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Integrable Hamiltonian Systems with a fast periodic perturbation

Non-autonomous fast periodic perturbation of a one dedgrée@dom
hamiltonian

t t

H (xvya g) — Ho(ZU,y) + :qu (xvya g)

such that

e The Hamiltonian is analytic.

2

Ho(w.y) = % + V(@)

e > 01s a small parameter.
1 IS a parametenot necessarily small

The perturbation iwe periodic in time and has zero average

27T
Hi(x,y,7)dT =0
0




Features of the integrable Hamiltonian Systems

Assume that the integrable system

Holw.y) = & + V(@

e Has a hyperbolic critical point &0, 0).

e |ts stable and unstable invariant manifolds coincide alng
separatrix.







What happens when we add the perturbation?

The parameter is not small and then the perturbation has the samg
size as the unperturbed system.

A priori we cannot say anything about the perturbed system.

Nevertheless, since the perturbation is fast periodic @asdzbro
average, we can do one step of averaging.

This change of variables isclose to the identity and transforms

t y? t
H L, Y, — — +V(CC)+/LH1 L, Y, —
£ 2 g




e Now, the perturbation has size and therefore is small.

e Classical perturbation theory ensures that:

— There exist a hyperboligre-periodic orbitue-close to(0, 0).

— Its stable and unstable invariant manifolds ateclose to the
unperturbed separatrix.

e Question: Do the invariant manifolds of the perturbed phoorbit
still coincide or not?




3-dimensional phase space

t t

H (xaya g) — Ho(CC,y) + :qu (xaya g)

Y




The 27e-time Poincaré map formulation
t = 1o t =19+ 2me

Pto ('2707e

Pt (zp,yo) : )
. (Lo, Y0

Pt |

t=1tg =ty + 2me

From the perturbed system it can be derivetiszrete dynamicaystem
considering thers-time Poincag map.




The splitting of separatrices in the Poincaké map

to
e Considering the Poincamap,

we obtain this picture.

e \We can measure several quan-
tities to study the splitting.

I
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Since we want to prove the existence of transversal homoclin
points, a natural quantity to measure would be the angledmithe
Invariant manifolds at the homoclinic point.

Nevertheless, the angle depend on the homoclinic pointtaaaot a
symplectic invariant.

The distance between the invariant manifolds also depemdtiseo
chosen coordinates and is neither a symplectic invariant.

Between transversal homaoclinic points, the invariant riodaé create
lobes.

The area of these lobes is invariant by iteration of the Rogémap
due to thesymplectic structure

We will measure the splitting in terms of the area of theses$ob




Perturbative approach in ¢

To understand what is happening, we can look for parameateis of
the invariant manifolds
x'(r,e), x°(r,¢€)
— Sincee is small, we can look for formal solutions as a power series
£:
% (r,e) = zo(r) +exf(r) + 22§ (r) +... fora=u,s

where we have omitted the dependence.on

For these problems which are analytic and have a fast periodi
perturbation:

xy(r) Vk e N

Conclusion

z(r,e) — 2%(r,e) = O(e¥) Vk € N

— Proceeding formally we see that their differenceasond all orders




What is happening?

Two options:

1 Both manifolds coincide also in the perturbed case (theipgssd
system is alsintegrablg — the power series iais convergertt

2 Both manifolds do not coincides the power series ia is divergent
and the difference between manifolds has tdldewith respect.

Generically is happening the second option
— In fact, we will see that generically the differencesigoonentially

smallwith respect.




Perturbative approach in u: Classical Poincae-Melnikov Theory

e For a moment, let’s forget thatis a small parameter and let us
considery as an arbitrarily small parameter.

e In that case, we can consider a perturbative approagh in

e This approach was initially considered by Poirecand is usually
called Poinca#-Melnikov Method.




Poincaré-Melnikov Theory (1)

1. We fix X, atransversal section
to the unperturbed separatrix in
7[2 order to measure in it the split-

W ting.
2. We consider a parameteriza-
tion v of the unperturbed sep-

X
aratrix such thaty(0) belongs

to this section.




Poincare-Melnikov Theory (1)

3. We define thé/lelnikov functionas:
oo t
M(s,e) = /_OO {Hy, H1} (7(15 — 5), g) dt
where
— s corresponds to the time evolution through the separatrix.
— {Hy, H1} is the Poisson bracket:

O0Hy 0Hy O0H, 0H,
Hy, Hi} = —
{Ho, Hi} or Oy oxr Oy

— M can be computed sindé,, H, and~ are known.




Poincaré-Melnikov Theory (llI)
Then:

e Thedistancebetween both invariant manifolds far> 0 is given by:

- M(s,¢)
d(s, p,€) = |DHy(v(—s))]|

e If there existssy such that

+0 (1)

(i) M(s0,e) = 0 (i) %—]‘j £ 0

S=S

Then the invariant manifoldsitersect transversaliy a point which
IS close toy(sg).

o If 5oy s; are two consecutive simple zeros of the Melnikov functio
theareaof the corresponding lobe is given by:

A:,u/ M(s,e)ds + O (p?)




Conclusion Poincae-Melnikov theory allows to

e Prove the existence of transversal homoclinic orbits

e Compute the distance between manifolds, and thereforempote

asymptotically foru — 0 the region of the phase space where chaof
IS confined.

e Nevertheless, these results are gaarbitrarily small and: fixed.




e To see whether PoinaaMelnikov Theory is valid also for smail
we have to study the dependence:zanf the Melnikov function.

e The dependence anof the Melnikov functions is extremely

sensitive on the analyticity properties of the Hamiltonian

e S0, we need to impose strong conditions on the Hamiltonian to
compute this dependence.




Hypotheses on the Hamiltonian
Assume

e V/(z) is either a polynomial or a trigonometric polynomial.

o Hi(z,y,t/e)is

— A polynomial iny.
— Either a polynomial or a trigonometric polynomial en

— Any dependence oh




Hypotheses on the separatrix

e Parameterization of the separatfif.) = (zq(u), yo(u)).

e (zg(u),yo(u)) must have singularities in the complex plane. Why?
— (xo(u), yo(u)) are analytic functions bounded at infinity.

— If they do not have singularities, they are entire, and then b
Liouville Theorem they must be constant.

— Therefore, they must have some singularities.




e Letus assume that
— yo(u) is analytic in a complex strip|Imu| < a}.
— yo(u) has only one singularity in the lind$m v = +a}. We
choosey such that they are at = +ia.
e Then,y(u) satisfies

1

Yo (u) ™~ (

for certainr > 1.




Example satisfying these hypotheses

The perturbed Duffing equation:

The unperturbed separatrix is

V2 sinh ¢
— V2
v(w) <(:osht7 fcosth

has singularities at = zg + km, k € Z. Moreover

\/5 sinh ¢ 1

cosh®t  (u=£in/2)?
Thatis,r = 2.




The order of the perturbation

There existd > 0 such that

Hy (zo(w) sn(u). £ ) ~

£ u Fia)t




Poincaré-Melnikov prediction

e With these (strong) hypotheses we can compute the Melnikov
function using Residuums Theory or other complex analytic
techniques.

e The area of the lobes is given by,

A=t o ()

where

— a Is the imaginary part of the singularity of the unperturbed
separatrix.

— ¢ Is the order of the perturbation.
— fo € Clis a constant independent pfandes given by the
Melnikov integral, which generically satisfigg # 0.

e The first order inu is exponentially small with respect to




o If we takey = <P for p > 0 (which is the natural relation):

Ale) = |f0\e_%5p_£+1 + O (7).

Therefore, ifu = &P, the remainder is bigger than the Melnikov
function prediction.

e 1, has to beexponentially smalith respect ta to apply
Poincar’e-Melinkov Theory.




Previous results
Consider
t t
H (xvya g) — Ho(ZU,y) + :qu (xvya g)

Assuming the same hypotheses as us and takig:?:

e V. Gelfreich (1997) proved that Melnikov function predidte
correctly the splitting provided was big enough.

e A. Delshams and T. Seara (1997) improved the resuyit:to/.




Results in the case constant independent efhave only been
obtained for particular examples.

Only for the pendulum with certain perturbations: D. Tresch
(1997), V. Gelfreich (2001), C. Ola/(2006), M. G., C. Olie, T. M.
Seara (2010).

In particular, in all these cases the perturbation did npedd ony.

In all these cases it is seen that the splitting is exponi@nsmall but
the first asymptotic order does not coincide with Melnikov.




Our results

We generalize the previous results, giving an asymptotiméda for
the area of the lobes for wider rangesun

In some cases we are able to give results for fixaéadependent of.

In this case the unperturbed system and perturbation hasathe
size.

In some other cases we have to restrict ourselves taking
polynomially small with respect te.

We see that in general, Melnikov does not predict the spdtti
correctly.

In this talk, we show them focusing on an examplee perturbed
Duffing equation




The perturbed Duffing equation

t 2 2 4 t
H(”) =% — 5+ Hpasin

Order of the perturbation:

. |
(@o(w))" ~ o g 2y

That isf¢ = n.

Melnikov prediction:

| fol

A= ’ugn—1€_2_€ +0 (1%)

The constanf can be explicitly computed and satisfigs+ 0.




True asymptotic formula
We obtain different results depending on
First casen < 4 (namely/ — 2r < 0)

For anyu independent of ands small enough:

™ 1
A e E (140 (1))

for somer > 0.

Conclusion: In this case, Melnikov predicts correctly eifahe
perturbation has the same size as the unperturbed system.




Second case: = 4 (namely? — 2r = 0)

For anyu independent of ands small enough, there exists a function
f(w), such that, iff (u) # 0,

A= 0, (1+0<|1i5\)>

The functionf (x) is analytic and satisfes(u) = fo + O(u).

Conclusions:

e As in the previous case, even if perturbation and unpertuslystem
have the same size, the splitting is exponentially small.

e If 11 Is small, Melnikov predicts correctly the splitting.

e If 1 isindependent of, Melnikov fails to predict the splitting.




Third casen > 4 (namely? — 2r > 0)

e \We are not able to give results for apyndependent of. We have to
takey ~ P withp > n — 4.

o Takep = 6", Namely,

¢ 2 2 4 t
H<xay7_>:%_x _|_x +,ijnsin—
E

2 4 €

e Then, for any independent of ande small enough, there exists a
function f(4), such that, iff (§) # 0,

A= (100 ()

The functionf(¢) is analytic and satisfeg(d) = fo + O(6).




Conclusions:
Sincef(d) = fo + O(9), for § small Melnikov predicts correctly.

In the original parameter, jf ~ P with p > n — 4 Melnikov
predicts correctly.

If § is independent of, that is;, ~ €*~*, Melnikov fails to predict

the splitting.

The true asymptotic formula for independent of (unperturbed
system and perturbation of the same size) has probablyaditi
correcting terms in the exponential.

There is not any result dealing with this case.




Perturbations depending ony

e |f the perturbation depends anthe first order also changes.

e Example:

t 2 2 4 ¢ t
H(w,y,-):y _ 2 +:1: —|—,u(y2cos—+x4sin—>
€ E

2 2 4 €

e Then, fory independent of ande small enough,

Al P 1
A=p g3 sttt (140 | Ineg|n—4
I P07 [+ 1
— M550 © = (1+0 | Ing|n—4




Conclusions

e Foru independent of, Melnikov does not predict correctly even the
power ofe in front of the exponentially

e Namely, in these cases Melnikov only predicts correctly the
coefficient in the exponential.

. 1 . .
e Nevertheless, ifi <« — Melnikov predicts correctly.
ne




Splitting of separatrices for a meromorphic perturbation

e The results given apply whdén and H; are polynomials or
trigonometric polynomials in: and polynomials iny.

e Nevertheless, in many models, for instance in Celestialidpics,
the Hamiltonian functions are not entire but have a finitig sif
analyticity.

e Sometimes, the strip of analyticityis large of the formnr ~ In «
with o < 1.




Questions

e Which is the size of the Melnikov function for this kind of
Hamiltonian Systems?

e When does the Melnikov function predict correctly the sitée
splitting of separatrices?

e When the strip is of the forma ~ In a with o < 1, can we expand
the perturbation iv and just consider the first order? or all the
orders make a contribution to the first order of the diffeeehetween
manifolds?




A simple model

e Example:
. . sin & ot
T =sSInx -+ K : 5 SN —
(1 — asinx) 3

wherea € (0, 1).

e It has Hamiltonian
Y’ t
H(x,y,t) = 5 +cosx — 1 4 pum(x)sin —
£

Sin &

wherem is the primitive of

(1 —asinz)®

e (0,0) is a hyperbolic periodic orbit even for the perturbed system




Computation of the Melnikov function

e Melnikov function:

oo sin z(u
M) = [yt )

— o0 (1 — asinx(u))

_4/+°° sinh u cosh «

— 00 ((:osh2 u — 2asinh u)

e The first order of this integral can be computed using residue
theorem.




Computation of the Melnikov function (1l)

o If o= O (e?) with ¢ > 2: Since the integral is uniformly convergent
in the reals, we can exparnd (¢y) in power series ofv and split the
integral

M (to) = 4§:(k — 1)2%/“/

E—0 —oco COS

too ginh* 1y

h2k—|—3 U

e Its first term gives the bigger contribution to the splitting

T

M (to) ~ 4me™%e” 2¢
e In that case, the exponential coefficient is given by the derp
singularity of the separatrix.

e Conclusion: If the analyticity strip of the perturbationbig) enough
(o < £?), the size of the Melnikov function is given as in the entire
perturbation case.




Computation of the Melnikov function (llI)

If « = O(e?) with ¢ € |0, 2], the integral of the summands is bigger
ask increases.

We look for the singularities of the integrand.

Consideru* = n £ 1p singularities of the integrand closest to the
reals.

Ifaissmallp:i<g—\/5+0( )).

If « is fixed and independent ef p is also independent efand is
unrelated to the singularities of the separatrix.




Computation of the Melnikov function (1V)

e Then, Melnikov is given by

gp—1
M (tg) ~ e smaller term
et (T j

e |f, for instance, one takas = ¢,

T—24/€ 3
M(tg) ~ e 2¢ (510_5 + smaller term}

e In these cases, evendfis small, the first order of the Melnikov
function is given by the full jet inv of the perturbation.




Validity of the Melnikov prediction

If o = O(e?) with ¢ > 2 ande is small enough: the Melnikov
function predicts correctly the splitting provided= O (£P) with
p > 0.

The limit caseu fixed and independent ef(integrable system and
perturbation of the same order) is expected to have expafignt
small splitting of separatrices which is not well predicbgdthe
Melnikov function.

If a = O(e?) with g € [0, 2], € is small enough and < 1: Melnikov
function predicts correctly the splitting provided+ g —1>0.

The limit casep + g — 1 = 0 Is expected to have exponentially small

splitting of separatrices which is not well predicted by kelnikov
function.
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Non-exponentially small splitting of separatrices

Recall
. . sin & ot
r=8Inxr+ K : 5 SIN —
(1 — asinx) 3

If we takea =1 — O (e"):

e The strip of analyticity inc of the Hamiltonian isD (¢2).

o If r > 2, the Melnikov function satisfies
M(to) ~ 5_1

o If 1 =P with p > 1, Melnikov predicts correctly the difference
between the invariant manifolds, which is not exponerntiaithall.




