Hamiltonian systems. Exercises

Marcel Guardia and Tere M.-Seara

Chapter 1: Introduction to Hamiltonian systems

1. Make the phase portrait of the Hamiltonian system

$$\dot{x} = y$$

$$\dot{y} = x - \frac{x^3}{3}$$

and compute its Hamiltonian.

2. Make the phase portrait of the Hamiltonian system

$$\begin{array}{rcl} \dot{x} & = & x \\ \dot{y} & = & -y + x^2 \end{array}$$

and compute its Hamiltonian.

3. (Meyer-Hall-Offin) Let x, y, z be the usual coordinates in \mathbb{R}^3 , $r = xi + yj + zk, X = \dot{x}$, $Y = \dot{y}, Z = \dot{z}$, $R = \dot{r} = Xi + Yj + Zk$.

- (a) Compute the three components of angular momentum $mr \times R$.
- (b) Compute the Poisson bracket of any two of the components of angular momentum and show that it is $\pm m$ times the third component of angular momentum.
- (c) Show that if a system admits two components of angular momentum as integrals, then the system admits all three components of angular momentum as integrals.

4. (Meyer-Hall-Offin) A Lie algebra A is a vector space with a product $: A \times A \to A$ that satisfies

- ab = ba (anticommutative),
- a(b+c) = ab + ac (distributive),
- $(\alpha a)b = \alpha(ab)$ (scalar associative),
- a(bc) + b(ca) + c(ab) = 0 (Jacobi identity), where $a, b, c \in A$ and $\alpha \in \mathbb{R}$ or \mathbb{C} .
- (a) Show that vectors in \mathbb{R}^3 form a Lie algebra where the product * is the cross product.
- (b) Show that smooth functions on an open set in \mathbb{R}^{2n} form a Lie algebra, where $fg = \{f, g\}$, the Poisson bracket.
- (c) Show that the set of all $n \times n$ matrices, $gl(n, \mathbb{R})$, is a Lie algebra, where AB = ABBA, the Lie product.

1

- 5. (Meyer-Hall-Offin) The pendulum equation is $\ddot{\theta} + \sin\theta = 0$.
 - (a) Show that $2I = \frac{1}{2}\dot{\theta}^2 + (1\cos\theta) = \frac{1}{2}\dot{\theta}^2 + 2\sin^2(\theta/2)$ is an integral.
 - (b) Sketch the phase portrait.
 - (c) Make the substitution $y = \sin(\theta/2)$ to get $\dot{y}^2 = (1 y^2)(I y^2)$. Show that when 0 < I < 1, y = ksn(t, k) solves this equation when $k^2 = I$ (Look at the definition of elliptic sine function of Section 1.6 of Meyer-Hall-Offin).
- 6. (Meyer-Hall-Offin) Let $H: \mathbb{R}^{2n} \to \mathbb{R}$ be a globally defined conservative Hamiltonian, and assume that $H(z) \to +\infty$ as $z \to +\infty$. Show that all solutions of $\dot{z} = J\nabla H(z)$ are bounded. (Hint: Think like Dirichlet.)
- 7. Consider a C^2 Hamiltonian $H = H(q, p, t) : U \subset \mathbb{R}^{2n+1} \to \mathbb{R}$ such that $\det(\partial_p^2 H) \neq 0$ on U. Define $v = \partial_p H(q, p, t)$. Prove
 - (a) $\partial_{q_i}L(q,v,t) = -\partial_{q_i}H(q,p,t), \ \partial_{v_i}(q,v,t) = p_i, \ \partial_tL(q,v,t) = -\partial_tH(q,p,t).$
 - (b) The Lagrangian L is C^2 and $\det(\partial_v^2 L) \neq 0$.
 - (c) The Euler-Lagrange equations associated to L and the Hamiltonian equations $\dot{q}_i = \partial_{p_i} H$, $\dot{p}_i = -\partial_{q_i} H$ are equivalent.

Chapter 2: The N-body problem

- 1. Prove that the linear momentum is a first integral and that the center of mass moves with constant velocity for the 3 body problem.
- 2. Prove that if (a_1, \ldots, a_N) is a central configuration with value λ :
 - (a) For any $\tau \in \mathbb{R}$ then $(\tau a_1, \dots, \tau a_N)$ is also a central configuration with value $\frac{\lambda}{\tau^3}$.
 - (b) If A is an orthogonal matrix, then $Aa = (Aa_1, \ldots, Aa_N)$ is also a central configuration with the same value λ .
- 3. (Meyer-Hall-Offin) Draw the complete phase portrait of the collinear Kepler problem. Integrate the collinear Kepler problem.
- 4. (Meyer-Hall-Offin) Show that $\mu^2(\epsilon^2 1) = 2hc^2$ for the Kepler problem. (Attention: Meyer-Hall-Offin has a typo)
- 5. (Meyer-Hall-Offin) The area of an ellipse is $\pi a^2 (1 \epsilon^2)^{1/2}$, where a is the semi-major axis. We have seen in Keplers problem that area is swept out at a constant rate of c/2. Prove Keplers third law: The period p of a particle in a circular or elliptic orbit ($\epsilon < 1$) of the Kepler problem is $p = (\frac{2\pi}{\sqrt{\mu}})a^{3/2}$.
- 6. (Meyer-Hall-Offin) Let

$$K = \left(\begin{array}{cc} 0 & 1\\ -1 & 0 \end{array}\right)$$

Then:

$$e^{Kt} = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix}$$

Find a circular solution of the two-dimensional Kepler problem of the form $q = e^{Kt}a$ where a is a constant vector.

- 7. (Meyer-Hall-Offin) Assume that a particular solution of the N-body problem exists for all t>0 with h>0. Show that $U\to\infty$ as $t\to\infty$. Does this imply that the distance between one pair of particles goes to infinity? (No.)
- 8. (Meyer-Hall-Offin) Hills lunar problem is defined by the Hamiltonian

$$H = \frac{||y||^2}{2} - x^T K y - \frac{1}{||x||} - \frac{1}{2} (3x_1^2 - ||x||^2)$$

where $x \in \mathbb{R}^2$, $y \in \mathbb{R}^2$.

- (a) Write the equations of motion.
- (b) Show that there are two equilibrium points on the x_1 -axis.
- (c) Sketch the Hills regions for Hills lunar problem.
- (d) Why did Hill say that the motion of the moon was bounded? (He had the Earth at the origin, and an infinite sun infinitely far away and x was the position of the moon in this ideal system. What can you say if x and y are small?

Chapter 3: Linear Hamiltonian systems

- 1. Let $\lambda \neq 0$ be an eigenvalue of a symplectic matrix A. Prove that $\overline{\lambda}$, λ^{-1} and $\overline{\lambda}^{-1}$ are also eigenvalues of A.
- 2. Prove Lemma 3.3.6 of Meyer-Hall-Offin.
- 3. Prove Lemma 3.3.7 of Meyer-Hall-Offin.
- 4. Prove Lemma 3.3.8 of Meyer-Hall-Offin.
- 5. (Meyer-Hall-Offin) Prove that the two symplectic matrices

$$A = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$$

are not symplectically similar.

6. (Meyer-Hall-Offin) Consider the system

$$M\ddot{q} + Vq = 0, (1)$$

where M and V are $n \times n$ symmetric matrices and M is positive definite. From matrix theory there is a nonsingular matrix P such that $P^TMP = I$ and an orthogonal matrix R such that $R^T(P^TVP)R = \Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. Show that the above equation can be reduced to $\ddot{p} + \Lambda p = 0$. Discuss the stability and asymptotic behavior of these systems. Write equation 1 as a Hamiltonian system with Hamiltonian matrix $A = J\operatorname{diag}(V, M^1)$. Use the above results to obtain a symplectic matrix T such that

$$T^1 A T = \begin{pmatrix} 0 & I \\ -\Lambda & 0 \end{pmatrix}$$

(Hint: Try $T = diag(PR, P^TR)$).

- 7. (Meyer-Hall-Offin) Let M and V be as in Equation 1.
 - (a) Show that if V has one negative eigenvalue, then some solutions of (1) tend to infinity as $t \to \pm \infty$.
 - (b) Consider the system

$$M\ddot{q} + \nabla U(q) = 0, \tag{2}$$

where M is positive definite and $U: \mathbb{R}^n \to \mathbb{R}$ is smooth. Let q_0 be a critical point of U such that the Hessian of U at q_0 has one negative eigenvalue (so q_0 is not a local minimum of U). Show that q_0 is an unstable critical point for the system (2).

8. (Meyer-Hall-Offin) Hills lunar problem is defined by the Hamiltonian

$$H = \frac{\|y\|^2}{2} - x^T K y - \frac{1}{\|x\|} - \frac{1}{2} \left(3x_1^1 - \|x\|^2 \right)$$

where $x, y \in \mathbb{R}^2$.

- (a) Write the equations of motion.
- (b) Show that it has two equilibrium points on the x_1 -axis.
- (c) Show that the linearized system at these equilibrium points are saddle-centers; i.e., it has one pair of real eigenvalues and one pair of imaginary eigenvalues.
- (d) The linearization matrix of the Restricted 3 Body Problem at the critical point L_2 has two real eigenvalues and two purely imaginary eigenvalues.
- (e) The linearization matrix of the Restricted 3 Body Problem at the critical point L_3 has two real eigenvalues and two purely imaginary eigenvalues.

Chapter 6: Symplectic Transformations

- 1. (Meyer-Hall-Offin) Show that if you scale time by $t \to \mu t$, then you should scale the Hamiltonian by $H \to \mu^{-1} H$.
- 2. (Meyer-Hall-Offin) Scale the Hamiltonian of the N-body problem in rotating coordinates so that ω is 1.
- 3. (Meyer-Hall-Offin) Consider the Restricted 3-body problem. To investigate solutions near ∞ , scale by $x \to \varepsilon^{-2}x$, $y \to \varepsilon y$. Show that the Hamiltonian becomes

$$H(x,y) = -x^T K y + \varepsilon^3 \left(\frac{\|y\|^2}{2} - \frac{1}{\|x\|} \right) + \mathcal{O}(\varepsilon^2).$$

Justify this result on physical grounds.

4. (Meyer-Hall-Offin) Consider the Restricted 3-body problem. To investigate solutions near one of the primaries first shift the origin to one primary. Then scale by $x \to \varepsilon^2 x$, $y \to \varepsilon^{-1} y$, $t \to \varepsilon^3 t$.

Chapter 8: Geometric Theory

- 1. Consider the vector fields X and Y and their flows $\phi(t,x)$ and $\psi(t,y)$. Assume there exists an homeomorphism h which gives a topological equivalence between them. Prove that:
 - p is a fixed point of X if and only if h(p) is a fixed point of Y.
 - $\gamma = {\phi(t, x), t \in [0, T]}$ is a periodic orbit of X if and only if $h(\gamma)$ is a periodic orbit of Y. What can you say about the period of γ and $h(\gamma)$?
 - Prove that if h is a conjugation the periods of γ and $h(\gamma)$ are the same.
- 2. (Meyer-Hall-Offin) Let $\{\phi_t\}$ be a smooth dynamical system; i.e., $\{\phi_t\}$ satisfies (8.5). Prove that $\phi(t,\xi) = \phi_t(\xi)$ is the general solution of an autonomous differential equation.
- 3. (Meyer-Hall-Offin) Let ψ be a diffeomorphism of \mathbb{R}^m ; so, it defines a discrete dynamical system. A non-fixed point is called an ordinary point. So $p \in \mathbb{R}^m$ is an ordinary point if $\psi(p) \neq p$. Prove that there are local coordinates x at an ordinary point p and coordinates y at $q = \psi(p)$ such that in these local coordinates $y_1 = x_1, \dots y_m = x_m + 1$. (This is the analog of the flow box theorem for discrete systems.)
- 4. (Meyer-Hall-Offin) Let ψ be as in Problem 2. Let p be a fixed point of ψ . The eigenvalues of $\frac{\partial \psi}{\partial x}(p)$ are called the (characteristic) multipliers of p. If all the multipliers are different from +1, then p is called an elementary fixed point of ψ . Prove that elementary fixed points are isolated.
- 5. (Meyer-Hall-Offin)
 - (a) Let 0 < a < b and $\xi \in \mathbb{R}^m$ be given. Show that there is a smooth nonnegative function $\gamma : \mathbb{R}^m \to \mathbb{R}$ which is identically +1 on the ball $||x \xi|| < a$ and identically zero for $||x \xi|| > b$.
 - (b) Let O be any closed set in \mathbb{R}^m . Show that there exists a smooth, nonnegative function $\delta: \mathbb{R}^m \to \mathbb{R}$ which is zero exactly on O.
- 6. (Meyer-Hall-Offin) Let $H(q_1, \ldots, q_N, p_1, \ldots, p_N)$, $q_i, p_i \in \mathbb{R}^3$ be invariant under translation; so, $H(q_1 + s, \ldots, q_N + s, p_1, \ldots, p_N) = H(q_1, \ldots, q_N, p_1, \ldots, p_N)$ for all $s \in \mathbb{R}^3$. Show that total linear momentum, $L = \sum p_i$, is an integral. This is another consequence of the Noether theorem.
- 7. (Meyer-Hall-Offin) An $m \times m$ nonsingular matrix T is such that $T^2 = I$ is a discrete symmetry of (or a reflection for) $\dot{x} = f(x)$ if and only if f(Tx) = -Tf(x) for all $x \in \mathbb{R}^m$. This equation is also called reversible in this case.
 - (a) Prove: If T is a discrete symmetry of (1), then $\phi(t, T\xi) = T\phi(-t, \xi)$ where $\phi(t, \xi)$ is the general solution of $\dot{x} = f(x)$.
 - (b) Consider the 2×2 case and let T = diag(1, -1). What does f(Tx) = -Tf(x) mean about the parity of f_1 and f_2 ? Show that the first item means that a reflection of a solution in the x_1 axis is a solution.

Chapter 9: Continuation of solutions

- 1. (Meyer-Hall-Offin) Consider a periodic system of equations of the form $\dot{x} = f(t, x, \nu)$ where ν is a parameter and f is T-periodic in t. Let $\phi(t, \xi, \nu)$ be the general solution, $\phi(t, \xi, \nu) = \xi$
 - (a) Show that $\phi(t, \xi', \nu')$ is T-periodic if and only if $\phi(T, \xi', \nu') = \xi'$.
 - (b) A T-periodic solution $\phi(t, \xi', \nu')$ can be continued if there is a smooth function $\bar{\xi}(\nu)$ such that $\bar{\xi}(\nu') = \xi'$ and $\phi(t, \bar{\xi}(\nu), \nu)$ is T-periodic. The multipliers of the T-periodic solution $\phi(t, \xi', \nu')$ are the eigenvalues of $\partial_{\xi}\phi(T, \xi', \nu')$. Show that a T-periodic solution can be continued if all its multipliers are different from +1.
- 2. (Meyer-Hall-Offin) Consider the classical Duffing's equation $\ddot{x} + x + \gamma x^3 = A\cos\omega t$, which is Hamiltonian with respect to

$$H(x, y, t) = \frac{1}{2}(y^2 + x^2) + \gamma \frac{x^4}{4} - Ax \cos \omega t$$

where $y = \dot{x}$. Show that if $\omega^{-1} \neq 0, \pm 1, \pm 2, \pm 3, \ldots$, then for small forcing A and small nonlinearity γ there is a small periodic solution of the forced Duffing equation with the same period as the external forcing, $T = 2\pi/\omega$.

3. (Meyer-Hall-Offin) Hill's lunar problem is defined by the Hamiltonian

$$H = \frac{\|y\|^2}{2} - x^T K y - \frac{1}{\|x\|} - \frac{1}{2} (3x_1^2 - \|x\|^2),$$

where $x, y \in \mathbb{R}^2$. Show that it has two equilibrium points on the x_1 axis. Linearize the equations of motion about these equilibrium points, and discuss how the Lyapunov's center and the stable manifold theorem apply.