Analytic properties of one and a half degrees of freedom Hamiltonian Systems and exponentially small splitting of separatrices

Inmaculada Baldomá, Ernest Fontich, Marcel Guardia, Tere M-Seara

Integrable Hamiltonian Systems with a fast periodic perturbation

Non-autonomous fast periodic perturbation of a one degree of freedom hamiltonian

$$H\left(x, y, \frac{t}{\varepsilon}\right) = H_0(x, y) + \mu H_1\left(x, y, \frac{t}{\varepsilon}\right)$$

such that

- The Hamiltonian is analytic.
- $H_0(x,y) = \frac{y^2}{2} + V(x)$.
- $\varepsilon > 0$ is a small parameter.
- μ is a parameter not necessarily small.
- The perturbation is $2\pi\varepsilon$ periodic in time and has zero average

$$\int_0^{2\pi} H_1(x, y, \tau) d\tau = 0$$

Features of the integrable Hamiltonian Systems

Assume that the integrable system

$$H_0(x,y) = \frac{y^2}{2} + V(x)$$

- Has a hyperbolic critical point at (0,0).
- Its stable and unstable invariant manifolds coincide along a separatrix.

What happens when we add the perturbation?

- The parameter μ is not small and then the perturbation has the same size as the unperturbed system.
- A priori we cannot say anything about the perturbed system.
- Nevertheless, since the perturbation is fast periodic and has zero average, we can do one step of averaging.
- This change of variables is ε -close to the identity and transforms

$$H\left(x, y, \frac{t}{\varepsilon}\right) = \frac{y^2}{2} + V(x) + \mu H_1\left(x, y, \frac{t}{\varepsilon}\right)$$

into

$$\widetilde{H}\left(\widetilde{x},\widetilde{y},\frac{t}{\varepsilon}\right) = \frac{\widetilde{y}^2}{2} + V(\widetilde{x}) + \mu\varepsilon\widetilde{H}_1\left(\widetilde{x},\widetilde{y},\frac{t}{\varepsilon},\varepsilon\right)$$

- Now, the perturbation has size $\mu\varepsilon$ and therefore is small.
- Classical perturbation theory ensures that:
 - There exist a hyperbolic $2\pi\varepsilon$ -periodic orbit $\mu\varepsilon$ -close to (0,0).
 - Its stable and unstable invariant manifolds are $\mu\varepsilon$ -close to the unperturbed separatrix.
- Question: Do the invariant manifolds of the perturbed periodic orbit still coincide or not?

3-dimensional phase space

Recall

$$H\left(x, y, \frac{t}{\varepsilon}\right) = H_0(x, y) + \mu H_1\left(x, y, \frac{t}{\varepsilon}\right)$$

The $2\pi\varepsilon$ -time Poincaré map formulation

From the perturbed system it can be derived a discrete dynamical system considering the $2\pi\varepsilon$ -time Poincaré map.

The splitting of separatrices in the Poincaré map

- Considering the Poincaré map, we obtain this picture.
- We can measure several quantities to study the splitting.

- Since we want to prove the existence of transversal homoclinic points, a natural quantity to measure would be the angle between the invariant manifolds at the homoclinic point.
- Nevertheless, the angle depend on the homoclinic point and it is not a symplectic invariant.
- The distance between the invariant manifolds also depends on the chosen coordinates and is neither a symplectic invariant.
- Between transversal homoclinic points, the invariant manifolds create lobes.
- The area of these lobes is invariant by iteration of the Poincaré map due to the symplectic structure.
- We will measure the splitting in terms of the area of these lobes.

Perturbative approach in ε

To understand what is happening, we can look for parameterizations of the invariant manifolds

$$x^{u}(r,\varepsilon), x^{s}(r,\varepsilon)$$

 \rightarrow Since ε is small, we can look for formal solutions as a power series of ε :

$$x^{\alpha}(r,\varepsilon) = x_0(r) + \varepsilon x_1^{\alpha}(r) + \varepsilon^2 x_2^{\alpha}(r) + \dots$$
 for $\alpha = u, s$

where we have omitted the dependence on μ .

For these problems which are analytic and have a fast periodic perturbation:

$$x_k^u(r) = x_k^s(r) \ \forall k \in \mathbb{N}$$

Conclusion:

$$x^{u}(r,\varepsilon) - x^{s}(r,\varepsilon) = \mathcal{O}(\varepsilon^{k}) \ \forall k \in \mathbb{N}$$

→ Proceeding formally we see that their difference is beyond all orders.

What is happening?

Two options:

- 1 Both manifolds coincide also in the perturbed case (the perturbed system is also integrable) \rightarrow the power series in ε is convergent:
- 2 Both manifolds do not coincide \rightarrow the power series in ε is divergent and the difference between manifolds has to be flat with respect ε .

Generically is happening the second option

 \rightarrow In fact, we will see that generically the difference is exponentially small with respect ε .

Perturbative approach in μ : Classical Poincaré-Melnikov Theory

- For a moment, let's forget that ε is a small parameter and let us consider μ as an arbitrarily small parameter.
- In that case, we can consider a perturbative approach in μ .
- This approach was initially considered by Poincaré and is usually called Poincaré-Melnikov Method.

Poincaré-Melnikov Theory (I)

- 1. We fix Σ , a transversal section to the unperturbed separatrix in order to measure in it the splitting.
- 2. We consider a parameterization γ of the unperturbed separatrix such that $\gamma(0)$ belongs to this section.

Poincaré-Melnikov Theory (II)

3. We define the Melnikov function as:

$$M(s,\varepsilon) = \int_{-\infty}^{+\infty} \{H_0, H_1\} \left(\gamma(t-s), \frac{t}{\varepsilon}\right) dt$$

where

- s corresponds to the time evolution through the separatrix.
- $\{H_0, H_1\}$ is the Poisson bracket:

$$\{H_0, H_1\} = \frac{\partial H_0}{\partial x} \frac{\partial H_1}{\partial y} - \frac{\partial H_1}{\partial x} \frac{\partial H_0}{\partial y}$$

 $\rightarrow M$ can be computed since H_0 , H_1 and γ are known.

Poincaré-Melnikov Theory (III)

Then:

• The distance between both invariant manifolds for $\mu > 0$ is given by:

$$d(s, \mu, \varepsilon) = \mu \frac{M(s, \varepsilon)}{\|DH_0(\gamma(-s))\|} + \mathcal{O}(\mu^2)$$

• If there exists s_0 such that

$$(i) M(s_0, \varepsilon) = 0 \quad (ii) \left. \frac{\partial M}{\partial s} \right|_{s=s_0} \neq 0$$

Then the invariant manifolds intersect transversally in a point which is close to $\gamma(s_0)$.

• If s_0 y s_1 are two consecutive simple zeros of the Melnikov function, the area of the corresponding lobe is given by:

$$\mathcal{A} = \mu \int_{s_0}^{s_1} M(s, \varepsilon) ds + \mathcal{O}\left(\mu^2\right)$$

Conclusion: Poincaré-Melnikov theory allows to

- Prove the existence of transversal homoclinic orbits
- Compute the distance between manifolds, and therefore to compute asymptotically for $\mu \to 0$ the region of the phase space where chaos is confined.
- Nevertheless, these results are for μ arbitrarily small and ε fixed.

- To see whether Poincaré-Melnikov Theory is valid also for small ε we have to study the dependence on ε of the Melnikov function.
- The dependence on ε of the Melnikov functions is extremely sensitive on the analyticity properties of the Hamiltonian.
- So, we need to impose strong conditions on the Hamiltonian to compute this dependence.

Hypotheses on the Hamiltonian

Assume

- V(x) is either a polynomial or a trigonometric polynomial.
- $H_1(x,y,t/\varepsilon)$ is
 - A polynomial in y.
 - Either a polynomial or a trigonometric polynomial on x.
 - Any dependence on t.

Hypotheses on the separatrix

- Parameterization of the separatrix $\gamma(u) = (x_0(u), y_0(u))$.
- $(x_0(u), y_0(u))$ must have singularities in the complex plane. Why?
 - $(x_0(u), y_0(u))$ are analytic functions bounded at infinity.
 - If they do not have singularities, they are entire, and then by
 Liouville Theorem they must be constant.
 - Therefore, they must have some singularities.

- Let us assume that
 - $y_0(u)$ is analytic in a complex strip {|Im u| < a}.
 - $y_0(u)$ has only one singularity in the lines $\{\operatorname{Im} u = \pm a\}$. We choose γ such that they are at $u = \pm ia$.
- Then, $y_0(u)$ satisfies

$$y_0(u) \sim \frac{1}{(u \mp ia)^r}$$

for certain $r \geq 1$.

Example satisfying these hypotheses

The perturbed Duffing equation:

$$H(x,y) = \frac{y^2}{2} - \frac{x^2}{2} + \frac{x^4}{4}$$

The unperturbed separatrix is

$$\gamma(u) = \left(\frac{\sqrt{2}}{\cosh t}, -\sqrt{2}\frac{\sinh t}{\cosh^2 t}\right)$$

has singularities at $u=i\frac{\pi}{2}+k\pi, k\in\mathbb{Z}$. Moreover

$$-\sqrt{2}\frac{\sinh t}{\cosh^2 t} \sim \frac{1}{(u \pm i\pi/2)^2}$$

That is, r = 2.

The order of the perturbation

There exists $\ell > 0$ such that

$$H_1\left(x_0(u), y_0(u), \frac{t}{\varepsilon}\right) \sim \frac{1}{(u \mp ia)^{\ell}}$$

Poincaré-Melnikov prediction

- With these (strong) hypotheses we can compute the Melnikov function using Residuums Theory or other complex analytic techniques.
- The area of the lobes is given by,

$$\mathcal{A} = \mu \frac{|f_0|}{\varepsilon^{\ell - 1}} e^{-\frac{a}{\varepsilon}} + \mathcal{O}\left(\mu^2\right)$$

where

- a is the imaginary part of the singularity of the unperturbed separatrix.
- $-\ell$ is the order of the perturbation.
- $f_0 \in \mathbb{C}$ is a constant independent of μ and ε given by the Melnikov integral, which generically satisfies $f_0 \neq 0$.
- The first order in μ is exponentially small with respect to ε .

• If we take $\mu = \varepsilon^p$ for $p \ge 0$ (which is the natural relation):

$$\mathcal{A}(\varepsilon) = |f_0|e^{-\frac{a}{\varepsilon}}\varepsilon^{p-\ell+1} + \mathcal{O}\left(\varepsilon^{2p}\right).$$

Therefore, if $\mu = \varepsilon^p$, the remainder is bigger than the Melnikov function prediction.

• μ has to be exponentially small with respect to ε to apply Poincar'e-Melinkov Theory.

Previous results

Consider

$$H\left(x, y, \frac{t}{\varepsilon}\right) = H_0(x, y) + \mu H_1\left(x, y, \frac{t}{\varepsilon}\right)$$

Assuming the same hypotheses as us and taking $\mu = \varepsilon^p$:

- V. Gelfreich (1997) proved that Melnikov function predicted correctly the splitting provided *p* was big enough.
- A. Delshams and T. Seara (1997) improved the result to $p > \ell$.

- Results in the case μ constant independent of ε have only been obtained for particular examples.
- Only for the pendulum with certain perturbations: D. Treschev (1997), V. Gelfreich (2001), C. Olivé (2006), M. G., C. Olivé, T. M. Seara (2010).
- \bullet In particular, in all these cases the perturbation did not depend on y.
- In all these cases it is seen that the splitting is exponentially small but the first asymptotic order does not coincide with Melnikov.

Our results

- We generalize the previous results, giving an asymptotic formula for the area of the lobes for wider ranges in μ .
- In some cases we are able to give results for fixed μ independent of ε .
- In this case the unperturbed system and perturbation have the same size.
- In some other cases we have to restrict ourselves taking μ polynomially small with respect to ε .
- We see that in general, Melnikov does not predict the splitting correctly.
- In this talk, we show them focusing on an example: The perturbed Duffing equation

The perturbed Duffing equation

$$H\left(x, y, \frac{t}{\varepsilon}\right) = \frac{y^2}{2} - \frac{x^2}{2} + \frac{x^4}{4} + \mu x^n \sin\frac{t}{\varepsilon}$$

Order of the perturbation:

$$(x_0(u))^n \sim \frac{1}{(u \pm i\pi/2)^n}$$

That is $\ell = n$.

Melnikov prediction:

$$\mathcal{A} = \mu \frac{|f_0|}{\varepsilon^{n-1}} e^{-\frac{\pi}{2\varepsilon}} + \mathcal{O}\left(\mu^2\right)$$

The constant f_0 can be explicitly computed and satisfies $f_0 \neq 0$.

True asymptotic formula

We obtain different results depending on n.

First case: n < 4 (namely $\ell - 2r < 0$)

For any μ independent of ε and ε small enough:

$$\mathcal{A} = \mu \frac{|f_0|}{\varepsilon^{n-1}} e^{-\frac{\pi}{2\varepsilon}} \left(1 + \mathcal{O}\left(\frac{1}{|\ln \varepsilon|^{\nu}}\right) \right)$$

for some $\nu > 0$.

Conclusion: In this case, Melnikov predicts correctly even if the perturbation has the same size as the unperturbed system.

Second case: n = 4 (namely $\ell - 2r = 0$)

For any μ independent of ε and ε small enough, there exists a function $f(\mu)$, such that, if $f(\mu) \neq 0$,

$$\mathcal{A} = \mu \frac{|f(\mu)|}{\varepsilon^{n-1}} e^{-\frac{\pi}{2\varepsilon}} \left(1 + \mathcal{O}\left(\frac{1}{|\ln \varepsilon|}\right) \right)$$

The function $f(\mu)$ is analytic and satisfes $f(\mu) = f_0 + \mathcal{O}(\mu)$.

Conclusions:

- As in the previous case, even if perturbation and unperturbed system have the same size, the splitting is exponentially small.
- If μ is small, Melnikov predicts correctly the splitting.
- If μ is independent of ε , Melnikov fails to predict the splitting.

Third case: n > 4 (namely $\ell - 2r > 0$)

- We are not able to give results for any μ independent of ε . We have to take $\mu \sim \varepsilon^p$ with $p \ge n-4$.
- Take $\mu = \delta \varepsilon^{n-4}$. Namely,

$$H\left(x, y, \frac{t}{\varepsilon}\right) = \frac{y^2}{2} - \frac{x^2}{2} + \frac{x^4}{4} + \mu x^n \sin\frac{t}{\varepsilon}$$

• Then, for any δ independent of ε and ε small enough, there exists a function $f(\delta)$, such that, if $f(\delta) \neq 0$,

$$\mathcal{A} = \delta \frac{|f(\delta)|}{\varepsilon^3} e^{-\frac{\pi}{2\varepsilon}} \left(1 + \mathcal{O}\left(\frac{1}{|\ln \varepsilon|^{n-4}}\right) \right)$$

The function $f(\delta)$ is analytic and satisfies $f(\delta) = f_0 + \mathcal{O}(\delta)$.

Conclusions:

- Since $f(\delta) = f_0 + \mathcal{O}(\delta)$, for δ small Melnikov predicts correctly.
- In the original parameter, if $\mu \sim \varepsilon^p$ with p > n-4 Melnikov predicts correctly.
- If δ is independent of ε , that is $\mu \sim \varepsilon^{n-4}$, Melnikov fails to predict the splitting.
- The true asymptotic formula for μ independent of ε (unperturbed system and perturbation of the same size) has probably aditional correcting terms in the exponential.
- There is not any result dealing with this case.

Perturbations depending on y

- If the perturbation depends on y, the first order also changes.
- Example:

$$H\left(x, y, \frac{t}{\varepsilon}\right) = \frac{y^2}{2} - \frac{x^2}{2} + \frac{x^4}{4} + \mu\left(y^2\cos\frac{t}{\varepsilon} + x^4\sin\frac{t}{\varepsilon}\right)$$

• Then, for μ independent of ε and ε small enough,

$$\mathcal{A} = \mu \frac{|f(\mu)|}{\varepsilon^3} e^{-\frac{\pi}{2\varepsilon} + \mu^2 b \ln \frac{1}{\varepsilon}} \left(1 + \mathcal{O}\left(\frac{1}{|\ln \varepsilon|^{n-4}}\right) \right)$$
$$= \mu \frac{|f(\mu)|}{\varepsilon^{3+\mu^2 b}} e^{-\frac{\pi}{2\varepsilon}} \left(1 + \mathcal{O}\left(\frac{1}{|\ln \varepsilon|^{n-4}}\right) \right)$$

Conclusions

- For μ independent of ε , Melnikov does not predict correctly even the power of ε in front of the exponentially
- Namely, in these cases Melnikov only predicts correctly the coefficient in the exponential.
- Nevertheless, if $\mu \ll \frac{1}{\sqrt{|\ln \varepsilon|}}$, Melnikov predicts correctly.

Splitting of separatrices for a meromorphic perturbation

- The results given apply when V and H_1 are polynomials or trigonometric polynomials in x and polynomials in y.
- Nevertheless, in many models, for instance in Celestial Mechanics, the Hamiltonian functions are not entire but have a finite strip of analyticity.
- Sometimes, the strip of analyticity σ is large of the form $\sigma \sim \ln \alpha$ with $\alpha \ll 1$.

Questions

- Which is the size of the Melnikov function for this kind of Hamiltonian Systems?
- When does the Melnikov function predict correctly the size of the splitting of separatrices?
- When the strip is of the form $\sigma \sim \ln \alpha$ with $\alpha \ll 1$, can we expand the perturbation in α and just consider the first order? or all the orders make a contribution to the first order of the difference between manifolds?

A simple model

• Example:

$$\ddot{x} = \sin x + \mu \frac{\sin x}{(1 - \alpha \sin x)^2} \sin \frac{t}{\varepsilon}$$

where $\alpha \in (0,1)$.

• It has Hamiltonian

$$H(x, y, t) = \frac{y^2}{2} + \cos x - 1 + \mu m(x) \sin \frac{t}{\varepsilon}$$

where m is the primitive of $\frac{\sin x}{(1 - \alpha \sin x)^2}$.

 \bullet (0,0) is a hyperbolic periodic orbit even for the perturbed system.

Computation of the Melnikov function

Melnikov function:

$$M(t_0) = \int_{-\infty}^{+\infty} y(u) \frac{\sin x(u)}{(1 - \alpha \sin x(u))^2} \sin \left(\frac{u + t_0}{\varepsilon}\right) du$$
$$= 4 \int_{-\infty}^{+\infty} \frac{\sinh u \cosh u}{\left(\cosh^2 u - 2\alpha \sinh u\right)^2} \sin \left(\frac{u + t_0}{\varepsilon}\right) du$$

• The first order of this integral can be computed using residues theorem.

Computation of the Melnikov function (II)

• If $\alpha = \mathcal{O}(\varepsilon^q)$ with q > 2: Since the integral is uniformly convergent in the reals, we can expand $M(t_0)$ in power series of α and split the integral

$$M(t_0) = 4\sum_{k=0}^{\infty} (k+1)2^k \alpha^k \int_{-\infty}^{+\infty} \frac{\sinh^{k+1} u}{\cosh^{2k+3} u} \sin\left(\frac{u+t_0}{\varepsilon}\right) du$$

• Its first term gives the bigger contribution to the splitting

$$M(t_0) \sim 4\pi \varepsilon^{-2} e^{-\frac{\pi}{2\varepsilon}}$$

- In that case, the exponential coefficient is given by the complex singularity of the separatrix.
- Conclusion: If the analyticity strip of the perturbation is big enough $(\alpha \ll \varepsilon^2)$, the size of the Melnikov function is given as in the entire perturbation case.

Computation of the Melnikov function (III)

- If $\alpha = \mathcal{O}(\varepsilon^q)$ with $q \in [0, 2]$, the integral of the summands is bigger as k increases.
- We look for the singularities of the integrand.
- Consider $u^* = \eta \pm i\rho$ singularities of the integrand closest to the reals.
- If α is small $\rho = \pm \left(\frac{\pi}{2} \sqrt{\alpha} + \mathcal{O}(\alpha)\right)$.
- If α is fixed and independent of ε , ρ is also independent of ε and is unrelated to the singularities of the separatrix.

Computation of the Melnikov function (IV)

• Then, Melnikov is given by

$$M(t_0) \sim e^{-\frac{\rho}{\varepsilon}} \left(\frac{\varepsilon^{p-1}}{\sqrt{\alpha}} + \text{smaller terms} \right)$$

• If, for instance, one takes $\alpha = \varepsilon$,

$$M(t_0) \sim e^{-\frac{\pi - 2\sqrt{\varepsilon}}{2\varepsilon}} \left(\varepsilon^{p - \frac{3}{2}} + \text{smaller terms}\right)$$

• In these cases, even if α is small, the first order of the Melnikov function is given by the full jet in α of the perturbation.

Validity of the Melnikov prediction

- If $\alpha = \mathcal{O}(\varepsilon^q)$ with q>2 and ε is small enough: the Melnikov function predicts correctly the splitting provided $\mu = \mathcal{O}(\varepsilon^p)$ with p>0.
- The limit case μ fixed and independent of ε (integrable system and perturbation of the same order) is expected to have exponentially small splitting of separatrices which is not well predicted by the Melnikov function.
- If $\alpha = \mathcal{O}(\varepsilon^q)$ with $q \in [0, 2]$, ε is small enough and $\alpha < 1$: Melnikov function predicts correctly the splitting provided $p + \frac{q}{2} 1 > 0$.
- The limit case $p + \frac{q}{2} 1 = 0$ is expected to have exponentially small splitting of separatrices which is not well predicted by the Melnikov function.

Non-exponentially small splitting of separatrices

Recall

$$\ddot{x} = \sin x + \mu \frac{\sin x}{(1 - \alpha \sin x)^2} \sin \frac{t}{\varepsilon}$$

If we take $\alpha = 1 - \mathcal{O}(\varepsilon^r)$:

- The strip of analyticity in x of the Hamiltonian is $\mathcal{O}\left(\varepsilon^{\frac{r}{2}}\right)$.
- If r > 2, the Melnikov function satisfies

$$M(t_0) \sim \varepsilon^{-1}$$

• If $\mu = \varepsilon^p$ with p > 1, Melnikov predicts correctly the difference between the invariant manifolds, which is not exponentially small.