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Abstract. For a mechanical system consisting of a rotator and a pendulum coupled via a small, time-periodic4

Hamiltonian perturbation, the Arnold diffusion problem asserts the existence of ‘diffusing orbits’5

along which the energy of the rotator grows by an amount independent of the size of the coupling6

parameter, for all sufficiently small values of the coupling parameter. There is a vast literature on7

establishing Arnold diffusion for such systems. In this work, we consider the case when an additional,8

dissipative perturbation is added to the rotator-pendulum system with coupling. Therefore, the9

system obtained is not symplectic but conformally symplectic. We provide explicit conditions on10

the dissipation parameter, so that the resulting system still exhibits energy growth. The fact that11

Arnold diffusion may play a role in systems with small dissipation was conjectured by Chirikov. In12

this work, the coupling is carefully chosen, however the mechanism we present can be adapted to13

general couplings and we will deal with the general case in future work.14

1. Introduction. The Arnold diffusion problem [Arn64] broadly refers to a universal mech-15

anism of instability for multi-dimensional Hamiltonian systems that are small perturbations of16

integrable ones. Through this mechanism, chaotic transfers of energy take place between sub-17

systems of a given Hamiltonian system, which, in particular, can lead to significant growth of18

energy of one of the subsystems over time. Chirikov [Chi79] conjectured that Arnold diffusion19

may play a role in systems with small dissipation as well.20

Studying Hamiltonian systems with small dissipation is important for applications, as21

many real-life physical systems experience some energy loss over time.22

A significant class of examples is furnished by Celestial Mechanics, on the motion of celes-23

tial bodies under mutual gravity. As the gravitational force is conservative, such systems are24

usually modeled as Hamiltonian systems. Nevertheless dissipative forces are present in real-25

world systems, including tidal forces, Stokes drag, Poynting-Robertson effect, Yarkowski/Y-26

ORP effects, atmospheric drag, and their effect may accumulate in the long run. While some27

of these effects may be negligible over relatively short time scales, others, for instance Earth’s28

atmospheric drag on artificial satellites, can have significant effects over practical time scales.29

See, e.g. [MNF87, Cel07, RR17].30

Another class of examples is given by energy harvesting devices. Some of these devices31

consist of systems of oscillating beams made of piezoelectric materials, where on the one32

hand there is dissipation due to mechanical friction, and on the other hand there is external33
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forcing, owed to the movement of the device, that triggers the beams to oscillate. See, e.g.34

[MH79, EHI09, Gra17].35

Of course, there are many other examples. In this paper we consider a simple model of a36

mechanical system, consisting of a rotator and a pendulum with a small, periodic coupling,37

subject to a small dissipative perturbation. Coupled rotator-pendulum systems are funda-38

mental models in the study of Arnold diffusion in Hamiltonian systems. Adding a dissipative39

perturbation results in a system that is non-Hamiltonian. The symplectic structure changes40

into a conformally symplectic one. We show that such a system exhibits Arnold diffusion, in41

the sense that there exist pseudo-orbits for which the energy of the rotator subsystem grows42

by some quantity that is independent of the smallness parameter. (By a pseudo-orbit here we43

mean a sequence of orbit segments of the flow such that the endpoint of each orbit segment44

is ‘close’ to the starting point of the next orbit segment in the sequence.) We note that for45

the unperturbed rotator-pendulum system, the energy of the rotator subsystem is conserved.46

The small, periodic coupling added to the system makes the rotator undergo small oscillations47

in energy, while the dissipative perturbation typically yields a loss in energy. The physical48

significance of our result is that, despite the dissipation effects, it is possible to overall gain a49

significant amount of energy over time.50

Specifically, the unperturbed rotator-pendulum system is given by a Hamiltonian of the51

form52

H0pp, q, I, θq � h0pIq � h1pp, qq,53

with z � pp, q, I, θq P R�T1�R�T1, where h0pIq represents the Hamiltonian of the rotator,54

and h1 represents the Hamiltonian of the pendulum, and T1 � R{2πZ. The perturbed system55

is of the form56

(1.1) 9z � J∇zH0pzq � εJ∇zH1pz, tq � Xλpzq,57

where H1pz, tq is a Hamiltonian that is 2π-periodic in time t, ε ¥ 0 is the size of the coupling,58

Xλpzq is a dissipative vector field depending on some dissipation parameter λ � λpεq ¡ 0, and59

J �

�
J2 0
0 J2



where J2 �

�
0 �1
1 0



.60

Technical conditions on h0, h1, H1,Xλ will be given in Section 3. Under those conditions,61

the phase space of the perturbed system has a 3-dimensional Normally Hyperbolic Invariant62

Manifold (NHIM from now on), which contains a 2-dimensional invariant torus that is an63

attractor for the dynamics in the NHIM. This torus creates a ‘barrier’ for the existence of64

diffusing orbits by using only the ‘inner dynamics’ (i.e., the dynamics restricted to the NHIM).65

The main question is whether there are diffusing orbits crossing this ‘barrier’ by combining66

the ‘inner dynamics’ with the ‘outer dynamics’ (i.e., the dynamics along homoclinic orbits to67

the NHIM).68

We show that there exist C ¡ 0 and ε0 ¡ 0 such that, for all 0   |ε|   ε0, there exists a69

pseudo-orbit zptq, t P r0, T s, of (1.1), such that70

IpT q � Ip0q ¡ C for some T ¡ 0.71
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More technical details will be given in Theorem 4.1. In order for the above result to be72

of practical interest, the above solution zptq should be chosen such that at the beginning73

pIp0q, θp0qq is below (relative to I) the aforementioned attractor, and at the end pIpT q, θpT qq74

is above the aforementioned attractor. Indeed, it is possible to increase I by starting below the75

attractor and moving towards the attractor under the effect of the dissipation alone; obviously,76

such a solution is not of practical interest.77

2. Conservative vs. dissipative systems. Arnold’s conjecture on Hamiltonian instability78

originated with an example of a rotator-pendulum system with a small, time-periodic Hamil-79

tonian coupling of special type [Arn64]. In his example, in the absence of the coupling, the80

phase space of the rotator forms a normally hyperbolic invariant manifold (NHIM) foliated81

by ‘whiskered’, rotational tori, which have stable and unstable invariant manifolds that co-82

incide. The coupling in Arnold’s example was specially chosen so that it vanishes on the83

family of invariant tori, and so the tori are preserved. These tori constitute ‘barriers’ for84

the existence of diffusing orbits, since orbits in the NHIM always move along these tori and85

thus cannot increase their action variable. At the same time the coupling splits the stable86

and unstable manifolds, so that the unstable manifold of each torus intersects transversally87

the stable manifolds of nearby tori. Thus, one can form ‘transition chains’ of tori, and show88

that, by interspersing the ‘outer dynamics’ along the homoclinic orbits to the NHIM with the89

‘inner dynamics’ along the tori, one can obtain ‘diffusing’ orbits along which the energy of90

the rotator exhibits a significant growth. Arnold conjectured that this mechanism of diffusion91

occurs in close to integrable general systems.92

However, in the case of a general coupling not all of the invariant tori in the NHIM are93

preserved. The KAM theorem yields a Cantor set of tori that survive from the unperturbed94

case, with gaps in between. The splitting of the stable and unstable manifold makes the95

unstable manifold of each torus intersect transversally the stable manifolds of sufficiently96

close tori, however the size of the splitting is in general smaller than the size of the gaps97

between tori. This is known as the ‘large gap problem’. It was overcome, for instance, by98

forming transition chains that, besides rotational tori, also include ‘secondary’ tori created99

by the perturbation [DdlLS00, DLS06]. Other geometric mechanisms use transition chains100

that include, besides rotational tori, Aubry-Mather sets [GR13]. Subsequently, [GdlLMS20]101

described a general mechanism of diffusion that relies mostly on the outer dynamics, and102

uses only the Poincaré recurrence of the inner dynamics (which is automatically satisfied in103

Hamiltonian systems over regions of bounded measure).104

The references mentioned above encompass geometric ideas that we can adapt to the105

dissipative case. However, there are many other geometric mechanisms that have been used106

in the Arnold diffusion problem, such as those in [CG94, BT99, DdlLS00, Tre02, Tre04,107

DdlLS06a, DdlLS06b, Pif06, GT08, DH09, Tre12, GdlL17, GT17a, GM22]. A variational108

program for the Arnold diffusion was formulated in [Mat04, Mat12] for systems close to109

integrable. Global variational methods for diffusion have been used in this setting for convex110

Hamiltonians [CY09, KZ15, BKZ16, CX19, KZ20]. A hybrid program combining geometric111

and variational methods was started in [BB02, BBB03].112

The case of a rotator-pendulum system subject to a non-Hamiltonian perturbation (con-113

sisting of time-periodic Hamiltonian coupling and a dissipative force) which we consider in this114
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paper, has very different geometric features from the conservative case. The dissipation added115

to the Hamiltonian system is a singular perturbation – the system with positive dissipation116

leads to attractors inside the NHIM, which can contain at most one invariant torus. Poincaré117

recurrence does not hold for dissipative systems. The stable and unstable manifolds of the118

NHIM do not necessarily intersect. Therefore, the mechanism used for proving diffusion in119

the Hamiltonian case does not carry over to the non-Hamiltonian case.120

To provide some intuition, we illustrate on a couple of basic examples some possible effects121

of dissipation on the geometry of Hamiltonian systems.122

Example 2.1. The first example is the standard map.123

The (conservative) standard map, which can be viewed as the time-one map of a non-124

autonomous Hamiltonian system representing a ‘kicked rotator’, is given by125

I 1 �I � ε sinpθq,

θ1 �θ � I � ε sinpθq,
(2.1)126

where ε is the perturbative parameter, and I, θ are defined pmod2πq. This is a symplectic127

twist map; the symplecticity condition being dI 1^dθ1 � dI^dθ and the twist condition being128

Bθ1
BI � 0. When ε � 0 the resulting map is the time-one map of a rotator, and is given by129

I 1 �I,
θ1 �θ � I.

(2.2)130

It is an integrable twist map, with all level sets of I being rotational invariant circles on which131

the motion is a rigid rotation of frequency ωpIq � I. For 0   ε ! 1, the KAM theorem asserts132

that there is a positive measure set of invariant circles, of Diophantine frequencies, which133

survive the perturbation. The measure of the set of the KAM circles tends to 1 as εÑ 0. On134

the other hand, when ε ¡ 0 increases, fewer and fewer invariant circles survive, and eventually135

only one invariant circle is left. The last rotational invariant circle for the standard map has136

frequency ω � 1�?5
2 , which is the golden mean [Gre79]. See Fig. 1a.137

The dissipative standard map is defined as138

I 1 �p1� λqI � µ� ε sinpθq,

θ1 �θ � p1� λqI � µ� ε sinpθq,
(2.3)139

where λ is the dissipative parameter, 0 ¤ λ   1, and µ is the drift parameter; λ � 0140

corresponds to no dissipation. The map is no longer symplectic, but conformally symplectic,141

that is dI 1 ^ dθ1 � p1� λqdI ^ dθ, and still satisfies a twist condition.142

When ε � 0, the resulting map143

I 1 �p1� λqI � µ,

θ1 �θ � p1� λqI � µ,
(2.4)144

has a single rotational invariant circle I � µ
λ of frequency ω� :� µ

λ . The KAM theorem145

for conformally symplectic systems asserts that for each 0   ε ! 1 there is one rotational146

invariant circle, of Diophantine frequency, that survives the perturbation, and that circle is a147
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local attractor for the system (see, e.g. [CC09, CCdlL13b, CCDlL13a, CCdlL20]). In order148

for the surviving circle to be of Diophantine frequency ω�, we need to properly adjust the149

drift parameter µ � µpω�, εq. See Fig. 1b and Fig. 1c.150

We can rewrite the dissipative standard map in terms of a frequency parameter ω� rather151

than in terms of the drift parameter µ � λω� obtaining:152

I 1 �I � λpI � ω�q � ε sinpθq,

θ1 �θ � I � λpI � ω�q � ε sinpθq.
(2.5)153

In this case, by the persistence of normal hyperbolicity of the torus given by I � ω�, as154

0   ε ! 1 is varied, there exista an invariant torus of frequency ω � ωpεq close to ω�; not all155

frequencies ω yield KAM circles but only those ωpεq which are Diophantine.156

Example 2.2. The second example is the pendulum, given by the Hamiltonian157

h1pp, qq �
p2

2
� pcospqq � 1q.158

As it is well known, the pendulum has a hyperbolic fixed point whose stable and unstable159

manifolds coincide (see Fig. 2a).160

When dissipation is added to the pendulum

9p �� λp� sinpqq,

9q �p,

the origin is again a hyperbolic fix point with eigenvalues �
b
1� pλ2 q

2 � λ
2 . Nevertheless, its161

stable and unstable manifolds cease to intersect, for dissipative coefficient λ ¡ 0 (see Fig. 2b).162

However, when both dissipation and periodic forcing are added to the pendulum,

9p �� λp� sinpqq � ε sinptq,

9q �p,

for certain parameter values λ ¡ 0 and ε ¡ 0, the time-2π map exhibits chaotic attractors in163

the Poincaré section (see Fig. 2c).164

These simple examples illustrate that adding dissipation to a Hamiltonian system typically165

destroys – sometimes dramatically – some of the geometric structures – KAM tori, homoclinic166

connections – that are relevant in Arnold’s mechanism of diffusion, and creates new geometric167

structures – attractors – that act as barriers for diffusion. On the other hand, the addition of168

forcing can compensate the effects of dissipation.169

3. Model. The model that we consider is described by an integrable Hamiltonian system170

subject to a time-dependent, Hamiltonian perturbation (or coupling), and to a second, non-171

Hamiltonian, perturbation that is dissipative.172

The unperturbed Hamiltonian corresponds to an uncoupled rotator-pendulum system and173

is given by174

(3.1) H0pp, q, I, θq �
I2

2
�

p2

2
� pcos q � 1q,175
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(a) Conservative standard map (b) Dissipative standard map with un-
adjusted drift

(c) Dissipative standard map with adjusted
drift

(d) The basins of attraction of the attractors
appearing in (c), using a colour scale based
on rotation numbers (Credit Matteo Manzi)

Figure 1. The conservative and dissipative standard map

where pp, q, I, θq P R�T1�R�T1, which is endowed with the standard symplectic structure176

ω � dp^ dq � dI ^ dθ.177

For the rotator part of the Hamiltonian, given by h0pIq �
I2

2 , each level set I � constant is178

invariant under the flow of h0, and the corresponding dynamics is a rigid rotation of frequency179

(3.2) ωpIq :�
Bh0
BI

� I.180

The pendulum part of the Hamiltonian, is given by181

(3.3) h1pp, qq �
p2

2
� pcos q � 1q,182
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(a) Phase space of the conservative pen-
dulum

(b) Phase space of the dissipative pendu-
lum

(c) Poincaré section for the pendu-
lum subject to dissipation and periodic
forcing

Figure 2. The pendulum

it has a hyperbolic fixed point at pp, qq � p0, 0q and an elliptic fixed point at pp, qq � p0, πq.183

The stable and unstable manifolds of the hyperbolic fixed point p0, 0q coincide, and can be184

parametrized as185

(3.4) pp0ptq, q0ptqq �

�
�

2

cosh t
, 4 arctan e�t



.186

Since the system H0 is uncoupled, I is a conserved quantity and so each hypersurface187

tI � const.u constitutes a barrier for the dynamics of H0: there are no trajectories along188

which the variable I can change.189

When we add the time-dependent, Hamiltonian perturbation, we have190

(3.5) Hεpp, q, I, θ, tq � H0pp, q, I, θq � εH1pp, q, I, θ, tq,191

where t P T1, meaning that the perturbation H1 is 2π-periodic in time.192

We will assume that H1 is of the form193

(3.6) H1pp, q, I, θ, tq � fpqq � gpθ, tq.194

The dissipative perturbation is given by a vector field Xλ that is added to the Hamiltonian195

vector field J∇Hε of Hε, where196

(3.7) Xλpp, q, I, θq � p�λp, 0,�λpI � ω�q, 0q,197

where λ is the dissipation coefficient, and ω� is a fixed Diophantine frequency. For the moment,198

we will treat λ as an independent parameter, but for most of the paper we will consider λ of199

the form λ � ερ, with ρ being a sufficiently small independent parameter. In our main result200

Theorem 4.1 we will use λ � ερpεq where 0   ρpεq � ρ̄

log 1
ε

! 1, where ρ̄ is a positive constant.201
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The system of interest is202

(3.8) 9z � J∇zH0pzq � εJ∇zH1pz, tq � Xλpzq, z � pp, q, I, θq.203

We obtain the following equations:204

(3.9)

$''''&
''''%

9p � sinpqq � εf 1pqq � gpθ, tq � λp,

9q � p,
9I � �λpI � ω�q � εfpqq � BgBθ pθ, tq,
9θ � I.

205

As we shall see, the dissipative perturbation yields the existence of attractors for the206

dynamics restricted to the NHIM, that is, the dynamics in the pI, θq-variables. In particular,207

we can have attractors that act as barriers on the NHIM, in the sense that they separate208

the NHIM into topologically non-trivial connected components. As all trajectories within209

the basin of attractors move towards the attractors, the action I will increase along some210

trajectories and will decrease along some other trajectories, however there are no trajectories211

within the NHIM that start on one side of the attractor and end on the other side.212

Below, we will consider two concrete examples of Hamiltonian perturbations:213

Vanishing perturbation: H1 vanishes at pp, qq � p0, 0q214

fpqq � cospqq � 1,

gpθ, tq � a00 � a10 cos θ � a01 cos t.
(3.10)215

Non-vanishing perturbation: H1 does not vanish at pp, qq � p0, 0q216

fpqq � cospqq,

gpθ, tq � a00 � a10 cos θ � a01 cos t.
(3.11)217

Above, a00, a10, and a01 are real numbers with a10a01 � 0.218

Remark 3.1. The choice of the coupling of the form H1pp, q, I, θ, tq � fpqqgpθ, tq has been219

made in order to deal with a simple model. The fact that the function f satisfies f 1p0q � 0220

implies that the normally hyperbolic invariant manifold, which is exhibited by the unper-221

turbed system, is not affected by the perturbation; see Section 5.4. We do not need to invoke222

the theory of persistence of normally hyperbolic invariant manifolds under perturbation. The223

function gpθ, tq can be viewed as a truncation to the first two harmonics of the Fourier ex-224

pansion of an analytic function. We will deal with the general case with infinitely many225

harmonics, as well as with perturbations that do not preserve the NHIM, in future work.226

Remark 3.2. We note that instead of (3.7) we can consider more general perturbations of227

the form228

Xλpp, q, I, θq � p�λ1p, 0,�λ2pI � ω�q, 0q,229

for λ1 � ερ̄1 and λ2 � ε ρ̄2
log 1

ε

with ρ̄1, ρ̄2 ¡ 0. One will be able to see that the arguments230

below also apply to this case and therefore, the main result, stated below, remains valid.231
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4. Main result.232

Theorem 4.1. Consider the Hamiltonian system (3.1) subject to the time-periodic Hamil-233

tonian perturbation (3.10) or (3.11), and to the dissipative perturbation (3.7), with dissipation234

coefficient λ � ερpεq � ε ρ̄

logp 1
ε
q with ρ̄ ¡ 0 suitably small.235

Then there exist 0   I1   I2 and ε0 ¡ 0 such that, for every ω� Diophantine number with236

0   I1   ω�   I2, and every 0   ε   ε0, there exist pseudo-orbits zptq, t P r0, T s, such that237

Ipzp0qq   I1 and IpzpT qq ¡ I2.238

Here by a pseudo-orbit zptq we mean a finite collection of trajectories ziptq, t P rti, ti�1s of
(3.8), for some times 0 � t0   t1   . . .   tm � T , where m ¡ 0, such that

Ipz0p0qq   I1 and IpzmpT qq ¡ I2,

dpzipti�1q, z
i�1pti�1qq   δpεq, for i � 0, . . . ,m� 1,

for some δpεq � Opεq ¡ 0.239

The diffusion time along the pseudo-orbit zptq, t P r0, T s, is T � O
�
1
ε logp

1
ε q
�
.240

Above, we used the notation f � Opgq � OCkpgq for a pair of functions f , g satisfying241

}f}Ck ¤M}g}Ck for some M ¡ 0, where } � }Ck is the Ck-norm for some suitable k ¥ 0.242

We illustrate the phenomenon described by Theorem 4.1 in Fig. 3a, Fig. 3b, Fig. 3c,243

Fig. 3d. In Fig. 3a, using the inner dynamics alone, orbits with Ip0q   ω� cannot pass beyond244

the attractor shown in Fig. 3b. However, using both the inner and outer dynamics, there are245

orbits with Ip0q   ω� that end up with IpT q ¡ ω�, as shown in Fig. 3d. These orbits move246

close to the separatix of the pendulum h1pq, pq � 0, as shown in Fig. 3c.247

Theorem 4.1 gives us diffusing pseudo-orbits. Applying a Shadowing Lemma type of248

results similar to those in [Zgl09, GT17b, GdlLMS20, CG], we will be able to show that there249

exist true orbits zptq of (1.1) such that Ipzp0qq   I1 and IpzpT qq ¡ I2. We leave the technical250

details for a future work.251

The above pseudo-orbits are such that the end-point of one is δpεq-close to the starting-252

point of the next one, where δpεq � Opεq. We remark here that we can also obtain pseudo-253

orbits with δpεq � Opεpq, for any p ¥ 1, with the same diffusion time order T � O
�
1
ε logp

1
ε q
�
.254

In practical applications one can pass from pseudo-orbits to true orbits by applying small255

controls; for example, in the case of artificial satellites perturbed by atmospheric drag, the256

small controls can be satellite maneuvers.257

Remark 4.2. In Theorem 4.1, the action levels I1 and I2 can be chosen explicitly, depend-258

ing on the Hamiltonian perturbation (3.10) or (3.11) that is considered. See Section 7.7.259

The condition on choosing ω� a Diophantine number between I1 and I2 is not necessary260

for the proof of the theorem; see Section 8.2. The reason for requiring this condition is to be261

able to apply the KAM theorem for conformally symplectic systems [CCdlL20], which implies262

the existence of a KAM torus that is an attractor for the inner dynamics, and hence represents263

a barrier for the inner dynamics. In other words, we want to show that diffusing pseudo-orbits264

exist even if there is a barrier inside the NHIM.265

The choice of the dissipation coefficient λ � ε ρ̄

logp 1
ε
q is related to the time Th � Oplogp1ε qq266

required for a point starting in an ε-neighborhood of the NHIM to travel along a homoclinic267
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(a) Inner dynamics (b) Attractor for the inner dynamics

(c) Outer dynamics (d) Combined inner and outer dynamics

Figure 3. Orbits of the rotator-pendulum system

orbit and arrive in an ε-neighborhood of the NHIM. This choice of λ implies that λ�Th � Opρ̄εq,268

while the order of the change in action by the scattering map is Opεq. By choosing a suitable269

small enough constant ρ̄, we can ensure that, when the growth in I by the scattering map270

competes with the decay in I by the dissipation, which is of order OpλThq � Opρ̄εq, we will271

make the former to win against the latter.272

If we do not impose that the homoclinic orbits get ε-close to the NHIM, then we can273

choose a shorter time Th along the homoclinic orbits and implicitly a larger λ, as long as λ �Th274

is Opεq; for example, we can choose Th � Op1q and λ � ρ̄ε for some ρ̄ ¡ 0 suitably small.275

5. Preliminaries.276

5.1. Extended system. Since the perturbation H1 is time-dependent, it is convenient to277

consider time as an independent variable t and to work in the extended phase space z̃ �278
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pp, q, I, θ, sq P R� T1 � R� T1 � T1, adding the equation 9s � 1 to system (3.9) to obtain:279

(5.1)
9z � J∇zH0pzq � εJ∇zH1pz, sq � Xλpzq, z � pp, q, I, θq
9s � 1

280

We denote by Φ̃t
0 the unperturbed extended flow, and by Φ̃t

ε the perturbed extended flow.281

5.2. Normally hyperbolic invariant manifolds. We briefly recall the notion of a normally282

hyperbolic invariant manifold (NHIM) [Fen74, HPS77].283

Let M be a C r-smooth manifold, Φt a C r-flow on M . A submanifold (with or without284

boundary) Λ of M is a normally hyperbolic invariant manifold (NHIM) for Φt if it is invariant285

under Φt, and there exists a splitting of the tangent bundle of TM into sub-bundles over Λ286

(5.2) TzM � Eu
z ` Es

z ` TzΛ, @z P Λ287

that are invariant under DΦt for all t P R, and there exist rates288

λ� ¤ λ�   λc   0   µc   µ� ¤ µ�289

and a constant C ¡ 0, such that for all x P Λ we have290

Cetλ�}v} ¤ }DΦtpzqpvq} ¤ Cetλ�}v} for all t ¥ 0, if and only if v P Es
z,

Cetµ�}v} ¤ }DΦtpzqpvq} ¤ Cetµ�}v} for all t ¤ 0, if and only if v P Eu
z ,

Ce|t|λc}v} ¤ }DΦtpzqpvq} ¤ Ce|t|µc}v} for all t P R, if and only if v P TzΛ.

(5.3)291

It is known that Λ is C ℓ-differentiable, with ℓ ¤ r � 1, provided that292

ℓµc � λ�   0,

ℓλc � µ� ¡ 0.
(5.4)293

The manifold Λ has associated unstable and stable manifolds, denoted W upΛq and W spΛq,
which are tangent to Eu

Λ and Es
Λ respectively, and C ℓ�1-differentiable. They are foliated by

1-dimensional unstable and stable manifolds (fibers) of points, W upzq, W spzq, z P Λ, respec-
tively, which are as smooth as the flow, i.e., C r-differentiable. These fibers are equivariant in
the sense that

ΦtpW upzqq �W upΦtpzqq,

ΦtpW spzqq �W spΦtpzqq.

5.3. The NHIM of the unperturbed system. We now describe the geometric structures294

for the unperturbed system corresponding to ε � 0 and λ � 0. Fix 0   I1   I2.295

The unperturbed system H0 has a NHIM:296

Λ0 � tp0, 0, I, θq | I P rI1, I2s, θ P T1u.297

The flow restricted to Λ0 corresponds to the equations of the rotator subsystem:298

(5.5)

#
9I � 0
9θ � I

299
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Hence every level set I � const. is invariant under the flow. The stable and unstable manifolds300

of the NHIM Λ0 coincide, that is301

W spΛ0q �W upΛ0q � tpp, q, I, θq |h1pp, qq � 0, I P rI1, I2s, θ P T1u.302

where h1 is the Hamiltonian of the pendulum in (3.3). The contraction/expansion rates along303

Es and Eu are 	1, respectively. For the time-2π map, the corresponding contraction/expan-304

sion rates are e	2π.305

In the extended phase space, we have that Λ̃0 � Λ0 � T1 is a NHIM, and306

W spΛ̃0q �W spΛ0q � T1 �W upΛ0q � T1 �W upΛ̃0q307

for system (5.1).308

Note that Λ0 is also the NHIM for the time-2π map f0 of the extended flow Φ̃t
0, which309

represents the first-return map to the Poincaré section310

Σ � tpp, q, I, θ, sq | s � 0u.311

5.4. The inner map of the unperturbed system. Now, let us consider the time-2π map
for the Hamiltonian flow of the rotator: #

9I � 0,
9θ � I.

Solving, we have Iptq � I0 and θptq � θ0 � I0t, which gives the time-2π-map f0:312

(5.6) f0pI, θq � pI 1, θ1q � pI, θ � 2πIq.313

Note that f0 satisfies the twist condition314

(5.7)
Bθ1

BI
� 2π ¡ 0.315

5.5. The model with small dissipation. From now on we will work with small dissipation.316

We will assume317

(5.8) λ � ερ,318

where ρ is a free parameter. Consequently, the vector field (3.8) can be written as319

(5.9) 9z � X 0pzq � εX 1pz, t; ρq320

with X 0pzq � J∇H0pzq is the unpertubed system (3.1), and321

(5.10) X 1pz, t; ρq � J∇H1pz, tq � Xρ,322

with H1 given in (3.6) and Xρ given in (3.7). Even when we use λ in the notation, we always323

assume that λ � ερ.324
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5.6. The NHIM in the case of vanishing perturbation. In the case when the perturbation
H1 is of the form

H1pp, q, I, θ, sq � pcos q � 1q � gpθ, sq,

then H1 vanishes at pp, qq � p0, 0q. When εH1 is added to H0, the NHIM Λ̃0 persists as325

Λ̃ε � Λ̃0 for the perturbed system for ε ¡ 0, and the flow restricted to the NHIM is given by326

(5.5). Consequently, each level set tI � constantu in the NHIM persists.327

When we add the dissipation Xλ, where λ � ερ, since the pp, qq-components of Xλ vanish328

at pp, qq � p0, 0q, then the NHIM survives for the perturbed system (3.8) as Λ̃ε � Λ̃0 (if we329

consider λ as an independent parameter, then the perturbed NHIM in general depends on330

both ε and λ). The induced dynamics on Λ̃ε � Λ̃0 is given by331

(5.11)

$'&
'%

9I � �λpI � ω�q
9θ � I

9s � 1

332

Note that 9I � 0ô I � ω�. It follows that333

(5.12) Ãε � tpI, θ, sq, I � ω�, pθ, sq P T2u � Λ̃ε334

is a 2-dimensional torus invariant under the flow restricted to Λ̃ε. This is the only invariant335

torus for the flow on Λ̃ε. On Ãε we have 9θ � I � ω� and 9s � 1, so the flow along this level336

set is a linear flow with frequency vector pω�, 1q.337

By integration of (5.11), we obtain the general solution with initial condition pI0, θ0, s0q338

as:339

Iptq � pI0 � ω�qe�λt � ω�,

θptq � θ0 �
1

λ
pI0 � ω�qp1� e�λtq � ω�t,

sptq � s0 � t.

(5.13)340

Using these explicit formulas, one can see that given pω�, θ0, s0q P Ãε, if we consider pI, θ, sq P341

Λ̃ε, where s � s0, θ � θ0 �
1
λpI � ω�q, then342

(5.14) }Φ̃t
εpI, θ, s0q � Φ̃t

εpω�, θ0, s0q} ¤
�
1�

1

λ2


1{2
|I � ω�| e�λt Ñ 0 as tÑ8,343

showing that Ãε is a global attractor for the flow on Λ̃ε. (Above we also denoted by Φ̃t
ε the344

flow restricted to Λ̃ε.)345

5.7. The inner map in the case of vanishing perturbation. From the explicit solutions346

of Iptq and θptq in (5.13) with t � 2π, we have that347

(5.15) fεpI, θq �

�
pI � ω�qe�2πλ � ω�, θ �

1

λ
pI � ω�qp1� e�2πλq � 2πω�



,348



14 SAMUEL W. AKINGBADE, MARIAN GIDEA, AND TERE M-SEARA

which is the first-return map to the section Λε � Λ̃ε X ts � 0 pmod2πqu.349

In particular, for I � ω� we have fεpI, θq � pω�, θ � 2πω�q � pI, θ � 2πω�q. That is,350

Aε � Ãε X ts � 0 pmod2πqu is an invariant circle for fε of irrational rotation number 2πω�.351

From (5.14) we have that, for pI, θq with θ � θ0 �
1
λpI � ω�q,352

(5.16) }fk
ε pI, θq � fk

ε pω�, θ0q} ¤
�
1�

1

λ2


1{2
|I � ω�| e�2πλk Ñ 0 as k Ñ8.353

This shows that Aε is a global attractor for the map fε on Λε, and, moreover, the orbits of354

pI, θq and pω�, θ0q become asymptotically close to one another as nÑ8.355

We have

DfεpI, θq �

�
e�2πλ 0

1
λp1� e�2πλq 1




with eigenvalues e�2πλ and 1 and with corresponding eigenvectors�
�λ
1



and

�
0
1




respectively. The eigenvalue 1 is associated to the dynamics along the θ-coordinate, and the356

eigenvalue of e�2πλ   1 is associated to the dynamics along the I-coordinate.357

We conclude that Aε is a NHIM for pfεq|Λε
, for which there is only stable manifold W spAεq358

tangent to

�
�λ
1



, and no unstable manifold W upAεq. We note that for λ Á 0 (recall that359

λ � ερ) the Lyapunov multipliers 1 and e�2πλ À 1 for pfεq|Λε
, are dominated by the contraction360

rate of Dfε on the stable bundle Es of Λε, which is e�2π�Opλq; see Section 5.3.361

Since |detpDfεq| � e�2πλ   1 we have that fε is area-contracting on Λε, hence it is362

conformally symplectic, i.e.363

(5.17) pfεq
�
|Λε
pω|Λε

q � e�2πλω|Λε
.364

We now show that fε is a λ-perturbation of f0, a time-2π map for the rotator part of the
unperturbed system given in (5.6). Since

e�2πλ �1� 2πλ�Opλ2q,

we have

fεpI, θq �
�
I � 2πλpI � ω�q �Opλ2q, θ � 2πI � 2π2λpI � ω�q �Opλ2q

�
.

Therefore fε is a λ-perturbation of f0 in (5.6), i.e.

fεpI, θq �f0pI, θq �Opλq � f0pI, θq �Opερq.
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5.8. The case of non-vanishing perturbation. In this case the time-periodic perturbation365

of the Hamiltonian in (3.5), is of the form366

(5.18) H1pp, q, I, θ, sq � cos q � gpθ, sq.367

The perturbation H1 does not vanish at the hyperbolic fixed point of the pendulum pp, qq �368

p0, 0q. The dissipative perturbation is given by the vector field εXρ, where Xρ is given by369

(3.7), as before (see (5.9) and (5.10)).370

From (3.9), since f 1pqq � � sin q vanishes at q � 0, we obtain that the unperturbed NHIM371

Λ̃0 survives the perturbation, that is Λ̃ε � Λ̃0 for all ε.372

When λ � 0, the perturbed dynamics restricted to Λ̃ε � Λ̃0 is given by the following373

equations:374

(5.19)

$'&
'%

9I � �λpI � ω�q � εBgBθ pθ, sq
9θ � I

9s � 1.

375

Using the expression of g in (3.11), this system can be reduced to the second-order nonlinear376

differential equation377

:θ � λ 9θ � εa10 sin θ � λω� � 0.378

Ignoring the last term, the remaining terms represent the equation of the damped non-linear379

pendulum, for which explicit solutions are unknown; an analytical approximation can be found380

in [Joh14]. Hence, we do not have an explicit formula for the time-2π map fε in this case.381

6. Existence of a Transverse Homoclinic Intersection. In the sequel, we will identify382

vector fields with differential operators, which is a standard operation in differential geometry383

(see, e.g., [BG05]). That is, given a smooth vector field X and a smooth function f on the384

manifold M , we denote:385

(6.1) pXfqpzq �
¸
j

pX qjpzq
Bf

Bzj
pzq,386

where zj , j P t1, . . . ,dimpMqu, are local coordinates. Similarly, a smooth time-dependent and387

parameter-dependent vector field acts as a differential operator by388

(6.2) pXfqpz, t; εq �
¸
j

pX qjpz, t; εq
Bf

Bzj
pzq.389

For the pendulum system, whose hamiltonian h1 is given in (3.3), we denote by pp0ptq, q0ptqq390

a parametrization of a separatrix of the pendulum, with pp0p0q, q0p0qq � pp0, q0q, where pp0, q0q391

is some initial point; this parametrization is explicitly given in (3.4). We define a new locally392

defined system of symplectic coordinates py, xq in a neighborhood of the separatrix – chosen393

away from the hyperbolic equilibrium point – as follows. The coordinate y is chosen to be394

equal to the energy of the pendulum, i.e.,395

(6.3) y � h1pp, qq �
p2

2
� pcospqq � 1q396
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and is defined in a whole neighborhood of one of its separatrices. The coordinate x is defined397

by398

dx �
dt

||∇y||
,399

where dt � pdp2� dq2q
1
2 . It is immediate to see that x equals the time τ it takes the solution400

ppptq, qptqq to go along the y-level set from one point to another (see [GdlLM21]). This401

coordinate system py, xq constructed above is not defined in a neighborhood of the separatrix402

that contains the hyperbolic equilibrium point, since this is a critical point of the energy403

function. We define this coordinate system only in some neighborhood N of a segment of the404

separatrix containing pp0, q0q. On this neighborhood, we have dy ^ dx � dp^ dq. Relative to405

this new coordinate system, the separatrix is given by y � 0.406

An arbitrary point on the separatrix can be given in terms of the pp, qq-coordinates as407

pp0pτq, q0pτqq for some τ P R, and in terms of the py, xq-coordinates as p0, xq for some x P R,408

where x � τ .409

Now let’s extend this coordinate system to a system of coordinates py, x, I, θ, sq on some410

neighborhood Ñ of tpp0pτq, q0pτq, I, θ, squ in the extended phase space.411

Relative to this coordinate system, in the unperturbed case, the stable/unstable manifolds412

W spΛ̃0q �W upΛ̃0q are locally given by y � 0. A point z̃0 PW spΛ̃0q �W upΛ̃0q can be written413

in terms of the original coordinates pp, q, I, θ, sq as414

z̃0 � pp0pτq, q0pτq, I, θ, sq, for some τ P R,415

and in terms of the extended coordinates py, x, I, θ, sq as416

z̃0 � p0, x, I, θ, sq, for x � τ P R.417

When we apply the flow to the point z̃0 we obtain

Φ̃t
0pz̃0q � pp0pτ � tq, q0pτ � tq, I, θ � ωpIqt, s� tq.

Observe that if we denote by z̃�0 :� pp, q, I, θ, sq � p0, 0, I, θ, sq, we have Φ̃t
0pz̃

�
0 q �418

p0, 0, I, θ � ωpIqt, s� tq, therefore:419

Φ̃t
0pz̃0q � Φ̃t

0pz̃
�
0 q Ñ 0, as tÑ �8.420

In the perturbed case, for ε � 0 small and λ � ρε, we can locally describe both the421

stable and unstable manifolds of Λ̃ε as graphs of C
ℓ�1-smooth functions ysε, y

u
ε , over px, I, θ, sq,422

recalling that x � τ , given by423

ysε �y
s
εpx, I, θ, s; ρq � ysεpτ, I, θ, s; ρq,

yuε �y
u
ε px, I, θ, s; ρq � yuε pτ, I, θ, s; ρq,

respectively, for p0, x, I, θ, sq P Ñ . We stress the dependence of ρ of these functions because424

will be important in the sequel.425
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Observe that, when ε � 0 we have the equation of the separatrix of the pendulum426

ys0pτ, I, θ, s; ρq � yu0 pτ, I, θ, s; ρq � 0.427

Consequently yuε , y
s
ε � Opεq.428

We recall the following Melnikov-type result for non-conservative perturbations:429

Theorem 6.1 (Splitting of the Stable and Unstable Manifolds [GdlLM21]).
Fix ρ0 ¡ 0, then there exists ε0 ¡ 0 such that for any 0 ¤ ρ ¤ ρ0 and 0 ¤ |ε| ¤ ε0 we have:
for p0, τ, I, θ, sq P Ñ , the difference between ysεpτ, I, θ, s; ρq and yuε pτ, I, θ, s; ρq is given by

ysε � yuε �� ε

» �8

�8
ppX 1h1qpΦ̃

t
0pz̃0qq � pX 1h1qpΦ̃

t
0pz̃

�
0 qqqdt�Opε2q,

where we recall that h1pp, qq �
p2

2 � pcos q � 1q and X 1 is given in (5.10).430

Corollary 6.2 (Sufficient Conditions for the Existence of a Transverse Homoclinic Intersection).431

Fix ρ0 ¡ 0, then there exists ε0 ¡ 0 such that for any 0 ¤ ρ ¤ ρ0 and |ε| ¤ ε0 we have: for432

p0, τ, I, θ, sq P Ñ , the difference between ysεpτ, I, θ, s; ρq and yuε pτ, I, θ, s; ρq is given by433

ysε � yuε �� ε

�» �8

�8
th1, H1upp0pτ � tq, q0pτ � tq, I, θ � ωpIqt, s� tqdt

�ρ

» �8

�8
p20ptqdt

�
�Opε2q,

(6.4)434

where t�, �u denotes the Poisson bracket.435

If τ� � τ�pI, θ, sq is a non-degenerate zero of the mapping436

τ P R ÞÑ �

» �8

�8
th1, H1upp0pτ � tq, q0pτ � tq, I, θ � ωpIqt, s� tqdt(6.5)437

then there exists 0   ρ1 ¤ ρ0 such that for all 0 ¤ ρ ¤ ρ1438

τ P R ÞÑ �

�» �8

�8
th1, H1upp0pτ � tq, q0pτ � tq, I, θ � ωpIqt, s� tqdt

�ρ

» �8

�8
p20ptqdt

�(6.6)439

has a non degenerate zero τ�pI, θ, s; ρq.440

Moreover, there exists 0   ε1 ¤ ε0 such that for all 0 ¤ ρ ¤ ρ1 and 0   |ε| ¤ ε1, W
spΛ̃εq and441

W upΛ̃εq have a transverse homoclinic intersection which can be parametrized as442

(6.7) pτ�, ysεpτ
�, I, θ, s; ρq, I, θ, sq � pτ�, yuε pτ

�, I, θ, s; ρq, I, θ, sq,443

where τ� � τ�pI, θ, s; ρ, εq � τ�pI, θ, s; ρq � Opεq � τ�pI, θ, sq � Opρ, εq, for pI, θ, sq in some444

open set in Ũ � R� T1 � T1.445
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Proof. From Theorem 6.1, we have

ysε � yuε �� ε

» �8

�8
ppX 1h1qpΦ̃

t
0pz̃0qq � pX 1h1qpΦ̃

t
0pz̃

�
0 qqqdt�Opε2q.

As λ � ερ, the vector field X 1 (see (5.10)) is the sum of the Hamiltonian vector field J∇H1446

and the dissipative vector field447

Xρpp, q, I, θq � p�ρp, 0,�ρpI � ω�q, 0q,448

therefore

ysε � yuε �� ε

» �8

�8

�
pJ∇H1 � Xρqh1pΦ̃

t
0pz̃0qq � pJ∇H1 � Xρqh1pΦ̃

t
0pz̃

�
0 qq

�
dt�Opε2q

� � ε

� » �8

�8
pJ∇H1h1qpΦ̃

t
0pz̃0qq � pJ∇H1h1qpΦ̃

t
0pz̃

�
0 qqdt

�

» �8

�8
pXρh1qpΦ̃

t
0pz̃0qq � pXρh1qpΦ̃

t
0pz̃

�
0 qqdt

�
�Opε2q

:�� εpF1 � F2q �Opε2q.

In the above,

F1 :�

» �8

�8
pJ∇H1h1qpΦ̃

t
0pz̃0qq � pJ∇H1h1qpΦ̃

t
0pz̃

�
0 qqdt

�

» �8

�8
th1, H1upΦ̃

t
0pz̃0qq � th1, H1upΦ̃

t
0pz̃

�
0 qqdt,

�

» �8

�8

�
th1, H1upp0pτ � tq, q0pτ � tq, I, θ � ωpIqt, s� tq

� th1, H1up0, 0, I, θ � ωpIq, s� tq



dt

F2 :�

» �8

�8
pXρh1qpΦ̃

t
0pz̃0qq � pXρh1qpΦ̃

t
0pz̃

�
0 qqdt

�ρ

» �8

�8
pXω�h1qpΦ̃

t
0pz̃0qq � pXω�h1qpΦ̃

t
0pz̃

�
0 qqdt

where we denote Xω� � p�p, 0,�pI�ω�q, 0q. Since Xω�h1 � �pBh1
Bp � �p2, and recalling that

Φ̃t
0pz̃0q � pp0pτ � tq, q0pτ � tq, I, θ � ωpIqt, s � tq and Φ̃t

0pz̃
�
0 q � p0, 0, I, θ � ωpIqt, s � tq, we

obtain

F2 �� ρ

» �8

�8
p20pΦ̃

t
0pz̃0qqdt � �ρ

» �8

�8
p20pτ � tqdt
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Finally,

ysε � yuε �� ε

» �8

�8

�
th1, H1upp0pτ � tq, q0pτ � tq, I, θ � ωpIqt, s� tq

� th1, H1up0, 0, I, θ � ωpIq, s� tq



dt

� ερ

» �8

�8
p20pτ � tqdt�Opε2q.

Note that th1, H1u � � sin q BH1
Bp � pBH1

Bq hence th1, H1up0, 0, I, θ � ωpIq, s� tq � 0. Also note449

that by the change of variable formula
³�8
�8 p20pτ � tqdt �

³�8
�8 p20ptqdt. Thus, we obtain the450

first part of Corollary 6.2.451

The second part of Corollary 6.2 is as follows. First, if τ� � τ�pI, θ, sq is a non-degenerate
zero of the mapping (6.5), there exists 0   ρ1 ¤ ρ0 such that the function:

τ P R ÞÑ �

�» �8

�8
th1, H1upp0pτ � tq, q0pτ � tq, I, θ � ωpIqt, s� tqdt� ρ

» �8

�8
p20ptqdt

�

also has a non-degenerate zero τ�pI, θ, s; ρq � τ�pI, θ, sq �Opρq for any 0 ¤ ρ ¤ ρ1.452

Now, we apply the implicit function theorem to find the zeroes of the function:453

τ Ñ ysεpτ, I, θ, s; ρq � yuε pτ, I, θ, s; ρq,454

obtaining a value 0   ε̃1pρq ¤ ε0, such that, for any 0   ε ¤ ε̃1, this map has a non-degenerate455

zero τ�pI, θ, s; ρ, εq � τ�pI, θ, s; ρq �Opεq � τ�pI, θ, sq �Opρ, εq. An important observation is456

that ε̃1p0q � 0, therefore we set ε1 � minr0,ρ1s ε̃1pρq ¡ 0. In this way, arguing as in [DLS06], the457

stable and unstable manifolds W spΛ̃εq and W upΛ̃εq have a transverse homoclinic intersection458

which can be parametrized as in (6.7).459

Provided that the unperturbed stable and unstable manifolds of the NHIM coincide,460

adding a generic Hamiltonian perturbation makes the stable and unstable manifolds to inter-461

sect transversally; see, e.g., [GdlL18]. However, non-conservative perturbations can in general462

destroy the homoclinic intersection; this is for example the case of the dissipative pendulum463

shown in Fig. 2b. In contrast, the Corollary 6.2 shows that for the system (3.8), where the464

dissipation is of the same order as the forcing, that is λ � ερ, the perturbed stable and unsta-465

ble manifolds intersect transversally for all sufficiently small perturbation parameter values ρ.466

Later, in Section 8, we will be interested in taking ρ � ρpεq � ρ̄

logp 1
ε
q , but, clearly, for ε small467

enough, these values of ρ satisfy the hypotheses of Corollary 6.2. The result is summarized in468

next corollary.469

Corollary 6.3 (Existence of Transverse Intersection in the Model). Take any ρ̄ ¡ 0. Consider470

the perturbation H1 given by (3.10) or (3.11) and the dissipative pertubation as in (3.7) with471

λ � ε ρ̄

logp 1
ε
q . Then there exists ε0 sufficiently small such that for all 0   |ε|   ε0, W

spΛ̃εq and472

W upΛ̃εq have a transverse homoclinic intersection Γ̃ε which can be parametrized as in (6.7).473

Proof. The proof follows by the fact that in this case ρ � ρ̄

logp 1
ε
q satisfies the conditions of474

Corollary 6.2 if ε is small enough.475
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7. Computation of the scattering map for the perturbed system.476

7.1. The scattering map. We give a brief description of the scattering map, following
[DdlLS08]. Consider the general case of a normally hyperbolic invariant manifold Λ for a flow
Φt on some smooth manifold M . Let W spΛq, W upΛq be the stable and unstable manifolds of
Λ. First, let

Ω� : W spΛq Ñ Λ,

Ω� : W upΛq Ñ Λ,

be the canonical projections along fibers, assigning to each point x P W spΛq its stable foot477

point x� � Ω�pxq, uniquely defined by x P W spx�q, and, similarly, assigning to x P W upΛq478

its unstable footpoint x� � Ω�pxq uniquely defined by x PW upx�q.479

Second, choose and fix a ‘homoclinic channel’, which is a homoclinic manifold Γ inW upΛqX
W spΛq that satisfies the following strong transversality conditions:

TxΓ �TxW
spΛq X TxW

upΛq,

TxM �TxΓ` TxW
upx�q ` TxW

spx�q,

for all x P Γ, and such that480

Ω�
|Γ : ΓÑ Ω�pΓq is a diffeomorphism.481

Then, the scattering map associated to the homoclinic channel Γ is the mapping σ :482

Ω�pΓq Ñ Ω�pΓq defined by483

σ � Ω� � pΩ�q�1.484

The map σ is a locally defined diffeomorphism on Λ. Moreover, σ is symplectic provided485

that M , Λ, Φt are symplectic.486

Remark 7.1. We have σpx�q � x� if and only if487

(7.1) dpΦ�T�pxq,Φ�T�px�qq Ñ 0, and dpΦT�pxq,ΦT�px�qq Ñ 0488

as T�, T� Ñ �8, respectively, for some uniquely defined x P Γ. This means that for orbits in489

Λ of the form x1end � ΦT� �σ �ΦT�px1startq, where x1start � Φ�T�px�q and x1end � ΦT�px�q, one490

can find homoclinic orbit segments in M of the form xend � ΦT��T�pxstartq, such that xstart491

is arbitrarily close to x1start and xend is arbitrarily close to x1end. See Fig. 4.492

7.2. The scattering map of the perturbed system. Assuming that the conditions in493

Corollary 6.2 are satisfied, then W spΛ̃εq and W upΛ̃εq intersect transversally in the homoclinic494

channel Γ̃ε, which can be parametrized as in Corollary 6.2, for all 0   |ε|   ε1. Let z̃ε P Γ̃ε495

be a homoclinic point for the perturbed extended flow Φ̃t
ε. In terms of the coordinates from496

Section 6, we have497

z̃ε � pτ�pI, θ, s; ρ, εq, ysεpτ
�pI, θ, s; ρ, εq, I, θ, s; ρq, I, θ, sq498

where τ�pI, θ, s; ρ, εq � τ�pI, θ, s; ρq � Opεq and τ�pI, θ, s; ρq � τ�pI, θ, sq � Opεq is a non-499

degenerate zero of the mapping (6.6) near τ�pI, θ, sq, a chosen non-degenerate zero of the500

mapping (6.5).501
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x+

Wu(x-) Ws(x+)

Λε
x-

x

 φ-T(x-)

  x’start=φ-T-(x-) x’end=φT+(x+)

xend
xstart x-

Figure 4. Homoclinic orbit segment approximating an orbit obtained by applying the scattering map and
the inner map.

Because of the smooth dependence of the NHIM and of its stable and unstable manifolds502

on the perturbation parameter, to the homoclinic point z̃ε � pzε, sq for perturbed flow Φ̃t
ε it503

corresponds a homoclinic point z̃0 � pz0, sq for the unperturbed flow Φ̃t
0, which is Opεq-close504

to z̃ε. In fact, going back to the original coordinates, the point z̃ε becomes:505

z̃ε � pp0pτ
�pI, θ, s; ρ, εqq, q0pτ�pI, θ, s; ρ, εqq, I, θ, sq �Opεq

� pp0pτ
�pI, θ, s; ρqq, q0pτ�pI, θ, s; ρqq, I, θ, sq �Opεq

� z̃0 �Opεq, where

z̃0 � pp0pτ
�pI, θ, s; ρqq, q0pτ�pI, θ, s; ρqq, I, θ, sq

(7.2)506

Note that in the above the Opεq-error only affects the p, q components.507

We denote the stable- and unstable-footpoints of z̃ε and of z̃0 by z̃�ε and z̃�0 , respectively.508

Recall that we already know that z̃�0 � p0, 0, I, θ, sq. Summarizing the notation:509


 z̃ε P Γ̃ε �W spΛ̃εq&W upΛ̃εq;510


 z̃�ε � Ω�pz̃εq P Λ̃ε;511


 z̃0 P Γ̃0 �W spΛ̃0q&W upΛ̃0q;512


 z̃�0 � Ω�pz̃0q P Λ̃0;513

Under the above assumptions, we have σ̃εpz̃
�
ε q � z̃�ε , and σ̃0pz̃

�
0 q � z̃�0 . We recall that,514

in our model, for the unperturbed system, z̃�0 � z̃�0 � z̃�0 and therefore the scattering map is515

the identity: σ̃0 �Id.516

The perturbed scattering map σ̃ε can be expanded in terms of powers of ε, with the zero-th
order term being the unperturbed scattering map σ̃0, as follows

σ̃εpI, θ, sq �σ̃0pI, θ, sq � εSpI, θ, sq �Opε2q

�pI, θ, sq � εSpI, θ, sq �Opε2q,

where S � pSI ,Sθ, Idsq.517
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In the sequel, we evaluate the components SI and Sθ in order to compute the change518

in action I and the change in angle θ by the scattering map. We follow the approach in519

[GdlLM21, GdlLM22].520

7.3. Change in Action by the Scattering Map. We use the following result:521

Theorem 7.2 (Change in Action by the Scattering Map [GdlLM21]). For a general non-522

conservative perturbation X 1 of (3.1) like in (5.9), the change in action I by the scattering523

map σ̃ε is given by:524

I
�
z̃�ε
�
� I

�
z̃�ε
�
�ε

» �8

�8

�
X 1IpΦ̃t

0pz̃0qq � X 1IpΦ̃t
0pz̃

�
0 qq

	
dt

�O
�
ε2
�
,

(7.3)525

where z̃ε and z̃0 are given in (7.2), and we denote I0 � Ipz̃0q � Ipz̃�0 q.526

Denote I pz̃�ε q � I�ε . Applying Theorem 7.2 in the case of (5.10):

X 1 �J∇H1 � p�ρp, 0,�ρpI � ω�q, 0q
�J∇H1 � Xρ

we obtain

I�ε � I�ε �ε

» 8

�8

�
pJ∇H1 � XρqIpΦ̃

t
0pz̃0qq � pJ∇H1 � XρqIpΦ̃

t
0pz̃

�
0 qq



dt�Opε2q

�ε

» 8

�8

�
pJ∇H1IqpΦ̃

t
0pz̃0qq � pJ∇H1IqpΦ̃

t
0pz̃

�
0 qq



dt

� ε

» 8

�8

�
XρIpΦ̃

t
0pz̃0qq � XρIpΦ̃

t
0pz̃

�
0 qq



dt�Opε2q

�εpSI
1 � SI

2 q �Opε2q

where

SI
1 :�

» 8

�8

�
tI,H1uppΦ̃

t
0pz̃0qq � tI,H1upΦ̃

t
0pz̃

�
0 qq



dt

�

» �8

�8
ptI,H1upp0pτ

� � tq, q0pτ
� � tq, I, θ � ωpIqt, s� tq ,

�tI,H1up0, 0, I, θ � ωpIqt, s� tqq dt

SI
2 �

» 8

�8

�
XρIpΦ̃

t
0pz̃0qq � XρIpΦ̃

t
0pz̃

�
0 qq



dt,

where τ� � τ�pI, θ, s; ρq is a non-degenerate zero of the function (6.6).527

Since XρI � �ρpI �ω�q, Φ̃t
0pz̃0q � pp0pτ

�� tq, q0pτ
�� tq, I, θ�ωpIqt, s� tq and Φ̃t

0pz̃
�
0 q �

p0, 0, I, θ � ωpIqt, s� tq, we have

SI
2 :�

» 8

�8

�
� ρIpΦ̃t

0pz̃0qq � ρIpΦ̃t
0pz̃

�
0 qq



dt � 0.

Thus, we have proved the following result:528
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Corollary 7.3. For the perturbation X 1 � J∇H1 � Xρ,529

I�ε � I�ε �ε

» �8

�8
ptI,H1upp0pτ

� � tq, q0pτ
� � tq, I, θ � ωpIqt, s� tq

�tI,H1up0, 0, I, θ � ωpIqt, s� tqq dt�Opε2q

(7.4)530

where τ� � τ�pI, θ, s; ρq is a non-degenerate zero of the function (6.6).531

In the case when H1 is as in (3.10) or (3.11), tI,H1u � �BH1
Bθ � a10fpqq sin θ, where532

fpqq � cos q � 1 or fpqq � cos q, so533

I�ε � I�ε �εa10

» 8

�8
pcospq0pτ

� � tqq � 1q sinpθ � ωpIqtqdt�Opε2q.(7.5)534

7.4. Change in Angle by the Scattering Map. We use the following result:535

Theorem 7.4 (Change in Angle by the Scattering Map [GdlLM21]). For a general non-536

conservative perturbation X 1 of (3.1) like in (5.9), the change in angle θ by the scattering537

map σ̃ε is given by:538

θpz̃�ε q � θpz̃�ε q �ε
» �8

�8
X 1θpΦ̃t

0pz̃0qq � X 1θpΦ̃t
0pz̃

�
0 qqdt

� ε

» �8

�8
pX 1IpΦ̃t

0pz̃0qq � X 1IpΦ̃t
0pz̃

�
0 qqqtdt �

�
B2h0
BI2

pI0q



�Opε2q,

(7.6)539

where z̃ε and z̃0 are given in (7.2), and we denote I0 � Ipz̃0q � Ipz̃�0 q.540

Denote θ pz̃�ε q � θ�ε . Applying Theorem 7.4 in the case of (5.10), i.e., X 1 � J∇H1 � Xρ541

we obtain542

θ�ε � θ�ε �ε

» 8

�8

�
pJ∇H1 � XρqθpΦ̃

t
0pz̃0qq � pJ∇H1 � XρqθpΦ̃

t
0pz̃

�
0 qq



dt

� ε

» 8

�8

�
pJ∇H1 � XρqIpΦ̃

t
0pz̃0qq

�pJ∇H1 � XρqIpΦ̃
t
0pz̃

�
0 qq

	
tdt �

�
B2h0
BI2

pIq



�Opε2q

(7.7)543

We simplify the first integral above by splitting into two integrals:

ε

� » 8

�8

�
pJ∇H1θqpΦ̃

t
0pz̃0qq � pJ∇H1θqpΦ̃

t
0pz̃

�
0 qq



dt

�

» 8

�8

�
XρθpΦ̃

t
0pz̃0qq � XρθpΦ̃

t
0pz̃

�
0 qq



dt

�
� εpSθ

1 � Sθ
2q,
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where

Sθ
1 :�

» 8

�8

�
tθ,H1upΦ̃

t
0pz̃0q � tθ,H1upΦ̃

t
0pz̃

�
0 qq



dt

�

» 8

�8

�
tθ,H1upp0pτ

� � tq, q0pτ
� � tq, I, θ � ωpIqt, s� tq

� tθ,H1up0, 0, I, θ � ωpIqt, s� tq



dt,

Sθ
2 �

» 8

�8

�
XρθpΦ̃

t
0pz̃0qq � XρθpΦ̃

t
0pz̃

�
0 qq



dt,

where τ� � τ�pI, θ, s; ρq is a non-degenerate zero of the function (6.6).544

Since Xρθ � 0 we obtain Sθ
2 � 0.545

The second integral in (7.7) can be simplified as we did in Section 7.3 to analyze the546

change in actions, and thus, combining both parts of (7.7) proves the following result:547

Corollary 7.5. For the perturbation X 1 � J∇H1 � Xρ given in (5.9),548

θ�ε � θ�ε �ε

» 8

�8

�
tθ,H1upΦ̃

t
0pz̃0qq � tθ,H1upΦ̃

t
0pz̃

�
0 qq



dt

� ε

» 8

�8

�
tI,H1upΦ̃

t
0pz̃0qq � tI,H1upΦ̃

t
0pz̃

�
0 qq



tdt �

�
B2h0
BI2

pIq



�Opε2q

� ε

» 8

�8

�
tθ,H1upp0pτ

� � tq, q0pτ
� � tq, I, θ � ωpIqt, s� tq

� tθ,H1up0, 0, I, θ � ωpIqt, s� tq



dt

� ε

» 8

�8

�
tI,H1upp0pτ

� � tq, q0pτ
� � tq, I, θ � ωpIqt, s� tq

� tI,H1up0, 0, I, θ � ωpIqt, s� tq



t dt �

�
B2h0
BI2

pI0q



�Opε2q,

(7.8)549

where τ� � τ�pI, θ, s; ρq is a non-degenerate zero of the function (6.6).550

In the case when h0pIq �
I2

2 and H1 is as in (3.10) or (3.11), we have B2h0
BI2 � 1, tθ,H1u �551

0, and tI,H1u � �BH1
Bθ � a10fpqq sin θ, where fpqq � cos q � 1 or fpqq � cos q, so552

θ�ε � θ�ε �� εa10

» 8

�8

�
cospq0pτ

� � tq � 1q sinpθ � ωpIqtq



t dt�Opε2q.(7.9)553

Remark 7.6. We remark that both components SI , Sθ of the vector field generating the554

scattering map up to Opε2q only depends on the dissipation Xλ and, therefore, on the param-555

eter ρ, through the value τ� � τ�pI, θ, s; ρq. In fact, in the next section we will see that the556
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vector field generating the scattering map is a Hamiltonian vector field in the variables pI, θq557

up to Opε2q, even though the system (3.8) is not symplectic but conformally symplectic. We558

will show that the scattering map is symplectic in the variables pI, θq up to Opε2q. Moreover,559

in the case when H1 is as in (3.10) or (3.11), we will provide an explicit formula for the560

Hamiltonian vector field that generates the scattering map up to Opε2q.561

7.5. Symplecticity of the scattering map up to Opε2q. In the case that the perturbation562

is Hamiltonian (which in our case corresponds to ρ � 0), it was proven in [DdlLS08] that the563

scattering map is symplectic and is given by564

(7.10) σ̃εpI, θ, sq � σ̃0pI, θ, sq � ε

�
BL�

Bθ
pI, θ, sq,�

BL�

BI
pI, θ, sq, s



�Opε2q565

for some function (Melnikov potential) L� which depends on the effect of the Hamiltonian566

perturbation on the homoclinic orbits of the unperturbed system. More precisely, let567

LpI, θ, sq � �

» �8

�8
pH1pp0ptq, q0ptq, I, θ � ωpIqt, s� tq

�H1p0, 0, I, θ � ωpIqt, s� tqq dt

(7.11)568

where ωpIq � Bh0
BI pIq. Let τ

� � τ�pI, θ, sq be a non-degenerate critical point of the function569

τ ÞÑ LpI, θ � ωpIqτ, s� τq570

Then the function L� referred to in (7.10) is defined by571

(7.12) L�pI, θ, sq � LpI, θ � ωpIqτ�, s� τ�q.572

An auxiliary function that will be referred to later is the reduced Melnikov potential defined573

by574

(7.13) L�pI, θ̄q � L�pI, θ̄, 0q for θ̄ � θ � ωpIqs.575

576

In our case the perturbation is not Hamiltonian, but we will see that, nevertheless, the scat-577

tering map is symplectic up to Opε2q, and is given by578

SI �
BL�

ρ

Bθ

Sθ ��
BL�

ρ

BI
,

(7.14)579

for some function L�
ρ that depends on the effect of the Hamiltonian perturbation on the580

homoclinic orbits of the unperturbed system and also on the dissipation. Our computation is581

similar to [DdlLS08].582
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Proposition 7.7. The vector field S generating the scattering map σ̃ε up to Opε2q is of the583

form584

(7.15) SpI, θ, sq �
�
�J∇pI,θqL�

ρpI, θ, sq, s
�

585

for the function L�
ρ : V � Λ̃0 Ñ R defined below. Let586

LpI, θ, sq � �

» �8

�8
pH1pp0ptq, q0ptq, I, θ � ωpIqt, s� tq

�H1p0, 0, I, θ � ωpIqt, s� tqq dt

(7.16)587

where ωpIq � Bh0
BI pIq.588

Let589

(7.17) A �

» �8

�8
p20ptqdt.590

591

Let τ� � τ�pI, θ, s; ρq be a non-degenerate critical point of the function592

τ ÞÑ LpI, θ � ωpIqτ, s� τq � ρps� τqA.593

Let L� be defined by594

L�pI, θ, sq � LpI, θ � ωpIqτ�, s� τ�q.595

Then the function L�
ρ is defined by596

L�
ρpI, θ, sq � L�pI, θ, sq � ρps� τ�qA.597

Proof. We claim that598

SI �
BL�

ρ

Bθ
�
BL�

Bθ
� ρ

Bτ�

Bθ
A

Sθ ��
BL�

ρ

BI
� �

BL�

BI
� ρ

Bτ�

BI
A.

(7.18)599

600

The first observation is that the non-degenerate zeroes of the function (6.6) are the non-601

degenerate critical points of the function602

(7.19) τ P R ÞÑ LpI, θ � ωpIqτ, s� τq � ρps� τqA,603

where L is given by (7.16) and A is given by (7.17). To see this, first note that by a change604

of variables t� τ ÞÑ t, we can express LpI, θ � ωpIqτ, s� τq as605

LpI, θ � ωpIqτ, s� τq � �

» �8

�8
pH1pp0pτ � tq, q0pτ � tq, I, θ � ωpIqt, s� tq

�H1p0, 0, I, θ � ωpIqt, s� tqq dt

(7.20)606
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Differentiating (7.19) with respect to τ we obtain

» �8

�8
pth1, H1upp0pτ � tq, q0pτ � tq, I, θ � ωpIqt, s� tq

�th1, H1up0, 0, I, θ � ωpIqt, s� tqq dt� ρA,

so the non-degenerate zeroes of this function are the non-degenerate critical points of (7.19).607

If τ� � τ�pI, θ, s; ρq is a non-degenerate critical point of the function (7.19), then by the chain608

rule it follows that609

0 �
d

dτ
rLpI, θ � ωpIqτ, s� τq � ρps� τqAs|τ�τ�

��
BL
Bθ
pI, θ � ωpIqτ�, s� τ�qωpIq �

BL
Bs
pI, θ � ωpIqτ�, s� τ�q � ρA.

(7.21)610

To compute
BL�

ρ

Bθ � B
Bθ pL

�pI, θ, sq � ρps� τ�qAq in (7.14) we use the chain rule and (7.21)611

to obtain612

BL�
ρ

Bθ
�
BL
Bθ
pI, θ � ωpIqτ�, s� τ�q

�
1� ωpIq

Bτ�

Bθ




�
BL
Bs
pI, θ � ωpIqτ�, s� τ�q

�
�
Bτ�

Bθ



� ρ

Bτ�

Bθ
A

�
BL
Bθ
pI, θ � ωpIqτ�, s� τ�q.

(7.22)613

614

Applying the latter formula to (7.16), using BH1
Bθ � �tI,H1u, and making the change of615

variable t� τ� ÞÑ t we obtain616

BL�
ρ

Bθ
�

» �8

�8
ptI,H1upp0ptq, q0ptq, I, θ � ωpIqt� ωpIqτ�, s� t� τ�q

�tI,H1up0, 0, I, θ � ωpIqt� ωpIqτ�, s� t� τ�qq dt

�

» �8

�8
ptI,H1upp0pτ

� � tq, q0pτ
� � tq, I, θ � ωpIqt, s� tq

�tI,H1up0, 0, I, θ � ωpIqt, s� tqq dt.

(7.23)617

This integral is the same as the integral (7.4) that appears in the formula for the change of618

action by the scattering map up to Opε2q. Therefore, we conclude that:619

I�ε � I�ε � ε
BL�

Bθ
pI, θ, sq �Opε2q620

To compute �
BL�

ρ

BI � � B
BI pL

�pI, θ, sq � ρps � τ�qAq in (7.14), we use the chain rule and621
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(7.21) to obtain622

�
BL�

ρ

BI
��

BL
BI
pI, θ � ωpIqτ�, s� τ�q

�
BL
Bθ
pI, θ � ωpIqτ�, s� τ�q

�
�
Bω

BI
τ� � ωpIq

Bτ�

BI




�
BL
Bs
pI, θ � ωpIqτ�, s� τ�q

�
�
Bτ�

BI




� ρ
Bτ�

BI
A

��
BL
BI
pI, θ � ωpIqτ�, s� τ�q

�
BL
Bθ
pI, θ � ωpIqτ�, s� τ�q

Bω

BI
τ�.

(7.24)623

624

We express the two terms in (7.24) as integrals625

�
BL
BI
pI, θ � ωpIqτ�, s� τ�q �

» �8

�8
ptθ,H1upp0ptq, q0ptq, I, θ � ωpIqt� ωpIqτ�, s� t� τ�q

�tθ,H1up0, 0, I, θ � ωpIqt� ωpIqτ�, s� t� τ�qq dt

�

» �8

�8
ptI,H1upp0ptq, q0ptq, I, θ � ωpIqt� ωpIqτ�, s� t� τ�q

�tI,H1up0, 0, I, θ � ωpIqt� ωpIqτ�, s� t� τ�qq
�
Bω

BI
pIqt



dt

(7.25)

626

627

BL
Bθ
pI, θ � ωpIqτ�, s� τ�q �

» �8

�8
ptI,H1upp0ptq, q0ptq, I, θ � ωpIqt� ωpIqτ�, s� t� τ�q

�tI,H1up0, 0, I, θ � ωpIqt� ωpIqτ�, s� t� τ�qq dt

(7.26)

628

Above we used that BH1
Bθ � �tI,H1u and

BH1
BI � tθ,H1u.629

Combining (7.25) and (7.26) in (7.24) we obtain630

�
BL�

ρ

BI
pI, θ, sq �

» �8

�8
ptθ,H1upp0ptq, q0ptq, I, θ � ωpIqt� ωpIqτ�, s� t� τ�q

�tθ,H1up0, 0, I, θ � ωpIqt� ωpIqτ�, s� t� τ�qq dt

�

» �8

�8
ptI,H1upp0ptq, q0ptq, I, θ � ωpIqt� ωpIqτ�, s� t� τ�q

�tI,H1up0, 0, I, θ � ωpIqt� ωpIqτ�, s� t� τ�qq
�
Bω

BI
pIqpt� τ�q



dt

(7.27)

631
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632

Making the change of variable t� τ� ÞÑ t and writing Bω
BI pIq �

B2h0
BI2 pIq we obtain633

�
BL�

BI
pI, θ, sq �

» �8

�8
ptθ,H1upp0pτ

� � tq, q0pτ
� � tq, I, θ � ωpIqt, s� tq

�tθ,H1up0, 0, I, θ � ωpIqt, s� tqq dt

�

» �8

�8
ptI,H1upp0pτ

� � tq, q0pτ
� � tq, I, θ � ωpIqt, s� tq

�tI,H1up0, 0, I, θ � ωpIqt, s� tqq

�
B2h0
BI2

pIqt



dt

(7.28)634

635

Since the integrals in (7.28) are computed in terms of the effect of the perturbation on orbits636

of the unperturbed system, we have that I in is constant and equal to I � Ipz̃0q � Ipz̃�0 q, and637

therefore
�
B2h0
BI2 pIq

	
can be taken outside of the second integral obtaining:638

�
BL�

ρ

BI
pI, θ, sq �

» �8

�8
ptθ,H1upp0pτ

� � tq, q0pτ
� � tq, I, θ � ωpIqt, s� tq

�tθ,H1up0, 0, I, θ � ωpIqt, s� tqq dt

�

» �8

�8
ptI,H1upp0pτ

� � tq, q0pτ
� � tq, I, θ � ωpIqt, s� tq

�tI,H1up0, 0, I, θ � ωpIqt, s� tqq tdt �

�
B2h0
BI2

pIq



(7.29)639

640

This integral is the same as the integral (7.8) that appears in the formula for the change of641

angle by the scattering map.642

Therefore, we conclude that:643

θ�ε � θ�ε � �ε
BL�

ρ

BI
pI, θ, sq �Opε2q644

645

Consider the mapping646

L�
ρpI, θ, sq � LpI, θ � ωpIqτ�, s� τ�q � ρps� τ�qA.647

for τ� � τ�pI, θ, s; ρq. Since τ� is a critical point for648

τ ÞÑ LpI, θ � ωpIqτ, s� τq � ρps� τqA,649

then for every t1 P R, τ� � t1 is a critical point for650

τ ÞÑ LpI, θ � ωpIqpτ � t1q, s� pτ � t1qq � ρps� pτ � t1qqA.651

Then, denoting Z � pI, θ, s; ρq and Z 1 � pI, θ � ωpIqt1, s� t1; ρq, we have652

τ�pZ 1q � τ�pZq � t1.653
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Therefore654

L�
ρpI, θ � ωpIqt1, s� t1q �LpI, θ � ωpIqpτ�pZ 1q � t1q, s� pτ�pZ 1q � t1qq

� ρps� pτ�pZ 1q � t1qA
�LpI, θ � ωpIqpτ�pZq � t1 � t1q, s� pτ�pZq � t1 � t1qq
� ρps� pτ�pZq � t1 � t1qqA

�L�
ρpI, θ, sq.

(7.30)655

Making t1 � s in (7.30) we obtain656

L�
ρpI, θ, sq � L�

ρpI, θ � ωpIqs, 0q.657

This says that, while the function L�
ρ nominally depends on three variables pI, θ, sq, in fact it658

depends on the variable I and the linear combination θ � ωpIqs, and is therefore a function659

of two independent variables I and θ̄ � θ � ωpIqs. Thus, we define the reduced Melnikov660

potential by:661

(7.31) L�
ρpI, θ̄q � L�

ρpI, θ̄, 0q � LpI, θ̄ � ωpIqτ�,�τ�q � ρτ�A, for θ̄ � θ � ωpIqs.662

The reduced Melnikov potential allows to compute the scattering map associated to the663

time-2π map associated to a surface of section ts � s�u; more precisely, the trajectories of664

the scattering map are given by the ε-time of the Hamiltonian �L�
ρ up to order Opε2q, as we665

shall see below.666

7.6. Growth of action by the scattering map. We reduce the dynamics of the flow Φ̃t
ε667

to the dynamics of the Poincaré first return map to the surface of section668

Σ � tpp, q, I, θ, sq |s � s�u669

for some choice of s� P T1.670

The NHIM Λ̃ε for Φ̃t
ε in the extend phase space yields the NHIM Λε for fε in Σ. In671

particular Λε is invariant under fε.672

The scattering map σ̃ε, which is defined on the domain Ũ � Λ̃ε, yields a scattering map673

σε defined on the following domain in Λε � Λ0:674

U � tpI, θ̄q | pI, θ, s�q P Ũ for θ � θ̄ � ωpIqs�u,675

The scattering map σε is given in the variables pI, θ̄q by (see [DS18]):676

(7.32) σεpI, θ̄q � σ0pI, θ̄q � εJ∇L�
ρpI, θ̄q �Opε2q,677

where σ0 � Id. In particular, the scattering map σε is symplectic up to Opε2q.678

By Theorem 3.11 in [GdlLMS20], whenever J∇L�
ρpz0q � 0 for some point z0 P Λ0, there679

exists a Op1q-family of solutions γzptq of the differential equation680

9z � �J∇L�
ρpzq681
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for z in a Op1q-neighborhood of z0 P U � Λ0, and t in some interval rT1pzq, T2pzqs � R682

depending on z, such that for each path γz, there is an orbit of the scattering map σε that683

follows closely that path.684

If, in addition, we have that SIpz0q �
BL�

ρ

Bθ̄ pz0q ¡ 0, then the family of paths γz can be685

chosen so that the corresponding orbits of the scattering map σε along γz have the property686

that I increases by Opεq for each application of σε.687

Consequently, letting z0 � pI0, θ0q there exist θ1   θ0   θ2, I1   I0   I2, and a ‘strip’ of688

the form689

(7.33) S � tγzptq | z � pI0, θq | θ P rθ1, θ2s, t P rT1pzq, T2pzqsu � U690

with γzpT1pzqq � I1 and γzpT2pzqq � I2, such that the following properties hold: There exist691

c ¡ 0, such that for every δ � Opεq ¡ 0 and every path γzptq contained in S, there exists an692

orbit pznqn�0,...,N of σε and 0 � t0   t1   . . .   tN � T with ti � εi for all i, such that693

zi�1 � σεpziq,

Ipzi�1q � Ipziq ¡ cε, for i � 0, . . . , N � 1,

dpzi, γzptiqq   δ, for i � 0, . . . , N.

(7.34)694

7.7. Scattering map in the case of vanishing and non-vanishing perturbation. For both
the vanishing and non-vanishing perturbations:

H1pp, q, I, θ, sq �pcospqq � 1qpa00 � a10 cospθq � a01 cospsqq

H1pp, q, I, θ, sq � cospqqpa00 � a10 cospθq � a01 cospsqq

we have the same expression for the Melnikov potential695

LpI, θ, sq � �

» �8

�8
pcospq0ptqq � 1qpa00 � a10 cospθ � Itq � a01 cosps� tqqdt

��

» �8

�8
pcosparctan e2tq � 1qpa00 � a10 cospθ � Itq � a01 cosps� tqqdt.

(7.35)696

Above we have used the parametrization (3.4) of the separatrix. Since
p20
2 �pcos q0ptq�1q � 0,697

in the above integral we can alternatively write cospq0ptqq � 1 � �
p20
2 � � 2

cosh2ptq . It turns out698

that (see [DG00, DS17])699

LpI, θ, sq �A00 �A10pIq cospθq �A01pIq cospsq, where

A00 �4a00, A10 �
2πIa10

sinhpπI2 q
, A01 �

2πa01
sinhpπ2 q

.
(7.36)700

In [DS17] the reduced Melnikov function L� defined by (7.13), which corresponds to the701

Hamiltonian perturbation only, is computed explicitly. The level curves of L� are shown in702

Fig. 5. One can find explicitly regions of size Op1q in Λε where BL�

Bθ̄ pI, θ̄q ¡ c1 ¡ 0, for some703

c1 ¡ 0.704
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Figure 5. Level sets of L�. (Credit A. Delshams and R. Schaefer)

In our case, when the system is also subject to the dissipative perturbation Xλ, the reduced705

Melnikov potential L�
ρ , given by (7.31), is Opρq-close to the reduced Melnikov potential L�

706

corresponding to the Hamiltonian perturbation. This implies that, for ρ sufficiently small,707

there exists a region of Op1q in Λε where
BL�

ρ

Bθ̄ pI, θ̄q ¡ c2 ¡ 0, for some 0   c2   c1. In the case708

when ρ � ρ̄
logp1{εq , it follows that there exists ε2 ¡ 0 such that, for all 0   ε   ε2, we have that709

BL�
ρ

Bθ̄ pI, θ̄q ¡ c2 ¡ 0 on the aforementioned region. This region can be used to define a strip S710

as in (7.33), where the scattering map increases the action I by cε at each step, as in (7.34),711

for some 0   c   c2.712

8. Proof of Theorem 4.1.713

8.1. The case of vanishing perturbation. Choose ω� such that I1   ω�   I2, where I1,714

I2 are as in Section 7.6. There is an invariant circle Aε � tI � ω�u in Λε, as defined in Section715

5.7, which is a global attractor for fε on Λε. The circle Aε is a NHIM for fε restricted to Λε,716

and has only stable manifold W s
Λε
pAεq which is the whole manifold Λε. W s

Λε
pAεq is foliated717

by stable leaves718

W s
Λε
pAεq �

¤
yPAε

W s
Λε
pyq with y � pω�, θq P Aε.719

From (5.16) we have that each stable leaf is a slanted line720

W s
Λε
pω�, θ0q �

"
pI, θpIqq P Λε | θpIq � θ0 �

1

λ
pI � ω�q

*
721

Since 1
λ " 1, the slope of these lines (as a function of θ) is �λ, so the stable leaves are nearly722

horizontal lines. See Fig. 6.723

For z P W s
Λε
pyq, by the equivariance property of the stable fibers we have fk

ε pzq P724

W s
Λε
pfk

ε pyqq, for all k ¡ 0. Given some initial point pI0, θ0q, let fk
ε pI0, θ0q � pIk, θkq. From725
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S

Ws(A )

A�

�

Figure 6. The attractor Aε inside the NHIM Λε

(5.15), we deduce726

θk �θ0 �
1

λ
pI0 � ω�qp1� . . .� e�2πpk�1qλqp1� e�2πλq � 2πkω�

�θ0 �
1

λ
pI0 � ω�qp1� e�2πkλq � 2πkω�

�θ0 � pI0 � ω�q2πk � 2πkω� �Opk2λq

�θ0 � 2πkI0p1�Opkλqq.

(8.1)727

Recall that λ � ερpεq � ε ρ̄

logp 1
ε
q , hence the relative error term in (8.1) is Opk ρ̄ε

logp 1
ε
qq, so k728

iterations of the inner map change the angle coordinate by approximately 2πkI0 pmod2πq729

provided that k ρ̄ε

logp 1
ε
q ! 1.730

Consider the strip S defined in (7.33), where the scattering map is increasing I by Opεq731

at each step. Provided that |I1 � I2| is suitably small (but independent of ε), there exists732

kmax ¡ 0 such that, whenever z P S we have fk
ε pzq P S for some k ¤ kmax. That is, each point733

z in the strip returns to the strip in a maximum of kmax iterates. This implies that for a time734

T � T0 logp1{εq, with ε ¡ 0 small, each point z in the strip returns to the strip for at least735

tT0 logp1{εq
kmax

u times.736

One easily obtains from (5.15):737

Ik � pI0 � ω�qe�2πkλ � ω�.738

Consequently, if z � pI0, θ0q PW s
Λε
pyq, y � pω�, θq P Aε, is a point at a dI -distance d0 ¤ dmax739

from y, where dmax � maxt|I1 � ω�|, |I2 � ω�|u, then fk
ε pzq P W s

Λε
pfk

ε pyqq is at a dI -distance740

at most741

d0 � e
�2πλk � d0 � e

�2π ε
logp1{εq

ρ̄k
742

from Aε after k-iterates. For points with initial I0 above ω� the I-coordinate decreases at743

each iterate, and for points with initial I below ω� the I-coordinate increases at each iterate.744

Therefore the loss in I after k-iterates, for points with initial I0 ¡ ω�, is745

I0 � Ik � d0 � p1� e�2πλkq � d0 � p1� e
�2π ε

logp1{εq
ρ̄k
q.746

Hence the maximum loss in the action coordinate I of a point z after k iterates, where747

2πk ¤ T0 logp1{εq, is748

dmax � p1� e�ερ̄T0q.749
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On the other hand, for each z P S we can apply a scattering map σε to z. The effect of750

the scattering map is an increase in the action coordinate I by Opεq. We recall that there751

exists c ¡ 0 such that752

Ipσεpzqq � Ipzq ¡ cε, for all z P S.753

Thus, starting with a point z P S, applying the scattering map σε to z, and then applying754

the inner map pfεq|Λε
for k iterates with 2πk ¤ T0 logp1{εq, until pfεq

kpσεpzqq P S, we obtain755

a net growth in I that is at least756

cε� dmax � p1� e�ερ̄T0q.757

We want that the net growth is at least cε{2, that is758

cε� dmax � p1� e�ερ̄T0q ¡
cε

2
.759

This is equivalent to760

e�ερ̄T0 ¡ 1�
cε

2dmax
.761

Taking the logarithm of both sides we obtain762

T0  
log

�
1� cε

2dmax

	
�ερ̄

.763

By L’Hopital rule764

lim
εÑ0

log
�
1� cε

2dmax

	
�ερ̄

�
c

2dmaxρ̄
.765

This means that, in order to be able to achieve a growth in I of at least cε{2 per step, for all766

ε sufficiently small, we need to choose ρ̄ small enough so that767

(8.2) ρ̄  
c

2dmaxT0
.768

With these choices, we obtain orbits of the iterated function system (IFS) generated by769

tfε, σεu of the form zn�1 � f
kpnq
ε � σεpznq with kpnq � Oplogp1{εqq, such that I increases by770

cε{2 from zn to zn�1. In Op1ε log
�
1
ε

�
q steps, such orbits increase I by Op1q. In Section 8.3 we771

use these orbits of the IFS to produce diffusing pseudo-orbits as claimed as in Theorem 4.1.772

Remark 8.1. When a point z P Λε is of action coordinate I0   ω� below that of the773

attractor Aε, applying the inner dynamics pfεqΛε to z moves the point towards the attractor,774

and hence increases I. Thus, the effect of the inner dynamics and the effect of the scattering775

map concur towards increasing I. The situation reverses when the action coordinate of z is776

above that of the attractor, in which case the effect of the scattering map is opposed to the777

effect of the inner dynamics.778
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Figure 7. The inner dynamics without dissipation.

8.2. The case of non-vanishing perturbation. The evolution of the I- and θ-variables779

under the inner dynamics on Λ̃ε is given by:780

(8.3)

#
9Iλptq � �λpIλptq � ω�q � εa10 sin θλptq
9θλptq � Iλptq.

781

782

Denote the general solution of the system (8.3) by zλptq � pIλptq, θλptqq.783

Setting λ � 0 yields:784

(8.4)

#
9I0ptq � εa10 sin θ0ptq
9θ0ptq � I0ptq,

785

with general solution denoted z0ptq � pI0ptq, θ0ptqq; see Fig. 7. Note that (8.4) is a Hamiltonian786

system with Hamiltonian (energy function)787

(8.5) KpI, θq �
I2

2
� εa10pcos θ � 1q.788

789

The solutions pI0ptq, θ0ptqq of the system (8.4) satisfy790

KpI0ptq, θ0ptqq � KpI0p0q, θ0p0qq791

therefore, the application of the inner dynamics does not change the level sets tK � const.u792

in the case λ � 0. On the other hand, the variable I may change by up to Opε1{2q by one793

application of the inner dynamics (8.4). At the same time, the change in I by one application794

of the scattering map is Opεq ! Opε1{2q. Therefore, instead of comparing the effects on the795

action I by the scattering map and by the inner dynamics, as in Section 8.1, in this case we796

want to compare the effects on the energy K by the scattering map and by the inner dynamics.797

The next lemma gives the change in the energy K that we obtain after one application of the798

scattering map:799
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Lemma 8.2. Let z̃�ε � σεpz̃
�
ε q, where z̃�ε � pI�ε , θ�ε , sq and z̃�ε � pI�ε , θ�ε , sq. Then:800

Kpz̃�ε q �Kpz̃�ε q � I0pI
�
ε � I�ε q �Opε2q

� εI0
BL�

ρ

Bθ
pI, θ, sq �Opε2q

� εa10I0

» 8

�8
pcospq0pτ

� � tqq � 1q sinpθ � ωpIqtqdt�Opε2q,

(8.6)801

where I0 � Ipz̃0q.802

Proof. The proof of this lemma is a similar computation to the ones done to compute the803

change in actions of the scattering map. In fact, using the formulas for the change in actions804

and angles, Corollaries 7.3 and 7.5, particularly that I�ε � I�ε � Opεq and θ�ε � θ�ε � Opεq, we805

have:806

Kpz̃�ε q �Kpz̃�ε q �
pI�ε q2

2
�
pI�ε q2

2
� εa10

�
cos θ�ε � cos θ�ε

�
�
pI�ε � I�ε q

2
pI�ε � I�ε q � εa10

�
cos θ�ε � cos θ�ε

�
� pI0 �OpεqqpI�ε � I�ε q �Opε2q

� I0pI
�
ε � I�ε q �Opε2q.

(8.7)807

Applying Proposition 7.7 yields the desired result.808

The next lemma compares the actions and angles of solutions of systems (8.3) and (8.4).809

Lemma 8.3. Let pIλptq, θλptqq a solution of system (8.3) with initial condition pI0, θ0q and810

pI0ptq, θ0ptqq the solution of system (8.4) with the same initial condition. Then, there exists811

d1 ¡ dmax ¡ 0 such that, for |ε| small enough, and for 0 ¤ t ¤ T0 log
�
1
ε

�
we have:812

|Iλptq � I0ptq| ¤ d1p1� e�λtq

|θλptq � θ0ptq| ¤ d1λ
t2

2
.

(8.8)813

Proof. Calling814

uptq � Iλptq � I0ptq, αptq � θλptq � θ0ptq,815

one can easily see that:816

9u � λpI0ptq � ω� � uq � εa10 psinpθ0ptq � αq � sin θ0ptqq

9α � u.
(8.9)817

Therefore:818

uptq �

» t

0
e�λpt�sq rλpI0psq � ω�q � εa10 psinpθ0psq � αpsqq � sin θ0psqqs ds

αptq �

» t

0
upsqds.

(8.10)819

For the first equation in (8.10) we have used the method of variation of constants.820

We will bound u in four steps:821
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1. First we will use the first equation of (8.10) to obtain a weak bound for u;822

2. Second, we will use the obtained bound on u in the second equation of (8.10) to obtain a823

bound for α;824

3. Third, we will use the obtained bound on α in the first equation of (8.10) to obtain a sharper825

bound for u;826

4. Finally, using the sharper bound on u in the second equation of (8.10) to obtain a new bound827

for α.828

We will use that the solution I0ptq is a bounded function, in fact |I0ptq � ω�| ¤ dmax, where829

we recall dmax � maxt|I1 � ω�|, |I2 � ω�|u. From the first equation of (8.10) we obtain:830

|uptq| ¤

» t

0
e�λpt�sq pλdmax � 2εa10q ds

¤
�
dmax � 2

ε

λ
a10

	
p1� e�λtq.

(8.11)831

Using this bound in the second equation of (8.10) and that 0 ¤ 1� e�λt ¤ λt, we obtain:832

|αptq| ¤

» t

0

�
dmax � 2

ε

λ
a10

	
λs ds

�
�
dmax � 2

ε

λ
a10

	
λ
t2

2
.

(8.12)833

834

Finally, we will use the obtained bound on α, and the fact that | sinpθ0ptq�αq�sin θ0ptq| ¤ |α|835

in the first equation of (8.10) to obtain:836

|uptq| ¤ dmaxp1� e�λtq � εa10

» t

0
e�λpt�sq|αpsq|ds

¤ dmaxp1� e�λtq � εa10

�
dmax � 2

ε

λ
a10

	 λt2

2

» t

0
e�λpt�sqds

¤

�
dmax � εa10

�
dmax � 2

ε

λ
a10

	 t2

2

�
p1� e�λtq.

(8.13)837

Observe that, as 0 ¤ t ¤ T � T0 log
�
1
ε

�
, and λ � ε ρ̄

logp 1εq
we have that:838

εa10

�
dmax � 2

ε

λ
a10

	 t2

2
¤ ε log2

�
1

ε


�
a10dmax

T 2
0

2



� ε log3

�
1

ε


�
a210
ρ̄

T 2
0



839

which is arbitrarily small if ε is small (indeed, ε logp
�
1
ε

�
! εν for p ¡ 0 and ν P p0, 1q).840

Therefore there exist d1 ¡ dmax such that:841

(8.14) |uptq| ¤ d1p1� e�λtq842

and consequently we have:843

|Iλptq � I0ptq| ¤ d1p1� e�λtq844



38 SAMUEL W. AKINGBADE, MARIAN GIDEA, AND TERE M-SEARA

for 0 ¤ t ¤ T0 log
�
1
ε

�
. Note that d1 can be chosen arbitrarily close to dmax provided that ε is845

small enough.846

Using this new bound in the second equation of (8.10) and that 0 ¤ 1� e�λt ¤ λt, we obtain:847

|θλptq � θ0ptq| ¤ d1λ
t2

2
.(8.15)848

The next lemma estimates the change in the energy K by the inner dynamics over time849

intervals of order O
�
log

�
1
ε

��
.850

Lemma 8.4. There exists d2 ¡ 0, such that for |ε| small enough, and for 0 ¤ t ¤ T0 log
�
1
ε

�
851

we have:852

(8.16) |Kpzλptqq �Kpz0ptqq| ¤ d2p1� e�λtq.853

Proof. From (8.5) and Lemma 8.3 we obtain854

|Kpzλptqq �Kpz0ptqq| �
���1
2
pI2λptq � I20 ptqq � εa10pcospθλptqq � cospθ0ptqqq

���
¤
���1
2
pIλptq � I0ptqqpIλptq � I0ptqq

���� εa10|θλptq � θ0ptq|

¤
���1
2
pIλptq � I0ptqqp2I0ptq � pIλptq � I0ptqqq

���� εa10|θλptq � θ0ptq|

¤
1

2
d1p1� e�λtq

�
2pdmax � ω�q � d1p1� e�λtq

	
� εa10d

1λ
t2

2

¤ d1pdmax � ω�qp1� e�λtq �
pd1q2

2
p1� e�λtq2 � εa10d

1λ
t2

2
.

(8.17)

855

Taking into account that λ � ερ̄

logp ε
2q
, for |ε| sufficiently small we have

p1� e�λtq2 ¤ p1� e�λtq,

ελ
t2

2
¤ p1� e�λtq,

for 0 ¤ t ¤ T0 log p
1

ε
q.

Therefore, using (8.17) we conclude that there exists d2 ¡ d1, such that856

|Kpzλptqq �Kpz0ptqq| ¤ d2p1� e�λtq.857

We note that d2 can be chosen arbitrarily close to d1pdmax � ω�q � 1
2pd

1q2 provided that |ε| is858

sufficiently small.859

We now continue with the proof of Theorem 4.1. By Lemma 8.2, given that 0   I1   I2,860

the effect of the scattering map is an increase in the energy K by Opεq. Let S be a strip as in861

(7.33) and c ¡ 0 such that862

Kpσεpzqq �Kpzq ¡ cε, for all z P S.863
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From Lemma 8.4, the maximum loss in K by the inner flow over a time 0 ¤ t ¤ T0 log
�
1
ε

�
is864

d2p1� e�ερ̄T0q.865

Switching from the flow to the time-2π map, it follows that the maximum loss in K by the866

inner map after k iterates of fε, with 2πk ¤ T0 logp1{εq, is also867

d2p1� e�ερ̄T0q.868

Note that the level sets of K are Opε1{2q-close to level sets of I. Therefore we can choose869

0   I1   I2 such that the growth in K by repeated applications of the scattering map870

corresponds to a change in I from below I1 to above I2. Provided that |I1 � I2| is suitably871

small, there exists kmax such that whenever z P S we have fk
0 pzq P S for some k ¤ kmax. By872

Lemma 8.8, for 0 ¤ t ¤ T0 logp1{εq,873

|θλptq � θ0ptq|   d1λ
t2

2
¤ d1ε log

�
1

ε



ρ̄T 2

0

2
,874

so, for ε sufficiently small, θλptq is Opε
νq-close to θ0ptq, for some ν P p0, 1q. This implies that875

each point z in the strip returns to the strip in a maximum of kmax iterates of fε. Thus,876

starting with a point z P S, applying the scattering map σε to z, and then applying the inner877

map pfεq|Λε
for k times, where 2πk ¤ T0 logp1{εq, until pfεq

kpσεpzqq P S, we obtain a net878

growth in K that is at least879

cε� d2p1� e�ερ̄T0q.880

We require that this net growth in K is at least cε{2, that is881

cε� d2p1� e�ερ̄T0q ¡
c

2
ε.882

Similarly to the proof in Section 8.1, in order to be able to achieve a growth in K of at least
cε{2 per step, for all ε sufficiently small, we need to choose ρ̄ small enough so that

ρ̄  
c

2d2T0
.

We obtain orbits of the iterated function system (IFS) generated by tfε, σεu, of the form883

zn�1 � f
kpnq
ε �σεpznq with kpnq � Oplogp1{εqq, such that K increases by cε{2 from zn to zn�1.884

In Op1ε log
�
1
ε

�
q steps, such orbits increase K, as well as I, by Op1q. By our choice of I1, I2,885

these orbits go from below I1 to above I2. In Section 8.3 we use these orbits of the IFS to886

produce diffusing pseudo-orbits as claimed in Theorem 4.1.887

8.3. Existence of diffusing pseudo-orbits. In Sections 8.1 and 8.2 we obtained diffusing888

orbits of the iterated function system (IFS) generated by tfε, σεu consisting of orbit segments889

of the form zn�1 � f
kpnq
ε � σεpznq in Λε, n � 1, . . . ,m � 1, where kpnq � Oplogp1{εqq and890

m � Op1{εq, such that Ipz0q   I1 and Ipzmq ¡ I2. We can rearrange these orbits into orbit891

segments of the form xi�1 � fmi �σε �f
nipxiq, with mi, ni � Oplogp1{εqq, for i � 0, . . . ,m�1,892

such that Ipx0q   I1 and Ipxmq ¡ I2. Each such orbit segment can be approximated up to893
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Opεq by a true orbit of the Poincaré map of the form yiend � fkipyistartq, ki � Oplogp1{εqq,894

with dpyiend, y
i�1
startq   Opεq; see Remark 7.1. The diffusion time is Op1ε logp

1
ε qq. Finally, each895

such orbit of fε gives rise to an orbit segment ziptq, t P rti, ti�1s, of the flow, satisfying the896

requirements of Theorem 4.1.897
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Nizhnĭı Novgorod, 2002.1009

[Tre04] D. Treschev. Evolution of slow variables in a priori unstable Hamiltonian systems. Nonlinearity,1010

17(5):1803–1841, 2004.1011

[Tre12] D. Treschev. Arnold diffusion far from strong resonances in multidimensional a priori unstable1012

Hamiltonian systems. Nonlinearity, 25(9):2717–2757, 2012.1013
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