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Analytic Regularization of Filippov systems

When with Tere M-Seara were working in the paper Regularization of
sliding global bifurcations derived from the local fold singularity of Filippov
systems, we used a Sotomayor-Teixeira regularization with a C k -function
φ at x = ±1. Nevertheless in simulations is common to use analytic
functions flat at infinity, instead. And the results seem to work out. Then
we proposed us to study the deviation of the Fenichel manifold for these
cases.
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Analytic Regularization of Filippov systems

For the sake of simplicity, in this talk, we consider the Filippov System:

Z (x , y) =

{
X+(x , y) = (2, 4x), y > 0

X−(x , y) = (0, 1), y < 0.

Then we regularize this system with φ = 2
πatan(

y
ϵ ). The regularized

system can be written, with the change of variable y = ϵv as:

ẋ = 1 + φ(v)
ϵv̇ = 1 + 2x + φ(v)(2x − 1)

We use the same methods (Fenichel theory and asymptotic methods), but
now the problem is slightly different. This system doesn’t have a natural
“regularization zone” such that outside of it the fields are the original
ones. Now the regularized field is different in all the phase space.
In spite of this, we can follow the Fenichel manifold and prove that the

deviation will be of order O(ϵ
2
3 ) with respect to the parabolic solution of

X (x , y) = (2, 4x), y = x2, at y = y0 = x20 , x0 > 0. Also we see that in this

case the deviation is
√
y0 − Ω̄0

2
√
y0
ϵ2/3, with Ω̄0 is related to

Ω0 = 2.338107..., the standard constant appearing in the Riccati equation.
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Analytic Regularization of Filippov systems

The first step

First we take the regularized system Zϵ:

ẋ = 1 + φ( yϵ )
ẏ = 1 + 2x + φ( yϵ )(2x − 1)

with φ = 2
πatan(

y
ϵ )

We will take a point (x0, y0), with x0 < 0 and y0 > x20 and we will compare
the orbits of this regularized system with those of X beginning at (x0, y0)
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Analytic Regularization of Filippov systems

The first step

We see that we cannot arrive at y = ϵ, cause the difference between Zϵ

and X is large there. So we arrive only till y = ϵα, with 1
2 < α < 1. Later

we will see why.
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Analytic Regularization of Filippov systems

As

φ(z) = 1− 2

πz
+O(

1

z3
), z → ∞.

in the region y ≥ ϵα, 0 ≤ α < 1, we will have Zϵ = X +O(ϵ1−α).
We denote as x∗(ϵ) the intersection with y = ϵα of the orbit of Zϵ issuing
of (x0, y0), and we will have

x∗(ϵ) = −
√
y0 − x20 +O(ϵ1−α),

1

2
< α < 1.

where x∗(0) = −
√
y0 − x20 is the intersection of the orbit of X with y = 0.

From now on we track the orbit of Zϵ issuing from the point (x∗(ϵ), ϵα).
The method, as usual, will be to arrive to exponentially small
neighbourhoods of the Fenichel manifold(s) and then we will focus in
tracking this one.
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Analytic Regularization of Filippov systems

The second step

In this step we will see the atraction to the Fenichel manifold. Now we
depart from system:

ẋ = 1 + φ(v)
ϵv̇ = 1 + 2x + φ(v)(2x − 1)

with (x∗(ϵ), ϵα−1) as initial conditions. The slow manifold in this case is

atan(v) =
π

2

1 + 2x

1− 2x
, or x =

1

2

2atan(v)− π

2atan(v) + π

If we denote by v = m0(x) and v = m(x , ϵ) the equations of slow manifold
and the Fenichel manifold for x1 < x∗(ϵ) < x2 < 0 we know that

m(x , ϵ) = m0(x) +O(ϵ)

uniformly for x ∈ [x1, x2], ϵ < ϵ0. And if x1 is small enough we can suppose
that m0(x), and ,m(x , ϵ) are increasing functions. All this is summarized in
the next figure
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Analytic Regularization of Filippov systems

with the change w = v −m(x , ϵ) , taking account of the properties of
m0(x),m(x , ϵ), and a Gronwall argument, the solution w(t) of the
tresformed system fullfils :

0 ≤ w(t, ϵ) ≤ (ϵα−1 −m(x∗(ϵ), ϵ))e−Lϵ1−2αt , 0 ≤ t ≤ x2 − x∗(ϵ)

2

and as x∗(0) = −
√
y0 − x20 , α > 1

2 , if x2 is small enough, we have the

result.
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Analytic Regularization of Filippov systems

Third step

From now on, we only must track ( the halo of) the Fenichel manifold. As
we can consider x2 small enough, system Zϵ is equivalent to the equation

dx

dv
= ϵ

1 + φ(v)

1 + 2x + φ(v)(2x − 1)

That is, from now on, we will look for the Fenichel manifold and also for
all nearby orbits as graphs over the v variable, because it is already inside
the region 1 + 2x + φ(v)(2x − 1) > 0 and cannot scape there, for the
monotony properties.
Then we try to track the Fenichel manifold in a region M ≤ v ≤ ϵα−1,
where M can be taken as big as we need.
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Analytic Regularization of Filippov systems

We seek the Fenichel manifold of the form:

x = n(v ; ϵ) = n0(v) + ϵn1(v) + ϵ2n2(v) + · · ·+O(ϵk)

where n0(v) =
1
2
φ(v)−1
φ(v)+1 , obtaining:

n1(v) =
1

2

1

n′0(v)
,

n2(v) = −2n′1(v)n
2
1(v) =

1

2

n′′0(v)

(n′0(v))
2
,

These functions are singular at +∞ and behave as:

n0(v) = − 1

2πv
+O(

1

v2
),

n1(v) = πv2 +O(v),

n2(v) = O(v5),

One can see that nk(v) = O(v3k−1), as v → ∞.
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Analytic Regularization of Filippov systems

This suggest that the validity of this expansion is:

M ≤ v ≤ ϵ−λ, 0 < λ <
1

3

One can be proved that the region:

B1 = {(x , v), M ≤ v ≤ ϵ−λ, n0(v) ≤ x ≤ n0(v) + ϵK1v
2}

is positively invariant and contains the Fenichel manifold.

Note, however, that n0(ϵ
−λ) < 0!
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Analytic Regularization of Filippov systems

fourth step

To continue the Fenichel manifold to the region x > 0, we perform the
change to the inner variables:

η = ϵ−
1
3 x , u = ϵ

1
3 v , µ = ϵ

1
3

The equation in these variables reads:

dη

du
=

µ(1 + φ( uµ))(
1 + 2µη(u) + φ( uµ)(2µη(u)− 1)

)
We will study this system for ϵ

1
3
−λ ≤ u < ∞.

Looking for the solution as:

η = η(u, µ) = η0(u) + µη1(u) + . . .

The equation for η0 can be transformed with the change w = u − η20 and
some scalings into the well known Ricatti equation:

dη

dw
= w + η2
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Analytic Regularization of Filippov systems

The solutions of the equation for η0 in u > 0:

dη0
du

=
1

2η0 +
1
πu

are shown in the next figure. Here η = η0(u) denotes the only solution
that η → −∞ as u → o+
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Analytic Regularization of Filippov systems

fourth step

Using the results of Mischenko-Rozov one obtains for this unique solution

η0(u) = − 1
2πu + π2 +O(u5), u → 0+

η0(u) =
√
u − Ω̄0

2
√
u
+O( 1u ), u → +∞, Ω̄0 =

Ω0

π
2
3

where Ω0 is the constant appearing in the standard Riccati equation.
The next term in the expansion η1(u) can be computed and one can see
that:

η1(u) ≃ − 1
2(πu)2

, u → 0+

η1(u) ≃ 1√
u
, u → +∞,

With this information we can build the blocks which contain the Fenichel
manifold.
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Analytic Regularization of Filippov systems

The three blocks

We take u0 small enough and K2 big enough but independent of ϵ to build
our first block:

B2 = {(η, u), ϵ
1
3
−λ ≤ u ≤ u0, |η − η0(u)| ≤ K2

ϵ1/3

u2
}

The next block is:

B3 = {(η, u), u0 ≤ u ≤ u1, |η − η0(u)| ≤ K3ϵ
1/3}

where u1 and K3 are big enough but independent of ϵ. Finally, the last
block is:

B4 = {(η, u), u1 ≤ u < ∞, |η − η0(u)| ≤ K4
ϵ1/3√
u
}

where K4 is big enough but independent of ϵ
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Analytic Regularization of Filippov systems

The three blocks
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Analytic Regularization of Filippov systems

We prove that the Fenichel manifold enters the three blocks and stays in
B4 and there is given by

η(u) = η0(u) +O(
ϵ1/3√
u
)

Going back to the original variables, the Fenichel manifold arrives to the
section y = y0 in a point (x∗∗(ϵ), y0) given by:

x∗∗ = ϵ1/3η0(
y0
ϵ2/3

) +O(
ϵ

√
y0

) =
√
y0 −

Ω̄0

2
√
y0

ϵ2/3 +O(ϵ)
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