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Abstract. In this work we study the splitting distance of a rapidly perturbed pendulum H(z,y,t) = %yQ +
(cos(x) — 1) + p(cos(x) — 1)g(%) with g(r) = Z‘kblg[k]ei’” a 2m-periodic function and p,e < 1.
Systems of this kind undergo exponentially small splitting, and, when p < 1, it is known that
the Melnikov function actually gives an asymptotic expression for the splitting function provided
g £0. Our study focuses on the case gI** =0, and it is motivated by two main reasons. On the
one hand, our study is motivated by the general understanding of the splitting, as current results
fail for a perturbation as simple as g(7) = cos(57) + cos(47) + cos(37). On the other hand, a study
of the splitting of invariant manifolds of tori of rational frequency p/q in Arnold’s original model for
diffusion leads to the consideration of pendulum-like Hamiltonians with g(7) =sin(p- £) +cos(q- %),
where, for most p,q € Z, the perturbation satisfies g[il] =0. As expected, the Melnikov function is
not a correct approximation for the splitting in this case. To tackle the problem we use a splitting
formula based on the solutions of the so-called inner equation and make use of the Hamilton—
Jacobi formalism. The leading exponentially small term appears at order p", where n is an integer
determined exclusively by the harmonics of the perturbation. We also provide an algorithm to
compute it.
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1. Introduction. In this paper we revisit the problem of the exponentially small splitting
of separatrices for Hamiltonian systems with one and a half degrees of freedom with a non-
autonomous fast periodic perturbation. This problem has been a subject of research due to
the role of transversal intersections between invariant manifolds in the appearance of chaos
and, when the dimension is high enough, in instability phenomena such as Arnold diffusion.
Historically, the approach to determining whether transversal intersections occur has been
to provide an asymptotic expansion of the splitting distance in terms of the perturbation
parameter.
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The general setting is a Hamiltonian system with an analytic Hamiltonian of the form
HO(I7y)+MHl($7y7t/€)7 fU,yGTXROf :E’yERQu

where the unperturbed Hamiltonian, Hy(x,y), has a saddle fixed point whose stable and
unstable manifolds coincide along a homoclinic orbit, Hi(x,y,7) is 2m-periodic in the time
7,and 0 <e <1, 0 < pu <1 are parameters. In these models, the parameter p controls the
size of the perturbation, whereas e controls its frequency. The question is to establish if the
perturbed stable and unstable manifolds intersect transversely for ¢, u > 0.

For nonfast perturbations, that is, when € = 1, classical perturbation theory provides an
explicit function, called the Melnikov function, which gives the first order in p of the splitting
distance. However, when the perturbation is fast in time, that is, for 0 < e <« 1, the Melnikov
function becomes exponentially small in ¢, and therefore a direct application of Melnikov
theory does not lead to any conclusion unless we take the parameter p exponentially small in €.

Since the 1980s, using the seminal ideas developed by Lazutkin (see [15] for an English
translation) many works (see [8], [12], [4], and references therein) have aimed at giving con-
ditions for either ensuring the validity of the Melnikov prediction or providing alternative
methods to obtain the asymptotic formula when Melnikov prediction fails to be true. In both
cases, the asymptotic formula only describes the first order of the splitting distance if some
nondegeneracy condition is met. In the so-called regular case, when the Melnikov method is
valid, the condition can be explicitly given in terms of the perturbation, whereas in the singu-
lar case, where Melnikov prediction fails, the nondegeneracy condition can be established by
the nonvanishing of the so-called Stokes constant © # 0, which is obtained studying a different
equation, independent of the singular parameter ¢, known as the inner equation.

In this work we focus on the “degenerate regular” case, that is, when the Melnikov function
seems to give the asymptotic value of the splitting distance but the nondegeneracy conditions
fail. This degenerated context is related to the study of the splitting of separatrices of ratio-
nal tori in Arnold’s original model of diffusion [2], where this setting naturally appears (see
subsection 2.3.2).

The idea is to use the more powerful tools from the singular case, i.e., the approximation
of the manifolds by the solutions of the inner equation, to overcome the difficulties added by
the degeneracy. The novelty of our argument is the following: on the one hand, by looking at
1 and € as two independent parameters, we use the analyticity of the system with respect to
u to Taylor expand the splitting distance, each of the terms carrying an exponentially small
factor in €; on the other hand, we find the smallest power in u where the leading exponentially
small term appears, and, since it is absent in the Melnikov approximation when this power
is greater than 1, we use the inner equation to prove that it is dominant. Our result is valid
for all ; and € small enough. Furthermore, the asymptotic formula is valid for the case
independent of € or = O(e") for any n > 0.

A similar example with n = 2 was exposed in [18]. In that paper the authors study the split-
ting for the pendulum equation given by H(z,y,t) = 3y + cos(z) — 5 (x + sin(xz)) (cos(2wt) +
cos(3wt)), with w a negative power of the perturbative parameter e. They establish the non-
dominance of the classical Melnikov function (which is exponentially small in w) and compute
the £2 term of the Taylor expansion of the splitting function (note that this is analogous to
our result, where the dominant term in the splitting is given by order u?). However, as the
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authors point out, the question of the dominance of the order O(£2) of the splitting remains
unsolved. In another paper in the same line, [22], the author considers a Duffing equation
given by H(z,y,t) = $y* + 222 — 121 + e223(cos(2wt) + cos(3wt)), with w also a negative
power of ¢. In this particular case he computes the order O(¢?) of the splitting and shows
that it gives the correct asymptotic behavior. The proof of this dominance relies on specific

computations for this model.

1.1. Measuring the splitting distance. Even if the method we present is quite general,
we deal with a classical problem, the rapidly forced pendulum, to illustrate it. The associated
Hamiltonian will be

(L) | (y z;u) — Hole,y) + s (:cy t) = 242+ (cos(x) ~ 1) + p(eos(z) ~ 1)g (t) ,

where (z,y) € T xR, g(7) is a real analytic 27-periodic function with zero mean, |u| < 1, and
0 <e < 1. When p =0 the unperturbed system has a saddle point at (0,0) with coinciding
unstable and stable manifolds along a homoclinic orbit that can be parameterized as

(1.2) x = xo(t) = 4arctan(e’), y—yo(t)—cojh(t), teR.
When p # 0, {(0,0,7)}-¢j0,2¢] is @ hyperbolic periodic orbit that has stable and unstable
manifolds which, in general, will not coincide. The phenomenon of the splitting of separatrices
deals precisely with the study of the difference between those invariant manifolds, as shown
in Figure 1.

This model falls in the setting where we can apply the results of the aforementioned work,
[4]. Let us summarize here the main ideas and specify our measure of the splitting distance
as well as some standard notation. Even when it is not essential, we profit from the fact that
the perturbed manifolds are globally expressible as a graph via a 27-periodic in 7 generating
function, S(z,7;u,c) (see [20]). Indeed, if we denote by W™*(z, 7; u, ), where u,s stand for
unstable and stable, the graph parameterization of the perturbed manifolds, we have that

WS (2,73 p,€) = (2, 0,8 (2, Ty 1, €))

with the generating functions S™° satisfying the Hamilton—Jacobi equation

1
(1.3) H (x,0:5,7;1) + g&rS =0,
y | y |
; K
3 X wQ ix
0 o2 0 C2m

Figure 1. Left: Unperturbed homoclinic. Right: Distance between invariant manifolds, dOW™,W?), at the
point xg.
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jointly with the boundary conditions

(1.4) wlir(r)l+ 05" (z, T ,6) =0,  lim 0,5%(x,T;p,e)=0.

T—27~

Therefore, taking x € (0,27), a measure of the splitting distance is given by
(1.5) d(z, 75 p,e) = 0,8 (x, Ty py€) — 05 (2, T3 1, €).

Following [4], instead of S™*° we use a different parameterization with u—the time on the
unperturbed homoclinic—as the parameter. That is, we define the new parameter u by
x = zo(u), where ¢ is given in (1.2), and we write

(1.6) T (u, 73, 8) = S5 (20 (u), 75 1, ).
Then, applying the chain rule, we have

(1.7)
1 N

ou ou
—— 0T (u, T ).
Yo(u) ( #e)

e 0,8 (zo(u), Ty, 8) = — - 0T (u, Ts p1,€) =

y=0:8"(x,T;pe) = 9

Note that, with this parameterization, the boundary conditions (1.4) read

(1.8) lim cosh(u) - 9,7%%(u, ;) = 0.

U—>TO0

Finally, as we expect the manifold to be close to the unperturbed homoclinic, we write

(1.9) T\U’S(U,T;,u,€) =To(u) + T (u,7; p,€),
where Tp(u) is the generating function when p =0, namely 9, Tp(u) = msfw. Summarizing,
we rewrite the splitting distance in (1.5), using the same notation d for it, as
1 . .
(110) d(u77—;“>5) = (8uTu(u7T;M7€) _8UTS(U77—;M75>>
Yo(u)
h .
= COSQ(U) (OuT" (u, 75 p1,) — 0T (u, T3, €))

and therefore, analyzing the splitting distance is equivalent to studying the function
(1.11) Alu,yp,6) :=T"(u, 73 p,€) = T°(u, 75 1, €)

and its derivatives.

In the perturbative regime p < 1 it is known (see [21], [1], [9], [7], [11], and [4]) that the
dominant term of the splitting distance for system (1.1) is given by the Melnikov function,
M. More concretely, if we take, for instance, the section x =, which corresponds to u =0,
the splitting distance d is a periodic function of 7 given by

O ) = M ol -z B T B
(1.12) d(u=0,7;p,e) = M(7;¢) u+0(€2 e 2 | +0 log(1/e) - €2 ez |,

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/09/24 to 85.87.74.152 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

SPLITTING FOR RAPID DEGENERATE PERTURBATIONS 1163

where the Melnikov function M(7;¢) is given by

o0

g(T+r/e)dr = —/OO MQ(T—FT/E)OZT

u=0 oo cosh?(7)

M(T;s):au/

oo cosh?(u+ 1)

TN e R
=D sinh (42

k=—o0

and we have written the function g as its Fourier series:

(1.13) g(T) = Zg[k] etk

keZ

Using the real analyticity of g(7) the Melnikov function can be expressed as a sum where the
successive terms include the harmonics g¥, k> 0. The term with g/*! is multiplied by a factor
of order O(e~3:1*y:

4 ~ ; 16 x . -3
M= 5 o (1) ¢ s o o ) w0 (),

Consequently, when gl # 0, the asymptotic formula for the splitting (1.12) is

(1.14)

T
2e

du=0,7;p,€) = . [47@ (g[l] : e) w0 (Jule7z=) +O(|lu?) + 0 <“’>} .

log(1/e)

In this nondegenerate regular case, the first term is greater than the error for u,e — 0, and,
therefore, (1.14) gives an asymptotic formula for the splitting distance d(u = 0,7;u,€). In
fact, what is proved in [4] is a more general formula, valid for any pu, including the cases where
p=0(1):

e % - - |
L5 du=0,mipie) = [ (0 -e) o (Y],
(1.15) =0.mime) =5 |3 (0 - em) 10 (B
where the Stokes constant [~ (1) is obtained through the study of some special solutions
of the inner equation, an equation independent of the parameter ¢, which, for the pendulum
system associated to Hamiltonian (1.1), reads

(1.16) Or (2,7, 1) + 0x0p(2, 7, 1) = éf(@zqﬁ(z,f, )2 — 2ugg).

Moreover, it is proven in [4] that, when |u| < 1, the Stokes constant satisfies

X () = dmgMp+ 0 (),

and therefore one recovers the Melnikov dominance for p small enough and gl=! 0.
Our strategy consists in exploiting the analytic dependence of (1.1) and (1.16) on u to
prove that the error term in (1.15) is O(%, e~ 7). We also provide a formula for x!=(y)

in terms of suitable limits of some solutions of the inner equation. From the computational
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point of view, dealing with the inner equation allows us to provide an effective algorithm to
compute the splitting distance (see subsection 2.4).

To finish, we remark that the methodology presented in this paper is independent of the
particular form of (1.1) and could be applied to any Hamiltonian system with one and a half
degrees of freedom with a homoclinic orbit and a nongeneric fast perturbation, performing
the necessary technical changes. The paper is organized as follows: in section 2 we present
some preliminary results and state the two main theorems, Theorems 2.4 and 2.6; we also give
two examples of application and present an algorithm to compute the leading term of X[*l] (1)
numerically. In section 3 we prove Theorem 2.4. Finally, in section 4 we prove Theorem 2.6.
We leave some technical proofs for the appendices.

2. Main result.

2.1. Setting and notation. All the functions in this work depend on u, 7, and p analyt-
ically, as well as on € (not analytically). We shall write the dependence in u,7, 1 explicitly
and leave out the dependence on ¢ unless the context requires otherwise. Notice that, as
g(7) is real analytic, there exists op > 0 such that g(7) is analytic in the complex strip
Ty, :={7€C, R(7) €T, |S(7)| < 00} and continuous on its boundary. Since proofs typically
require a finite number of reductions in the analyticity strip, when stating a result we denote
by 0 < o < gg a width of analyticity for which the conclusion holds.

As for the notation, for a given 2m-periodic function g, we denote by Gy the sets defined
as

Gi={meZ, m=mi+ma+---+my, mj €G1}.

These sets will play a crucial role in our approach. The main feature we use is the following
result.

Lemma 2.1. Let g be a 2m-periodic function with minimal period 2mw. There exists n € N
such that 1 € G, and 1 ¢ Gy Yl <n, namely

(2.2) n=n(g) :=min{k e N:1e Gy}

Proof. We only need to prove that the set {£ € N:1 &€ Gy} is not empty. If g only has
one harmonic, it has to be g[il] (otherwise, the period would be smaller), so n = 1. If g has
more than one harmonic, there exist ki, ..., &k, € G1 such that their greatest common divisor
is 1 (otherwise, the period would be smaller). Then, by the generalized Bézout identity there
exist £1,...,£4,, such that

Notice that, since g is real analytic, if k1, ...,k € G, also —k1,...,—k; € G1. Then, one can
assume that £; > 0, changing if necessary k; by —k;. Hence, ¢, = {1 + --- + {,,, satisfies that
1eGy,. |

Remark 2.2. We observe that in the space of smooth periodic functions, S, the set & =
{f € S:n(f) =1} is generic, the set & = {f € S : n(f) = 2} has codimension one, and, for
seN, & ={f €S :n(f)=s+ 1} has codimension s. As usual, & C S\(EgU---UEs_1).
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Using this notation, we can reformulate our aim in this paper as finding the splitting
distance when the perturbation g € & for some s > 1.

2.2. Main theorems. In order to state the main results, we first summarize the relevant
information about the inner equation (1.16) associated to the Hamiltonian (1.1), which we
recall is independent of the singular parameter €. The results can be found in [3].

We introduce some notation. For given p,0 > 0, let Dm % be the complex domains defined
as follows:

(2.3) DYy ={2€C;[S(2)| >0 -R(2) + 0},  Diyt={-zeDly}

(see Figure 2). For py > 0, we introduce By, = {p € C: |u| < po} and for o > 0 we write
T,={reC,R(r)eT, |S(r)|<o}CC.

Now we consider the domain
(2.4) o :D‘“+ leg“g N{3(z) <0}.
In this domain we can state the following result by paraphrasing [3].

Theorem 2.3 ([3]). Fiz po > 0 and 0 < arctan(f) < 5. For any periodic real analytic
function g, there exist oo, 0 >0, and M = M (po, f10,0) such that V€ B, 0> 0o, the inner
equation (1.16) has analytic solutions *(z,7, 1) defined in Dm E X Ty X By,, whose derivatives
are uniquely determined by the condition that

!8z¢i(z,7,ﬂ)<M-|Zl,), (2,7, )eDmixT X By,

In addition, there exists an analytic function g(z,7, ) defined in igng x T, x By, satisfying
lg(z,7,1)] < M - |2|71 and such that the difference A (2,7, 1) = Y~ (2,7, 1) — v (2,7, 1) is
given in igna X Ty X By, by

(2.5) Ain(z, 7, 1) Zx[k] k(=T +na(zm.m)
k<0

where x¥ (1) are analytic functions of p.

i T i 7+
10 10

Figure 2. Domains D'g'?f and Dy .
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Our first result, Theorem 2.4 below, relates the behavior of x!=1 for |u| small with the
degree of degeneracy (n=n(g)) of the periodic perturbation g (see Remark 2.2).

Theorem 2.4. Let g be a real analytic periodic function and n=n(g) be defined as in (2.2).
We consider x¥ (1) defined by (2.5) and Ai[ﬁ] (z, ), the kth coefficient in the Fourier series of
Ain, namely

(2.6) Ain(z ) =3 Al (2, ) - .
keZ

Then, one has the following:
1. %X[_l}(O) =0 for j=1,...,n—1 and therefore

(2.7) XU () = X + o).

2. The coefficient XL_I], which only depends on the Fourier coefficients {g[k}}kez with the
dependence being analytic, can be computed as

1 .
(1] = iz gn Al
(2.8) Xn =7 lim -9 A (2).

n! z——ioco pm
Furthermore, for the special cases n=1,2 we have that

(k] . 4[1—K]
-1 1] -1 _ 4w g™ -g
—4 - _ I\~ I
Xl 7Tg 9 X2 3 k(l o k) 9
E>1

where we observe that X[_H = %(G%m, with G(T) a primitive of g(T).

[-1] (1]

Remark 2.5. The method for computing an explicit expression for x;  and xs; — consists
in the evaluation of (2.8) by explicitly computing wf’[l] (z,7) and w;’m (z,7). We obtain these
functions by integrating explicitly (3.1) and (3.2) with n = 2. For n > 3 the integration
of (3.2) involves nested integrals that we c[arﬁnot solve explicitly. Hence, the restriction to
n

n =1 or n =2 for the explicit formula of is exclusively related to the limitation of our

computational method.
We present now the result concerning the splitting distance A(u,7, ) defined in (1.11).

Theorem 2.6. Let g be a real analytic periodic function, let n=n(g) be defined as in (2.2),
and take p > 0. Then, there exist jg,c0 such that Vu € (—po, o), € € (0,0), u € (—p, p), and
T €[0,27], the function A defined in (1.11) satisfies

2e 2

(2.9)  BuA(u,7,p1) = - [% (X[—l] (1) - el’(r—u/ﬁ)) +0(jul-e2)+0 (lo;ﬂje))] )

where X7 () = xLL_I]u” +O(u"t1) is the analytic function given in Theorem 2.4.
In particular, the following statements hold:
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1. If n(g) =1, then g #£0 and we have the following asymptotic formula:

(2.10) énA@%ﬂM)ZQi;E-Pw%<¢”-é“‘W”)-M+CNWP%+0(WW€_;)

0 (i) |

2. If n(g) =2 (and consequently g =0), we have
(2.11)

auA(’LL,T, :U’) = o2 —& ((G2)[1] . ei(T_“/5)> 'MQ + O(|M|3) +0 (‘,u‘ ) 6_2%)

3
~o(im)]

which is also an asymptotic formula when (G2 #£0.

2¢ 3¢ [2%

Remark 2.7. In the set of functions g belonging to &,_1 (see Remark 2.2) we find a generic
subset, namely {g € &,—1: X%_l] # 0}, such that Theorem 2.6 provides a first order asymptotic
formula for the splitting distance

2¢” 2

(2.12) OuA(u, 7, 1) =

) [g <X£fl] 'ei(Tfu/s)) L O(Mnﬂ)

+O(M'€;>+O<b§5@>]

when [u|™ > |u| - e"2, which occurs, for instance, in the natural setting ¢ > 0 small and
p=0(E") with m > 0.

Remark 2.8. Our result improves the formula for 9, A(u, 7, ) in [4] for (1.1), which reads

2 - 1]
2.1 MYAN = Nans (oY . ptT—u/e) ) | 2 _ B
(2.13) OulA(u, T, 1) = [ 3 (g e ) p+O(u)?)+0 oa(1/7)

Indeed, when g € & (see Remark 2.2), we recover (2.13) from Theorem 2.6 (see (2.10)). When
ge{ge&_1: XL:H # 0}, Theorem 2.6 provides the asymptotic formula (2.12), whereas
formula (2.13) only gives a nonsharp upper bound.

In addition, if g € £,_1 but X%_l] =0 (which is a nongeneric codimension one phenomenon
in &,-1), formula (2.12) gives a sharper upper bound of the distance,

™ e pl ey | =
52 -e 25+§'6 2e +W€ 2e
than the one provided by formula (2.13).

Note that, unlike in the case n = 1, it is possible to have a perturbation g with 1 ¢ G;
and 1 € Gy (that is, n(g) = 2), but X[{lj = 0. Take, for example, g(7) = cos(27) + cos(37) —
2cos(47). This function has harmonics £2, +3, and +4, which means that n(g) = 2 (see
(2.2)). However, replacing g2 = ¢gl#3 = 1/2, ¢4 = —1 in the formula in Theorem 2.4,

(2.14) |OuA(u, 7, p)| < M

we see that x5 ' = 0. The study of the splitting in this extra degenerate case requires an
additional analysis which is out of the scope of this paper.

We end this section with a corollary.
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Corollary 2.9. Under the hypotheses of Theorem 2.6, ifo_l] #0, the stable and the unstable
manifolds W™ of the Hamiltonian system (1.1) intersect transversely. As a consequence,
the time 2we map is conjugated to the Smale horseshoe map of infinite symbols around any
transversal homoclinic point.

This corollary follows by adapting the proof of Theorem 3.6 in [17], where the conjugacy
with a shift of infinite symbols is proved for the Sitnikov problem, a system with one and a
half degrees of freedom arising from a special configuration of the three-body problem.

We prove Theorem 2.4 in section 3, and we use this result in the proof of Theorem 2.6 in
section 4.

2.3. Examples. In this section we provide two examples where the condition gl*! # 0
fails: the first one describes a very simple perturbation g where we can check that X[f” =0
and X[;l] = 0, and therefore Theorem 2.6 gives an asymptotic expression for the splitting.
The second one is motivated by the study of the splitting of separatrices of rational tori in
Arnold’s original model of diffusion [2].

2.3.1. An asymptotic formula of order O (p? - e 2:). Let us take the model (1.1) with
g(7) = 20cos(37) + 16 cos(27). In this case gl =0, g3 =10, and g*2 = 8. By definition
(2.1) of G,, we have that

Gl = {_37 _2’ 21 3}>
Gy={-6,-5,—-4,—-1,0,1,4,5,6}.

As 1¢ Gy but 1 € Gy, n=2. Furthermore, using Theorem 2.4, we have
1] 4m 10-8 160

N ) R

We can use (2.11) to obtain an explicit formula for the splitting distance:

e"z [160 _= 2
Note that the result in [4]—formula (2.13)—would fail to provide an asymptotic expression
for the splitting of this system, so this example corresponds to Remark 2.7.

2.3.2. The Arnold example. In [2], Arnold presented the following Hamiltonian system
with two and a half degrees of freedom:

1 1 .
H(p1, 92,11, 12,5 11, €) = 5112 + 5122 + €(cos(p1) — 1) 4 ep(cos(p1) — 1) - (sin(p2) + cos(s)),

where (¢1, 2,11, I2,5) € T? xR?x T and s is the time. This model had an enormous impact on
the study of instabilities of quasi-integrable Hamiltonian systems, as it is expected to display
arbitrarily large drifts in the action space for arbitrarily small e. Arnold proved the existence
of such instabilities under the restrictive hypothesis of exponential smallness of 1 with respect
to €, concretely, assuming 0 < y < e~ 2. His approach started by showing that the invariant
tori given by
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Tio ={(¢1,02, 11,12, 8), pr =1 =0; I, =13, (p3,5) € T*}

with irrational action I3 (also known as quasi-periodic tori) are connected through hete-
roclinic orbits. Observe that, for ¢ = 0, the tori only have homoclinic orbits given by
Lo, ={(p1,02,11,12,8); I?/2+¢e(cos(p1) —1) =0, I = w, (p,s) € T?}. His idea was that if
one proved that for g > 0 the stable and unstable manifolds of these tori intersect transversely
along homoclinc orbits, one would also have heteroclinic orbits between nearby tori, which
would form a heteroclinic chain of connected tori with increasing actions Is.

To establish the existence of transversal homoclinic orbits one needs an asymptotic formula
for the distance between the stable and unstable manifolds. Classical perturbation theory in
the parameter p gives an exponentially small in € first order, and hence, in order to make his
argument rigorous, Arnold needed the aforementioned condition of exponential smallness on
1 with respect to e.

Without this hypothesis on i, proving the existence of unstable orbits is still an open ques-
tion, the main difficulty being to establish the existence of transversal homoclinic/heteroclinic
connections between quasi-periodic tori due to the exponentially small character of the split-
ting of separatrices (see [6] or [20]). An alternative way to analyze the instabilities is to study
the splitting of invariant manifolds in tori with rational frequency. Let us see the problem we
would face in that case.

We focus on the invariant torus associated to a rational frequency Is = p/q, and we take

(p,q)=1:
Tojq = 1(p1,02,11,12,8) : I1 =1 = 0,12 =p/q, (92, 5) € T?}.

To analyze its invariant manifolds, it is convenient to perform the following change of variables

and time:
Ilz\/g‘y7
[2:§+\/E~J,
Y11=,
2=,
S—L
Ve

which shifts the invariant torus to J =0. In these variables the Hamiltonian becomes

Hla,ery,J,t) = %yz + qL\kJ + %JQ + (cos(x) — 1) + p(cos(x) — 1) - (sin(sO) + cos (;)) ,

with equations of motion (the dot represents the derivative with respect to t)

;:Zfsin(x) — - sin(z) - (sin(g@) + cos (ﬁ)) ,
o=zt

J=p-(cos(z) —1)- (cos(gp) + cos (%)) .
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The first two variables correspond to a pendulum with a perturbation that is fast and
periodic in time but depends on the angle ¢ as well. Even though these equations are more
complex than the ones treated in this paper, they motivate our study of such degenerate
systems. Indeed, since J= O(u), assuming J =0, which corresponds to the invariant torus of
frequency p/q, in ¢, we obtain a simplified model which is a “naive first order” in p where

p

and, if we restrict ourselves to the first two equations, we have

T =y,
{y = —sin(z) — p - sin(x) - (sin (%\%) + cos (%)) .

We will deal with the study of splitting of resonant tori in Arnold’s model in a forthcoming
paper. Here we only use this simplified model to explain our methodology. By renaming the
parameters € = q\/E, we obtain

T =y,
{y: —sin(z) — p-sin(z) - (sin (p- £) +cos(q- 1)),

which are the equations of motion of the Hamiltonian:

K(,,1) = 292 + (cos(a) — 1) + pfeos(z) 1) <Sin <p- z> + cos (q- z>> .

We can generalize the model by adding coefficients A and B in the following manner:

(2.15)  K(z,y,t) = %yQ + (cos(x) — 1) + pu(cos(z) — 1) <A sin (p' z) + B cos <q- D) .

This model corresponds to (1.1) with the function g in (1.13) given by

g(r)=A-sin(p-7)+ B-cos(q-T).

Note that, since p and ¢ are coprime and ¢ is 27-periodic, we have that g = —@% and

gFd = g and gl¥! = 0 otherwise. Therefore, if p # 1 and ¢ # 1, we have that g& = 0. We
state the following result about the splitting of the separatrices in Hamiltonian (2.15), which
is a straightforward consequence of Theorem 2.6.

Proposition 2.10. Consider the family of systems (2.15). Fix p > 0, p,q € Z, and let
ki, k5, k5, k; € Z be such that kip+ksq—kijp — kjg=1 and |k}| + |k3| + |k5| + |k} | is minimal
among all the integers that fulfill this condition. Let n = |kY| + |k3| + |k5| + |kj|. Then, there
exist a constant © = O(A, B,p,q), po = po(A,B,p,q) >0, and 9 = eo(p0) > 0 such that for all
p € (—po, o) and € € (0,e9) the splitting distance between the unstable and stable manifolds
(see (1.10) and (1.11)) for system (2.15) is given by the following formula:

(2.16)

s

_ T g (0. ) . 1 ot e Awl®
Ou(u, T, 1) = [\s(@ e ) O + O (|l -e )+O<log(1/s)

for w € (—p,p) and T € [0,2x]. For given p,q € Z, either ©(A, B,p,q) =0 or there exists an
open and dense set Uy, C R? such that if (A,B) € U, 4, ©(A, B,p,q) #0.
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2.4. An algorithm for computing XLL_I]- As mentioned before, in order to have an as-
ymptotic formula for the splitting we need X,[fl] =# (0. Even though we are not able to give an
explicit expression for this constant analytically—except for n = 1 and n = 2; see Theorem
2.4 and Remark 2.5—in this section we provide a numerical algorithm to check that X 75 0
for a given j > 0. We remark that this is an outline of a systematic algorithm rather than
a rigorous numerical method, which is out of the scope of this work. In subsection 2.4.1 we
describe a computational algorithm to calculate solutions of a model PDE. After that, in
subsection 2.4.2 we will explain the method by treating the cases n = 2 and n = 3, but we
could extend it to any n by deriving the corresponding equation. We also present a concrete
computation of x2_1] and x@,_ . In the case of x5 ~ we compare the numerical result with the
theoretical result of the example presented in subsection 2.3.1.

We have run the computations on MATLAB with the default precision of 16 digits. For
step 3 of subsection 2.4.1 we have used the standard built-in numerical integrator.

2.4.1. A model PDE. Let h(z,7) be an analytic function 27-periodic in 7 having a finite
number of Fourier coefficients and an asymptotic formal expansion as z — 4oc0.

1 M
h(z,T):Z?-he(T): > )
k=—M

We are interested in solutions of
Orf(2,7) +0.f(2,7) = h(z,7)

that are 27-periodic in 7 with boundary conditions limg(.) 4o f (z,7) = 0. We use the
following method.
Step 1. Write the ODE for the Fourier coefficients:

R LR Ly kg
(217) £+ 5 () = h )

Step 2. Truncate the formal expansion of h[k}(z) up to some order N
S}
[’f] Bl k
WG =2 2 he's
/=1

and solve (2.17) by equating terms of the same order. This provides an approximated solution
of the Fourier coefficients of f:

N
f[’“](Z)%Z = ()

(=1

when $(z) > 1 if the boundary condition limg(;)_4o f(2,7) = 0 is considered or when
R(z) < —1 otherwise.
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Step 3. For any zy, select zg with [R(z0)| > 1 and 3(20) = 3(2y). Set

p(t) = (20 + 1),
which is a solution of
¢ (t) = —ikp(t) + h (2 + 1),
and numerically integrate from to = 0 to ty = R(zy) — R(20) with initial condition (0) =

F®(20). Then, fIF(zf) ~ o(ts).

2.4.2. The algorithm to compute X%_l]. We first expand the solutions of the inner
equation (1.16),

1 2o 9(7)
3T¢(Z,Tau)+8z¢(zaﬂﬂ)—§2 (8z¢(z,7,u)) 2p 22

in power series in p and in Fourier series (see subsection 3.1 for more details):

ZT/,L Z¢iZT j, 1/JiZ7' Zd)

i>1 keZ

Using formula (2.8), since —8"A 1]( ) =’ 1]( ) — 4l (z), we only need to numerically
compute wf ’[1](—ip) for p > 0 large enough and approximate the limit:

(2.18) U= tim e Al ) mer (W (—ip) — i (—ip)).

Z—»—100
The steps are the following.

Step 1. Let o9 > 0 be such that g is analytic in the complex strip T,,. Fix an accuracy
6 >0 and take M big enough such that

191l := max |g(7)] < ceMo/2. (1= e70/?),
7€l

NGNS

Define g(7) = Z|k|<MgWe“”. Since |g¥] < ||g|o,e¥17°, we have that maxrer,, ,, [9(7) —
g(7)| < 6. Consider the approximated inner equation

g(T)

1
0, (2, 0) + 0uth (2, 0) = S (0.0, 1)~
Step 2. The functions 8Z¢1i satisfy limg(.)|—o00 821/11i =0 and the equation
g(T

Use the method in subsection 2.4.1 to compute Ozwli’[k](z) for 3(z) < —p with |k| < M and
keGy.
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Step 3. The functions 8z¢ji satisfy limg(.)5oo 8,211};# =0 and

0-(0:0F) + 0.(0.0F) =

with hf depending on 8,/(/1{5, ey Oy ;-E_l (already computed). Solve it using the method in the
previous section only taking into account the Fourier coefficients indexed by k€ G, |k| < M.

Step 4. For ¢ we only need to take into account its first Fourier coefficient, z/ﬁ ’[1], which
satisfies

(2.19) =M (2) + 0,0 (2 22 E D" H=H ) 0. [k]( )

=1 k=—M

and, again, apply the method in subsection 2.4.1, for zy = —ip.

Step 5. Finally, compute X[Jl] using the approximation in (2.18). This completes the
process.

Note that the main sources of error in this method are the calculation of the initial
condition by truncation in step 2 and the numerical integration of step 3 in subsection 2.4.1.
We emphasize that, since 1(Lv and zp+ only differ by quantities that decrease exponentially as
z — —i00, calculating y,” U and wn’ 1ndependently and subtracting them to obtain AT[%]in

results in enormous cancellations that reduce the number of significant digits.

2. 4 3 Explicit computatlon for n = 2 and n = 3. We write here explicitly the equations

for 5" (2) and v3 " (2):

(2.20) k(e + 007 (2) = 522 3 0T (e) - Dy )
meZ

for j =2 and

(2.21) ik (2) + 0. F (2 QZazwl o)
MmEZL

for j = 3. Since on the right-hand sides of (2.20) and (2.21) the functions 821#?[] and 8zw£i]
appear, we also need their respective equations:

, 4

(2.22) k0.7 1 (2) + 0,007 M) (2) = g

for 6Z¢f[’[k}(z) and

(2.23) ik 5™ (2) + 0,005 fzza 2o, ()
meZ
1 m —m

37 2 M@z )
MEZ
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Table 1
Numerical approximation for X[2—1] and X[3_1] for different values of p with R(zo) =40 and N = 20.

p 4 5 6 7 8 9 10 11 12 14
x[;l] 55.7217 55.8103 55.8006 55.8053 55.7987 56.0248 56.7904 59.1055 64.3010 112.6084

X[_l] 6.7623 7.0372 7.0692 7.0901 7.1007 7.1193 7.2627 7.2962 8.0834 9.5561

X5V for g(r) = 20 cos(37) + 16 cos(2r) x5! for g(r) = 20 cos(57) + 16 cos(37)
T T T T T T T T

180

160

140

120 - 4 sl

100

80 -

0l . . . . . . 20

Figure 3. Numerical approximation for X[2_1] and xg_l] for different values of p with R(z0) =40 and N = 20.

for 831/13 k], Finally, as 8§wf[’[k] appears on the right-hand side of (2.23), we need the corre-
sponding equation, namely

. 12
(2.24) ko2 M () + 0. (02011 (2) ) = — g,

As an example of computation of X[;l] we take the perturbation g(7) = 20cos(37) +
16 cos(27), already discussed in subsection 2.3.1. In Table 1 and the left panel of Figure 3 we
see the values we obtained using different values for p with R(zp) = 40 and N = 20. We see
that from p =4 to p = 10 the numerical value coincides precisely with the theoretical value
given in the example in subsection 2.3.1 (represented as a dashed orange line).

As a concrete example for n = 3 we consider the perturbation g(7) = 20cos(57) +
16cos(37). In this case g =0, g = 10, and g3 = 8. By definition (2.1) of G, we
have that

Gl == {_57 _3737 5}7
Gy ={—10,-8,-6,-2,0,2,6,8,10},
Gay={—15,-13,~11,-9,~7,-5,-3,~1,1,3,5,7,9, 11,13, 15}.

Since 1 ¢ G1, 1 ¢ G2, and 1 € G3, n(g) = 3. We see in Table 1 and on the right of Figure 3

the numerical approximation of Xg_l] for several values of p. As in the case n =2, the value is

stable between p =4 and p = 10. Notice that for higher values of p the values of X[Q_l] and XI[S_ 1

start deviating quickly from the stable value. This occurs as a result of large cancellations

involved in the computations. As the range p € (4,10) yields an accurate result for X[{l], we
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take the stable numerical value in this interval as a valid approximation, and we can conclude
that

2(37i - i(T—u/e 3. ’
0,5, = 25, .[g(xg o=l i 0ty + O (|l - e 25>+0(bg“{1'/€)>}

is a valid asymptotic formula for the splitting with X[ a1,

We finish this section by pointing out that as n increases the method loses precision, since
the right-hand side of (2.19) involves the numerical calculation of 821#;[’[0 for j < mn, which
causes accumulation of errors.

3. Proof of Theorem 2.4. Take g periodic and let n = n(g) defined in (2.2), namely
1eGpand 1¢Gj for j=1,...,n—1. Another way to express this condition is that g € £,_1;
see Remark 2.2. We also fix the constants ug,#,0 > 09, and o such that Theorem 2.3 holds
true. We will omit them throughout this section.

We begin by setting the usual convention that we denote by M a constant independent of
p and € which could change its value during the section.

Now we introduce some notation. Consider Ay, (z,7, 1), x¥1 (1), and g(z, 7, 1) (defined in
Theorem 2.3) as analytic functions of x4 in a neighborhood of = 0. Their expansions around
pn=0 are

mZT;UJ ZAm] ZT ZT,U, Zg] ZT X[k](:u):zxgk}

§>1 i>1 j>1

Since Ain j(2,7) and g;(2,7) are 2m-periodic functions in 7, they admit a Fourier expansion

that we write as
[k] [k]
IHJ Z A1n,] Z Q
keZ kezZ

3.1. Conditions for Al[n]J = 0. Our first goal is to prove that Al[rll]j =0if j <n=n(g).
To this end, we expand in power series of y the solutions of the inner equation provided by
Theorem 2.3: ¥F (2,7, p1) = i>1 w (2,7) - p?. We plug this expansion into the inner equation
(1.16) and we obtain the equations for each coefficient wi by equating terms of O(u?). These

are, for j =1,

(3.1) Ot (2,7) + 047 (2,7) = = 59(7)
and, for j > 1,
(3.2) 3T¢j (2,7) —|—3Zwi (z,7) QZazwl (z,7) ji_l(z,r).

As was pointed out in Theorem 2.3, the boundary conditions for ¥ (and for @Z)ji) are

(3.3) R l)linioo 3z¢ (2,7)=0.

The next lemma relates the harmonics of the perturbation, g/*!, to the harmonics of the
solutions, wj-[’[k]

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/09/24 to 85.87.74.152 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

1176 I. BALDOMA, T. M-SEARA, AND R. MORENO

Lemma 3.1. If k¢ G; (see (2.1)), then w;t’[k](z) =0.

Proof. We prove this result by induction. Consider j = 1. Expanding (3.1) in Fourier
series, we have that

K] k 2
(3.4 ok (2) 4 0. (2) = — 2 g,
If k ¢ Gy (see (2.1)), then gl¥) = 0. In this case the only solution of the above-mentioned
equation is 1/)1i M — o gmikz, However, in order to satisfy the boundary conditions (3.3),
C*t=0.
Now we take j > 2 and assume that for v < j the result holds true. Expanding (3.2) in
Fourier series, we obtain

Jj—
(3.5) ik () + 0.0 2 12§Z§Z@wim] 01577 " (2).

=1 m€eZ

By the induction hypothesis, the nonzero terms on the right-hand side are those where m € G;
and k—m € G;_;. Therefore, k =m+(k—m)=mq+---+my+mi+-- ~+m3_l with m;, m} € Gy.
This means k € G;j. Hence, if k ¢ G}, the right-hand side of the equation has to be 0, and,
given the boundary condition, so is wi’[k]. |

Remark 3.2. Under the hypothesis of Lemma 3.1, Al

in,j

1¢Gjfor j=1,...,n—1, we have that Ai[n](z,,u) =0(u").

((z) =0. As a consequence, since

3.2. A formula for x[=1 (). We can now state the following result, which relates the
Taylor coefficients ngl} of x[=H(4) to the corresponding Taylor coefficients of Al[n] ]( ).

Lemma 3.3. The coefficient x!=1 is given by

AU = lim e ALz, p).

Z——100

As a consequence, by the analyticity with respect to . we obtain

(3.6) X[-_l]: lim e Al (2).

J zZ——100 in,j

Proof. Let us recall formula (2.5) for Ajy(z,7,p) in Theorem 2.3:

Aun(errp) = 3 3l () - e
k<0
We can write
Ay Z T, :U' ZX 'Lk(z T) +ZX[k] ’L k(z—T) | (eikug(z,r,,u) . 1)
k<0 k<0

= Ain,at(za T, ;u) + Ain,b(za T, M)a
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and we have that

(3.7) AL = AL o) + AL () =X ) - 7 4 A 2.

in,a in,b in,b
For each k <0 the elements in the term A, ; satisfy

X[k](u).eik(z—f).(eikug(w,u) )’ ‘X[k] ’ (ik(z—7)

Nkpg(z, 7, 1) - elFrez )l

< ‘Xm 1 ‘ )| - HSE+HR G kg (2, 7, 1)

By Theorem 2.3 we know that |g(z,7,u)| < M|z|7!. In particular, for z with —3(z) big
enough we have |g(z,7, )| <1 and (z) + |ug(z, 7, 1)| < 0. To bound ‘X[k] ()| we define the
change of variables (w, s) = h(z 7,1) = (2 + pg(z, 7, 1), 7) and define the analytic function

(3.8) Aip(w, s, ) ZX etk(w=s)
k<0

By definition, Ain(h(z,T,N,u),u) = Ajn(z,7, 1) and, since |g(z,7,u)| < M, we can pick pu; >0
small enough such that Aj,(w, s, ) is well defined for (w,s, u) € Dizr; g X To x By,. Let us fix
z = —2ip. Then, we can consider the supremum norm of Ain(—%g, s, ) over s € Ty

Ain (=20, 1)||o = sup |Ain(—2i0,5,0)| < sup  |Au(w, s, p)]
s€T, (w,8)€DE, o xT,

< sup |Ain(z, 7, 1)| < M.
(Z»Snu)epign,e XTo X By,

Hence, since Ain(—%g, s, ) is analytic and 27-periodic in s, the Fourier coefficients satisfy
AL (~2ig.p)| < M-
By definition (3.8) of Ay,
- [(=KI(1,) - e—2ke F k>0
k . e if k>0,
Ai[n](—%g,u):{ )

0 it £<0.
Hence, Vk > 0,
I ()| < M - e IFIlo=20)
Therefore,
Ainp(z,mm) <> ’x[’“] (u)‘ M@ e L kg (2,7, )|
k<0
<D M- ORI GOl kg (2, )| < M- e - |ug(z, 7)),
k<0

where in the last inequality we have used that 3(z)+20— o +|ug(z, 7, )| <0 provided —3(2)
is large enough and || is small enough. Hence, lim,_, ;o |€" - Ajnp| = 0 and, in particular,
lim, oo €% - Ai[i]b = 0. Taking the limit in (3.7) the result follows. |

Items 1 and 2 of Theorem 2.4 are a straightforward consequence of Lemma 3.3 and
Lemma 3.1.
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3.3. Analytic dependence of x[~1 with respect to g¥!. For a given 2r-periodic function
g, in [3] it is proven that ¢(z,7, u;9) = 0,4F (2,7;¢) is a solution of the fixed point equation

¢ = Flp] = BE[R1] + 9.B[R2[¢]]

belonging to some Banach space (X*,]| - |)), with
+ ’ 4p Lo o
B [h](277-): h(2+t77—+t)dta Rl(z)T;g):;g(T)a RQ[@]('%T;Q):gZ ¥ (ZvT;g)‘
+oo0

To check the dependence with respect to g, we fix gy a 2m-periodic function, real analytic on
T,,. Taking 0 < of, < 09, let Bi(go) be the closed set defined by

Bi(g0) =1{9: T, — C, real analytic, 2m-periodic, ||g — gollo; <1}
The analytic dependence of ¢ with respect to g € Bi(go) comes from the fact that Ra[p] is an
analytic operator with respect to ¢ since it is polynomial, B* is a linear operator, and

is linear with respect to g and, hence, analytic. In other words, if ¢ is an analytic function
with respect to g, so is F[p]. Considering the Banach space of functions ¢ such that for any
g € Bi(g0), ¢(+,;9) € X* endowed with the norm ||¢]|. := SUPgeB, (o) I1P(+ 3 9)|| one easily
checks that the fixed point scheme provided in [3] works, and we conclude that the dependence
on g of 3,¢*(z,7;g) is analytic.

Then, by item 2 of Theorem 2.4

(s g)= tim e Al prg) = lim e - Al (—im, i; g).

Z——100

Clearly, e - A-[l](—im,,u;g) is analytic for (1, g) € By, x B1(go), and x[=1(y; g) is the uniform
limit of e™ - Airll}(—im,p;g) in the ball B,, x Bi(go). Therefore, it is an analytic function in
By, x Bi1(go). Since this is true for all go, x"U (s g) is analytic when p € B, and g is a real

analytic, 2m-periodic function. Finally, by definition,

(1]

1.
Xi pg) = — o (s g)

n=0

is analytic with respect to g.

3.4. Computing X[l_l] and X[z_l]. To finish the proof of Theorem 2.4, we present the

explicit calculations for X[fl] and X[;H. For this, we integrate explicitly (3.1) and (3.2) to
obtain wli I and 1/1; ’[1], respectively. We subtract the stable and unstable solutions to get the

first two terms of the Taylor expansion in u of Ai[i] (1), and we apply Lemma 3.3.
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3.4.1. Computation of x[l_l]. We solve (3.1) to obtain

1 ,
_ k k(r+t
(3.9) ViE(z,7) = -2 kgezg[ ] 7”26Z (.
Therefore,
Aini(z,7) —25 th(r=2) [k]/+°°+z -
1,
kez ootz

We compute the integral by residues. As J(z) <0,

ootz gimt g — —2mm if m >0,
ootz t2 o 0 if m <0,

so we obtain

(310) 1n 1 Zelk T=%) [k]4]€ﬂ'
k>0
From here the first Fourier coefficient is Ai[rll],1 = 4me~#¢l1. Now we can apply Lemma 3.3:
3.11 U i ef . A — g glt]
(3.11) X3 im e ing = 4mgt.
Z——100

3.4.2. Computation of X[2_1]. Following the same scheme, we integrate (3.2) for j = 2.

We write the derivative of the solution (3.9) as follows:

z ikt
Zzpl z2,7)=4- E glFl . etk / —€3dt.
+oo+z 3

keZ

Plugging this expression into (3.2), the equation becomes

. - z gilt z (k=)
Or (,7) + 005 (,7) =222y M= 3 gl gli (/ w dt) (/ P dt)'

kEZ leZ Foo Foo

We solve the equation by integrating, and we reorganize the terms:

N 0 ih(r—2) 0 [k h zts gilt z+s ei(k—l)t
ten= [ ettt ([ ) (LT

keZ =7 oo
_ 22 ik(T—2) Zg[l [k—1] /Z &2 /S ﬁdt /S el(kfl)tdt e
+oo +oo t3 +oo t?
kEZ lEZ

From this formula we extract the first harmonic by taking the term k£ =1. Note that we can
multiply by 2 and take the sum over [ only for [ > 1.

) z s ilt s i(1=0)t
i . w;t:[l] :429[” .g[l—l] i 52 <[h et3dt> . <[h e 5 dt) ds.

>1
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Integration by parts yields
z s Li(1-0)t s Lilt
/ 52 (/ S dt) </ ‘i,)dt) ds
+oo +o0 t +oo t
s i(1-0)t s ilt z
1l / S / € at
3 +oo t3 +oo t3 400
1 %z . s _alt 1 % . s i(1=0)t
—/ e1=D)s / e—dt ds—/ ells / € dt | ds
3 +oo +oo t3 3 +oo +oo tg
1 z (1=t z ilt 1 z ) s ilt
— 28 / < / at) - / ei(1=Ds / € _dt)ds
3 +oo t3 +oo t3 3 +oo +o0 t3
1 % . s i(1-=0)t 1
—/ eils / T dt)ds=:(A-B-C).
3 +oo +oo t3 3
Since [ > 1, further integration by parts leads to
z s ilt s it ? z is
B _/ et(1=0Ds / e—dt ds = 1 ei(ll)S/ e _ 1/ e—ds
+oo +o0 t3 Z(l - l) +o0 t3 +00 Z(l - l) +o0 53

z alt z is
— 1ei(1l)Z/ € - 1 / € ds
Z(l — l) +60 t3 1,(]. — l) +00 83

z s i(1=0)t 1 . s Li(1-1)t7~* 1 [? ¢is
C = ells </ et?’dt> dS = 7 6”3/ et.g):| — l/ %dS
+oo +oo ? +oo +00 U Jtoo S

L[ L,
ll +60 t3 Zl +00 83 '

Gathering the formulas, we have

z i(1-1)t z ilt 2 lt
v o]y 4 Z -1 1) .3 € e 1 i(1—D)z e

I>1 +oo +o0 +oo

1 z ls 1 i z oi(1=0)t 1 [? ¢is
S C a+= [ Sash.
A= /ioo JERTA /ioo i3ty /ioo 5348

Now we subtract 1, M and w; M We first point out that

z ei(l—l)td z ei(l—l)t
t= .
/:too t3 /—zoo t3

Indeed, the integrand converges exponentially as z — —ioco (since (1 —1) < 0), and there are
no singularities in {&(z) < 0} (note that the paths that join —oo and +oo in the previous
integral are in the region {J(z) < 0}). Hence, we can change paths of integration. On the
other hand, integrating by residues, we obtain

/+°O emt g — { —imm?, m >0,
3

and

0, m < 0.

—00
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With these claims,

z (1=t +oo ilt
iz Al iz (- 4 0 on-1J 3 e e
¢ Al = (v - v )_3;9”9[ }{/ tzdt'</ tadt>

—1300 —00

1 ei(l_l)/+m€ﬂtdt+ 1 /+Ooeis_1eilz/+°°€i(ll)t
a1 IR Ty ) R S A SN

1 +oo eis
= “d
i /_oo s3 8}

4 z ei(1=0t w2 . T T
_ = 0. n-0J)_,352.3 i(1-0)z o
SE g--g { zwlz/ 3 dt+(1_l>e a0 l}'

I>1 —ioo

We now apply Lemma 3.3. For that, we take z — —ioco and use the following inequality (valid
for k>1):

t3 |Z’3

—100

i(1—k)t i(1—k 3
23 /Z 674( ) dt‘ S M ) |€74( )ZHZ’ _ M ) ‘ez(l—k)z”

whence

Therefore, we obtain

. i
FU_ g s Al AN e ek (L 1N _ drg9m9 ™
(312) xp "= dim e App=—3> "0 Gt )T N A

k>1 k>1

4. Splitting formula: Proof of Theorem 2.6. As in the previous section, we fix g, a
periodic function with n = n(g); see (2.2). We still use M to refer to constants that are
independent of p and ¢.

The following straightforward consequence of Cauchy’s theorem will be used throughout
this section without explicit mention.

Lemma 4.1. Let n > 0, v € N, and let h : By C C — C be an analytic function such
that [h(p)| < My. Let us write h(p) = 3 ;50h; - W for the power expansion around u = 0.
There exists one constant My depending on v such that for all j = 0,...,v, we have that
|hj| < My - My,

4.1. Preliminaries and heuristics of the proof. To proceed with the proof of Theorem
2.6 we first need to state some previous results about the splitting of separatrices of system
(1.1) which can be found in [4]. To this end, let us introduce some notation and setting.

Recall that the functions T"%(u, T, 1) are defined in (1.6) in terms of the generating func-
tions S"*(x, 7), which satisfy the Hamilton—Jacobi equation (1.3). Moreover, using this equa-
tion, the relation (1.7), and that T%(u,7,u) = To(u) + T (u, 7, 1) (see (1.9)), one easily
obtains the equation for 7.

g(7)

1 1
(4.1) 0T (u, 7, 1) + Oy T (u, 7, 1) = — = cosh?(u) (0, T%%)2 (u, 7, 1) + 2u——5—.
€ 8 cosh”(u)
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t
Poo

o
t3

out

Figure 4. Domain Dy .

The solutions describing the stable and unstable manifolds are characterized by being 27-
periodic in 7 and satisfying the boundary conditions (see (1.8))

(4.2) lim  cosh(u) - 0, T%*(u, 7, ) =0.
R(u)—Foo

These solutions are well understood [4]: they are known to exist in suitable complex
domains, to be analytic in all variables, to be 27-periodic in 7, and to present exponential
decay as R(u) — +oo. Furthermore, they can be analytically continued to complex regions
reaching e-neighborhoods of the singularities of the unperturbed homoclinic trajectory (see
(1.2)) closest to the real axis, that is, u = %iF.

Since we want to study the difference between these solutions, we only need to know
how they behave in a common domain. Fix ¢ € (0,7/2), and take the following domain (see
Figure 4):

T

(4.3) DY = {u € CiS(u)| < —tan(g) - R(w) + 3

T
0g,|S(u)| < tan(e) - R(u) + 5 " } ,
with o > 0. Moreover, as we want to keep track of the analyticity with respect to u, from now
on we will take u € By, the complex ball centered at 0 of radius .
In this domain we can formulate the following theorem by paraphrasing Theorem 4.4 in [4].

Theorem 4.2 ([4]). Fiz ¢ € (0,7/2) and po > 0. There exist oo > 0 and g9 > 0 such
that Y € By, , Ve € (0,e0), and Vo > oo satisfying that eo < 1, the Hamilton-Jacobi equation
(4.1) has solutions T"S(u, 7, ) analytic in w, T, and periodic in T satisfying the boundary
conditions (4.2) such that they are defined in the domain Dg}g x Ty x By, and in this domain
the following bound holds:
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| - e
[u? + (m/2)2>

The next theorem, which is an adaptation of the results from [4 Proposition 4.22, Theorem
4.23, and Corollary 4.24], gives a characterization of the difference A(u, T, ).

|8uTu7s(ua7-7 'UJ)| <M-

Theorem 4.3. Under the same assumptions of Theorem 4.2, there exists a real analytic
function C(u, 7, ) defined in Dg}g x Ty x By, satisfying the following bounds:

|- e |1l
| S VU <M.
(4 4) ‘C(U,T,M”_M |u2+(7'('/2)2|7 |auC<U;T)/"[’)’_M Q‘u2+(ﬂ-/2)2|7

and such that the difference between the parameterizations T™° of the stable and unstable
manifolds is given in D‘;uqﬁt x Ty x By, by the expression

(4.5) u T, M ZT[k] z (u/e— T+C(u7u))

where Y (1) are analytic functions of i1 € By, .

In addition, for ue RN Dgu(;;, TeR, pe B, and € € (0,&9) we have that

(4.6) Oul(u, 7, 1) = 2652; ' {% (-9 0 <log|(q|/e)>] ’

where x!=U () is defined as in Theorem 2.3.

Note that, even though the existence and properties of the function C are proved in [4], in
our case we can derive the sharper bound (4.4), whose proof we leave to Appendix A.

From now on we fix pug,eq,®, 0> 0o and ¢ such that Theorems 4.2 and 4.3 hold true. As
usual, we will omit the dependence on these constants. We emphasize that, since Dou C DO“t
when g1 > g2, we can (and we will) take gy as big as we need in our proofs.

To finish this section, we define the analytic expansion of A(u,7, ) and YT (1) around

p=0,

(4.7) (u, T, 1) = ZA (u,T) T () :ZT?] i

J=0 Jj=0

and the Fourier expansions of A(u, 7, 1) and Aj(u, ),

(4.8) (u, 7, 1) ZA Ml (u, ) Aj(u, )= Z Agk] (u) - e,

keZ k€EZ

4.1.1. Heuristics and strategy of the proof. The aforementioned known splitting formula
(4.6) has the Fourier coefficient [~ (y) in its leading term. In section 3 we have already
analyzed the solutions of the inner equation in order to build insight into the expansion
in powers of p of xI= (1), and we have concluded in Theorem 2.4 that y[=H(u) = X[{l]u” +
O(p™+1). This analysis suggests that the leading term of the splitting is of order ™. However,
taking the first nonvanishing term of y[! as a first term in the asymptotic expression does
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not make (4.6) a valid asymptotic expression straightforwardly if n > 2. Indeed, in this case,
expression (4.6) becomes

B ¢ 2: Na (=1 ir—u/e)\ ., n (n+1) ﬂ

As n > 2, it is not clear that the main term dominates over the last error term when €, u
are small which invalidates it as a useful asymptotic expression (for instance when |u| <
|loge|” -7, as happens in the classical case p=¢ or, more generally, u= QO(e™), m > 0).

Our strategy is to prove that the error term in (4.9) is actually smaller. The fact that the
leading term of the splitting formula is of order p™ does not mean that the splitting function
itself does not have terms of order p? for j < n; however, we will see that these terms turn
out to be much smaller in € (in fact, exponentially smaller). This idea is simple, and we can
present it via this example: assume we had a function f(6,u) with minimal period 27 in 6
and consider f(u, 7, ) := f(r —u/e, u), which is periodic in u and 7 with periods 27e and 27,
respectively. Assume f has the following expansion:

(4.10) flumop) = f(r—ufe,u) = @y Ajp-e*T9),

7j>1 keZ

with A, € C. Assume |f| < M for u € {z € C,|3(2)| < a} and 7 € T. In this heuristic example
we assume that ¢ and y are small parameters but u is bigger than e~ * (the “natural” setting
is u = O(™), m > 0; when p is exponentially small in e, the splitting can be analyzed by
classical perturbation theory).

By using the fact the function f is bounded in a complex strip, we can show that Ajp=
O(ei|k|%). Obviously, the first exponentially small term of order e™¢ is given by the first £ for
which Ay 11 # 0, and hence fr~O(ut-e?) for real values of u. The terms in g/ with 1< j </
are present, but they are of size O(u/ - efkg) with k£ > 1. Thus, they are much smaller, and
the term p dominates the splitting.

In order to apply this idea, we split the power expansion of A in (4.7) as

(4.11) A(u,7‘,u):A<n(u77—,u)—|—A (u, 7, 1) Z Aj(u,T) J+ZA (u,7)

0<j<n ji>n

To prove Theorem 2.6 we follow the followm% strategy:

1. We first prove, in subsection 4.2, A =0if 1 < j <n—1 and therefore
AFEY(u, ) = O(p™). If the splitting dlstance were given by a formula like (4.10),
it would be straightforward to conclude that the terms of lower order O(u’) with
j < n are of order O(e~2:'%), k> 1. Although this is not the case, we have a similar
formula, given by Theorem 4.3:

(412) u 7’ /.,L ET[k] ik(u/E_T+C(U7TaM))’
keZ

where C(u, T, ) is analytic in all arguments and bounded.
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2. In subsection 4.3 we analyze A<" to establish that, loosely speaking, A<"(u,,u) =
O(e~22) (see Proposition 4.7 for details). We work with identlty (4.12), the strategy
being to perform a power series expansion in pu of A, C, and T Z >1 T k - p? and

(]

bound the constants Tg ], j <mn. In Lemma 4.8 we bound Tj for all j > 1 and any

value of k € Z and obtain, roughly speaking, that T[k] @) (efi'““ |) In Lemma 4.10 we
improve the estimate in the case k =1: for ] <n, we actually have T[ Uo O(e %),
Consequently we obtain, for j < n, that \T ]| is at least O(e™2:2) for ke Z\{0}. In
Proposition 4.7 we prove that for real values of u and 7 the bounds of the coefficients
transfer to A<" and the desired bound is proven.

3. In subsection 4.4 we analyze AZ", more precisely, the error term 9, A=" — 9,8y, where
do is defined as

(413) (50(u’7'7 lu) = 26;2 R (X[_”(M) . ei(T—u/E)) .

We recall that, by Theorem 2.4, 6o = O(p"). Then, by Theorem 4.3, we already know
that this error term is O(W -e~2:). Using an appropriate version of the Schwarz
lemma for analytic functions, we obtain the extra p” factor in the exponentially small
bound of the error.

4.2. Condition for A;il] = 0. We will derive a condition that ensures that certain har-
monics of the Taylor coefficients of the solutions to the Hamilton—Jacobi equation 9, 7"° given
by Theorem 4.2 are zero. We consider their Taylor expansions:

(4.14) OuT™(u, 7, 1) = Y T}

j>1

Lemma 4.4. If k ¢ G; (see (2.1)), then the kth harmonic of T;l’s(u,T) satisfies T;I’S’[k]
(u)=0.

Proof. First notice that, by (4.2), we know that, as R(u) — +oo, the functions 9,7""
satisfy

|0, T (u, 7, 1) | < M - e 2RI
Using Lemma 4.1, we can state
(4.15) 00T} (1, 7)| < M - e R0,

where M depends on j.
Expanding the Hamilton—Jacobi equation (4.1) in powers of p, we obtain, for j =1,

(4.16) éaTTfys(u, T) + 0T (u,7) = sz}(lgzu)
and, for j > 1,
1 j—
(4.17) garTju’s(ua 7) + 0T (u, 1) = — 2 cosh Z - Oy Tu S (u,7),
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with boundary condition (4.15). We proceed by induction. We only deal with the unstable
case as the stable case is analogous.
Consider j =1. Expanding (4.16) in Fourier series, we obtain

Krnbiy yo,mWwy= —2 _gH pez,
cosh”(u)
When g¥! = 0, the only solution is Tlu’[k] (u) = C - e /¢ but, since we impose (4.15),
necessarily C' =0. Thus, if k£ ¢ Gy, Tlu’[k] (u)=0.
Now consider j > 1 and assume that, forv=1,...,7—1,if (¢ G,, 8uT,3’m =0. Expanding
(4.17) in Fourier series, we obtain

ik k] u, k] 1 [k m]
— T (w) + 0,1} (u) = —fcoshQ Z > ouT)" 0TS ).

=1 meZ

The nonzero terms on the right-hand side are those where m € G; and k —m € G;_;. This
means k=m+ (k—m)=my+---+my+mj+---+ m;-_l with m;,m} € Gy, which implies
k € G;. Therefore, if k ¢ G; the right-hand side of the equation is 0, and, imposing (4.15),

u,[k] _

Remark 4.5. Under the hypothesis of Lemma 4.4, A[ ]( ) = 0. As a consequence, since
1¢ G, for j=1,. — 1, we deduce that AR (u, ) = O(u").

Remark 4.6. We emphasize that, using Lemma 4.4, we are also able to control the order
in  of the other harmonics of A¥l(u, ;). Indeed, if we define

ng(g) :=min{¢ e N: k € G},

then AW (u, ) = O(u™). This fact could be useful for a further analysis in the degenerate
case anl =0, but it is out of the scope of this work.
4.3. Analysis of A<™. We consider the function A<" defined by (4.11):
A< (u, 7, 1) ZA (u, )

j<n

We prove the following proposition.

Proposition 4.7. For j=1,....n—1 and u € DOUt NR, 7 €T we have that

10wl (u,7)| < M - |“|4 e 252720
e“o

As a consequence,

|0u A" (u, 7, )| < M - 5|2“|4 e 2720,
@
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In order to prove Proposition 4.7, we first recall that, by Theorem 4.3,

(4.18) Au, 7, p) = Z Y (p) - etklu/e—+CluTm) - Z Ajlu,7) - il
keZ j=0

with C(u, 7, 1) having the Taylor expansion C(u,T,u) = ijo Cj(u,7) - p?. We split the proof
into three parts. First, in Lemma 4.8 we provide an exponentially small bound for Y/, Then,
g-k} (the k-Fourier coefficient of A;) in terms of Tgm] and C,. Finally,
in Lemma 4.10, using Lemma 4.4 too, we provide an improved bound for Tg-ﬂ]
This allows us to finish the proof of Proposition 4.7.

in Lemma 4.9 we express A

,7=1,....,n—1.

Lemma 4.8. Take v € N. There exists a constant M such that for any j =1,...,v and
k € Z, the Taylor coefficients Tg-k] satisfy

(419) ‘Tgk]‘ <M - l’gi‘% ,e—|k’\(2ls—g—M/Q) .€_|k|a'

Proof. By Theorem 4.2, if (u,7) € Dg‘g x Ty,

0 (1,7, )] < (0T (1, 7, )| + |9 T 1t 7, )| < M- J;ng

We consider the change of variables (w,7) = h(u,7, 1) = (u+¢e-C(u, T, 1), 7). It is clearly well
defined and injective, as

Byw(u,7) =1+ 0O <‘Q‘) .

We introduce

Aw, 7, m) = A (w,7), 1) = > TH (1) - (277,
kezZ

and we have that

(4.20) 0w A(w, 7, 1) < M - ——.

From (4.20) and using that 8,A(w, 7, 1) is analytic in 7 in a strip of width o we bound each
Fourier coefficient:

ik
€

<. L ke

TW(M) . eikw/e < 52Q3

We use this inequality to obtain bounds for Y. We first take & > 0, and we consider the
point u* = —i(w/2 — ep) and C* = C(u*, 7). We particularize the previous inequality—valid
for all w—for the value w* = —i(n/2 —ep) +e-C*:

K oplb] () - ebE—erie| < gy L —iblo

€ ’ - e2p3
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As e[ < AL,
e () < M- 8’/;’3 ez —0=M/e) o~ IHlo

and, by Lemma 4.1, we get the result. For & < 0 we argue analogously with u* = i(7/2
—€p). [ ]

In the following lemma we find an explicit formula for Ag-k} (u).

Lemma 4.9. Take j >0, k€ Z. Then, for all u € Dout the k-Fourier coefficient of A; can
be expressed as

J— 1 ym 7—1m
m#0

with

]—l/
(4.22) Cjviou,7) > Ca(u,7)...Coplu,T)

=1 ! ar+ta=j—v

am>1
and CA}” uk( u) the corresponding Fourier coefficients. Furthermore, the following bounds hold:
k k|¢

@2) G <a B E <ar Ll s

Proof. We use that C(u, 7, 1) and T (1) depend analytically on p and that A(u,7,0) =
C(u 7,0) = T[k](O) = 0, so they admit the expansions C(u,7,u) = > ;5;Cj(u,7) - p and

( )= Z >1 1 ,u,] We fix j > 1 and we remark that M denotes a generic constant that
can (and usually Wlll) depend on j. Using these expansions and equating the terms of order
©’ in the expression (4.18) for A(u, T, ), we obtain

7j—1
(4.24) Aj(u,7) = Zeik(U/e—T) . Tgk] + Z T Cipr(u,7) ],

keZ v=1

with (:"Vj_y,k(u,T) defined in (4.22). We have used the absolute convergence of the series in
p of TWN(M) and C(u,T,u) to rearrange terms in the formula. We now find bounds for
Ciks---,Cj—1,. We use that, from Theorem 4.3, for u € Dglg and 7 € T,,

M
Cam u,T)| < —,
Ca,, (u,7)] .
and, hence,
k,Z
‘Cgk(UT)’<M |Q‘ (=1,...,5—1,
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which proves the first bound in (4.23). Note that 5[70 = 0. We consider now the Fourier series
of A; and Cy, (in (4.22)): Aj(u,7) =D ks Ag-k} (u) - €™ and Cyp(u,7) = Zlezé{e{]k(u) ellT,
Since Cy(u,7) is analytic in 7 in a strip of width o and satisfies the first bound (4.23), we
have that

- k¢
1Y) ()| gM-‘QL-e—”U, 0=1,...,5 -1,

o0 (4.23) is proved. Plugging the Fourier series expansion of (A:;g,k (u,T) into (4.24), we obtain

(4.25) Aj(u,7) = Z eik(u/e=T)

keZ

S (18, o+ i

lez

k !
Ll @11’,6(@&))

Besides, for u € DY, 7€ Ty o,

¢ik(u/==1)| < (JHI(E—eta/2)

With those bounds and Lemma 4.8 we can check whether all the terms in (4.25) are absolutely
convergent series. Indeed, for u € Dgug, 7 €T, /9, the first term

Zeik(“/s ). [’“] <Z kl(3z—0) Ikl (e/2) — ekl —0—M/0) ,—|klo
kez kez £e
= M- Zef\k\(a/%M/g) < o0,
keZ

where in the last inequality we have used that, for large enough p, the exponent —(o/2— M/ )
is negative. As for the next terms, we take v=1,...j — 1, and we have

Zeik(u/a T) . Zele C[l

kEZ lez

<3 HE=a e/ %.6—|k|<2—1—g—M/a>e—|k|o.M.ﬂ
e203 0

kEZ

kil Ze*\k\ (0/2=M/e) . |k ¥,
89 kEZ

where the last sum is finite provided, again, g is large enough. Since all terms converge
absolutely, we can rearrange expression (4.25):

7_) _ Z eik(u/e—T) . Tgk] + Z Z eiku/eei(l—k)r
kEZ k40 I€Z

k ! k ! et
_m_}l,@,]k(u)+frg_]2.5127}k(u)+---+T[1]-@ll,k(U) :
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where we have used that (see (4.22)) C~170 =...= Nj,Lo =0. We set | — k=m. Since [ runs
over all integers, m does too:

Aj(U,T):Zeik7 ’I‘[k _lkT_’_ZZ ik
kez kA0 mez
g ek k m+k k m-+k

and the expression (4.21) for A[. ]( ) is proven for u € D"“t [ ]

We recall that, by definition, n € N is such that 1 € G, and 1 ¢ G, for j=1,...,n — 1.

Then, Lemma 4.4 implies that A[il]( )=0for j=1,...,n— 1. In the next lemma we will

use this fact as a condition for a sharper bound on the coefficients Tg-il].

Lemma 4.10. For j=1,...,n—1 the following bound for the Taylor coefficient Tgﬂ] holds:

(4.26) ITEY < s |“| P )
j = ot

for o as defined in formula (4.3) large enough.
Proof. Assume n > 1 (the case n =1 is void). When j =1, by formula (4.21),

A[lil}(u) —eTiz. T[ljFl].

Since 1 ¢ G1, Lemma 4.4 implies A[lil] (u) =0 and, hence, T[fu =0. In particular, it satisfies
the inequality in the statement.

Take j = 2,...,n — 1. Assume by induction that T[ U satisfies the bound in (4.26) if
v=1,...,57—1. Usmg formula (4.21), we obtain

A () = etk xTH S ime [yl gl ) ol )]

7 j—1 1,m j—1,m
m#0

Since 1 ¢ G, by Lemma 4.4, A[i”( ) =0. We take k =1 and equate the previous formula to 0.
Redlstrlbutlng and replacing u =0, we get

== >l ) 4 el o)
m##0
== (Tﬁl 8112]1(0) +ot T[ll] '@2,1(0) +7

S oxbm ettty o et ) | = A4 B.

1,m 7—1m

To bound A we use the induction hypothesis along with the bounds of C~,[,l]m given by Lemma
4.9:

2(z=—0—M/o)

ce—2E—e=M/e) /g M .
ul-e a0 . ul-e
agsar e (Moo o) <

0 £0°
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To bound B we use Lemma 4.8 as well as Lemma 4.9:

i—1
Bl<Y M- 16l iz —e-py0) | —imlo <M. Il o Weumw)
Q 0

3
9
|m|>1 ¢

<Y M. 11l iz —e=ps0) . o gy U= 1)t =0 —imlo
0

3
9
|m|>1 e

<Y M ’LL mfile=Iml(E—e=M/e+20) < o |M4|1 o—2Z—0—M/o)
€ €
|m|>1
We complete the proof by combining the bounds for A and B. |

By Lemma 4.8 and Lemma 4.10, Tg.k] with j =1,...,n—1 are, at least, of order O(e™2:2).
To finish the proof of Proposition 4.7 we only need to prove that the size of the coeflicients
transfers to the size of the function when u and 7 are real.

End of the proof of Proposition 4.7. We consider formula (4.24),

7j—1
)= e AL N LG, T)] ;

keZ v=1

and evaluate it for u € DOUt NA{|S(u)| < e} and 7 € T. We also use Lemma 4.9 to bound

|Cl,k(u 7)|. We split the sum into k = +1 (we bound with Lemma 4.10) and |k| > 1 (we use
Lemma 4.8):

4 (u,7) = T
Jj—1 -
_ Zezks(u/e—ﬂ . ’fg,k] + Z Tl[,k] 'Cj—u,k(uaT)]
k40 v=1

eson [ S o] (6t
k#£0 v=1

<el. \Tgl]] + Seg. ’Tl[/l}‘ . ‘@_y71(U,T)‘ e \TE._”\ +§ee. ‘T,[;ll) . ‘@—u,—l(U,T)
v=1

+ 3 e, mmz e 2] 6t

|k|>1

. —Q(Z—Q—M/Q) —|kl(3z—0—M/0)
SM.Iul e .eg'< > S ul - e i
|k|>1 e

—2(EZ—290—M/p) 2(Z—20—M/p)

3

Lo Hle

< W a2
eo? €0 - eo?
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Since the previous bounds hold for u € Dgu(; N{|S(u)| < ee}, we obtain

|6uAj(u,T)\ <M. M e~ 2(5:—20)

e2pt
via a Cauchy estimate. Note that BuTg-O] =0. [ |
4.4. Analysis of A=™. Define dy:
(4.27) 5o (u, 7, 1) = 26;; R (X[—ll(ﬂ) . ei(7%)> _
From (4.6) in Theorem 4.3 we know that
(4.28) 100 (u, 7, 1) — Bulo(u, 7, )| < M el -

log(1/e) €2

‘ In this section we focus on the analysis of 9, A="—8,,00, with A="(u, T, 1) = ijn Aj(u,T)-
w1, the tail of the Taylor series of A around p = 0, starting at n. To this end, we use (4.28)
together with a suitable version of the Schwarz lemma.

Lemma 4.11. Let n >0, v €N, and let h be an analytic function of p defined in B, C C.
Assume that sup{|h(p)|: p € By} < My, for some constant My. Let h(p) =350 h; 0 be its
power expansion around p=_0.

1L Ifh9(0)=0 for j=0,...,v =1, then |h(p)| < |u” 77" - Mj,.
2. There exists a constant My (depending only on v and n) such that the function
B2V () = 3,0, hy - i is bounded by [ ()] < |ul? - My - My,

Remark 4.12. We will be using Lemma 4.11 for functions depending on u, 7,¢, and p. We
will consider the analytic dependence on p and regard the rest of the variables as parameters.
Note that the constants appearing in the bounds of the lemma only depend on the radius of
the ball of analyticity with respect to p and the integer v. In particular, the dependence on
the bounds on the parameter € remains unaltered.

The following proposition is an almost straightforward consequence of bound (4.28) and
Lemma 4.11.

Proposition 4.13. Let A="(u, T, 1) be the tail of the Taylor series of A(u,T,u). Then
(4.29) 100 AZ"(u, 7, 1) — Oubo(u, T, )| < M -

Proof. From (4.28) and taking into account that |u| < pg, we have that
efi
log(1/e) - &2’
(-1]

Moreover, by Theorem 2.4, y!~1 (n) = ZjZn X; - 7. Since the only dependence on

|OuA (w, T, 1) — Oy00 (u, 7, )| < M -

of &g is through = (u), do(u, 7, 1) = 502"(%7', i). Then, using Lemma 4.11 with v = n, we
obtain the bound
s P

UAZn — 0, >n — UAZ" -0, <M. — 3¢,
OuBZ" (1,7, 0) = 035" (1,7, 0)| = 10uA" (1,7, 0) = Budols T S M- o577 m
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4.5. End of the proof of Theorem 2.6. To obtain the first asymptotic expression we
differentiate (4.27):

T
2e 2

Budo(u, T, 1) = g (XH] (1) - ei(T_?)> .

Let us now perform the error estimates. Taking into account that 9,09 = 8u502”, we split the
error term:

O\ — 0o = A" + 9, AZ™ — 9,00.

For the first part we use Proposition 4.7:

‘:U" —2(=— ‘,U/‘ _m,
\auA<n(u,T,u)y§M.@. 2(% 2@)§M.?2.e =2,
To bound |9,AZ" — 9,00| we use Proposition 4.13. Then,

™ _

121 " x
UA s 1y - u5 5Ty SM* 2¢ S i B 52
Ou (7 p2) = Oudolu Tl S M- - em2e P Moy e

Y

whence the result follows.
As for item 3, we deduce it by taking the particular cases n =1 and n =2 in Theorem 2.4.

Appendix A. The function C. Proof of Theorem 4.3. For the proof of this theorem
we adapt the methodology in [4]: we split the equation into two parts and use a fixed point
argument to find the solution in a specific function space. We work with functions defined in
Dg"g x T, (see (4.3)), and we define the Fourier norm:

[ flae = Z Hf[k]Ha .elklo’

kEZ

where

flla= sup {u+ (x/21" [}

2,9

We consider the following Banach spaces:
Po={f(u,7): D% x T, — C, f analytic and || f||a,c < oo}

The function C is such that A(u,7,u) = Y(u — et + ¢ -C(u,7,p)). By subtracting the
Hamilton—Jacobi equation (4.1) for the stable and unstable manifolds, we obtain

1 1 1
EGTC(u, T, 1) + 0uC(u, 7, 1) = ~3 cosh?(u) (8, T (u, 7, 1) + OuT>(u, 7, 1)) (5 + 0,C(u, T, ,u)) .
Denoting A(u,7,p) = —% cosh?(u) (9, T (u, T, jt) + 0, T%(u, T, 1)), we rewrite the equation as

1 1
gaTC(ua T, /’L) + auC(u, T, :u) = EA(U7 T, ,U,) + A('LL, T, M)(‘%C(u, T, /’L)
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or, equivalently,

(A.1)
200C(u, 7 1)+ D0, 1) = AL, 7o ) + DAL, 7o )Clow 7, 1)) = a7, 1) A, 7o 1)

This equation is of the type

é@TC(u, )+ 0uC(u,7) = h(u, 7).

In order to invert the linear operator on the left-hand side in the domain Dg‘g, we expand it

in Fourier series and define an inverse for each harmonic:

CH(u) =cM(ay) - e's (@) +/ eif(s_“)h[k](s)ds,
where ap =i (5 — o) if k>0, ap = —i (5 — 0¢) if k <0 and ag = —p (see (277) in [4]). Since
we are looking for any solution, we pick C[¥(a;) =0, and we have

¥ (u) = / ¢ =0 M () s,

Qg

Using the notation
(A.2) gl () = / ¢ (=0 K] (),

we can define the inverse operator as

(A.3) G(h)=> M (n)e*r.

keZ

We state in the following lemma the relevant properties of G and refer the reader to Lemma
9.2 in [4] for the details of the proof.

Lemma A.1. The operator G defined on P, satisfies the following properties for h € P,
with o > 0:
1. 0u(G(h)) € Pa and [|0u(G(h))|lao < M - ||h]]a,o-
2. If 9 =0, G(h) € Py and ||G(h)||a.o <M -£||h]|a-
. G(Ouh) € Py and ||G(Ouh)||ae <M - ||A]|a,0-
Afa>1G(h) € Pa—1 and ||G(h)||a—1,0 < M -||h|]a0-
5. G(h) € Py and ||G(h)||a,e <M -||h]|

In the following lemma we state and prove some properties of the function A(u, T, u).

Lemma A.2. The function A(u,T,p) satisfies A € Py, 0,A € Py, Al € Py, and ||A|]1, <
M -|ple, ||0uA|1,6e < M - %', | Ao, < M - |u|?e%. As a consequence, H%g(A)H1 G <M -|ple.

=~ W

a,o -
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Proof. By Theorem 4.2, 0, T*" € P3 and ||0,T"®||3 » < M|ule. Besides, from the fact that
cosh(u) has a pole of order 1 close to the singularities 7, it follows that —% cosh?(u) € P_s.
Thus, A € P; and

1A

1,0 <M - |pule.

Due to the geometry of the domain and using Cauchy’s formula for the derivative, we can find
a bound for the derivative in the same space—reducing slightly ¢ and p—dividing the norm
by oe. This yields the bound

||A||1,0<M-’“Q’.

As for the average, Al (u, 1), we express it in terms of the average of the invariant manifolds:
1
Ay, ) = ~3 cosh?(u) <8uTu’[O] (u, 1) + 9,75 (u, u)) :

As T"(u, 7, ) and T%(u, T, 1) satisfy (4.1),
9(7)

1 1
0T (u, 7, 1) + 0, T (u, 7, 1) = — = cosh? (w) (8, T"%)* (u, 7, 1) + 2p——5"—,
€ 8 cosh”(u)

and, since g[o} =0, we have

BT (u, 1) = —é cosh? (u) (9, 7)) (u, ).

From Theorem 4.2 we know that [|0,7"%||3, < M|ule. Therefore, by property 5 of
Lemma A.1

TPy < M- e,
As a consequence,
AP o < M - |,

Finally, we deal with 1G(A(u,7,)). We rewrite it as

ég(A) = %Q(A[O]) + ég(A — AN = Ny + N,

By item 4 of Lemma A.1,
M
< —

IN1l10 < — NA 2 < M- |ule,

and, using item 2 of Lemma A.1, we obtain

1
|!N2\|1,o§ngHA—A[O}Hl,aSM'|M|€- |

We now define the linear operator £(h) =G(0,(A-h)) — G(O,A - h).
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Lemma A.3. The operator L : Py — Py is well defined, and it satisfies ||L(h)|[1,o <
M |||
0 7

Proof. By Lemma A.2, ||Al|1,» <M - |p|e, and, by item 3 of Lemma A.1,

1G(0u(A - M))ll2,0 < M[[A-hlla,c <M - [ple]|h]]10-

Therefore,

1
16(u(A- w1 <01 L,
Using Lemma A.2, we have ||0,Al|; <M - ‘%‘, and, by item 1 of Lemma A.1,

1G(8uA - h)[|1,0 < M -[[0uA - 2,0 < M - ‘Z‘Hh!h,a- |
Finally, we can write (A.1) as
1
(I = £)(C(u, 7, 1)) = ZG(A(u, T, ).

By Lemma A.3, I — L is invertible in Py, so that C(u,7,p) = (I — L)~ (1G(A(u, 7, 1)) € Py
and, using Lemma A.2, we have

<M -|ple.

1
lelho < r-|| o)

1,0

We obtain the bound for the derivative by a straightforward application of Cauchy’s formula
and by slightly reducing o and p:

[XSIPESTRS

Appendix B. Proof of Lemma 4.11. We begin with the first item. The function

N h(p)
uo H#EO,
ol p=0,

is analytic in B,(0). The maximum principle forces the maximum of the function to be at a
point p* such that |pu*| =n. Then
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Now we prove the second item. Since

v—1
W2 () = h(p) = > hy- 4,
=0

we use Lemma 4.1 to bound the second term on the right-hand side. We have a constant M;
depending only on v such that |h;| < Mj - Mj,. Hence,

v—1 v—1

v—1
=" ()| < TR ()| + Dy p? | < My + My - My -y ol < {14+ My- Y[l | - My,
=0

j=0 7=0

and the first item of Lemma 4.11 (already proven) implies

v—1
=) <l [ 1My P | - My = |pl” - M- M,
7=0

with My=n""-(1+ M; - ZJ";S In|?) only depending on v and 7.
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