �1 = {x = R2}. This means that the trajectory will not pass through 
N+

1 = {y = γI (R2) ± ε, φ ∈ [φ1, φ2]} (see (72)), so

πyf1 (N(r)) ∩ N+
1 = ∅,

which validates condition (63) from the definition of the covering relation.
Let us now observe that

N−(r) ∩ {x = R2} ∈ �1.

This means that

f1 (p) = p, for every p ∈ N−(r) ∩ {x = R2} ,

which implies

πφf1 (p) = 0 for every p ∈ N−(r) ∩ {x = R2} . (76)

Observe that since φ1, φ2 used to define N1 are such that zero is not within the interval [φ1, φ2]. 
This means that from (76) we obtain

f1
(
N−(r) ∩ {x = R2}

)∩ N1 = ∅.

Let us now consider φ to be from R instead of S1. In other words, we consider a lift of 
the angle to the real line. From (75) we see that πφf1 (N(r)) ∈ R−. We can identify N1 with 
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M.J. Capiński, M. Guardia, P. Martín et al. Journal of Differential Equations 320 (2022) 316–370
[φ1 − 2π,φ2 − 2π] × [γI (R2) − ε, γI (R2) + ε] so the angles of N1 are negative. From (76) we 
see that

πφf1
(
N−(r) ∩ {x = R2}

)
> πφN1,

which is the second inequality of (62), from the definition of the covering relation.
We now need to show that if we choose r > 0 to be sufficiently small, then we will obtain

πφf1
(
N−(r) \ {x = R2}

)
< πφN1.

This establishes the second inequality from (62). The smaller the r we choose, the closer to the 
origin, which by φ̇ in (36) implies that we will have a larger change in φ until we reach {x = R2}
from {x − y = r}. Choosing small r we can therefore obtain πφf1

(
N−(r) \ {x = R2}

)
< φ1 −

2π , which concludes our proof. �
Corollary 56. Let f̃1 : �1 → � be the section to section map along the flow of the PCR3BP. 
From the time reversing symmetry (33) and from Lemma 55 we obtain that

S
(
NT

1

)
f̃1⇐= S

(
NT (r)

)
.

Let r̄ ∈ (0, r). Recall that the section � = {φ = 0} is parameterized by coordinates x, y. We 
define the following h-set N(r̄, r) in � as (see Fig. 9).

N(r̄, r) = {(x, y) : x − y ∈ [r̄ , r] and |x + y| ≤ L(x − y)} , (77)

and

N+(r̄, r) = N(r̄, r) ∩ {(x, y) : |x + y| = L(x − y)} ,

Nl = N(r̄, r) ∩ {x − y = r̄} ,

Nr = N(r̄, r) ∩ {x − y = r} .

Our objective now will be to show that if r̄ is chosen to be sufficiently small, then we can 
construct a covering

N (r̄, r) =⇒ N (r) .

The above statement is vague, since we have not specified which map we consider for the cover-
ing. We make this more precise in the discussion that follows.

We first note that for every point in SI,R1,R2,ε we have ẋ > 0. This means that there exists 
a δ > 0, such that a trajectory that exits SI,R1,R2,ε will reach {x = R2 + δ} without re-entering 
SI,R1,R2,ε . Let such δ be fixed from now on.

Let τ : R2 × S1 ×R →R be defined as

τ (x) = min
(
inf
{
t > 0 : πφ�t(x) = 0

}
, inf {t ≥ 0 : πx�t(x) = R2 + δ}) ,
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and let f : � → � be defined as

f (x) := (πx,y�τ(x)(x),0,GI

(
πx,y�τ(x)(x),0

))
.

Remark 57. From the definition of τ we see that if πxf (x) < R2 + δ, then f (x) = �τ(x)(x). 
This means that every point x in {x < R2 + δ} whose image f (x) lands in {x < R2 + δ}, the map 
f corresponds to a true trajectory of the PCR3BP.

The definition of f is somewhat artificial, but there is a reason for which we choose it this 
way. When we take x ∈ Su

I,L,R ∪ SI,R1,R2,ε , then from the way we have defined f each iterate 
f n(x) is well defined for every n ∈ N . Moreover, as long as πxf

i(x) ≤ R2, for i = 0, . . . , n, by 
Remark 57 the points f i(x) lie on a trajectory of the PCR3BP.

Lemma 58. For every small enough r > 0 there exists a k ∈N and r̄ ∈R such that

N (r̄, r)
f k=⇒ N (r) . (78)

Proof. All trajectories which start from SI,R,L ∪ SI,R1,R2,ε will exit this set through SI,R1,R2,ε ∩
{x = R2}. This means that there exists a k such that πxf

k(Nr(r̄, r)) > R2. This means that the 
first inequality from the condition (61) needed for (78) will be satisfied. The smaller the r̄ , the 
closer the points from Nl(r̄, r) will be to the origin, where the dynamics is slow. This means that 
by choosing r̄ sufficiently small, we will obtain πxf

k(Nl(r̄, r)) < πxN(r), which means that the 
second inequality from the condition (61) is also satisfied.

We need to show that f k(N(r̄, r)) ∩ N+ (r) = ∅. This follows from the fact that points can 
exit SI,R,L ∪SI,R1,R2,ε only through SI,R1,R2,ε ∩{x = R2}. No trajectory which starts in SI,R,L ∪
SI,R1,R2,ε can therefore pass through N+ (r). �

Let τ̃ : R2 × S1 ×R →R be defined as

τ̃ (x) = max
(
sup
{
t < 0 : πφ�t(x) = 0

}
, sup {t ≤ 0 : πx�t(x) = R2 + δ}) ,

and let f̃ : � → � be defined as

f̃ (x) := (πx,y�τ̃(x)(x),0,GI

(
πx,y�τ̃(x)(x),0

))
.

Corollary 59. From the time reversing symmetry (33) and Lemma 58 we obtain

S
(
NT (r)

)
f̃ k⇐= S

(
NT (r̄, r)

)
.

Let us now consider h-sets on � = {φ = 0} of the form (see Fig. 10)

M(α,β) = {(x, y) : |x − y| ≤ L(x + y) , x + y ∈ [α,β]} (79)

Mr(α,β) = M(α,β) ∩ {(x, y) : x − y = L(x + y)} ,

Ml(α,β) = M(α,β) ∩ {(x, y) : x − y = −L(x + y)} ,
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M+(α,β) = M(α,β) ∩ ({(x, y) : x + y = α} ∪ {(x, y) : x + y = β}) .

Lemma 60. If B ∈ R, B > 0, is sufficiently close to zero, then for any α < β ≤ B there exists an 
� (depending on the choice of α, β) such that

M(α,β)
f �=⇒ N (r̄, r) .

Proof. By Proposition 30, if β < r∗ (see statement of Proposition 30 for the constant r∗) 
a trajectory starting from Mr(α, β) will enter Su

I,L,R ; see Fig. 10-left. If r∗ is sufficiently 
small, then the trajectory will enter Su

I,L,R ∩ {x − y < r̄}. Moreover, such trajectory will exit 
Su

I,L,R ∩ {x − y ≤ r} through Su
I,L,R ∩ {x − y = r}. This means that there exists an � > 0 such 

that f � (Mr(α,β)) ∩ N (r̄, r) = ∅. Moreover, f � (Mr(α,β)) will be ‘to the right’, along the co-
ordinate x, of the set N (r̄, r) so the second condition from (61) in the definition of the covering 
will be fulfilled.

The set Ml(α, β) gets mapped outside and above (with respect to y) the set S
(
Su

I,L,R

)
; see 

Fig. 10. By the symmetry of the system a trajectory which starts from Ml(α, β) will never re-

enter S
(
Su

I,L,R ∪ SI,R1,R2,ε

)
, so f �

(
Ml(α,β)

)
will always have the y coordinate bigger than 

zero. This means that topologically the set f �
(
Ml(α,β)

)
is to the left of N (r̄, r) along the x

coordinate (see Fig. 10-right). Therefore the first condition from (61) in the definition of the 
covering will be fulfilled.

Any point from M(α, β) that enters Su
I,L,R does so through {x − y < r̄}. Once a trajectory 

enters, it can not exit through ∂Su
I,L,R \ {q = R}, so

f �
(
Mr(α,β)

)∩ N+ (r̄, r) = ∅,

which means that condition (63) definition of the covering is fulfilled. �
Observe that

M(r̄, r) = S
(
NT (r̄, r)

)
.

Lemma 61. Let r̄, r > 0 be fixed. For every β > 0 there exist m > 0 and α > 0 (the m and α
depend on the choice of r̄, r, β) such that

M(r̄, r)
f m=⇒ M (α,β) (80)

Proof. From the symmetry of the system, any point in M−(r̄, r) = Ml(r̄, r) ∪ Mr(r̄, r) will 

flow out of S
(
Su

I,L,R

)
. From the definition of f , if x ∈ M− (r̄, r) then f i (x) will not return to 

S
(
Su

I,L,R

)
. Moreover, the images of the components of M−(r̄, r) will remain on different sides 

of S
(
Su

I,L,R ∪ SI,R1,R2,ε

)
. This implies (61) for any choice of α, β .

As long as the flow which starts from x ∈ M(r̄, r) remains in S
(
Su

I,L,R

)
, it approaches �I

(this follows from the outflowing property in Su and the symmetry of the system). Therefore, 
I,L,R
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Fig. 11. The horizontal discs hP− , hH− and the vertical discs vP+ and vH+ .

by compactness of M(r̄, r), one can find a sufficiently large m so that if x ∈ M(r̄, r) and f m (x) ∈
S
(
Su

I,L,R

)
then f m (x) ∈ {x + y < β}. Let us fix such m. We can now choose α > 0 sufficiently 

small so that if x ∈ M(r̄, r) and f m (x) ∈ S
(
Su

I,L,R

)
then f m (x) ∈ {x + y > α}. We have thus 

established (80). �
We are now ready to prove Theorem 1.

Proof of Theorem 1. Let us start by choosing sufficiently small 0 < r̄ < r so that we have

N (r̄, r)
f k=⇒ N (r)

f1=⇒ N1
f0=⇒ N0. (81)

This can be done by Lemmas 51, 55, 58. We choose r and r̄ to be small enough, so that 
πq,pN (r̄, r) ⊂ [−√

r∗, 
√

r∗]2 where r∗ is the constant from Proposition 30. We also choose 
r to be small enough so that

hP− := Wu
�I

∩ � ∩ N (r̄, r)

is a horizontal disc in N (r̄, r) and that

vP+ := Ws
�I

∩ � ∩ M (r̄, r)

is a vertical disc in M (r̄, r); see Fig. 11. The r̄ and r will remain fixed throughout the proof.
We also define a horizontal disc hH− in N (r̄, r) to be the lower boundary of N (r̄, r) and 

define the vertical disc vH+ in M (r̄, r) to be the left boundary of M (r̄, r); see Fig. 11.
All orbits which pass through |hP−| converge backwards in time to �I , hence they belong 

to P −. Similarly, orbits which pass through |vP+| belong to P +. By Item 2 of Proposition 30, 
orbits which pass through |vH+| belong to H+. By the symmetry of the system, orbits that pass 
through |hH−| belong to H−. We will use the discs vH+ , hH− , vP+ and hP− to obtain orbits 
from H− or P − to H+ or P +.

The idea for the proof of OS± is to consider a sequence {βi} with βi > 0, and to construct 
a sequence of coverings, which will successively link N0 with M (αi,βi) (each time returning 
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back to N0), for suitably chosen αi . Below we will show how such link can be constructed for a 
fixed β . Later on in the proof this construction will be repeated for each βi from {βi}.

By Corollaries 52, 56, 59, there exists

N0
f̃0⇐= S

(
NT

1

)
f̃1⇐= S

(
NT (r)

)
f̃ k⇐= S

(
NT (r̄, r)

)
= M(r̄, r). (82)

For a given small β , by Lemma 61 there exists an α = α (β) > 0 and m = m (β) ∈N such that

M(r̄, r)
f m=⇒ M (α,β) . (83)

By Lemma 60, there exists a � = � (α,β) such that

M (α,β)
f �=⇒ N (r̄, r) . (84)

For the above choice of α, m and �, combining (81)–(84) we obtain

N0
f̃0⇐= S

(
NT

1

)
f̃1⇐= S

(
NT (r)

)
f̃ k⇐= M(r̄, r)

f m=⇒ (85)

f m=⇒ M (α,β)
f �=⇒ N (r̄, r)

f k=⇒ N (r)
f1=⇒ N1

f0=⇒ N0.

To simplify the notation, let us denote such sequence of coverings by

N0 =⇒
β

N0. (86)

In the notation, by writing the β we emphasize that (85) includes the set M (α,β). This will play 
an important role in our arguments. Whenever we write (86), we will understand this as choosing 
the β first, and then the α, m and � in (85) are chosen so that the sequence of coverings is ensured. 
The important issue is that we can construct such sequence for an arbitrarily small β .

Let us now introduce the following sequences of coverings:

(H−) The sequence that will lead to hyperbolic motions in backward time, which we shall 
denote as 

(
H−), is

N (r̄, r)
f k=⇒ N (r)

f1=⇒ N1
f0=⇒ N0. (87)

(P −) We will also use the sequence (87) for the proof of parabolic motions in backward time, 
which we denote by 

(
P −).

(H+) The sequence that will lead to hyperbolic motions in forward time, which we shall denote 
as 
(
H+),

N0
f̃0⇐= S

(
NT

1

)
f̃1⇐= S

(
NT (r)

)
f̃ k⇐= M(r̄, r). (88)

(P +) We will also use the sequence (88) for the proof of parabolic motions in forward time, 
denoted by 

(
P +).
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(B−) The sequence that will lead to bounded motions in backward time

· · · =⇒
r

N0 =⇒
r

N0 =⇒
r

N0. (89)

(Above coverings are expressed in our simplified notation (86) with β = r .)
(B+) The sequence that will lead to bounded motions in forward time:

N0 =⇒
r

N0 =⇒
r

N0 =⇒
r

· · · . (90)

(OS−) For a fixed sequence . . . , β−3, β−2, β−1 ∈R we consider a sequence of coverings

· · · =⇒
β−3

N0 =⇒
β−2

N0 =⇒
β−1

N0.

(These coverings are expressed in our simplified notation (86).)
(OS+) For a fixed sequence β0, β1, β2, . . . ∈R we consider a sequence of coverings

N0 =⇒
β0

N0 =⇒
β1

N0 =⇒
β2

· · ·

To obtain orbits from X− ∩ Y+ for X, Y ∈ {H,P,B,OS} we combine sequences 
(
X−) with (

X+).
For example, to obtain an orbit from H− ∩ P + we glue 

(
H−) with 

(
P +) which gives

N (r̄, r)
f k=⇒ N (r)

f1=⇒ N1
f0=⇒ N0

f̃0⇐= S
(
NT

1

)
f̃1⇐= S

(
NT (r)

)
f̃ k⇐= M(r̄, r).

The circle indicates where the sequences are glued.8 Now, by Theorem 45 we obtain an orbit 
starting from |hH−| which goes to |vP+|, which proves that H− ∩ P + �= ∅.

As another example we will show how to obtain an orbit from B− ∩ OS+. By gluing 
(
B−)

with 
(
OS+), we obtain

· · · =⇒
r

N0 =⇒
r

N0 =⇒
r

N0 =⇒
β0

N0 =⇒
β1

N0 =⇒
β2

· · · . (91)

We can take the sequence {βi} used in 
(
OS+) to converge to zero. By Item 3 of Corollary 46, 

from (91) we obtain an orbit which passes through this sequence. We clearly have bounded 
motions in backward time. The trajectory going forwards in time will be making alternating 
visits between N0 and M (αi,βi) for i ∈N . The smaller the βi , the closer are the sets M (αi,βi)

to �I ; which means that the further they are from the origin for the original system associated to 
(28). This means that the orbit belongs to OS+.

All other types of motions follow from mirror arguments: gluing of sequences (X−) and (
Y+), for X, Y ∈ {H,P,B,OS} and using Theorem 45 or Corollary 46.

8 We understand the ‘gluing’ together of two sequences of coverings N =⇒ . . . =⇒ M and M =⇒ . . . =⇒ H as 
considering a single sequence of coverings N =⇒ . . . =⇒ M =⇒ . . . =⇒ H between the h-sets N and H . This 
single sequence is constructed by joining the two sequences at M .
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The bound for r0 follows from computing

{r = 2/x2 |x ∈ πxN0} = [0.4999086,0.5001915].

By Theorem 45 we obtain a periodic orbit passing through a sequence N0 =⇒
r

N0. Such 

orbit passes through the set N(r̄, r). The smaller the r the further (in the original coordinates of 
the system) is such set from the origin. Since we can take r as small as we wish, we can obtain 
periodic orbits which reach as far from the origin as we wish. The orbits also pass through N0 so 
they pass r0 close to the origin.

The computer assisted part of the proof consisted of validating the bounds of the sectors in 
Theorems 33 and 36 and the validation of the covering from N1 to N0 in Lemma 55. (All other 
components of the proof follow from analytic arguments.) The total computation time for the 
computer assisted part of the proof was 155 seconds, running on a single thread on a standard 
laptop.

This concludes our proof. �
7. Appendix

Here we write the properties of the local Brouwer degree [28]. The local Brouwer degree of a 
continuous map f : Rn → Rn at some point c ∈ Rn, n > 0, in a set U ⊂ Rn is a certain number. 
Suppose that

the set f −1(c) ∩ U is compact. (92)

Then the local Brouwer degree of f at c in the set U is well defined. We denote it by deg(f, U, c).
If U ⊂ dom(f ) and U is compact, then (92) follows from the condition

c /∈ f (∂U). (93)

Let us summarize the properties of the local Brouwer degree.

Degree is an integer.

deg(f,U, c) ∈ Z. (94)

Solution property.

If deg(f,U, c) �= 0, then there exists x ∈ U with f (x) = c. (95)

Homotopy property. Let H : [0, 1] × U → Rn be continuous. Suppose that⋃
λ∈[0,1]

H−1
λ (c) ∩ U is compact. (96)

Then
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∀λ ∈ [0,1] deg(Hλ,U, c) = deg(H0,U, c). (97)

If [0, 1] × U ⊂ dom(H) and U is compact, then (96) follows from the following condition

c /∈ H([0,1], ∂U). (98)

Local degree for affine maps. Suppose that f (x) = A(x − x0) + c, where A is a linear map and 
x0 ∈ Rn. If the equation A(x) = 0 has no nontrivial solutions (i.e. if Ax = 0, then x = 0) and 
x0 ∈ U , then

deg(f,U, c) = sgn(detA). (99)
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