Hamiltonian systems. Exercises

Marcel Guardia and Tere M.—Seara

Chapter 1: Introduction to Hamiltonian systems
1. Make the phase portrait of the Hamiltonian system
T =y
jo=a-2
and compute its Hamiltonian.

2. Make the phase portrait of the Hamiltonian system

r = x

= —y+ z?
and compute its Hamiltonian.

3. (Meyer-Hall-Offin) Let z, y, z be the usual coordinates in R® | r = zi + yj + 2k, X = ,
Y=y, Z=%,R=7=Xi+Yj+Zk
(a) Compute the three components of angular momentum mr x R.

(b) Compute the Poisson bracket of any two of the components of angular momentum
and show that it is =m times the third component of angular momentum.

(c) Show that if a system admits two components of angular momentum as integrals,
then the system admits all three components of angular momentum as integrals.

4. (Meyer-Hall-Offin) A Lie algebra A is a vector space with a product : A x A — A that
satisfies
e ab = ba (anticommutative),
e a(b+ ¢) = ab+ ac (distributive),
e (aa)b = a(ab) (scalar associative),

e a(bc) 4+ b(ca) + ¢(ab) = 0 (Jacobi identity), where a,b,c € A and « € R or C.

(a) Show that vectors in R? form a Lie algebra where the product * is the cross product.

(b) Show that smooth functions on an open set in R?" form a Lie algebra, where fg =
{f, g}, the Poisson bracket.

(c) Show that the set of all n xn matrices, gl(n,R), is a Lie algebra, where AB = ABBA,
the Lie product.



5.

6.

7.

(Meyer-Hall-Offin) The pendulum equation is 6 + sinf = 0.

(a) Show that 2I = %92 + (1cosf) = %92 + 2sin?(0/2) is an integral.

(b) Sketch the phase portrait.

(c) Make the substitution y = sin(6/2) to get > = (1 — ?)(I — 3?). Show that when
0 < I <1,y =ksn(t, k) solves this equation when k? = I (Look at the definition of
elliptic sine function of Section 1.6 of Meyer-Hall-Offin).

(Meyer-Hall-Offin) Let H : R?" — R be a globally defined conservative Hamiltonian, and
assume that H(z) — +oo as z — +oo. Show that all solutions of 2 = JVH(z) are
bounded. (Hint: Think like Dirichlet.)

Consider a C* Hamiltonian H = H(q,p,t) : U C R*"*! — R such that det(92H) # 0 on
U. Define v = 9,H(q, p, t). Prove

(a) anL(q, v, t) = _aqu(Qapa t)’ 8111' (Q7 v, t) = Di, atL(Q7 v, t) = _atH(q’pv t)
(b) The Lagrangian L is C? and det(92L) # 0.

(¢c) The Euler-Lagrange equations associated to L and the Hamiltonian equations ¢; =
Op, H, p; = —04, H are equivalent.

Chapter 2: The N-body problem

1.

Prove that the linear momentum is a first integral and that the center of mass moves with
constant velocity for the 3 body problem.

Prove that if (a1,...,an) is a central configuration with value A:

(a) For any 7 € R then (7ay,...,Tay) is also a central configuration with value ?)5

(b) If A is an orthogonal matrix, then Aa = (Aay, ..., Aay) is also a central configuration
with the same value A.

(Meyer-Hall-Offin) Draw the complete phase portrait of the collinear Kepler problem.
Integrate the collinear Kepler problem.

(Meyer-Hall-Offin) Show that p?(e? — 1) = 2hc? for the Kepler problem.
(Attention: Meyer-Hall-Offin has a typo)

(Meyer-Hall-Offin) The area of an ellipse is ma?(1 — €2)1/2, where a is the semi-major
axis.We have seen in Keplers problem that area is swept out at a constant rate of ¢/2.
Prove Keplers third law: The period p of a particle in a circular or elliptic orbit (e < 1) of

the Kepler problem is p = (%)afg’/ 2,
0 1
“=(4)
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Find a circular solution of the two-dimensional Kepler problem of the form g = e
a is a constant vector.

(Meyer-Hall-Offin) Let

Then:

Kty where



7.

8.

(Meyer-Hall-Offin) Assume that a particular solution of the N-body problem exists for all
t > 0 with o > 0. Show that U — oo as t — co. Does this imply that the distance between
one pair of particles goes to infinity? (No.)

(Meyer-Hall-Offin) Hills lunar problem is defined by the Hamiltonian

2 1 1
g w® o )

- 2 2

where 2 € R?, y € R2.

Write the equations of motion.
Show that there are two equilibrium points on the x-axis.
Sketch the Hills regions for Hills lunar problem.

Why did Hill say that the motion of the moon was bounded? (He had the Earth at
the origin, and an infinite sun infinitely far away and z was the position of the moon
in this ideal system. What can you say if z and y are small?

Chapter 3: Linear Hamiltonian systems

1.

- W

Let A # 0 be an eigenvalue of a symplectic matrix A. Prove that A, A~ and 2! are also
eigenvalues of A.

Prove Lemma 3.3.6 of Meyer-Hall-Offin.
Prove Lemma 3.3.7 of Meyer-Hall-Offin.
Prove Lemma 3.3.8 of Meyer-Hall-Offin.

(Meyer-Hall-Offin) Prove that the two symplectic matrices

(o B (o —=p
A_(—ﬁ a) and B_<5 a)

are not symplectically similar.

(Meyer-Hall-Offin) Consider the system
Mi+Vq=0, (1)

where M and V are n x n symmetric matrices and M is positive definite. From matrix
theory there is a nonsingular matrix P such that PTMP = I and an orthogonal matrix
R such that RT(PTVP)R = A = diag(\1,...,\,). Show that the above equation can be
reduced to p + Ap = 0. Discuss the stability and asymptotic behavior of these systems.
Write equation 1 as a Hamiltonian system with Hamiltonian matrix A = Jdiag(V, M1).
Use the above results to obtain a symplectic matrix 7" such that

L (0
TAT_(_AO

(Hint: Try T = diag(PR, PTR)).



7. (Meyer-Hall-Offin) Let M and V be as in Equation 1.
(a) Show that if V' has one negative eigenvalue, then some solutions of (1) tend to infinity
as t — %oo.
(b) Consider the system
Mi+ VU(q) =0, (2)

where M is positive definite and U : R™ — R is smooth. Let gy be a critical point of
U such that the Hessian of U at gy has one negative eigenvalue (so gp is not a local
minimum of U). Show that gg is an unstable critical point for the system (2).

8. (Meyer-Hall-Offin) Hills lunar problem is defined by the Hamiltonian

where z,y € R? .

(a) Write the equations of motion.
(b) Show that it has two equilibrium points on the z;—axis.

(c) Show that the linearized system at these equilibrium points are saddle-centers; i.e.,
it has one pair of real eigenvalues and one pair of imaginary eigenvalues.

(d) The linearization matrix of the Restricted 3 Body Problem at the critical point Lo
has two real eigenvalues and two purely imaginary eigenvalues.

(e) The linearization matrix of the Restricted 3 Body Problem at the critical point Ls
has two real eigenvalues and two purely imaginary eigenvalues.

Chapter 6: Symplectic Transformations

1. (Meyer-Hall-Offin) Show that if you scale time by ¢ — ut, then you should scale the
Hamiltonian by H — ' H.

2. (Meyer-Hall-Offin) Scale the Hamiltonian of the N-body problem in rotating coordinates
so that w is 1.

3. (Meyer-Hall-Offin) Consider the Restricted 3-body problem. To investigate solutions near
00, scale by  — 2z, y — ey. Show that the Hamiltonian becomes

2 1
H(z,y) = —mTKy+€3 (H?JQH — Hx|> + 0(82).

Justify this result on physical grounds.

4. (Meyer-Hall-Offin) Consider the Restricted 3-body problem. To investigate solutions near
one of the primaries first shift the origin to one primary. Then scale by  — %z, y — ¢~ 1y,
t — 3t



Chapter 8: Geometric Theory

1.

Consider the vector fields X and Y and their flows ¢(¢, z) and ¢(¢,y). Assume there exists
an homeomorphism h which gives a topological equivalence between them. Prove that:

e pis a fixed point of X if and only if h(p) is a fixed point of Y.

o v={¢(t,x), t € [0,T]} is a periodic orbit of X if and only if h(y) is a periodic orbit
of Y. What can you say about the period of v and h(y)?

e Prove that if 4 is a conjugation the periods of v and h(y) are the same.

(Meyer-Hall-Offin) Let {¢;} be a smooth dynamical system; i.e., {¢;} satisfies (8.5). Prove
that ¢(t,&) = ¢(&) is the general solution of an autonomous differential equation.

(Meyer-Hall-Offin) Let ¢ be a diffeomorphism of R™; so, it defines a discrete dynamical
system. A non-fixed point is called an ordinary point. So p € R™ is an ordinary point if
¥(p) # p. Prove that there are local coordinates  at an ordinary point p and coordinates
y at ¢ = ¥(p) such that in these local coordinates y; = x1,...Ym = @, + 1. (This is the
analog of the flow box theorem for discrete systems.)

(Meyer-Hall-Offin) Let ¢ be as in Problem 2. Let p be a fixed point of ¢). The eigenvalues
of g—;f(p) are called the (characteristic) multipliers of p. If all the multipliers are different
from +1, then p is called an elementary fixed point of ¢. Prove that elementary fixed
points are isolated.

(Meyer-Hall-Offin)

(a) Let 0 < a < b and £ € R™ be given. Show that there is a smooth nonnegative
function v : R™ — R which is identically +1 on the ball ||z — || < a and identically
zero for ||z —¢|| > b.

(b) Let O be any closed set in R™. Show that there exists a smooth, nonnegative function
0 : R™ — R which is zero exactly on O.

(Meyer-Hall-Offin) Let H(q1,...,qn,p1,---,PN); Gi> Pi € R? be invariant under translation;
so, H(q1 +5,...,qn +8,p1,...,0n) = H(q1,...,qNn,p1,...,pn) for all s € R3. Show that
total linear momentum, L = ) p;, is an integral. This is another consequence of the
Noether theorem.

(Meyer-Hall-Offin) An m x m nonsingular matrix 7 is such that T2 = I is a discrete
symmetry of (or a reflection for) & = f(x) if and only if f(Tz) = =T f(z) for all z € R™.
This equation is also called reversible in this case.

(a) Prove: If T is a discrete symmetry of (1), then ¢(¢,T€) = Tp(—t,&) where ¢(t,§) is
the general solution of & = f(x).

(b) Consider the 2 x 2 case and let T' = diag(1, —1). What does f(Tx) = —T f(z) mean
about the parity of fi; and fo? Show that the first item means that a reflection of a
solution in the z7 axis is a solution.



Chapter 9: Continuation of solutions

1. (Meyer-Hall-Offin) Consider a periodic system of equations of the form @ = f(¢, z, v) where
v is a parameter and f is T-periodic in t. Let ¢(t, &, v) be the general solution, ¢(¢,&,v) = &

(a) Show that ¢(t,&’, 1) is T-periodic if and only if ¢(T, ¢, v") = ¢'.

(b) A T-periodic solution ¢(t,¢’,1') can be continued if there is a smooth function £(v)
such that £(v') = ¢ and ¢(t,£(v),v) is T-periodic. The multipliers of the T-periodic
solution ¢(t,&’,v') are the eigenvalues of 0¢p(T, &, v'). Show that a T-periodic solu-
tion can be continued if all its multipliers are different from +1.

2. (Meyer-Hall-Offin) Consider the classical Duffing’s equation i + z + y2% = A cos wt, which
is Hamiltonian with respect to

1 4
H(z,y,t)= §(y2 + %) —|—7% — Ax coswt
where yy = @. Show that if w™' # 0,+1,42,43, ..., then for small forcing A and small
nonlinearity v there is a small periodic solution of the forced Duffing equation with the
same period as the external forcing, T' = 27 /w.

3. (Meyer-Hall-Offin) Hill’s lunar problem is defined by the Hamiltonian

Iyl L]
=0 oty - o St - ),

where z,y € R%. Show that it has two equilibrium points on the x; axis. Linearize the
equations of motion about these equilibrium points, and discuss how the Lyapunov’s center
and the stable manifold theorem apply.



