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Arnold Diffusion in a Model of Dissipative System*
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Abstract. For a mechanical system consisting of a rotator and a pendulum coupled via a small, time-periodic
Hamiltonian perturbation, the Arnold diffusion problem asserts the existence of ``diffusing orbits""
along which the energy of the rotator grows by an amount independent of the size of the coupling
parameter, for all sufficiently small values of the coupling parameter. There is a vast literature on
establishing Arnold diffusion for such systems. In this work, we consider the case when an additional,
dissipative perturbation is added to the rotator-pendulum system with coupling. Therefore, the
system obtained is not symplectic but conformally symplectic. We provide explicit conditions on
the dissipation parameter, so that the resulting system still exhibits energy growth. The fact that
Arnold diffusion may play a role in systems with small dissipation was conjectured by Chirikov. In
this work, the coupling is carefully chosen, but the mechanism we present can be adapted to general
couplings, and we will deal with the general case in future work.
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plectic system
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1. Introduction. The Arnold diffusion problem [Arn64] broadly refers to a universal mech-
anism of instability for multidimensional Hamiltonian systems that are small perturbations of
integrable ones. Through this mechanism, chaotic transfers of energy take place between sub-
systems of a given Hamiltonian system, which, in particular, can lead to significant growth of
energy of one of the subsystems over time. Chirikov [Chi79] conjectured that Arnold diffusion
may play a role in systems with small dissipation as well.

Studying Hamiltonian systems with small dissipation is important for applications, as
many real-life physical systems experience some energy loss over time.

A significant class of examples is furnished by celestial mechanics, on the motion of celestial
bodies under mutual gravity. As the gravitational force is conservative, such systems are
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1984 S. W. AKINGBADE, M. GIDEA, AND T. M-SEARA

usually modeled as Hamiltonian systems. Nevertheless, dissipative forces are present in real-
world systems, including tidal forces, Stokes drag, the Poynting--Robertson effect, Yarkowski/
YORP effects, and atmospheric drag, and their effect may accumulate in the long run. While
some of these effects may be negligible over relatively short time scales, others, for instance,
Earth's atmospheric drag on artificial satellites, can have significant effects over practical time
scales. See, e.g., [MNF87, Cel07, RR17].

Another class of examples is given by energy harvesting devices. Some of these devices
consist of systems of oscillating beams made of piezoelectric materials, where on the one hand
there is dissipation due to mechanical friction, and on the other hand there is external forcing,
owed to the movement of the device, that triggers the beams to oscillate. See, e.g., [MH79,
EHI09, Gra17].

Of course, there are many other examples. In this paper we consider a simple model of a
mechanical system, consisting of a rotator and a pendulum with a small, periodic coupling,
subject to a small dissipative perturbation. Coupled rotator-pendulum systems are funda-
mental models in the study of Arnold diffusion in Hamiltonian systems. Adding a dissipative
perturbation results in a system that is non-Hamiltonian. The symplectic structure changes
into a conformally symplectic one [Ban02]. We show that such a system exhibits Arnold diffu-
sion, in the sense that there exist pseudo-orbits for which the energy of the rotator subsystem
grows by some quantity that is independent of the smallness parameter. (By a pseudo-orbit,
here we mean a sequence of orbit segments of the flow such that the endpoint of each orbit
segment is ``close"" to the starting point of the next orbit segment in the sequence.) We note
that for the unperturbed rotator-pendulum system, the energy of the rotator subsystem is
conserved. The small, periodic coupling added to the system makes the rotator undergo small
oscillations in energy, while the dissipative perturbation typically yields a loss in energy. The
physical significance of our result is that, despite the dissipation effects, it is possible to overall
gain a significant amount of energy over time.

Specifically, the unperturbed rotator-pendulum system is given by a Hamiltonian of the
form

H0(p, q, I, \theta ) = h0(I) + h1(p, q)

with z = (p, q, I, \theta )\in \BbbR \times \BbbT 1 \times \BbbR \times \BbbT 1, where h0(I) represents the Hamiltonian of the rotator,
and h1 represents the Hamiltonian of the pendulum, and \BbbT 1 =\BbbR /2\pi \BbbZ . The perturbed system
is of the form

\.z = J\nabla zH0(z) + \varepsilon J\nabla zH1(z, t) +\scrX \lambda (z),(1.1)

where H1(z, t) is a Hamiltonian that is 2\pi -periodic in time t, \varepsilon \geq 0 is the size of the coupling,
\scrX \lambda (z) is a dissipative vector field depending on some dissipation parameter \lambda = \lambda (\varepsilon )> 0, and

J =

\biggl( 
J2 0
0 J2

\biggr) 
, where J2 =

\biggl( 
0  - 1
1 0

\biggr) 
.

Technical conditions on h0, h1,H1,\scrX \lambda will be given in section 3. Under those conditions, the
phase space of the perturbed system has a three-dimensional normally hyperbolic invariant
manifold (NHIM), which contains a two-dimensional invariant torus that is an attractor for
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ARNOLD DIFFUSION IN A MODEL OF DISSIPATIVE SYSTEM 1985

the dynamics in the NHIM. This torus creates a ``barrier"" for the existence of diffusing orbits
by using only the ``inner dynamics"" (i.e., the dynamics restricted to the NHIM). The main
question is whether there are diffusing orbits crossing this barrier by combining the inner
dynamics with the ``outer dynamics"" (i.e., the dynamics along homoclinic orbits to the NHIM).

We show that there exist C > 0 and \varepsilon 0 > 0 such that, for all 0 < | \varepsilon | < \varepsilon 0, there exists a
pseudo-orbit z(t), t\in [0, T ], of (1.1), such that

I(T ) - I(0)>C for some T > 0.

More technical details will be given in Theorem 4.1. In order for the above result to be
of practical interest, the above solution z(t) should be chosen such that at the beginning
(I(0), \theta (0)) is below (relative to I) the aforementioned attractor, and at the end (I(T ), \theta (T ))
is above the aforementioned attractor. Indeed, it is possible to increase I by starting below the
attractor and moving toward the attractor under the effect of the dissipation alone; obviously,
such a solution is not of practical interest.

2. Conservative vs. dissipative systems. Arnold's conjecture on Hamiltonian instability
originated with an example of a rotator-pendulum system with a small, time-periodic Hamil-
tonian coupling of special type [Arn64]. In his example, in the absence of the coupling, the
phase space of the rotator forms a NHIM foliated by ``whiskered,"" rotational tori, which have
stable and unstable invariant manifolds that coincide. The coupling in Arnold's example was
specially chosen so that it vanishes on the family of invariant tori, and so the tori are pre-
served. These tori constitute ``barriers"" for the existence of diffusing orbits, since orbits in
the NHIM always move along these tori and thus cannot increase their action variable. At
the same time the coupling splits the stable and unstable manifolds, so that the unstable
manifold of each torus intersects transversally the stable manifolds of nearby tori. Thus, one
can form ``transition chains"" of tori and show that, by interspersing the outer dynamics along
the homoclinic orbits to the NHIM with the inner dynamics' along the tori, one can obtain
diffusing orbits along which the energy of the rotator exhibits a significant growth. Arnold
conjectured that this mechanism of diffusion occurs in close to integrable general systems.

However, in the case of a general coupling not all of the invariant tori in the NHIM are
preserved. The KAM theorem yields a Cantor set of tori that survive from the unperturbed
case, with gaps in between. The splitting of the stable and unstable manifold makes the
unstable manifold of each torus intersect transversally the stable manifolds of sufficiently close
tori, but the size of the splitting is in general smaller than the size of the gaps between tori.
This is known as the ``large gap problem."" It was overcome, for instance, by forming transition
chains that, besides rotational tori, also include ``secondary"" tori created by the perturbation
[DdlLS00, DdlLS06a]. Other geometric mechanisms use transition chains that include, besides
rotational tori, Aubry--Mather sets [GR13]. Subsequently, [GdlLMS20] described a general
mechanism of diffusion that relies mostly on the outer dynamics and uses only the Poincar\'e
recurrence of the inner dynamics (which is automatically satisfied in Hamiltonian systems
over regions of bounded measure).

The references mentioned above encompass geometric ideas that we can adapt to the
dissipative case. However, there are many other geometric mechanisms that have been used
in the Arnold diffusion problem, such as those in [CG94, BT99, DdlLS00, Tre02, Tre04,
DdlLS06a, DdlLS06b, Pif06, GT08, DH09, Tre12, GdlL17, GT17a, GM22]. A variational
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1986 S. W. AKINGBADE, M. GIDEA, AND T. M-SEARA

program for the Arnold diffusion was formulated in [Mat04, Mat12] for systems close to
integrable. Global variational methods for diffusion have been used in this setting for convex
Hamiltonians [CY09, KZ15, BKZ16, CX19, KZ20]. A hybrid program combining geometric
and variational methods was started in [BB02, BBB03].

The case of a rotator-pendulum system subject to a non-Hamiltonian perturbation (con-
sisting of time-periodic Hamiltonian coupling and a dissipative force) that we consider in this
paper has very different geometric features from the conservative case. The dissipation added
to the Hamiltonian system is a singular perturbation---the system with positive dissipation
leads to attractors inside the NHIM, which can contain at most one invariant torus. Poincar\'e
recurrence does not hold for dissipative systems. The stable and unstable manifolds of the
NHIM do not necessarily intersect. Therefore, the mechanism used for proving diffusion in
the Hamiltonian case does not carry over to the non-Hamiltonian case.

To provide some intuition, we illustrate on a couple of basic examples some possible effects
of dissipation on the geometry of Hamiltonian systems.

Example 2.1. The first example is the standard map.
The (conservative) standard map, which can be viewed as the time-one map of a nonau-

tonomous Hamiltonian system representing a ``kicked rotator,"" is given by

I \prime =I + \varepsilon sin(\theta ),

\theta \prime =\theta + I + \varepsilon sin(\theta ),
(2.1)

where \varepsilon is the perturbative parameter, and I, \theta are defined (mod2\pi ). This is a symplectic
twist map, the symplecticity condition being dI \prime \wedge d\theta \prime = dI \wedge d\theta and the twist condition being
\partial \theta \prime 

\partial I \not = 0. When \varepsilon = 0 the resulting map is the time-one map of a rotator and is given by

I \prime =I,

\theta \prime =\theta + I.
(2.2)

It is an integrable twist map, with all level sets of I being rotational invariant circles on which
the motion is a rigid rotation of frequency \omega (I) = I. For 0< \varepsilon \ll 1, the KAM theorem asserts
that there is a positive measure set of invariant circles, of Diophantine frequencies, which
survive the perturbation. The measure of the set of the KAM circles tends to 1 as \varepsilon \rightarrow 0. On
the other hand, when \varepsilon > 0 increases, fewer and fewer invariant circles survive, and eventually
only one invariant circle is left. The last rotational invariant circle for the standard map has

frequency \omega = 1+
\surd 
5

2 , which is the golden mean [Gre79]. See Figure 1(a).
The dissipative standard map is defined as

I \prime =(1 - \lambda )I + \mu + \varepsilon sin(\theta ),

\theta \prime =\theta + (1 - \lambda )I + \mu + \varepsilon sin(\theta ),
(2.3)

where \lambda is the dissipative parameter, 0\leq \lambda < 1, and \mu is the drift parameter; \lambda = 0 corresponds
to no dissipation. The map is no longer symplectic, but conformally symplectic, that is,
dI \prime \wedge d\theta \prime = (1 - \lambda )dI \wedge d\theta , and still satisfies a twist condition.

When \varepsilon = 0, the resulting map

I \prime =(1 - \lambda )I + \mu ,

\theta \prime =\theta + (1 - \lambda )I + \mu 
(2.4)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ARNOLD DIFFUSION IN A MODEL OF DISSIPATIVE SYSTEM 1987

(a) Conservative standard map (b) Dissipative standard map with un-
adjusted drift

(c) Dissipative standard map with ad-
justed drift

(d) The basins of attraction of the at-
tractors appearing in (c), using a colour
scale based on rotation numbers (Credit
Matteo Manzi)

Figure 1. The conservative and dissipative standard map.

has a single rotational invariant circle I = \mu 
\lambda of frequency \omega \ast := \mu 

\lambda . The KAM theorem
for conformally symplectic systems asserts that for each 0 < \varepsilon \ll 1 there is one rotational
invariant circle, of Diophantine frequency, that survives the perturbation, and that circle is a
local attractor for the system (see, e.g., [CC09, CCdlL13b, CCDlL13a, CCdlL20]). In order
for the surviving circle to be of Diophantine frequency \omega \ast , we need to properly adjust the drift
parameter \mu . See Figures 1(b) and 1(c).

We can rewrite the dissipative standard map in terms of a frequency parameter \omega \ast rather
than in terms of the drift parameter \mu = \lambda \omega \ast , obtaining

I \prime =I  - \lambda (I  - \omega \ast ) + \varepsilon sin(\theta ),

\theta \prime =\theta + I  - \lambda (I  - \omega \ast ) + \varepsilon sin(\theta ).
(2.5)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1988 S. W. AKINGBADE, M. GIDEA, AND T. M-SEARA

(a) Phase space of the conservative
pendulum

(b) Phase space of the dissipative
pendulum

(c) Poincaré section for the pendu-
lum subject to dissipation and periodic
forcing

Figure 2. The pendulum.

In this case, by the persistence of normal hyperbolicity of the torus given by I = \omega \ast , as
0 < \varepsilon \ll 1 is varied, there exists an invariant torus of frequency \omega = \omega (\varepsilon ) close to \omega \ast ; not all
frequencies \omega yield KAM circles but only those \omega (\varepsilon ) which are Diophantine.

Example 2.2. The second example is the pendulum, given by the Hamiltonian

h1(p, q) =
p2

2
+ (cos(q) - 1).

As is well known, the pendulum has a hyperbolic fixed point whose stable and unstable
manifolds coincide (see Figure 2(a)).

When dissipation is added to the pendulum

\.p= - \lambda p+ sin(q),

\.q=p,

the origin is again a hyperbolic fix point with eigenvalues \pm 
\sqrt{} 

1 + (\lambda 2 )
2  - \lambda 

2 . Nevertheless,

its stable and unstable manifolds cease to intersect, for dissipative coefficient \lambda > 0 (see
Figure 2(b)).

However, when both dissipation and periodic forcing are added to the pendulum,

\.p= - \lambda p+ sin(q) + \varepsilon sin(t),

\.q=p,

for certain parameter values \lambda > 0 and \varepsilon > 0, the time-2\pi map exhibits chaotic attractors in
the Poincar\'e section (see Figure 2(c)).

These simple examples illustrate that adding dissipation to a Hamiltonian system typically
destroys---sometimes dramatically---some of the geometric structures---KAM tori, homoclinic
connections---that are relevant in Arnold's mechanism of diffusion and creates new geometric
structures---attractors---that act as barriers for diffusion. On the other hand, the addition of
forcing can compensate for the effects of dissipation.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ARNOLD DIFFUSION IN A MODEL OF DISSIPATIVE SYSTEM 1989

3. Model. The model that we consider is described by an integrable Hamiltonian system
subject to a time-dependent, Hamiltonian perturbation (or coupling), and to a second, non-
Hamiltonian, perturbation that is dissipative.

The unperturbed Hamiltonian corresponds to an uncoupled rotator-pendulum system and
is given by

H0(p, q, I, \theta ) =
I2

2
+

p2

2
+ (cos q - 1),(3.1)

where (p, q, I, \theta )\in \BbbR \times \BbbT 1 \times \BbbR \times \BbbT 1, which is endowed with the standard symplectic structure
\omega = dp\wedge dq+ dI \wedge d\theta .

For the rotator part of the Hamiltonian, given by h0(I) =
I2

2 , each level set I = constant is
invariant under the flow of h0, and the corresponding dynamics is a rigid rotation of frequency

\omega (I) :=
\partial h0
\partial I

= I.(3.2)

The pendulum part of the Hamiltonian is given by

h1(p, q) =
p2

2
+ (cos q - 1),(3.3)

and it has a hyperbolic fixed point at (p, q) = (0,0) and an elliptic fixed point at (p, q) = (0, \pi ).
The stable and unstable manifolds of the hyperbolic fixed point (0,0) coincide and can be
parametrized as

(p0(t), q0(t)) =

\biggl( 
\pm 2

cosh t
,4arctane\pm t

\biggr) 
.(3.4)

Since the system H0 is uncoupled, I is a conserved quantity and so each hypersurface
\{ I = const.\} constitutes a barrier for the dynamics of H0: there are no trajectories along
which the variable I can change.

When we add the time-dependent, Hamiltonian perturbation, we have

H\varepsilon (p, q, I, \theta , t) =H0(p, q, I, \theta ) + \varepsilon H1(p, q, I, \theta , t),(3.5)

where t\in \BbbT 1, meaning that the perturbation H1 is 2\pi -periodic in time.
We will assume that H1 is of the form

H1(p, q, I, \theta , t) = f(q) \cdot g(\theta , t).(3.6)

The dissipative perturbation is given by a vector field \scrX \lambda that is added to the Hamiltonian
vector field J\nabla H\varepsilon of H\varepsilon , where

\scrX \lambda (p, q, I, \theta ) = ( - \lambda p,0, - \lambda (I  - \omega \ast ),0),(3.7)

where \lambda is the dissipation coefficient, and \omega \ast is a fixed Diophantine frequency. For the moment,
we will treat \lambda as an independent parameter, but for most of the paper we will consider \lambda of
the form \lambda = \varepsilon \rho , with \rho being a sufficiently small independent parameter. In our main result,
Theorem 4.1, we will use \lambda = \varepsilon \rho (\varepsilon ), where 0<\rho (\varepsilon ) = \=\rho 

\mathrm{l}\mathrm{o}\mathrm{g} 1

\varepsilon 

\ll 1, where \=\rho is a positive constant.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1990 S. W. AKINGBADE, M. GIDEA, AND T. M-SEARA

The system of interest is

\.z = J\nabla zH0(z) + \varepsilon J\nabla zH1(z, t) +\scrX \lambda (z), z = (p, q, I, \theta ).(3.8)

We obtain the following equations:\left\{           
\.p= sin(q) - \varepsilon f \prime (q) \cdot g(\theta , t) - \lambda p,

\.q= p,
\.I = - \lambda (I  - \omega \ast ) - \varepsilon f(q) \cdot \partial g

\partial \theta (\theta , t),
\.\theta = I.

(3.9)

As we shall see, the dissipative perturbation yields the existence of attractors for the
dynamics restricted to the NHIM, that is, the dynamics in the (I, \theta )-variables. In particular,
we can have attractors that act as barriers on the NHIM, in the sense that they separate the
NHIM into topologically nontrivial connected components. As all trajectories within the basin
of attractors move toward the attractors, the action I will increase along some trajectories
and will decrease along some other trajectories, but there are no trajectories within the NHIM
that start on one side of the attractor and end on the other side.

Below, we will consider two concrete examples of Hamiltonian perturbations:
Vanishing perturbation. H1 vanishes at (p, q) = (0,0)

f(q) = cos(q) - 1,

g(\theta , t) = a00 + a10 cos\theta + a01 cos t.
(3.10)

Nonvanishing perturbation. H1 does not vanish at (p, q) = (0,0)

f(q) = cos(q),

g(\theta , t) = a00 + a10 cos\theta + a01 cos t.
(3.11)

Above, a00, a10, and a01 are real numbers with a10a01 \not = 0.

Remark 3.1. The choice of the coupling of the form H1(p, q, I, \theta , t) = f(q)g(\theta , t) has been
made in order to deal with a simple model. The fact that the function f satisfies f \prime (0) = 0
implies that the NHIM, which is exhibited by the unperturbed system, is not affected by
the perturbation; see section 5.4. We do not need to invoke the theory of persistence of
NHIMs under perturbation. The function g(\theta , t) can be viewed as a truncation to the first
two harmonics of the Fourier expansion of an analytic function. We will deal with the general
case with infinitely many harmonics, as well as with perturbations that do not preserve the
NHIM, in future work.

Remark 3.2. We note that instead of (3.7) we can consider more general perturbations of
the form

\scrX \lambda (p, q, I, \theta ) = ( - \lambda 1p,0, - \lambda 2(I  - \omega \ast ),0)

for \lambda 1 = \varepsilon \=\rho 1 and \lambda 2 = \varepsilon \=\rho 2

\mathrm{l}\mathrm{o}\mathrm{g} 1

\varepsilon 

with \=\rho 1, \=\rho 2 > 0. One will be able to see that the arguments below

also apply to this case, and therefore the main result, stated below, remains valid.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ARNOLD DIFFUSION IN A MODEL OF DISSIPATIVE SYSTEM 1991

4. Main result.
Theorem 4.1. Consider the Hamiltonian system (3.1) subject to the time-periodic Hamil-

tonian perturbation (3.10) or (3.11), and to the dissipative perturbation (3.7), with dissipation
coefficient \lambda = \varepsilon \rho (\varepsilon ) = \varepsilon \=\rho 

\mathrm{l}\mathrm{o}\mathrm{g}( 1

\varepsilon 
)
with \=\rho > 0 suitably small.

Then there exist 0< I1 < I2 and \varepsilon 0 > 0 such that, for every \omega \ast Diophantine number with
0< I1 <\omega \ast < I2, and every 0< \varepsilon < \varepsilon 0, there exist pseudo-orbits z(t), t\in [0, T ], such that

I(z(0))< I1 and I(z(T ))> I2.

Here by a pseudo-orbit z(t) we mean a finite collection of trajectories zi(t), t \in [ti, ti+1] of
(3.8) for some times 0 = t0 < t1 < \cdot \cdot \cdot < tm = T , where m> 0, such that

I(z0(0))< I1 and I(zm(T ))> I2,

d(zi(ti+1), z
i+1(ti+1))< \delta (\varepsilon ) for i= 0, . . . ,m - 1,

for some \delta (\varepsilon ) =O(\varepsilon )> 0.
The diffusion time along the pseudo-orbit z(t), t\in [0, T ], is T =O

\bigl( 
1
\varepsilon log(

1
\varepsilon )
\bigr) 
.

Above, we used the notation f = O(g) = O\scrC k(g) for a pair of functions f , g satisfying
\| f\| \scrC k \leq M\| g\| \scrC k for some M > 0, where \| \cdot \| \scrC k is the \scrC k-norm for some suitable k\geq 0.

We illustrate the phenomenon described by Theorem 4.1 in Figures 3(a), 3(b), 3(c),
and 3(d). In Figure 3(a), using the inner dynamics alone, orbits with I(0) < \omega \ast cannot
pass beyond the attractor shown in Figure 3(b). However, using both the inner and outer
dynamics, there are orbits with I(0)<\omega \ast that end up with I(T )>\omega \ast , as shown in Figure 3(d).
These orbits move close to the separatix of the pendulum h1(q, p) = 0, as shown in Figure 3(c).

Theorem 4.1 gives us diffusing pseudo-orbits. Applying a shadowing lemma type of result
similar to those in [Zgl09, GT17b, GdlLMS20, CG], we will be able to show that there exist
true orbits z(t) of (1.1) such that I(z(0))< I1 and I(z(T ))> I2. We leave the technical details
for a future work.

The above pseudo-orbits are such that the endpoint of one is \delta (\varepsilon )-close to the starting point
of the next one, where \delta (\varepsilon ) = O(\varepsilon ). We remark here that we can also obtain pseudo-orbits
with \delta (\varepsilon ) =O(\varepsilon p) for any p\geq 1, with the same diffusion time order T =O

\bigl( 
1
\varepsilon log(

1
\varepsilon )
\bigr) 
.

In practical applications one can pass from pseudo-orbits to true orbits by applying small
controls; for example, in the case of artificial satellites perturbed by atmospheric drag, the
small controls can be satellite maneuvers.

Remark 4.2. In Theorem 4.1, the action levels I1 and I2 can be chosen explicitly, depending
on the Hamiltonian perturbation (3.10) or (3.11) that is considered. See section 7.7.

The condition on choosing \omega \ast a Diophantine number between I1 and I2 is not necessary
for the proof of the theorem; see section 8.2. The reason for requiring this condition is to be
able to apply the KAM theorem for conformally symplectic systems [CCdlL20], which implies
the existence of a KAM torus that is an attractor for the inner dynamics and hence represents
a barrier for the inner dynamics. In other words, we want to show that diffusing pseudo-orbits
exist even if there is a barrier inside the NHIM.

The choice of the dissipation coefficient \lambda = \varepsilon \=\rho 
\mathrm{l}\mathrm{o}\mathrm{g}( 1

\varepsilon 
)
is related to the time Th = O(log(1\varepsilon ))

required for a point starting in an \varepsilon -neighborhood of the NHIM to travel along a homoclinic
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(a) Inner dynamics (b) Attractor for the inner dynamics

(c) Outer dynamics (d) Combined inner and outer dynamics

Figure 3. Orbits of the rotator-pendulum system.

orbit and arrive in an \varepsilon -neighborhood of the NHIM. This choice of \lambda implies that \lambda \cdot Th =O(\=\rho \varepsilon ),
while the order of the change in action by the scattering map is O(\varepsilon ). By choosing a suitable
small enough constant \=\rho , we can ensure that, when the growth in I by the scattering map
competes with the decay in I by the dissipation, which is of order O(\lambda Th) = O(\=\rho \varepsilon ), we will
make the former win against the latter.

If we do not impose that the homoclinic orbits get \varepsilon -close to the NHIM, then we can
choose a shorter time Th along the homoclinic orbits and implicitly a larger \lambda , as long as \lambda \cdot Th

is O(\varepsilon ); for example, we can choose Th =O(1) and \lambda = \=\rho \varepsilon for some \=\rho > 0 suitably small.

5. Preliminaries.

5.1. Extended system. Since the perturbation H1 is time-dependent, it is convenient to
consider time as an independent variable t and to work in the extended phase space \~z =
(p, q, I, \theta , s)\in \BbbR \times \BbbT 1 \times \BbbR \times \BbbT 1 \times \BbbT 1, adding the equation \.s= 1 to system (3.9) to obtain
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ARNOLD DIFFUSION IN A MODEL OF DISSIPATIVE SYSTEM 1993

\.z = J\nabla zH0(z) + \varepsilon J\nabla zH1(z, s) +\scrX \lambda (z), z = (p, q, I, \theta ),
\.s = 1.

(5.1)

We denote by \~\Phi t
0 the unperturbed extended flow, and by \~\Phi t

\varepsilon the perturbed extended flow.

5.2. Normally hyperbolic invariant manifolds. We briefly recall the notion of a NHIM
[Fen74, HPS77].

Let M be a C r-smooth manifold, and \Phi t a C r-flow on M . A submanifold (with or without
boundary) \Lambda of M is a NHIM for \Phi t if it is invariant under \Phi t, and there exists a splitting of
the tangent bundle of TM into subbundles over \Lambda 

TzM =E\mathrm{u}
z \oplus E\mathrm{s}

z \oplus Tz\Lambda for all z \in \Lambda (5.2)

that are invariant under D\Phi t for all t\in \BbbR , and there exist rates

\lambda  - \leq \lambda + <\lambda c < 0<\mu c <\mu  - \leq \mu +

and a constant C > 0, such that for all x\in \Lambda we have

Cet\lambda  - \| v\| \leq \| D\Phi t(z)(v)\| \leq Cet\lambda +\| v\| for all t\geq 0, if and only if v \in E\mathrm{s}
z,

Cet\mu +\| v\| \leq \| D\Phi t(z)(v)\| \leq Cet\mu  - \| v\| for all t\leq 0, if and only if v \in E\mathrm{u}
z ,

Ce| t| \lambda c\| v\| \leq \| D\Phi t(z)(v)\| \leq Ce| t| \mu c\| v\| for all t\in \BbbR , if and only if v \in Tz\Lambda .

(5.3)

It is known that \Lambda is C \ell -differentiable, with \ell \leq r - 1, provided that

\ell \mu c + \lambda + < 0,

\ell \lambda c + \mu  - > 0.
(5.4)

The manifold \Lambda has associated unstable and stable manifolds, denoted W \mathrm{u}(\Lambda ) and W \mathrm{s}(\Lambda ),
which are tangent to E\mathrm{u}

\Lambda and E\mathrm{s}
\Lambda , respectively, and C \ell  - 1-differentiable. They are foliated by

one-dimensional unstable and stable manifolds (fibers) of points, W \mathrm{u}(z), W \mathrm{s}(z), z \in \Lambda , respec-
tively, which are as smooth as the flow, i.e., C r-differentiable. These fibers are equivariant in
the sense that

\Phi t(W \mathrm{u}(z)) =W \mathrm{u}(\Phi t(z)),

\Phi t(W \mathrm{s}(z)) =W \mathrm{s}(\Phi t(z)).

5.3. The NHIM of the unperturbed system. We now describe the geometric structures
for the unperturbed system corresponding to \varepsilon = 0 and \lambda = 0. Fix 0< I1 < I2.

The unperturbed system H0 has:

\Lambda 0 = \{ (0,0, I, \theta ) | I \in [I1, I2], \theta \in \BbbT 1\} .

The flow restricted to \Lambda 0 corresponds to the equations of the rotator subsystem:\Biggl\{ 
\.I = 0,
\.\theta = I.

(5.5)
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1994 S. W. AKINGBADE, M. GIDEA, AND T. M-SEARA

Hence every level set I = const. is invariant under the flow. The stable and unstable manifolds
of the NHIM \Lambda 0 coincide, that is,

W \mathrm{s}(\Lambda 0) =W \mathrm{u}(\Lambda 0) = \{ (p, q, I, \theta ) | h1(p, q) = 0, I \in [I1, I2], \theta \in \BbbT 1\} ,

where h1 is the Hamiltonian of the pendulum in (3.3). The contraction/expansion rates
along E\mathrm{s} and E\mathrm{u} are \mp 1, respectively. For the time-2\pi map, the corresponding contrac-
tion/expansion rates are e\mp 2\pi .

In the extended phase space, we have that \~\Lambda 0 =\Lambda 0 \times \BbbT 1 is a NHIM, and

W \mathrm{s}(\~\Lambda 0) =W \mathrm{s}(\Lambda 0)\times \BbbT 1 =W \mathrm{u}(\Lambda 0)\times \BbbT 1 =W \mathrm{u}(\~\Lambda 0)

for system (5.1).
Note that \Lambda 0 is also the NHIM for the time-2\pi map f0 of the extended flow \~\Phi t

0, which
represents the first-return map to the Poincar\'e section

\Sigma = \{ (p, q, I, \theta , s) | s= 0\} .

5.4. The inner map of the unperturbed system. Now, let us consider the time-2\pi map
for the Hamiltonian flow of the rotator: \Biggl\{ 

\.I = 0,
\.\theta = I.

Solving, we have I(t) = I0 and \theta (t) = \theta 0 + I0t, which gives the time-2\pi -map f0:

f0(I, \theta ) = (I \prime , \theta \prime ) = (I, \theta + 2\pi I).(5.6)

Note that f0 satisfies the twist condition

\partial \theta \prime 

\partial I
= 2\pi > 0.(5.7)

5.5. The model with small dissipation. From now on we will work with small dissipation.
We will assume

\lambda = \varepsilon \rho ,(5.8)

where \rho is a free parameter. Consequently, the vector field (3.8) can be written as

\.z =\scrX 0(z) + \varepsilon \scrX 1(z, t;\rho )(5.9)

with \scrX 0(z) = J\nabla H0(z) the unpertubed system (3.1), and

\scrX 1(z, t;\rho ) = J\nabla H1(z, t) +\scrX \rho (5.10)

with H1 given in (3.6) and \scrX \rho given in (3.7). Even when we use \lambda in the notation, we always
assume that \lambda = \varepsilon \rho .
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ARNOLD DIFFUSION IN A MODEL OF DISSIPATIVE SYSTEM 1995

5.6. The NHIM in the case of vanishing perturbation. In the case when the perturbation
H1 is of the form

H1(p, q, I, \theta , s) = (cos q - 1) \cdot g(\theta , s),

then H1 vanishes at (p, q) = (0,0). When \varepsilon H1 is added to H0, the NHIM \~\Lambda 0 persists as
\~\Lambda \varepsilon = \~\Lambda 0 for the perturbed system for \varepsilon > 0, and the flow restricted to the NHIM is given by
(5.5). Consequently, each level set \{ I = constant\} in the NHIM persists.

When we add the dissipation \scrX \lambda , where \lambda = \varepsilon \rho , since the (p, q)-components of \scrX \lambda vanish
at (p, q) = (0,0), then the NHIM survives for the perturbed system (3.8) as \~\Lambda \varepsilon = \~\Lambda 0 (if we
consider \lambda as an independent parameter, then the perturbed NHIM in general depends on
both \varepsilon and \lambda ). The induced dynamics on \~\Lambda \varepsilon = \~\Lambda 0 is given by\left\{     

\.I = - \lambda (I  - \omega \ast ),
\.\theta = I,

\.s= 1.

(5.11)

Note that \.I = 0\leftrightarrow I = \omega \ast . It follows that

\~A\varepsilon = \{ (I, \theta , s), I = \omega \ast , (\theta , s)\in \BbbT 2\} \subset \~\Lambda \varepsilon (5.12)

is a two-dimensional torus invariant under the flow restricted to \~\Lambda \varepsilon . This is the only invariant
torus for the flow on \~\Lambda \varepsilon . On \~A\varepsilon we have \.\theta = I = \omega \ast and \.s= 1, so the flow along this level set
is a linear flow with frequency vector (\omega \ast ,1).

By integration of (5.11), we obtain the general solution with initial condition (I0, \theta 0, s0)
as

I(t) = (I0  - \omega \ast )e
 - \lambda t + \omega \ast ,

\theta (t) = \theta 0 +
1

\lambda 
(I0  - \omega \ast )(1 - e - \lambda t) + \omega \ast t,

s(t) = s0 + t.

(5.13)

Using these explicit formulas, one can see that given (\omega \ast , \theta 0, s0)\in \~A\varepsilon , if we consider (I, \theta , s)\in 
\~\Lambda \varepsilon , where s= s0, \theta = \theta 0  - 1

\lambda (I  - \omega \ast ), then

\| \~\Phi t
\varepsilon (I, \theta , s0) - \~\Phi t

\varepsilon (\omega \ast , \theta 0, s0)\| \leq 
\biggl( 
1 +

1

\lambda 2

\biggr) 1/2

| I  - \omega \ast | e - \lambda t \rightarrow 0 as t\rightarrow \infty ,(5.14)

showing that \~A\varepsilon is a global attractor for the flow on \~\Lambda \varepsilon . (Above we also denoted by \~\Phi t
\varepsilon the

flow restricted to \~\Lambda \varepsilon .)

5.7. The inner map in the case of vanishing perturbation. From the explicit solutions
of I(t) and \theta (t) in (5.13) with t= 2\pi , we have that

f\varepsilon (I, \theta ) =

\biggl( 
(I  - \omega \ast )e

 - 2\pi \lambda + \omega \ast , \theta +
1

\lambda 
(I  - \omega \ast )(1 - e - 2\pi \lambda ) + 2\pi \omega \ast 

\biggr) 
,(5.15)

which is the first-return map to the section \Lambda \varepsilon = \~\Lambda \varepsilon \cap \{ s= 0(mod2\pi )\} .
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1996 S. W. AKINGBADE, M. GIDEA, AND T. M-SEARA

In particular, for I = \omega \ast we have f\varepsilon (I, \theta ) = (\omega \ast , \theta + 2\pi \omega \ast ) = (I, \theta + 2\pi \omega \ast ). That is,
A\varepsilon = \~A\varepsilon \cap \{ s= 0(mod2\pi )\} is an invariant circle for f\varepsilon of irrational rotation number 2\pi \omega \ast .

From (5.14) we have that, for (I, \theta ) with \theta = \theta 0  - 1
\lambda (I  - \omega \ast ),

\| fk
\varepsilon (I, \theta ) - fk

\varepsilon (\omega \ast , \theta 0)\| \leq 
\biggl( 
1 +

1

\lambda 2

\biggr) 1/2

| I  - \omega \ast | e - 2\pi \lambda k \rightarrow 0 as k\rightarrow \infty .(5.16)

This shows that A\varepsilon is a global attractor for the map f\varepsilon on \Lambda \varepsilon , and, moreover, the orbits of
(I, \theta ) and (\omega \ast , \theta 0) become asymptotically close to one another as n\rightarrow \infty .

We have

Df\varepsilon (I, \theta ) =

\biggl( 
e - 2\pi \lambda 0

1
\lambda (1 - e - 2\pi \lambda ) 1

\biggr) 
with eigenvalues e - 2\pi \lambda and 1 and with corresponding eigenvectors\biggl( 

 - \lambda 
1

\biggr) 
and

\biggl( 
0
1

\biggr) 
,

respectively. The eigenvalue 1 is associated to the dynamics along the \theta -coordinate, and the
eigenvalue of e - 2\pi \lambda < 1 is associated to the dynamics along the I-coordinate.

We conclude that A\varepsilon is a NHIM for (f\varepsilon )| \Lambda \varepsilon 
, for which there is only stable manifold W \mathrm{s}(A\varepsilon )

tangent to
\bigl(  - \lambda 

1

\bigr) 
, and no unstable manifold W \mathrm{u}(A\varepsilon ). We note that for \lambda \gtrsim 0 (recall that \lambda = \varepsilon \rho )

the Lyapunov multipliers 1 and e - 2\pi \lambda \lesssim 1 for (f\varepsilon )| \Lambda \varepsilon 
are dominated by the contraction rate

of Df\varepsilon on the stable bundle E\mathrm{s} of \Lambda \varepsilon , which is e - 2\pi +O(\lambda ); see section 5.3.
Since | det(Df\varepsilon )| = e - 2\pi \lambda < 1 we have that f\varepsilon is area-contracting on \Lambda \varepsilon , and hence it is

conformally symplectic, i.e.,

(f\varepsilon )
\ast 
| \Lambda \varepsilon 

(\omega | \Lambda \varepsilon 
) = e - 2\pi \lambda \omega | \Lambda \varepsilon 

.(5.17)

We now show that f\varepsilon is a \lambda -perturbation of f0, a time-2\pi map for the rotator part of the
unperturbed system given in (5.6). Since

e - 2\pi \lambda =1 - 2\pi \lambda +O(\lambda 2),

we have

f\varepsilon (I, \theta ) =
\bigl( 
I  - 2\pi \lambda (I  - \omega \ast ) +O(\lambda 2), \theta + 2\pi I  - 2\pi 2\lambda (I  - \omega \ast ) +O(\lambda 2)

\bigr) 
.

Therefore f\varepsilon is a \lambda -perturbation of f0 in (5.6), i.e.,

f\varepsilon (I, \theta ) =f0(I, \theta ) +O(\lambda ) = f0(I, \theta ) +O(\varepsilon \rho ).

5.8. The case of nonvanishing perturbation. In this case the time-periodic perturbation
of the Hamiltonian in (3.5) is of the form

H1(p, q, I, \theta , s) = cos q \cdot g(\theta , s).(5.18)

The perturbation H1 does not vanish at the hyperbolic fixed point of the pendulum (p, q) =
(0,0). The dissipative perturbation is given by the vector field \varepsilon \scrX \rho , where \scrX \rho is given by
(3.7), as before (see (5.9) and (5.10)).
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ARNOLD DIFFUSION IN A MODEL OF DISSIPATIVE SYSTEM 1997

From (3.9), since f \prime (q) = - sin q vanishes at q= 0, we obtain that the unperturbed NHIM
\~\Lambda 0 survives the perturbation, that is, \~\Lambda \varepsilon = \~\Lambda 0 for all \varepsilon .

When \lambda \not = 0, the perturbed dynamics restricted to \~\Lambda \varepsilon = \~\Lambda 0 is given by the following
equations: \left\{     

\.I = - \lambda (I  - \omega \ast ) - \varepsilon \partial g\partial \theta (\theta , s),
\.\theta = I,

\.s= 1.

(5.19)

Using the expression of g in (3.11), this system can be reduced to the second-order nonlinear
differential equation

\"\theta + \lambda \.\theta  - \varepsilon a10 sin\theta  - \lambda \omega \ast = 0.

Ignoring the last term, the remaining terms represent the equation of the damped nonlinear
pendulum, for which explicit solutions are unknown; an analytical approximation can be found
in [Joh14]. Hence, we do not have an explicit formula for the time-2\pi map f\varepsilon in this case.

6. Existence of a transverse homoclinic intersection. In what follows, we will identify
vector fields with differential operators, which is a standard operation in differential geometry
(see, e.g., [BG05]). That is, given a smooth vector field \scrX and a smooth function f on the
manifold M , we denote

(\scrX f)(z) =
\sum 
j

(\scrX )j(z)
\partial f

\partial zj
(z),(6.1)

where zj , j \in \{ 1, . . . ,dim(M)\} , are local coordinates. Similarly, a smooth time-dependent and
parameter-dependent vector field acts as a differential operator by

(\scrX f)(z, t;\varepsilon ) =
\sum 
j

(\scrX )j(z, t;\varepsilon )
\partial f

\partial zj
(z).(6.2)

For the pendulum system, whose Hamiltonian h1 is given in (3.3), we denote by (p0(t), q0(t))
a parametrization of a separatrix of the pendulum, with (p0(0), q0(0)) = (p0, q0), where (p0, q0)
is some initial point; this parametrization is explicitly given in (3.4). We define a new locally
defined system of symplectic coordinates (y,x) in a neighborhood of the separatrix---chosen
away from the hyperbolic equilibrium point---as follows. The coordinate y is chosen to be
equal to the energy of the pendulum, i.e.,

y= h1(p, q) =
p2

2
+ (cos(q) - 1),(6.3)

and is defined in a whole neighborhood of one of its separatrices. The coordinate x is defined
by

dx=
dt

| | \nabla y| | 
,

where dt= (dp2 + dq2)
1

2 . It is immediate to see that x equals the time \tau it takes the solution
(p(t), q(t)) to go along the y-level set from one point to another (see [GdlLM21]). This coor-
dinate system (y,x) constructed above is not defined in a neighborhood of the separatrix that
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1998 S. W. AKINGBADE, M. GIDEA, AND T. M-SEARA

contains the hyperbolic equilibrium point, since this is a critical point of the energy function.
We define this coordinate system only in some neighborhood \scrN of a segment of the separatrix
containing (p0, q0). On this neighborhood, we have dy \wedge dx = dp \wedge dq. Relative to this new
coordinate system, the separatrix is given by y= 0.

An arbitrary point on the separatrix can be given in terms of the (p, q)-coordinates as
(p0(\tau ), q0(\tau )) for some \tau \in \BbbR , and in terms of the (y,x)-coordinates as (0, x) for some x \in \BbbR ,
where x= \tau .

Now let's extend this coordinate system to a system of coordinates (y,x, I, \theta , s) on some
neighborhood \~\scrN of \{ (p0(\tau ), q0(\tau ), I, \theta , s)\} in the extended phase space.

Relative to this coordinate system, in the unperturbed case, the stable/unstable manifolds
W \mathrm{s}(\~\Lambda 0) =W \mathrm{u}(\~\Lambda 0) are locally given by y = 0. A point \~z0 \in W \mathrm{s}(\~\Lambda 0) =W \mathrm{u}(\~\Lambda 0) can be written
in terms of the original coordinates (p, q, I, \theta , s) as

\~z0 = (p0(\tau ), q0(\tau ), I, \theta , s) for some \tau \in \BbbR ,
and in terms of the extended coordinates (y,x, I, \theta , s) as

\~z0 = (0, x, I, \theta , s) for x= \tau \in \BbbR .
When we apply the flow to the point \~z0 we obtain

\~\Phi t
0(\~z0) = (p0(\tau + t), q0(\tau + t), I, \theta + \omega (I)t, s+ t).

Observe that if we denote by \~z\pm 0 := (p, q, I, \theta , s) = (0,0, I, \theta , s), we have \~\Phi t
0(\~z

\pm 
0 ) = (0,0, I, \theta +

\omega (I)t, s+ t), and therefore

\~\Phi t
0(\~z0) - \~\Phi t

0(\~z
\pm 
0 )\rightarrow 0, as t\rightarrow \pm \infty .

In the perturbed case, for \varepsilon \not = 0 small and \lambda = \rho \varepsilon , we can locally describe both the
stable and unstable manifolds of \~\Lambda \varepsilon as graphs of C

\ell  - 1-smooth functions ys\varepsilon , y
u
\varepsilon , over (x, I, \theta , s),

recalling that x= \tau , given by

ys\varepsilon =ys\varepsilon (x, I, \theta , s;\rho ) = ys\varepsilon (\tau , I, \theta , s;\rho ),

yu\varepsilon =yu\varepsilon (x, I, \theta , s;\rho ) = yu\varepsilon (\tau , I, \theta , s;\rho ),

respectively, for (0, x, I, \theta , s)\in \~\scrN . We stress the dependence of \rho of these functions because it
will be important in what follows.

Observe that when \varepsilon = 0 we have the equation of the separatrix of the pendulum

ys0(\tau , I, \theta , s;\rho ) = yu0 (\tau , I, \theta , s;\rho ) = 0.

Consequently yu\varepsilon , y
s
\varepsilon =O(\varepsilon ).

We recall the following Melnikov-type result for nonconservative perturbations.

Theorem 6.1 (splitting of the stable and unstable manifolds [GdlLM21]). Fix \rho 0 > 0, and
then there exists \varepsilon 0 > 0 such that for any 0 \leq \rho \leq \rho 0 and 0 \leq | \varepsilon | \leq \varepsilon 0 we have the following:
for (0, \tau , I, \theta , s)\in \~\scrN , the difference between ys\varepsilon (\tau , I, \theta , s;\rho ) and yu\varepsilon (\tau , I, \theta , s;\rho ) is given by

ys\varepsilon  - yu\varepsilon = - \varepsilon 

\int +\infty 

 - \infty 
((\scrX 1h1)(\~\Phi 

t
0(\~z0)) - (\scrX 1h1)(\~\Phi 

t
0(\~z

\pm 
0 )))dt+O(\varepsilon 2),

where we recall that h1(p, q) =
p2

2 + (cos q - 1) and \scrX 1 is given in (5.10).
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ARNOLD DIFFUSION IN A MODEL OF DISSIPATIVE SYSTEM 1999

Corollary 6.2 (sufficient conditions for the existence of a transverse homoclinic intersection).
Fix \rho 0 > 0, and then there exists \varepsilon 0 > 0 such that for any 0 \leq \rho \leq \rho 0 and | \varepsilon | \leq \varepsilon 0 we have
the following: for (0, \tau , I, \theta , s) \in \~\scrN , the difference between ys\varepsilon (\tau , I, \theta , s;\rho ) and yu\varepsilon (\tau , I, \theta , s;\rho ) is
given by

ys\varepsilon  - yu\varepsilon = - \varepsilon 

\biggl[ \int +\infty 

 - \infty 
\{ h1,H1\} (p0(\tau + t), q0(\tau + t), I, \theta + \omega (I)t, s+ t)dt

 - \rho 

\int +\infty 

 - \infty 
p20(t)dt

\biggr] 
+O(\varepsilon 2),

(6.4)

where \{ \cdot , \cdot \} denotes the Poisson bracket.
If \tau \ast = \tau \ast (I, \theta , s) is a nondegenerate zero of the mapping

\tau \in \BbbR \mapsto \rightarrow  - 
\int +\infty 

 - \infty 
\{ h1,H1\} (p0(\tau + t), q0(\tau + t), I, \theta + \omega (I)t, s+ t)dt,(6.5)

then there exists 0<\rho 1 \leq \rho 0 such that for all 0\leq \rho \leq \rho 1,

\tau \in \BbbR \mapsto \rightarrow  - 
\biggl[ \int +\infty 

 - \infty 
\{ h1,H1\} (p0(\tau + t), q0(\tau + t), I, \theta + \omega (I)t, s+ t)dt

 - \rho 

\int +\infty 

 - \infty 
p20(t)dt

\biggr] (6.6)

has a nondegenerate zero \tau \ast (I, \theta , s;\rho ).
Moreover, there exists 0 < \varepsilon 1 \leq \varepsilon 0 such that for all 0 \leq \rho \leq \rho 1 and 0 < | \varepsilon | \leq \varepsilon 1, W

s(\~\Lambda \varepsilon ) and
W u(\~\Lambda \varepsilon ) have a transverse homoclinic intersection which can be parametrized as

(\tau \ast , ys\varepsilon (\tau 
\ast , I, \theta , s;\rho ), I, \theta , s) = (\tau \ast , yu\varepsilon (\tau 

\ast , I, \theta , s;\rho ), I, \theta , s),(6.7)

where \tau \ast = \tau \ast (I, \theta , s;\rho , \varepsilon ) = \tau \ast (I, \theta , s;\rho )+O(\varepsilon ) = \tau \ast (I, \theta , s)+O(\rho , \varepsilon ), for (I, \theta , s) in some open
set in \~U \subseteq \BbbR \times \BbbT 1 \times \BbbT 1.

Proof. From Theorem 6.1, we have

y\mathrm{s}\varepsilon  - y\mathrm{u}\varepsilon = - \varepsilon 

\int +\infty 

 - \infty 
((\scrX 1h1)(\~\Phi 

t
0(\~z0)) - (\scrX 1h1)(\~\Phi 

t
0(\~z

\pm 
0 )))dt+O(\varepsilon 2).

As \lambda = \varepsilon \rho , the vector field \scrX 1 (see (5.10)) is the sum of the Hamiltonian vector field J\nabla H1

and the dissipative vector field

\scrX \rho (p, q, I, \theta ) = ( - \rho p,0, - \rho (I  - \omega \ast ),0),

and therefore

y\mathrm{s}\varepsilon  - y\mathrm{u}\varepsilon = - \varepsilon 

\int +\infty 

 - \infty 

\biggl[ 
(J\nabla H1 +\scrX \rho )h1(\~\Phi 

t
0(\~z0)) - (J\nabla H1 +\scrX \rho )h1(\~\Phi 

t
0(\~z

\pm 
0 ))

\biggr] 
dt+O(\varepsilon 2)

= - \varepsilon 

\biggl[ \int +\infty 

 - \infty 
(J\nabla H1h1)(\~\Phi 

t
0(\~z0)) - (J\nabla H1h1)(\~\Phi 

t
0(\~z

\pm 
0 ))dt

+

\int +\infty 

 - \infty 
(\scrX \rho h1)(\~\Phi 

t
0(\~z0)) - (\scrX \rho h1)(\~\Phi 

t
0(\~z

\pm 
0 ))dt

\biggr] 
+O(\varepsilon 2)

:= - \varepsilon (\scrF 1 +\scrF 2) +O(\varepsilon 2).
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2000 S. W. AKINGBADE, M. GIDEA, AND T. M-SEARA

In the above,

\scrF 1 :=

\int +\infty 

 - \infty 
(J\nabla H1h1)(\~\Phi 

t
0(\~z0)) - (J\nabla H1h1)(\~\Phi 

t
0(\~z

\pm 
0 ))dt

=

\int +\infty 

 - \infty 
\{ h1,H1\} (\~\Phi t

0(\~z0)) - \{ h1,H1\} (\~\Phi t
0(\~z

\pm 
0 ))dt,

=

\int +\infty 

 - \infty 

\biggl( 
\{ h1,H1\} (p0(\tau + t), q0(\tau + t), I, \theta + \omega (I)t, s+ t)

 - \{ h1,H1\} (0,0, I, \theta + \omega (I), s+ t)

\biggr) 
dt

\scrF 2 :=

\int +\infty 

 - \infty 
(\scrX \rho h1)(\~\Phi 

t
0(\~z0)) - (\scrX \rho h1)(\~\Phi 

t
0(\~z

\pm 
0 ))dt

=\rho 

\int +\infty 

 - \infty 
(\scrX \omega \ast h1)(\~\Phi 

t
0(\~z0)) - (\scrX \omega \ast h1)(\~\Phi 

t
0(\~z

\pm 
0 ))dt,

where we denote \scrX \omega \ast = ( - p,0, - (I  - \omega \ast ),0). Since \scrX \omega \ast h1 = - p\partial h1

\partial p = - p2, and recalling that
\~\Phi t
0(\~z0) = (p0(\tau +t), q0(\tau +t), I, \theta +\omega (I)t, s+t), and \~\Phi t

0(\~z
\pm 
0 ) = (0,0, I, \theta +\omega (I)t, s+t), we obtain

\scrF 2 = - \rho 

\int +\infty 

 - \infty 
p20(\~\Phi 

t
0(\~z0))dt= - \rho 

\int +\infty 

 - \infty 
p20(\tau + t)dt.

Finally,

y\mathrm{s}\varepsilon  - y\mathrm{u}\varepsilon = - \varepsilon 

\int +\infty 

 - \infty 

\biggl( 
\{ h1,H1\} (p0(\tau + t), q0(\tau + t), I, \theta + \omega (I)t, s+ t)

 - \{ h1,H1\} (0,0, I, \theta + \omega (I), s+ t)

\biggr) 
dt

+ \varepsilon \rho 

\int +\infty 

 - \infty 
p20(\tau + t)dt+O(\varepsilon 2).

Note that \{ h1,H1\} =  - sin q \partial H1

\partial p  - p\partial H1

\partial q and hence \{ h1,H1\} (0,0, I, \theta + \omega (I), s+ t) = 0. Also

note that by the change of variable formula
\int +\infty 
 - \infty p20(\tau + t)dt=

\int +\infty 
 - \infty p20(t)dt. Thus, we obtain

the first part of Corollary 6.2.
The second part of Corollary 6.2 is as follows. First, if \tau \ast = \tau \ast (I, \theta , s) is a nondegenerate

zero of the mapping (6.5), there exists 0<\rho 1 \leq \rho 0 such that the function

\tau \in \BbbR \mapsto \rightarrow  - 
\biggl[ \int +\infty 

 - \infty 
\{ h1,H1\} (p0(\tau + t), q0(\tau + t), I, \theta + \omega (I)t, s+ t)dt - \rho 

\int +\infty 

 - \infty 
p20(t)dt

\biggr] 
also has a nondegenerate zero \tau \ast (I, \theta , s;\rho ) = \tau \ast (I, \theta , s) +O(\rho ) for any 0\leq \rho \leq \rho 1.
Now, we apply the implicit function theorem to find the zeroes of the function,

\tau \rightarrow y\mathrm{s}\varepsilon (\tau , I, \theta , s;\rho ) - y\mathrm{u}\varepsilon (\tau , I, \theta , s;\rho ),

obtaining a value 0< \~\varepsilon 1(\rho )\leq \varepsilon 0, such that, for any 0< \varepsilon \leq \~\varepsilon 1, this map has a nondegenerate
zero \tau \ast (I, \theta , s;\rho , \varepsilon ) = \tau \ast (I, \theta , s;\rho ) + O(\varepsilon ) = \tau \ast (I, \theta , s) + O(\rho , \varepsilon ). An important observation
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ARNOLD DIFFUSION IN A MODEL OF DISSIPATIVE SYSTEM 2001

is that \~\varepsilon 1(0) \not = 0, and therefore we set \varepsilon 1 = min[0,\rho 1] \~\varepsilon 1(\rho ) > 0. In this way, arguing as

in [DdlLS06a], the stable and unstable manifolds W \mathrm{s}(\~\Lambda \varepsilon ) and W \mathrm{u}(\~\Lambda \varepsilon ) have a transverse
homoclinic intersection which can be parametrized as in (6.7).

Provided that the unperturbed stable and unstable manifolds of the NHIM coincide,
adding a generic Hamiltonian perturbation makes the stable and unstable manifold inter-
sect transversally; see, e.g., [GdlL18]. However, nonconservative perturbations can in general
destroy the homoclinic intersection; this is, for example, the case of the dissipative pendulum
shown in Figure 2(b). In contrast, Corollary 6.2 shows that for the system (3.8), where the
dissipation is of the same order as the forcing, that is, \lambda = \varepsilon \rho , the perturbed stable and unsta-
ble manifolds intersect transversally for all sufficiently small perturbation parameter values \rho .
Later, in section 8, we will be interested in taking \rho = \rho (\varepsilon ) = \=\rho 

\mathrm{l}\mathrm{o}\mathrm{g}( 1

\varepsilon 
)
, but, clearly, for \varepsilon small

enough, these values of \rho satisfy the hypotheses of Corollary 6.2. The result is summarized in
the next corollary.

Corollary 6.3 (existence of transverse intersection in the model). Take any \=\rho > 0. Consider
the perturbation H1 given by (3.10) or (3.11) and the dissipative pertubation as in (3.7) with
\lambda = \varepsilon \=\rho 

\mathrm{l}\mathrm{o}\mathrm{g}( 1

\varepsilon 
)
. Then there exists \varepsilon 0 sufficiently small such that for all 0< | \varepsilon | < \varepsilon 0, W

s(\~\Lambda \varepsilon ) and

W u(\~\Lambda \varepsilon ) have a transverse homoclinic intersection \~\Gamma \varepsilon which can be parametrized as in (6.7).

Proof. The proof follows by the fact that in this case \rho = \=\rho 
\mathrm{l}\mathrm{o}\mathrm{g}( 1

\varepsilon 
)
satisfies the conditions of

Corollary 6.2 if \varepsilon is small enough.

7. Computation of the scattering map for the perturbed system.

7.1. The scattering map. We give a brief description of the scattering map, following
[DdlLS08]. Consider the general case of a NHIM \Lambda for a flow \Phi t on some smooth manifold
M . Let W \mathrm{s}(\Lambda ), W \mathrm{u}(\Lambda ) be the stable and unstable manifolds of \Lambda . First, let

\Omega + :W \mathrm{s}(\Lambda )\rightarrow \Lambda ,

\Omega  - :W \mathrm{u}(\Lambda )\rightarrow \Lambda 

be the canonical projections along fibers, assigning to each point x \in W \mathrm{s}(\Lambda ) its stable foot
point x+ =\Omega +(x), uniquely defined by x\in W \mathrm{s}(x+), and, similarly, assigning to x\in W \mathrm{u}(\Lambda ) its
unstable footpoint x - =\Omega  - (x) uniquely defined by x\in W \mathrm{u}(x - ).

Second, choose and fix a ``homoclinic channel,"" which is a homoclinic manifold \Gamma in
W \mathrm{u}(\Lambda )\cap W \mathrm{s}(\Lambda ) that satisfies the following strong transversality conditions:

Tx\Gamma =TxW
\mathrm{s}(\Lambda )\cap TxW

\mathrm{u}(\Lambda ),

TxM =Tx\Gamma \oplus TxW
\mathrm{u}(x - )\oplus TxW

\mathrm{s}(x+)

for all x\in \Gamma , and such that

\Omega \pm 
| \Gamma : \Gamma \rightarrow \Omega \pm (\Gamma ) is a diffeomorphism.

Then, the scattering map associated to the homoclinic channel \Gamma is the mapping \sigma :
\Omega  - (\Gamma )\rightarrow \Omega +(\Gamma ) defined by

\sigma =\Omega + \circ (\Omega  - ) - 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/0

4/
23

 to
 7

3.
17

8.
41

.1
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



2002 S. W. AKINGBADE, M. GIDEA, AND T. M-SEARA

x+

Wu(x-) Ws(x+)

Λε
x-

x

 φ-T(x-)

  x’start=φ-T-(x-) x’end=φT+(x+)

xend
xstart x-

Figure 4. Homoclinic orbit segment approximating an orbit obtained by applying the scattering map and
the inner map.

The map \sigma is a locally defined diffeomorphism on \Lambda . Moreover, \sigma is symplectic provided
that M , \Lambda , \Phi t are symplectic.

Remark 7.1. We have \sigma (x - ) = x+ if and only if

d(\Phi  - T - (x),\Phi  - T - (x - ))\rightarrow 0, and d(\Phi T+(x),\Phi T+(x+))\rightarrow 0(7.1)

as T - , T+ \rightarrow +\infty , respectively, for some uniquely defined x\in \Gamma . This means that for orbits in
\Lambda of the form x\prime \mathrm{e}\mathrm{n}\mathrm{d} =\Phi T+ \circ \sigma \circ \Phi T - (x\prime \mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{t}), where x\prime \mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{t} =\Phi  - T - (x - ) and x\prime \mathrm{e}\mathrm{n}\mathrm{d} =\Phi T+(x+), one
can find homoclinic orbit segments in M of the form x\mathrm{e}\mathrm{n}\mathrm{d} =\Phi T++T - (x\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{t}), such that x\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{t} is
arbitrarily close to x\prime \mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{t} and x\mathrm{e}\mathrm{n}\mathrm{d} is arbitrarily close to x\prime \mathrm{e}\mathrm{n}\mathrm{d}. See Figure 4.

7.2. The scattering map of the perturbed system. Assuming that the conditions in
Corollary 6.2 are satisfied, then W \mathrm{s}(\~\Lambda \varepsilon ) and W \mathrm{u}(\~\Lambda \varepsilon ) intersect transversally in the homoclinic
channel \~\Gamma \varepsilon , which can be parametrized as in Corollary 6.2 for all 0 < | \varepsilon | < \varepsilon 1. Let \~z\varepsilon \in \~\Gamma \varepsilon 

be a homoclinic point for the perturbed extended flow \~\Phi t
\varepsilon . In terms of the coordinates from

section 6, we have

\~z\varepsilon = (\tau \ast (I, \theta , s;\rho , \varepsilon ), y\mathrm{s}\varepsilon (\tau 
\ast (I, \theta , s;\rho , \varepsilon ), I, \theta , s;\rho ), I, \theta , s),

where \tau \ast (I, \theta , s;\rho , \varepsilon ) = \tau \ast (I, \theta , s;\rho ) +O(\varepsilon ) and \tau \ast (I, \theta , s;\rho ) = \tau \ast (I, \theta , s) +O(\varepsilon ) is a nondegen-
erate zero of the mapping (6.6) near \tau \ast (I, \theta , s), a chosen nondegenerate zero of the mapping
(6.5).

Because of the smooth dependence of the NHIM and of its stable and unstable manifolds
on the perturbation parameter, to the homoclinic point \~z\varepsilon = (z\varepsilon , s) for perturbed flow \~\Phi t

\varepsilon it
corresponds to a homoclinic point \~z0 = (z0, s) for the unperturbed flow \~\Phi t

0, which is O(\varepsilon )-close
to \~z\varepsilon . In fact, going back to the original coordinates, the point \~z\varepsilon becomes

\~z\varepsilon = (p0(\tau 
\ast (I, \theta , s;\rho , \varepsilon )), q0(\tau 

\ast (I, \theta , s;\rho , \varepsilon )), I, \theta , s) +O(\varepsilon )

= (p0(\tau 
\ast (I, \theta , s;\rho )), q0(\tau 

\ast (I, \theta , s;\rho )), I, \theta , s) +O(\varepsilon )

= \~z0 +O(\varepsilon ), where

\~z0 = (p0(\tau 
\ast (I, \theta , s;\rho )), q0(\tau 

\ast (I, \theta , s;\rho )), I, \theta , s).

(7.2)

Note that in the above the O(\varepsilon )-error only affects the p, q components.
We denote the stable- and unstable-footpoints of \~z\varepsilon and of \~z0 by \~z\pm \varepsilon and \~z\pm 0 , respectively.

Recall that we already know that \~z\pm 0 = (0,0, I, \theta , s). Summarizing the notation,
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ARNOLD DIFFUSION IN A MODEL OF DISSIPATIVE SYSTEM 2003

\bullet \~z\varepsilon \in \~\Gamma \varepsilon \subset W \mathrm{s}(\~\Lambda \varepsilon )\pitchfork W \mathrm{u}(\~\Lambda \varepsilon );
\bullet \~z\pm \varepsilon =\Omega \pm (\~z\varepsilon )\in \~\Lambda \varepsilon ;
\bullet \~z0 \in \~\Gamma 0 \subset W \mathrm{s}(\~\Lambda 0)\pitchfork W \mathrm{u}(\~\Lambda 0);
\bullet \~z\pm 0 =\Omega \pm (\~z0)\in \~\Lambda 0.

Under the above assumptions, we have \~\sigma \varepsilon (\~z
 - 
\varepsilon ) = \~z+\varepsilon , and \~\sigma 0(\~z

 - 
0 ) = \~z+0 . We recall that, in

our model, for the unperturbed system, \~z - 0 = \~z+0 = \~z\pm 0 and therefore the scattering map is the
identity: \~\sigma 0 =Id.

The perturbed scattering map \~\sigma \varepsilon can be expanded in terms of powers of \varepsilon , with the
zeroth-order term being the unperturbed scattering map \~\sigma 0, as follows:

\~\sigma \varepsilon (I, \theta , s) =\~\sigma 0(I, \theta , s) + \varepsilon \scrS (I, \theta , s) +O(\varepsilon 2)

=(I, \theta , s) + \varepsilon \scrS (I, \theta , s) +O(\varepsilon 2),

where \scrS = (\scrS I ,\scrS \theta , Ids).
In what follows, we evaluate the components \scrS I and \scrS \theta in order to compute the change

in action I and the change in angle \theta by the scattering map. We follow the approach in
[GdlLM21, GdlLM22].

7.3. Change in action by the scattering map. We use the following result.

Theorem 7.2 (change in action by the scattering map [GdlLM21]). For a general nonconser-
vative perturbation \scrX 1 of (3.1) like in (5.9), the change in action I by the scattering map \~\sigma \varepsilon 
is given by

I
\bigl( 
\~z+\varepsilon 

\bigr) 
 - I

\bigl( 
\~z - \varepsilon 

\bigr) 
=\varepsilon 

\int +\infty 

 - \infty 

\Bigl( 
\scrX 1I(\~\Phi t

0(\~z0)) - \scrX 1I(\~\Phi t
0(\~z

\pm 
0 ))

\Bigr) 
dt

+O
\bigl( 
\varepsilon 2
\bigr) 
,

(7.3)

where \~z\varepsilon and \~z0 are given in (7.2), and we denote I0 = I(\~z0) = I(\~z\pm 0 ).

Denote I(\~z\pm \varepsilon ) = I\pm \varepsilon . Applying Theorem 7.2 in the case of (5.10),

\scrX 1 =J\nabla H1 + ( - \rho p,0, - \rho (I  - \omega \ast ),0)

=J\nabla H1 +\scrX \rho ,

we obtain

I+\varepsilon  - I - \varepsilon =\varepsilon 

\int \infty 

 - \infty 

\biggl( 
(J\nabla H1 +\scrX \rho )I(\~\Phi 

t
0(\~z0)) - (J\nabla H1 +\scrX \rho )I(\~\Phi 

t
0(\~z

\pm 
0 ))

\biggr) 
dt+O(\varepsilon 2)

=\varepsilon 

\int \infty 

 - \infty 

\biggl( 
(J\nabla H1I)(\~\Phi 

t
0(\~z0)) - (J\nabla H1I)(\~\Phi 

t
0(\~z

\pm 
0 ))

\biggr) 
dt

+ \varepsilon 

\int \infty 

 - \infty 

\biggl( 
\scrX \rho I(\~\Phi 

t
0(\~z0)) - \scrX \rho I(\~\Phi 

t
0(\~z

\pm 
0 ))

\biggr) 
dt+O(\varepsilon 2)

=\varepsilon (\scrS I
1 + \scrS I

2 ) +O(\varepsilon 2),
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where

\scrS I
1 :=

\int \infty 

 - \infty 

\biggl( 
\{ I,H1\} ((\~\Phi t

0(\~z0)) - \{ I,H1\} (\~\Phi t
0(\~z

\pm 
0 ))

\biggr) 
dt

=

\int +\infty 

 - \infty 
(\{ I,H1\} (p0(\tau \ast + t), q0(\tau 

\ast + t), I, \theta + \omega (I)t, s+ t) ,

 - \{ I,H1\} (0,0, I, \theta + \omega (I)t, s+ t))dt

\scrS I
2 =

\int \infty 

 - \infty 

\biggl( 
\scrX \rho I(\~\Phi 

t
0(\~z0)) - \scrX \rho I(\~\Phi 

t
0(\~z

\pm 
0 ))

\biggr) 
dt,

where \tau \ast = \tau \ast (I, \theta , s;\rho ) is a nondegenerate zero of the function (6.6).
Since \scrX \rho I = - \rho (I  - \omega \ast ), \~\Phi 

t
0(\~z0) = (p0(\tau 

\ast + t), q0(\tau 
\ast + t), I, \theta + \omega (I)t, s+ t), and \~\Phi t

0(\~z
\pm 
0 ) =

(0,0, I, \theta + \omega (I)t, s+ t), we have

\scrS I
2 :=

\int \infty 

 - \infty 

\biggl( 
 - \rho I(\~\Phi t

0(\~z0)) + \rho I(\~\Phi t
0(\~z

\pm 
0 ))

\biggr) 
dt= 0.

Thus, we have proved the following result.

Corollary 7.3. For the perturbation \scrX 1 = J\nabla H1 +\scrX \rho ,

I+\varepsilon  - I - \varepsilon =\varepsilon 

\int +\infty 

 - \infty 
(\{ I,H1\} (p0(\tau \ast + t), q0(\tau 

\ast + t), I, \theta + \omega (I)t, s+ t)

 - \{ I,H1\} (0,0, I, \theta + \omega (I)t, s+ t))dt+O(\varepsilon 2),

(7.4)

where \tau \ast = \tau \ast (I, \theta , s;\rho ) is a nondegenerate zero of the function (6.6).
In the case when H1 is as in (3.10) or (3.11), \{ I,H1\} =  - \partial H1

\partial \theta = a10f(q) sin\theta , where
f(q) = cos q - 1 or f(q) = cos q, so

I+\varepsilon  - I - \varepsilon =\varepsilon a10

\int \infty 

 - \infty 
(cos(q0(\tau 

\ast + t)) - 1) sin(\theta + \omega (I)t)dt+O(\varepsilon 2).(7.5)

7.4. Change in angle by the scattering map. We use the following result.

Theorem 7.4 (change in angle by the scattering map [GdlLM21]). For a general nonconser-
vative perturbation \scrX 1 of (3.1) like in (5.9), the change in angle \theta by the scattering map \~\sigma \varepsilon is
given by

\theta (\~z+\varepsilon ) - \theta (\~z - \varepsilon ) =\varepsilon 

\int +\infty 

 - \infty 
\scrX 1\theta (\~\Phi t

0(\~z0)) - \scrX 1\theta (\~\Phi t
0(\~z

\pm 
0 ))dt

 - \varepsilon 

\int +\infty 

 - \infty 
(\scrX 1I(\~\Phi t

0(\~z0)) - \scrX 1I(\~\Phi t
0(\~z

\pm 
0 )))tdt \cdot 

\biggl( 
\partial 2h0
\partial I2

(I0)

\biggr) 
+O(\varepsilon 2),

(7.6)

where \~z\varepsilon and \~z0 are given in (7.2), and we denote I0 = I(\~z0) = I(\~z\pm 0 ).
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ARNOLD DIFFUSION IN A MODEL OF DISSIPATIVE SYSTEM 2005

Denote \theta (\~z\pm \varepsilon ) = \theta \pm \varepsilon . Applying Theorem 7.4 in the case of (5.10), i.e., \scrX 1 = J\nabla H1 + \scrX \rho ,
we obtain

\theta +\varepsilon  - \theta  - \varepsilon =\varepsilon 

\int \infty 

 - \infty 

\biggl( 
(J\nabla H1 +\scrX \rho )\theta (\~\Phi 

t
0(\~z0)) - (J\nabla H1 +\scrX \rho )\theta (\~\Phi 

t
0(\~z

\pm 
0 ))

\biggr) 
dt

 - \varepsilon 

\int \infty 

 - \infty 

\Bigl( 
(J\nabla H1 +\scrX \rho )I(\~\Phi 

t
0(\~z0))

 - (J\nabla H1 +\scrX \rho )I(\~\Phi 
t
0(\~z

\pm 
0 ))

\Bigr) 
tdt \cdot 

\biggl( 
\partial 2h0
\partial I2

(I)

\biggr) 
+O(\varepsilon 2).

(7.7)

We simplify the first integral above by splitting into two integrals:

\varepsilon 

\biggl[ \int \infty 

 - \infty 

\biggl( 
(J\nabla H1\theta )(\~\Phi 

t
0(\~z0)) - (J\nabla H1\theta )(\~\Phi 

t
0(\~z

\pm 
0 ))

\biggr) 
dt

+

\int \infty 

 - \infty 

\biggl( 
\scrX \rho \theta (\~\Phi 

t
0(\~z0)) - \scrX \rho \theta (\~\Phi 

t
0(\~z

\pm 
0 ))

\biggr) 
dt

\biggr] 
= \varepsilon (\scrS \theta 

1 + \scrS \theta 
2),

where

\scrS \theta 
1 :=

\int \infty 

 - \infty 

\biggl( 
\{ \theta ,H1\} (\~\Phi t

0(\~z0) - \{ \theta ,H1\} (\~\Phi t
0(\~z

\pm 
0 ))

\biggr) 
dt

=

\int \infty 

 - \infty 

\biggl( 
\{ \theta ,H1\} (p0(\tau \ast + t), q0(\tau 

\ast + t), I, \theta + \omega (I)t, s+ t)

 - \{ \theta ,H1\} (0,0, I, \theta + \omega (I)t, s+ t)

\biggr) 
dt,

\scrS \theta 
2 =

\int \infty 

 - \infty 

\biggl( 
\scrX \rho \theta (\~\Phi 

t
0(\~z0)) - \scrX \rho \theta (\~\Phi 

t
0(\~z

\pm 
0 ))

\biggr) 
dt,

where \tau \ast = \tau \ast (I, \theta , s;\rho ) is a nondegenerate zero of the function (6.6).
Since \scrX \rho \theta = 0 we obtain \scrS \theta 

2 = 0.
The second integral in (7.7) can be simplified as we did in section 7.3 to analyze the change

in actions, and thus combining both parts of (7.7) proves the following result.

Corollary 7.5. For the perturbation \scrX 1 = J\nabla H1 +\scrX \rho given in (5.9),

\theta +\varepsilon  - \theta  - \varepsilon =\varepsilon 

\int \infty 

 - \infty 

\biggl( 
\{ \theta ,H1\} (\~\Phi t

0(\~z0)) - \{ \theta ,H1\} (\~\Phi t
0(\~z

\pm 
0 ))

\biggr) 
dt

 - \varepsilon 

\int \infty 

 - \infty 

\biggl( 
\{ I,H1\} (\~\Phi t

0(\~z0)) - \{ I,H1\} (\~\Phi t
0(\~z

\pm 
0 ))

\biggr) 
tdt \cdot 

\biggl( 
\partial 2h0
\partial I2

(I)

\biggr) 
+O(\varepsilon 2)

=\varepsilon 

\int \infty 

 - \infty 

\biggl( 
\{ \theta ,H1\} (p0(\tau \ast + t), q0(\tau 

\ast + t), I, \theta + \omega (I)t, s+ t)

 - \{ \theta ,H1\} (0,0, I, \theta + \omega (I)t, s+ t)

\biggr) 
dt

(7.8)
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2006 S. W. AKINGBADE, M. GIDEA, AND T. M-SEARA

 - \varepsilon 

\int \infty 

 - \infty 

\biggl( 
\{ I,H1\} (p0(\tau \ast + t), q0(\tau 

\ast + t), I, \theta + \omega (I)t, s+ t)

 - \{ I,H1\} (0,0, I, \theta + \omega (I)t, s+ t)

\biggr) 
t dt \cdot 

\biggl( 
\partial 2h0
\partial I2

(I0)

\biggr) 
+O(\varepsilon 2),

where \tau \ast = \tau \ast (I, \theta , s;\rho ) is a nondegenerate zero of the function (6.6).
In the case when h0(I) =

I2

2 and H1 is as in (3.10) or (3.11), we have \partial 2h0

\partial I2 = 1, \{ \theta ,H1\} = 0,

and \{ I,H1\} = - \partial H1

\partial \theta = a10f(q) sin\theta , where f(q) = cos q - 1 or f(q) = cos q, so

\theta +\varepsilon  - \theta  - \varepsilon = - \varepsilon a10

\int \infty 

 - \infty 

\biggl( 
cos(q0(\tau 

\ast + t) - 1) sin(\theta + \omega (I)t)

\biggr) 
t dt+O(\varepsilon 2).(7.9)

Remark 7.6. We remark that both components \scrS I , \scrS \theta of the vector field generating the
scattering map up to O(\varepsilon 2) only depend on the dissipation \scrX \lambda and, therefore, on the parameter
\rho , through the value \tau \ast = \tau \ast (I, \theta , s;\rho ). In fact, in the next section we will see that the vector
field generating the scattering map is a Hamiltonian vector field in the variables (I, \theta ) up to
O(\varepsilon 2), even though the system (3.8) is not symplectic but conformally symplectic. We will
show that the scattering map is symplectic in the variables (I, \theta ) up to O(\varepsilon 2). Moreover, in the
case when H1 is as in (3.10) or (3.11), we will provide an explicit formula for the Hamiltonian
vector field that generates the scattering map up to O(\varepsilon 2).

7.5. Symplecticity of the scattering map up to \bfitO (\bfitvarepsilon \bftwo ). In the case that the perturbation
is Hamiltonian (which in our case corresponds to \rho = 0), it was proven in [DdlLS08] that the
scattering map is symplectic and is given by

\~\sigma \varepsilon (I, \theta , s) = \~\sigma 0(I, \theta , s) + \varepsilon 

\biggl( 
\partial L\ast 

\partial \theta 
(I, \theta , s), - \partial L\ast 

\partial I
(I, \theta , s), s

\biggr) 
+O(\varepsilon 2)(7.10)

for some function (Melnikov potential) L\ast which depends on the effect of the Hamiltonian
perturbation on the homoclinic orbits of the unperturbed system. More precisely, let

\scrL (I, \theta , s) = - 
\int +\infty 

 - \infty 
(H1(p0(t), q0(t), I, \theta + \omega (I)t, s+ t)

 - H1(0,0, I, \theta + \omega (I)t, s+ t))dt,

(7.11)

where \omega (I) = \partial h0

\partial I (I). Let \tau 
\ast = \tau \ast (I, \theta , s) be a nondegenerate critical point of the function

\tau \mapsto \rightarrow \scrL (I, \theta  - \omega (I)\tau , s - \tau ).

Then the function L\ast referred to in (7.10) is defined by

L\ast (I, \theta , s) =\scrL (I, \theta  - \omega (I)\tau \ast , s - \tau \ast ).(7.12)

An auxiliary function that will be referred to later is the reduced Melnikov potential defined
by

\scrL \ast (I, \=\theta ) =L\ast (I, \=\theta ,0) for \=\theta = \theta  - \omega (I)s.(7.13)
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ARNOLD DIFFUSION IN A MODEL OF DISSIPATIVE SYSTEM 2007

In our case the perturbation is not Hamiltonian, but we will see that, nevertheless, the scat-
tering map is symplectic up to O(\varepsilon 2) and is given by

\scrS I =
\partial L\ast 

\rho 

\partial \theta 
,

\scrS \theta = - 
\partial L\ast 

\rho 

\partial I

(7.14)

for some function L\ast 
\rho that depends on the effect of the Hamiltonian perturbation on the

homoclinic orbits of the unperturbed system and also on the dissipation. Our computation is
similar to [DdlLS08].

Proposition 7.7. The vector field \scrS generating the scattering map \~\sigma \varepsilon up to O(\varepsilon 2) is of the
form

\scrS (I, \theta , s) =
\bigl( 
 - J\nabla (I,\theta )L

\ast 
\rho (I, \theta , s), s

\bigr) 
(7.15)

for the function L\ast 
\rho : V \subset \~\Lambda 0 \rightarrow \BbbR defined below. Let

\scrL (I, \theta , s) = - 
\int +\infty 

 - \infty 
(H1(p0(t), q0(t), I, \theta + \omega (I)t, s+ t)

 - H1(0,0, I, \theta + \omega (I)t, s+ t))dt,

(7.16)

where \omega (I) = \partial h0

\partial I (I).
Let

A=

\int +\infty 

 - \infty 
p20(t)dt.(7.17)

Let \tau \ast = \tau \ast (I, \theta , s;\rho ) be a nondegenerate critical point of the function

\tau \mapsto \rightarrow \scrL (I, \theta  - \omega (I)\tau , s - \tau ) + \rho (s - \tau )A.

Let L\ast be defined by

L\ast (I, \theta , s) =\scrL (I, \theta  - \omega (I)\tau \ast , s - \tau \ast ).

Then the function L\ast 
\rho is defined by

L\ast 
\rho (I, \theta , s) =L\ast (I, \theta , s) + \rho (s - \tau \ast )A.

Proof. We claim that

\scrS I =
\partial L\ast 

\rho 

\partial \theta 
=

\partial L\ast 

\partial \theta 
 - \rho 

\partial \tau \ast 

\partial \theta 
A,

\scrS \theta = - 
\partial L\ast 

\rho 

\partial I
= - \partial L\ast 

\partial I
+ \rho 

\partial \tau \ast 

\partial I
A.

(7.18)
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2008 S. W. AKINGBADE, M. GIDEA, AND T. M-SEARA

The first observation is that the nondegenerate zeroes of the function (6.6) are the nondegen-
erate critical points of the function

\tau \in \BbbR \mapsto \rightarrow \scrL (I, \theta  - \omega (I)\tau , s - \tau ) + \rho (s - \tau )A,(7.19)

where \scrL is given by (7.16) and A is given by (7.17). To see this, first note that by a change
of variables t - \tau \mapsto \rightarrow t, we can express \scrL (I, \theta  - \omega (I)\tau , s - \tau ) as

\scrL (I, \theta  - \omega (I)\tau , s - \tau ) = - 
\int +\infty 

 - \infty 
(H1(p0(\tau + t), q0(\tau + t), I, \theta + \omega (I)t, s+ t)

 - H1(0,0, I, \theta + \omega (I)t, s+ t))dt.

(7.20)

Differentiating (7.19) with respect to \tau we obtain\int +\infty 

 - \infty 
(\{ h1,H1\} (p0(\tau + t), q0(\tau + t), I, \theta + \omega (I)t, s+ t)

 - \{ h1,H1\} (0,0, I, \theta + \omega (I)t, s+ t))dt - \rho A,

so the nondegenerate zeroes of this function are the nondegenerate critical points of (7.19).
If \tau \ast = \tau \ast (I, \theta , s;\rho ) is a nondegenerate critical point of the function (7.19), then by the chain
rule it follows that

0 =
d

d\tau 
[\scrL (I, \theta  - \omega (I)\tau , s - \tau ) + \rho (s - \tau )A]| \tau =\tau \ast 

= - \partial \scrL 
\partial \theta 

(I, \theta  - \omega (I)\tau \ast , s - \tau \ast )\omega (I) - \partial \scrL 
\partial s

(I, \theta  - \omega (I)\tau \ast , s - \tau \ast ) - \rho A.

(7.21)

To compute
\partial L\ast 

\rho 

\partial \theta = \partial 
\partial \theta (L

\ast (I, \theta , s) + \rho (s - \tau \ast )A) in (7.14) we use the chain rule and (7.21)
to obtain

\partial L\ast 
\rho 

\partial \theta 
=
\partial \scrL 
\partial \theta 

(I, \theta  - \omega (I)\tau \ast , s - \tau \ast )

\biggl( 
1 - \omega (I)

\partial \tau \ast 

\partial \theta 

\biggr) 
+

\partial \scrL 
\partial s

(I, \theta  - \omega (I)\tau \ast , s - \tau \ast )

\biggl( 
 - \partial \tau \ast 

\partial \theta 

\biggr) 
 - \rho 

\partial \tau \ast 

\partial \theta 
A

=
\partial \scrL 
\partial \theta 

(I, \theta  - \omega (I)\tau \ast , s - \tau \ast ).

(7.22)

Applying the latter formula to (7.16), using \partial H1

\partial \theta =  - \{ I,H1\} , and making the change of
variable t - \tau \ast \mapsto \rightarrow t we obtain

\partial L\ast 
\rho 

\partial \theta 
=

\int +\infty 

 - \infty 
(\{ I,H1\} (p0(t), q0(t), I, \theta + \omega (I)t - \omega (I)\tau \ast , s+ t - \tau \ast )

 - \{ I,H1\} (0,0, I, \theta + \omega (I)t - \omega (I)\tau \ast , s+ t - \tau \ast ))dt

=

\int +\infty 

 - \infty 
(\{ I,H1\} (p0(\tau \ast + t), q0(\tau 

\ast + t), I, \theta + \omega (I)t, s+ t)

 - \{ I,H1\} (0,0, I, \theta + \omega (I)t, s+ t))dt.

(7.23)
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ARNOLD DIFFUSION IN A MODEL OF DISSIPATIVE SYSTEM 2009

This integral is the same as the integral (7.4) that appears in the formula for the change of
action by the scattering map up to O(\varepsilon 2). Therefore, we conclude that

I+\varepsilon  - I - \varepsilon = \varepsilon 
\partial L\ast 

\partial \theta 
(I, \theta , s) +O(\varepsilon 2).

To compute  - \partial L\ast 
\rho 

\partial I =  - \partial 
\partial I (L

\ast (I, \theta , s) + \rho (s  - \tau \ast )A) in (7.14), we use the chain rule and
(7.21) to obtain

 - 
\partial L\ast 

\rho 

\partial I
= - \partial \scrL 

\partial I
(I, \theta  - \omega (I)\tau \ast , s - \tau \ast )

 - \partial \scrL 
\partial \theta 

(I, \theta  - \omega (I)\tau \ast , s - \tau \ast )

\biggl( 
 - \partial \omega 

\partial I
\tau \ast  - \omega (I)

\partial \tau \ast 

\partial I

\biggr) 
 - \partial \scrL 

\partial s
(I, \theta  - \omega (I)\tau \ast , s - \tau \ast )

\biggl( 
 - \partial \tau \ast 

\partial I

\biggr) 
+ \rho 

\partial \tau \ast 

\partial I
A

= - \partial \scrL 
\partial I

(I, \theta  - \omega (I)\tau \ast , s - \tau \ast )

+
\partial \scrL 
\partial \theta 

(I, \theta  - \omega (I)\tau \ast , s - \tau \ast )
\partial \omega 

\partial I
\tau \ast .

(7.24)

We express the two terms in (7.24) as integrals

 - \partial \scrL 
\partial I

(I, \theta  - \omega (I)\tau \ast , s - \tau \ast ) =

\int +\infty 

 - \infty 
(\{ \theta ,H1\} (p0(t), q0(t), I, \theta + \omega (I)t - \omega (I)\tau \ast , s+ t - \tau \ast )

 - \{ \theta ,H1\} (0,0, I, \theta + \omega (I)t - \omega (I)\tau \ast , s+ t - \tau \ast ))dt

 - 
\int +\infty 

 - \infty 
(\{ I,H1\} (p0(t), q0(t), I, \theta + \omega (I)t - \omega (I)\tau \ast , s+ t - \tau \ast )

 - \{ I,H1\} (0,0, I, \theta + \omega (I)t - \omega (I)\tau \ast , s+ t - \tau \ast ))

\biggl( 
\partial \omega 

\partial I
(I)t

\biggr) 
dt

(7.25)

\partial \scrL 
\partial \theta 

(I, \theta  - \omega (I)\tau \ast , s - \tau \ast ) =

\int +\infty 

 - \infty 
(\{ I,H1\} (p0(t), q0(t), I, \theta + \omega (I)t - \omega (I)\tau \ast , s+ t - \tau \ast )

 - \{ I,H1\} (0,0, I, \theta + \omega (I)t - \omega (I)\tau \ast , s+ t - \tau \ast ))dt.

(7.26)

Above we used that \partial H1

\partial \theta = - \{ I,H1\} and \partial H1

\partial I = \{ \theta ,H1\} .
Combining (7.25) and (7.26) in (7.24) we obtain

 - 
\partial L\ast 

\rho 

\partial I
(I, \theta , s) =

\int +\infty 

 - \infty 
(\{ \theta ,H1\} (p0(t), q0(t), I, \theta + \omega (I)t - \omega (I)\tau \ast , s+ t - \tau \ast )

 - \{ \theta ,H1\} (0,0, I, \theta + \omega (I)t - \omega (I)\tau \ast , s+ t - \tau \ast ))dt

 - 
\int +\infty 

 - \infty 
(\{ I,H1\} (p0(t), q0(t), I, \theta + \omega (I)t - \omega (I)\tau \ast , s+ t - \tau \ast )

 - \{ I,H1\} (0,0, I, \theta + \omega (I)t - \omega (I)\tau \ast , s+ t - \tau \ast ))

\biggl( 
\partial \omega 

\partial I
(I)(t - \tau \ast )

\biggr) 
dt.

(7.27)
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Making the change of variable t - \tau \ast \mapsto \rightarrow t and writing \partial \omega 
\partial I (I) =

\partial 2h0

\partial I2 (I) we obtain

 - \partial L\ast 

\partial I
(I, \theta , s) =

\int +\infty 

 - \infty 
(\{ \theta ,H1\} (p0(\tau \ast + t), q0(\tau 

\ast + t), I, \theta + \omega (I)t, s+ t)

 - \{ \theta ,H1\} (0,0, I, \theta + \omega (I)t, s+ t))dt

 - 
\int +\infty 

 - \infty 
(\{ I,H1\} (p0(\tau \ast + t), q0(\tau 

\ast + t), I, \theta + \omega (I)t, s+ t)

 - \{ I,H1\} (0,0, I, \theta + \omega (I)t, s+ t))

\biggl( 
\partial 2h0
\partial I2

(I)t

\biggr) 
dt.

(7.28)

Since the integrals in (7.28) are computed in terms of the effect of the perturbation on orbits
of the unperturbed system, we have that I in is constant and equal to I = I(\~z0) = I(\~z\pm 0 ), and
therefore (\partial 

2h0

\partial I2 (I)) can be taken outside of the second integral obtaining

 - 
\partial L\ast 

\rho 

\partial I
(I, \theta , s) =

\int +\infty 

 - \infty 
(\{ \theta ,H1\} (p0(\tau \ast + t), q0(\tau 

\ast + t), I, \theta + \omega (I)t, s+ t)

 - \{ \theta ,H1\} (0,0, I, \theta + \omega (I)t, s+ t))dt

 - 
\int +\infty 

 - \infty 
(\{ I,H1\} (p0(\tau \ast + t), q0(\tau 

\ast + t), I, \theta + \omega (I)t, s+ t)

 - \{ I,H1\} (0,0, I, \theta + \omega (I)t, s+ t)) tdt \cdot 
\biggl( 
\partial 2h0
\partial I2

(I)

\biggr) 
.

(7.29)

This integral is the same as the integral (7.8) that appears in the formula for the change of
angle by the scattering map.

Therefore, we conclude that

\theta +\varepsilon  - \theta  - \varepsilon = - \varepsilon 
\partial L\ast 

\rho 

\partial I
(I, \theta , s) +O(\varepsilon 2).

Consider the mapping

L\ast 
\rho (I, \theta , s) =\scrL (I, \theta  - \omega (I)\tau \ast , s - \tau \ast ) + \rho (s - \tau \ast )A

for \tau \ast = \tau \ast (I, \theta , s;\rho ). Since \tau \ast is a critical point for

\tau \mapsto \rightarrow \scrL (I, \theta  - \omega (I)\tau , s - \tau ) + \rho (s - \tau )A,

then for every t\prime \in \BbbR , \tau \ast  - t\prime is a critical point for

\tau \mapsto \rightarrow \scrL (I, \theta  - \omega (I)(\tau + t\prime ), s - (\tau + t\prime )) + \rho (s - (\tau + t\prime ))A.

Then, denoting Z = (I, \theta , s;\rho ) and Z \prime = (I, \theta  - \omega (I)t\prime , s - t\prime ;\rho ), we have

\tau \ast (Z \prime ) = \tau \ast (Z) - t\prime .

Therefore,

L\ast 
\rho (I, \theta  - \omega (I)t\prime , s - t\prime ) =\scrL (I, \theta  - \omega (I)(\tau \ast (Z \prime ) + t\prime ), s - (\tau \ast (Z \prime ) + t\prime ))

+ \rho (s - (\tau \ast (Z \prime ) + t\prime )A

=\scrL (I, \theta  - \omega (I)(\tau \ast (Z) - t\prime + t\prime ), s - (\tau \ast (Z) - t\prime + t\prime ))

+ \rho (s - (\tau \ast (Z) - t\prime + t\prime ))A

=L\ast 
\rho (I, \theta , s).

(7.30)
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ARNOLD DIFFUSION IN A MODEL OF DISSIPATIVE SYSTEM 2011

Making t\prime = s in (7.30) we obtain

L\ast 
\rho (I, \theta , s) =L\ast 

\rho (I, \theta  - \omega (I)s,0).

This says that, while the function L\ast 
\rho nominally depends on three variables (I, \theta , s), in fact it

depends on the variable I and the linear combination \theta  - \omega (I)s and is therefore a function
of two independent variables I and \=\theta = \theta  - \omega (I)s. Thus, we define the reduced Melnikov
potential by

\scrL \ast 
\rho (I,

\=\theta ) =\scrL \ast 
\rho (I,

\=\theta ,0) =\scrL (I, \=\theta  - \omega (I)\tau \ast , - \tau \ast ) - \rho \tau \ast A for \=\theta = \theta  - \omega (I)s.(7.31)

The reduced Melnikov potential allows us to compute the scattering map associated to
the time-2\pi map associated to a surface of section \{ s = s\ast \} ; more precisely, the trajectories
of the scattering map are given by the \varepsilon -time of the Hamiltonian  - \scrL \ast 

\rho up to order O(\varepsilon 2), as
we shall see below.

7.6. Growth of action by the scattering map. We reduce the dynamics of the flow \~\Phi t
\varepsilon 

to the dynamics of the Poincar\'e first-return map to the surface of section

\Sigma = \{ (p, q, I, \theta , s) | s= s\ast \} 

for some choice of s\ast \in \BbbT 1.
The NHIM \~\Lambda \varepsilon for \~\Phi t

\varepsilon in the extended phase space yields the NHIM \Lambda \varepsilon for f\varepsilon in \Sigma . In
particular \Lambda \varepsilon is invariant under f\varepsilon .

The scattering map \~\sigma \varepsilon , which is defined on the domain \~U \subseteq \~\Lambda \varepsilon , yields a scattering map
\sigma \varepsilon defined on the following domain in \Lambda \varepsilon =\Lambda 0:

U = \{ (I, \=\theta ) | (I, \theta , s\ast )\in \~U for \theta = \=\theta + \omega (I)s\ast \} .

The scattering map \sigma \varepsilon is given in the variables (I, \=\theta ) by (see [DS18])

\sigma \varepsilon (I, \=\theta ) = \sigma 0(I, \=\theta ) - \varepsilon J\nabla \scrL \ast 
\rho (I,

\=\theta ) +O(\varepsilon 2),(7.32)

where \sigma 0 = Id. In particular, the scattering map \sigma \varepsilon is symplectic up to O(\varepsilon 2).
By Theorem 3.11 in [GdlLMS20], whenever J\nabla \scrL \ast 

\rho (z0) \not = 0 for some point z0 \in \Lambda 0, there
exists a O(1)-family of solutions \gamma z(t) of the differential equation

\.z = - J\nabla \scrL \ast 
\rho (z)

for z in a O(1)-neighborhood of z0 \in U \subseteq \Lambda 0, and t in some interval [T1(z), T2(z)] \subset \BbbR 
depending on z, such that for each path \gamma z, there is an orbit of the scattering map \sigma \varepsilon that
follows closely that path.

If, in addition, we have that \scrS I(z0) =
\partial \scrL \ast 

\rho 

\partial \=\theta 
(z0) > 0, then the family of paths \gamma z can be

chosen so that the corresponding orbits of the scattering map \sigma \varepsilon along \gamma z have the property
that I increases by O(\varepsilon ) for each application of \sigma \varepsilon .

Consequently, letting z0 = (I0, \theta 0), there exist \theta 1 < \theta 0 < \theta 2, I1 < I0 < I2, and a ``strip"" of
the form

S = \{ \gamma z(t) | z = (I0, \theta ) | \theta \in [\theta 1, \theta 2], t\in [T1(z), T2(z)]\} \subseteq U(7.33)
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2012 S. W. AKINGBADE, M. GIDEA, AND T. M-SEARA

with \gamma z(T1(z)) = I1 and \gamma z(T2(z)) = I2, such that the following properties hold: There exist
c > 0, such that for every \delta = O(\varepsilon ) > 0 and every path \gamma z(t) contained in S, there exists an
orbit (zn)n=0,...,N of \sigma \varepsilon and 0 = t0 < t1 < \cdot \cdot \cdot < tN = T with ti = \varepsilon i for all i, such that

zi+1 = \sigma \varepsilon (zi),

I(zi+1) - I(zi)> c\varepsilon for i= 0, . . . ,N  - 1,

d(zi, \gamma z(ti))< \delta for i= 0, . . . ,N.

(7.34)

7.7. Scattering map in the case of vanishing and nonvanishing perturbation. For both
the vanishing and nonvanishing perturbations,

H1(p, q, I, \theta , s) =(cos(q) - 1)(a00 + a10 cos(\theta ) + a01 cos(s))

H1(p, q, I, \theta , s) =cos(q)(a00 + a10 cos(\theta ) + a01 cos(s)),

we have the same expression for the Melnikov potential,

\scrL (I, \theta , s) = - 
\int +\infty 

 - \infty 
(cos(q0(t)) - 1)(a00 + a10 cos(\theta + It) + a01 cos(s+ t))dt

= - 
\int +\infty 

 - \infty 
(cos(arctane2t) - 1)(a00 + a10 cos(\theta + It) + a01 cos(s+ t))dt.

(7.35)

Above we have used the parametrization (3.4) of the separatrix. Since p2
0

2 +(cos q0(t) - 1) = 0,

in the above integral we can alternatively write cos(q0(t)) - 1 = - p2
0

2 = - 2
\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{h}2(t)

. It turns out

that (see [DG00, DS17])

\scrL (I, \theta , s) =A00 +A10(I) cos(\theta ) +A01(I) cos(s), where

A00 =4a00, A10 =
2\pi Ia10

sinh(\pi I2 )
, A01 =

2\pi a01
sinh(\pi 2 )

.
(7.36)

In [DS17] the reduced Melnikov function \scrL \ast defined by (7.13), which corresponds to the
Hamiltonian perturbation only, is computed explicitly. The level curves of \scrL \ast are shown in
Figure 5. One can find explicitly regions of size O(1) in \Lambda \varepsilon , where

\partial \scrL \ast 

\partial \=\theta 
(I, \=\theta )> c1 > 0 for some

c1 > 0.
In our case, when the system is also subject to the dissipative perturbation \scrX \lambda , the reduced
Melnikov potential \scrL \ast 

\rho , given by (7.31), is O(\rho )-close to the reduced Melnikov potential \scrL \ast 

corresponding to the Hamiltonian perturbation. This implies that, for \rho sufficiently small,

there exists a region of O(1) in \Lambda \varepsilon , where
\partial \scrL \ast 

\rho 

\partial \=\theta 
(I, \=\theta )> c2 > 0 for some 0< c2 < c1. In the case

when \rho = \=\rho 
\mathrm{l}\mathrm{o}\mathrm{g}(1/\varepsilon ) , it follows that there exists \varepsilon 2 > 0 such that, for all 0< \varepsilon < \varepsilon 2, we have that

\partial \scrL \ast 
\rho 

\partial \=\theta 
(I, \=\theta ) > c2 > 0 on the aforementioned region. This region can be used to define a strip S

as in (7.33), where the scattering map increases the action I by c\varepsilon at each step, as in (7.34),
for some 0< c< c2.
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ARNOLD DIFFUSION IN A MODEL OF DISSIPATIVE SYSTEM 2013

Figure 5. Level sets of \scrL \ast . (Credit: A. Delshams and R. Schaefer.)

8. Proof of Theorem 4.1.

8.1. The case of vanishing perturbation. Choose \omega \ast such that I1 <\omega \ast < I2, where I1, I2
are as in section 7.6. There is an invariant circle A\varepsilon = \{ I = \omega \ast \} in \Lambda \varepsilon , as defined in section 5.7,
which is a global attractor for f\varepsilon on \Lambda \varepsilon . The circle A\varepsilon is a NHIM for f\varepsilon restricted to \Lambda \varepsilon and
has only stable manifold W \mathrm{s}

\Lambda \varepsilon 
(A\varepsilon ), which is the whole manifold \Lambda \varepsilon . W \mathrm{s}

\Lambda \varepsilon 
(A\varepsilon ) is foliated by

stable leaves

W \mathrm{s}
\Lambda \varepsilon 
(A\varepsilon ) =

\bigcup 
y\in A\varepsilon 

W \mathrm{s}
\Lambda \varepsilon 
(y) with y= (\omega \ast , \theta )\in A\varepsilon .

From (5.16) we have that each stable leaf is a slanted line

W \mathrm{s}
\Lambda \varepsilon 
(\omega \ast , \theta 0) =

\biggl\{ 
(I, \theta (I))\in \Lambda \varepsilon | \theta (I) = \theta 0  - 

1

\lambda 
(I  - \omega \ast )

\biggr\} 
.

Since 1
\lambda \gg 1, the slope of these lines (as a function of \theta ) is  - \lambda , so the stable leaves are nearly

horizontal lines. See Figure 6.
For z \in W \mathrm{s}

\Lambda \varepsilon 
(y), by the equivariance property of the stable fibers we have fk

\varepsilon (z) \in 
W \mathrm{s}

\Lambda \varepsilon 
(fk

\varepsilon (y)) for all k > 0. Given some initial point (I0, \theta 0), let fk
\varepsilon (I0, \theta 0) = (Ik, \theta k). From

(5.15), we deduce

\theta k =\theta 0 +
1

\lambda 
(I0  - \omega \ast )(1 + \cdot \cdot \cdot + e - 2\pi (k - 1)\lambda )(1 - e - 2\pi \lambda ) + 2\pi k\omega \ast 

=\theta 0 +
1

\lambda 
(I0  - \omega \ast )(1 - e - 2\pi k\lambda ) + 2\pi k\omega \ast 

=\theta 0 + (I0  - \omega \ast )2\pi k+ 2\pi k\omega \ast +O(k2\lambda )

=\theta 0 + 2\pi kI0(1 +O(k\lambda )).

(8.1)

Recall that \lambda = \varepsilon \rho (\varepsilon ) = \varepsilon \=\rho 
\mathrm{l}\mathrm{o}\mathrm{g}( 1

\varepsilon 
)
, and hence the relative error term in (8.1) is O(k \=\rho \varepsilon 

\mathrm{l}\mathrm{o}\mathrm{g}( 1

\varepsilon 
)
), so

k iterations of the inner map change the angle coordinate by approximately 2\pi kI0 (mod2\pi )
provided that k \=\rho \varepsilon 

\mathrm{l}\mathrm{o}\mathrm{g}( 1

\varepsilon 
)
\ll 1.

Consider the strip S defined in (7.33), where the scattering map is increasing I by O(\varepsilon )
at each step. Provided that | I1  - I2| is suitably small (but independent of \varepsilon ), there exists
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S

Ws(A )

A�

�

Figure 6. The attractor A\varepsilon inside the NHIM \Lambda \varepsilon .

k\mathrm{m}\mathrm{a}\mathrm{x} > 0 such that, whenever z \in S we have fk
\varepsilon (z)\in S for some k\leq k\mathrm{m}\mathrm{a}\mathrm{x}. That is, each point

z in the strip returns to the strip in a maximum of k\mathrm{m}\mathrm{a}\mathrm{x} iterates. This implies that for a time
T = T0 log(1/\varepsilon ), with \varepsilon > 0 small, each point z in the strip returns to the strip for at least

\lfloor T0 \mathrm{l}\mathrm{o}\mathrm{g}(1/\varepsilon )
k\mathrm{m}\mathrm{a}\mathrm{x}

\rfloor times.
One easily obtains from (5.15)

Ik = (I0  - \omega \ast )e
 - 2\pi k\lambda + \omega \ast .

Consequently, if z = (I0, \theta 0) \in W \mathrm{s}
\Lambda \varepsilon 
(y), y = (\omega \ast , \theta ) \in A\varepsilon is a point at a dI -distance d0 \leq d\mathrm{m}\mathrm{a}\mathrm{x}

from y, where d\mathrm{m}\mathrm{a}\mathrm{x} =max\{ | I1 - \omega \ast | , | I2 - \omega \ast | \} , and then fk
\varepsilon (z)\in W \mathrm{s}

\Lambda \varepsilon 
(fk

\varepsilon (y)) is at a dI -distance
at most

d0 \cdot e - 2\pi \lambda k = d0 \cdot e - 2\pi \varepsilon 

\mathrm{l}\mathrm{o}\mathrm{g}(1/\varepsilon )
\=\rho k

from A\varepsilon after k-iterates. For points with initial I0 above \omega \ast the I-coordinate decreases at
each iterate, and for points with initial I below \omega \ast the I-coordinate increases at each iterate.
Therefore, the loss in I after k-iterates, for points with initial I0 >\omega \ast , is

I0  - Ik = d0 \cdot (1 - e - 2\pi \lambda k) = d0 \cdot (1 - e
 - 2\pi \varepsilon 

\mathrm{l}\mathrm{o}\mathrm{g}(1/\varepsilon )
\=\rho k
).

Hence the maximum loss in the action coordinate I of a point z after k iterates, where
2\pi k\leq T0 log(1/\varepsilon ), is

d\mathrm{m}\mathrm{a}\mathrm{x} \cdot (1 - e - \varepsilon \=\rho T0).

On the other hand, for each z \in S we can apply a scattering map \sigma \varepsilon to z. The effect of
the scattering map is an increase in the action coordinate I by O(\varepsilon ). We recall that there
exists c > 0 such that

I(\sigma \varepsilon (z)) - I(z)> c\varepsilon for all z \in S.

Thus, starting with a point z \in S, applying the scattering map \sigma \varepsilon to z, and then applying the
inner map (f\varepsilon )| \Lambda \varepsilon 

for k iterates with 2\pi k\leq T0 log(1/\varepsilon ), until (f\varepsilon )
k(\sigma \varepsilon (z))\in S, we obtain a net

growth in I that is at least

c\varepsilon  - d\mathrm{m}\mathrm{a}\mathrm{x} \cdot (1 - e - \varepsilon \=\rho T0).
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ARNOLD DIFFUSION IN A MODEL OF DISSIPATIVE SYSTEM 2015

We want that the net growth is at least c\varepsilon /2, that is,

c\varepsilon  - d\mathrm{m}\mathrm{a}\mathrm{x} \cdot (1 - e - \varepsilon \=\rho T0)>
c\varepsilon 

2
.

This is equivalent to

e - \varepsilon \=\rho T0 > 1 - c\varepsilon 

2d\mathrm{m}\mathrm{a}\mathrm{x}
.

Taking the logarithm of both sides we obtain

T0 <
log

\Bigl( 
1 - c\varepsilon 

2d\mathrm{m}\mathrm{a}\mathrm{x}

\Bigr) 
 - \varepsilon \=\rho 

.

By L'Hopital rule,

lim
\varepsilon \rightarrow 0

log
\Bigl( 
1 - c\varepsilon 

2d\mathrm{m}\mathrm{a}\mathrm{x}

\Bigr) 
 - \varepsilon \=\rho 

=
c

2d\mathrm{m}\mathrm{a}\mathrm{x}\=\rho 
.

This means that, in order to be able to achieve a growth in I of at least c\varepsilon /2 per step, for all
\varepsilon sufficiently small, we need to choose \=\rho small enough so that

\=\rho <
c

2d\mathrm{m}\mathrm{a}\mathrm{x}T0
.(8.2)

With these choices, we obtain orbits of the iterated function system (IFS) generated by

\{ f\varepsilon , \sigma \varepsilon \} of the form zn+1 = f
k(n)
\varepsilon \circ \sigma \varepsilon (zn) with k(n) = O(log(1/\varepsilon )), such that I increases by

c\varepsilon /2 from zn to zn+1. In O(1\varepsilon log
\bigl( 
1
\varepsilon 

\bigr) 
) steps, such orbits increase I by O(1). In section 8.3 we

use these orbits of the IFS to produce diffusing pseudo-orbits as claimed as in Theorem 4.1.

Remark 8.1. When a point z \in \Lambda \varepsilon is of action coordinate I0 < \omega \ast below that of the
attractor A\varepsilon , applying the inner dynamics (f\varepsilon )\Lambda \varepsilon 

to z moves the point toward the attractor
and hence increases I. Thus, the effect of the inner dynamics and the effect of the scattering
map concur toward increasing I. The situation reverses when the action coordinate of z is
above that of the attractor, in which case the effect of the scattering map is opposed to the
effect of the inner dynamics.

8.2. The case of nonvanishing perturbation. The evolution of the I- and \theta -variables
under the inner dynamics on \~\Lambda \varepsilon is given by\Biggl\{ 

\.I\lambda (t) = - \lambda (I\lambda (t) - \omega \ast ) + \varepsilon a10 sin\theta \lambda (t),
\.\theta \lambda (t) = I\lambda (t).

(8.3)

Denote the general solution of the system (8.3) by z\lambda (t) = (I\lambda (t), \theta \lambda (t)).
Setting \lambda = 0 yields \Biggl\{ 

\.I0(t) = \varepsilon a10 sin\theta 0(t),
\.\theta 0(t) = I0(t),

(8.4)
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Figure 7. The inner dynamics without dissipation.

with the general solution denoted z0(t) = (I0(t), \theta 0(t)); see Figure 7. Note that (8.4) is a
Hamiltonian system with Hamiltonian (energy function)

K(I, \theta ) =
I2

2
+ \varepsilon a10(cos\theta  - 1).(8.5)

The solutions (I0(t), \theta 0(t)) of the system (8.4) satisfy

K(I0(t), \theta 0(t)) =K(I0(0), \theta 0(0)),

and therefore the application of the inner dynamics does not change the level sets \{ K = const.\} 
in the case \lambda = 0. On the other hand, the variable I may change by up to O(\varepsilon 1/2) by one
application of the inner dynamics (8.4). At the same time, the change in I by one application
of the scattering map is O(\varepsilon ) \ll O(\varepsilon 1/2). Therefore, instead of comparing the effects on the
action I by the scattering map and by the inner dynamics, as in section 8.1, in this case we
want to compare the effects on the energy K by the scattering map and by the inner dynamics.
The next lemma gives the change in the energy K that we obtain after one application of the
scattering map.

Lemma 8.2. Let \~z+\varepsilon = \sigma \varepsilon (\~z
 - 
\varepsilon ), where \~z+\varepsilon = (I+\varepsilon , \theta +\varepsilon , s) and \~z - \varepsilon = (I - \varepsilon , \theta  - \varepsilon , s). Then

K(\~z+\varepsilon ) - K(\~z - \varepsilon ) = I0(I
+
\varepsilon  - I - \varepsilon ) +O(\varepsilon 2)

= \varepsilon I0
\partial \scrL \ast 

\rho 

\partial \theta 
(I, \theta , s) +O(\varepsilon 2)

= \varepsilon a10I0

\int \infty 

 - \infty 
(cos(q0(\tau 

\ast + t)) - 1) sin(\theta + \omega (I)t)dt+O(\varepsilon 2),

(8.6)

where I0 = I(\~z0).

Proof. The proof of this lemma is a similar computation to the ones done to compute the
change in actions of the scattering map. In fact, using the formulas for the change in actions
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ARNOLD DIFFUSION IN A MODEL OF DISSIPATIVE SYSTEM 2017

and angles,Corollaries 7.3 and 7.5, particularly that I+\varepsilon  - I - \varepsilon =O(\varepsilon ) and \theta +\varepsilon  - \theta  - \varepsilon =O(\varepsilon ), we
have

K(\~z+\varepsilon ) - K(\~z - \varepsilon ) =
(I+\varepsilon )2

2
 - (I - \varepsilon )2

2
+ \varepsilon a10

\bigl( 
cos\theta +\varepsilon  - cos\theta  - \varepsilon 

\bigr) 
=

(I+\varepsilon + I - \varepsilon )

2
(I+\varepsilon  - I - \varepsilon ) + \varepsilon a10

\bigl( 
cos\theta +\varepsilon  - cos\theta  - \varepsilon 

\bigr) 
= (I0 +O(\varepsilon ))(I+\varepsilon  - I - \varepsilon ) +O(\varepsilon 2)

= I0(I
+
\varepsilon  - I - \varepsilon ) +O(\varepsilon 2).

(8.7)

Applying Proposition 7.7 yields the desired result.

The next lemma compares the actions and angles of solutions of systems (8.3) and (8.4).

Lemma 8.3. Let (I\lambda (t), \theta \lambda (t)) be a solution of system (8.3) with initial condition (I0, \theta 0)
and (I0(t), \theta 0(t)) be the solution of system (8.4) with the same initial condition. Then, there
exists d\prime >d\mathrm{m}\mathrm{a}\mathrm{x} > 0 such that, for | \varepsilon | small enough, and for 0\leq t\leq T0 log

\bigl( 
1
\varepsilon 

\bigr) 
, we have

| I\lambda (t) - I0(t)| \leq d\prime (1 - e - \lambda t),

| \theta \lambda (t) - \theta 0(t)| \leq d\prime \lambda 
t2

2
.

(8.8)

Proof. Calling

u(t) = I\lambda (t) - I0(t), \alpha (t) = \theta \lambda (t) - \theta 0(t),

one can easily see that

\.u= \lambda (I0(t) - \omega \ast  - u) + \varepsilon a10 (sin(\theta 0(t) + \alpha ) - sin\theta 0(t)) ,

\.\alpha = u.
(8.9)

Therefore,

u(t) =

\int t

0
e - \lambda (t - s) [\lambda (I0(s) - \omega \ast ) + \varepsilon a10 (sin(\theta 0(s) + \alpha (s)) - sin\theta 0(s))]ds,

\alpha (t) =

\int t

0
u(s)ds.

(8.10)

For the first equation in (8.10) we have used the method of variation of constants.
We will bound u in four steps:

1. First we will use the first equation of (8.10) to obtain a weak bound for u.
2. Second, we will use the obtained bound on u in the second equation of (8.10) to obtain

a bound for \alpha .
3. Third, we will use the obtained bound on \alpha in the first equation of (8.10) to obtain a

sharper bound for u.
4. Finally, we will use the sharper bound on u in the second equation of (8.10) to obtain

a new bound for \alpha .
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We will use that the solution I0(t) is a bounded function; in fact, | I0(t) - \omega \ast | \leq d\mathrm{m}\mathrm{a}\mathrm{x}, where
we recall d\mathrm{m}\mathrm{a}\mathrm{x} =max\{ | I1  - \omega \ast | , | I2  - \omega \ast | \} . From the first equation of (8.10) we obtain

| u(t)| \leq 
\int t

0
e - \lambda (t - s) (\lambda d\mathrm{m}\mathrm{a}\mathrm{x} + 2\varepsilon a10)ds

\leq 
\Bigl( 
d\mathrm{m}\mathrm{a}\mathrm{x} + 2

\varepsilon 

\lambda 
a10

\Bigr) 
(1 - e - \lambda t).

(8.11)

Using this bound in the second equation of (8.10) and that 0\leq 1 - e - \lambda t \leq \lambda t, we obtain

| \alpha (t)| \leq 
\int t

0

\Bigl( 
d\mathrm{m}\mathrm{a}\mathrm{x} + 2

\varepsilon 

\lambda 
a10

\Bigr) 
\lambda sds

=
\Bigl( 
d\mathrm{m}\mathrm{a}\mathrm{x} + 2

\varepsilon 

\lambda 
a10

\Bigr) 
\lambda 
t2

2
.

(8.12)

Finally, we will use the obtained bound on \alpha and the fact that | sin(\theta 0(t)+\alpha ) - sin\theta 0(t)| \leq | \alpha | 
in the first equation of (8.10) to obtain

| u(t)| \leq d\mathrm{m}\mathrm{a}\mathrm{x}(1 - e - \lambda t) + \varepsilon a10

\int t

0
e - \lambda (t - s)| \alpha (s)| ds

\leq d\mathrm{m}\mathrm{a}\mathrm{x}(1 - e - \lambda t) + \varepsilon a10

\Bigl( 
d\mathrm{m}\mathrm{a}\mathrm{x} + 2

\varepsilon 

\lambda 
a10

\Bigr) \lambda t2

2

\int t

0
e - \lambda (t - s)ds

\leq 
\biggl[ 
d\mathrm{m}\mathrm{a}\mathrm{x} + \varepsilon a10

\Bigl( 
d\mathrm{m}\mathrm{a}\mathrm{x} + 2

\varepsilon 

\lambda 
a10

\Bigr) t2

2

\biggr] 
(1 - e - \lambda t).

(8.13)

Observe that, as 0\leq t\leq T = T0 log
\bigl( 
1
\varepsilon 

\bigr) 
, and \lambda = \varepsilon \=\rho 

\mathrm{l}\mathrm{o}\mathrm{g}( 1

\varepsilon )
, we have that

\varepsilon a10

\Bigl( 
d\mathrm{m}\mathrm{a}\mathrm{x} + 2

\varepsilon 

\lambda 
a10

\Bigr) t2

2
\leq \varepsilon log2

\biggl( 
1

\varepsilon 

\biggr) \biggl( 
a10d\mathrm{m}\mathrm{a}\mathrm{x}

T 2
0

2

\biggr) 
+ \varepsilon log3

\biggl( 
1

\varepsilon 

\biggr) \biggl( 
a210
\=\rho 
T 2
0

\biggr) 
,

which is arbitrarily small if \varepsilon is small (indeed, \varepsilon logp
\bigl( 
1
\varepsilon 

\bigr) 
\ll \varepsilon \nu for p > 0 and \nu \in (0,1)).

Therefore, there exist d\prime >d\mathrm{m}\mathrm{a}\mathrm{x} such that

| u(t)| \leq d\prime (1 - e - \lambda t),(8.14)

and consequently we have

| I\lambda (t) - I0(t)| \leq d\prime (1 - e - \lambda t)

for 0\leq t\leq T0 log
\bigl( 
1
\varepsilon 

\bigr) 
. Note that d\prime can be chosen arbitrarily close to d\mathrm{m}\mathrm{a}\mathrm{x} provided that \varepsilon is

small enough.
Using this new bound in the second equation of (8.10) and that 0\leq 1 - e - \lambda t \leq \lambda t, we obtain

| \theta \lambda (t) - \theta 0(t)| \leq d\prime \lambda 
t2

2
.(8.15)

The next lemma estimates the change in the energy K by the inner dynamics over time
intervals of order O

\bigl( 
log

\bigl( 
1
\varepsilon 

\bigr) \bigr) 
.
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Lemma 8.4. There exists d\prime \prime > 0, such that for | \varepsilon | small enough, and for 0\leq t\leq T0 log
\bigl( 
1
\varepsilon 

\bigr) 
,

we have

| K(z\lambda (t)) - K(z0(t))| \leq d\prime \prime (1 - e - \lambda t).(8.16)

Proof. From (8.5) and Lemma 8.3 we obtain

| K(z\lambda (t)) - K(z0(t))| =
\bigm| \bigm| \bigm| 1
2
(I2\lambda (t) - I20 (t)) + \varepsilon a10(cos(\theta \lambda (t)) - cos(\theta 0(t)))

\bigm| \bigm| \bigm| 
\leq 
\bigm| \bigm| \bigm| 1
2
(I\lambda (t) - I0(t))(I\lambda (t) + I0(t))

\bigm| \bigm| \bigm| + \varepsilon a10| \theta \lambda (t) - \theta 0(t)| 

\leq 
\bigm| \bigm| \bigm| 1
2
(I\lambda (t) - I0(t))(2I0(t) + (I\lambda (t) - I0(t)))

\bigm| \bigm| \bigm| + \varepsilon a10| \theta \lambda (t) - \theta 0(t)| 

\leq 1

2
d\prime (1 - e - \lambda t)

\Bigl( 
2(d\mathrm{m}\mathrm{a}\mathrm{x} + \omega \ast ) + d\prime (1 - e - \lambda t)

\Bigr) 
+ \varepsilon a10d

\prime \lambda 
t2

2

\leq d\prime (d\mathrm{m}\mathrm{a}\mathrm{x} + \omega \ast )(1 - e - \lambda t) +
(d\prime )2

2
(1 - e - \lambda t)2 + \varepsilon a10d

\prime \lambda 
t2

2
.

(8.17)

Taking into account that \lambda = \varepsilon \=\rho 

\mathrm{l}\mathrm{o}\mathrm{g}( \varepsilon 

2)
, for | \varepsilon | sufficiently small we have

(1 - e - \lambda t)2 \leq (1 - e - \lambda t),

\varepsilon \lambda 
t2

2
\leq (1 - e - \lambda t)

for 0\leq t\leq T0 log (
1

\varepsilon 
).

Therefore, using (8.17) we conclude that there exists d\prime \prime >d\prime , such that

| K(z\lambda (t)) - K(z0(t))| \leq d\prime \prime (1 - e - \lambda t).

We note that d\prime \prime can be chosen arbitrarily close to d\prime (d\mathrm{m}\mathrm{a}\mathrm{x} + \omega \ast ) +
1
2(d

\prime )2 provided that | \varepsilon | is
sufficiently small.

We now continue with the proof of Theorem 4.1. By Lemma 8.2, given that 0< I1 < I2,
the effect of the scattering map is an increase in the energy K by O(\varepsilon ). Let S be a strip as in
(7.33) and c > 0 such that

K(\sigma \varepsilon (z)) - K(z)> c\varepsilon for all z \in S.

From Lemma 8.4, the maximum loss in K by the inner flow over a time 0\leq t\leq T0 log
\bigl( 
1
\varepsilon 

\bigr) 
is

d\prime \prime (1 - e - \varepsilon \=\rho T0).

Switching from the flow to the time-2\pi map, it follows that the maximum loss in K by the
inner map after k iterates of f\varepsilon , with 2\pi k\leq T0 log(1/\varepsilon ), is also

d\prime \prime (1 - e - \varepsilon \=\rho T0).

Note that the level sets of K are O(\varepsilon 1/2)-close to level sets of I. Therefore, we can choose 0<
I1 < I2 such that the growth in K by repeated applications of the scattering map corresponds
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to a change in I from below I1 to above I2. Provided that | I1  - I2| is suitably small, there
exists k\mathrm{m}\mathrm{a}\mathrm{x} such that whenever z \in S we have fk

0 (z) \in S for some k \leq k\mathrm{m}\mathrm{a}\mathrm{x}. By Lemma 8.8,
for 0\leq t\leq T0 log(1/\varepsilon ),

| \theta \lambda (t) - \theta 0(t)| <d\prime \lambda 
t2

2
\leq d\prime \varepsilon log

\biggl( 
1

\varepsilon 

\biggr) 
\=\rho T 2

0

2
,

so, for \varepsilon sufficiently small, \theta \lambda (t) is O(\varepsilon \nu )-close to \theta 0(t) for some \nu \in (0,1). This implies that
each point z in the strip returns to the strip in a maximum of k\mathrm{m}\mathrm{a}\mathrm{x} iterates of f\varepsilon . Thus,
starting with a point z \in S, applying the scattering map \sigma \varepsilon to z, and then applying the inner
map (f\varepsilon )| \Lambda \varepsilon 

for k times, where 2\pi k \leq T0 log(1/\varepsilon ), until (f\varepsilon )
k(\sigma \varepsilon (z)) \in S, we obtain a net

growth in K that is at least

c\varepsilon  - d\prime \prime (1 - e - \varepsilon \=\rho T0).

We require that this net growth in K is at least c\varepsilon /2, that is,

c\varepsilon  - d\prime \prime (1 - e - \varepsilon \=\rho T0)>
c

2
\varepsilon .

Similarly to the proof in section 8.1, in order to be able to achieve a growth in K of at least
c\varepsilon /2 per step, for all \varepsilon sufficiently small, we need to choose \=\rho small enough so that

\=\rho <
c

2d\prime \prime T0
.

We obtain orbits of the IFS generated by \{ f\varepsilon , \sigma \varepsilon \} , of the form zn+1 = f
k(n)
\varepsilon \circ \sigma \varepsilon (zn) with

k(n) = O(log(1/\varepsilon )), such that K increases by c\varepsilon /2 from zn to zn+1. In O(1\varepsilon log
\bigl( 
1
\varepsilon 

\bigr) 
) steps,

such orbits increase K, as well as I, by O(1). By our choice of I1, I2, these orbits go from below
I1 to above I2. In section 8.3 we use these orbits of the IFS to produce diffusing pseudo-orbits
as claimed in Theorem 4.1.

8.3. Existence of diffusing pseudo-orbits. In sections 8.1 and 8.2 we obtained diffusing
orbits of the iterated function system (IFS) generated by \{ f\varepsilon , \sigma \varepsilon \} consisting of orbit segments

of the form zn+1 = f
k(n)
\varepsilon \circ \sigma \varepsilon (zn) in \Lambda \varepsilon , n = 1, . . . ,m  - 1, where k(n) = O(log(1/\varepsilon )) and

m = O(1/\varepsilon ), such that I(z0) < I1 and I(zm) > I2. We can rearrange these orbits into orbit
segments of the form xi+1 = fmi \circ \sigma \varepsilon \circ fni(xi), with mi, ni =O(log(1/\varepsilon )), for i= 0, . . . ,m - 1,
such that I(x0) < I1 and I(xm) > I2. Each such orbit segment can be approximated up to
O(\varepsilon ) by a true orbit of the Poincar\'e map of the form yi\mathrm{e}\mathrm{n}\mathrm{d} = fki(yi\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{t}), ki = O(log(1/\varepsilon )),
with d(yi\mathrm{e}\mathrm{n}\mathrm{d}, y

i+1
\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{t}) < O(\varepsilon ); see Remark 7.1. The diffusion time is O(1\varepsilon log(

1
\varepsilon )). Finally, each

such orbit of f\varepsilon gives rise to an orbit segment zi(t), t \in [ti, ti+1], of the flow, satisfying the
requirements of Theorem 4.1.
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