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Integrable Hamiltonian Systems with a fast periodic perturbation

Non-autonomous fast periodic perturbation of a one degree of freedom
hamiltonian

H

(
x, y,

t

ε

)
= H0(x, y) + µH1

(
x, y,

t

ε

)

such that

• The Hamiltonian is analytic.

• H0(x, y) =
y2

2
+ V (x).

• ε > 0 is a small parameter.

• µ is a parameternot necessarily small.

• The perturbation is2πε periodic in time and has zero average
∫ 2π

0

H1(x, y, τ)dτ = 0
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Features of the integrable Hamiltonian Systems

Assume that the integrable system

H0(x, y) =
y2

2
+ V (x)

• Has a hyperbolic critical point at(0, 0).

• Its stable and unstable invariant manifolds coincide alonga

separatrix.
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Examples
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0

x
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What happens when we add the perturbation?

• The parameterµ is not small and then the perturbation has the same

size as the unperturbed system.

• A priori we cannot say anything about the perturbed system.

• Nevertheless, since the perturbation is fast periodic and has zero

average, we can do one step of averaging.

• This change of variables isε-close to the identity and transforms

H

(
x, y,

t

ε

)
=

y2

2
+ V (x) + µH1

(
x, y,

t

ε

)

into

H̃

(
x̃, ỹ,

t

ε

)
=

ỹ2

2
+ V (x̃) + µεH̃1

(
x̃, ỹ,

t

ε
, ε

)
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• Now, the perturbation has sizeµε and therefore is small.

• Classical perturbation theory ensures that:

– There exist a hyperbolic2πε-periodic orbitµε-close to(0, 0).

– Its stable and unstable invariant manifolds areµε-close to the

unperturbed separatrix.

• Question: Do the invariant manifolds of the perturbed periodic orbit

still coincide or not?
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3-dimensional phase space

Recall

H

(
x, y,

t

ε

)
= H0(x, y) + µH1

(
x, y,

t

ε

)

Wu Ws

y

x

t
2π
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The 2πε-time Poincaré map formulation

(x0, y0)(x0, y0)

(xp(t0), yp(t0)) P t0(xp(t0), yp(t0))

t = t0 t = t0 + 2πε

P t0(x0, y0)

P t0(x0, y0)

(xp(t0), yp(t0))

t = t0 ≡ t0 + 2πε

From the perturbed system it can be derived adiscrete dynamicalsystem

considering the2πε-time Poincaŕe map.
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The splitting of separatrices in the Poincaŕe map

t0y

x
2π

• Considering the Poincaré map,

we obtain this picture.

• We can measure several quan-

tities to study the splitting.
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• Since we want to prove the existence of transversal homoclinic

points, a natural quantity to measure would be the angle between the

invariant manifolds at the homoclinic point.

• Nevertheless, the angle depend on the homoclinic point and it is not a

symplectic invariant.

• The distance between the invariant manifolds also depends on the

chosen coordinates and is neither a symplectic invariant.

• Between transversal homoclinic points, the invariant manifolds create

lobes.

• The area of these lobes is invariant by iteration of the Poincaŕe map

due to thesymplectic structure.

• We will measure the splitting in terms of the area of these lobes.
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Perturbative approach in ε

To understand what is happening, we can look for parameterizations of
the invariant manifolds

xu(r, ε), xs(r, ε)

→ Sinceε is small, we can look for formal solutions as a power series of
ε:

xα(r, ε) = x0(r) + εxα
1 (r) + ε2xα

2 (r) + . . . for α = u, s

where we have omitted the dependence onµ.

For these problems which are analytic and have a fast periodic
perturbation:

xu
k(r) = xs

k(r) ∀k ∈ N

Conclusion:
xu(r, ε)− xs(r, ε) = O(εk) ∀k ∈ N

→ Proceeding formally we see that their difference isbeyond all orders.
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What is happening?

Two options:

1 Both manifolds coincide also in the perturbed case (the perturbed

system is alsointegrable) → the power series inε is convergent:

2 Both manifolds do not coincide→ the power series inε is divergent

and the difference between manifolds has to beflat with respectε.

Generically is happening the second option

→ In fact, we will see that generically the difference isexponentially

smallwith respectε.
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Perturbative approach in µ: Classical Poincaŕe-Melnikov Theory

• For a moment, let’s forget thatε is a small parameter and let us

considerµ as an arbitrarily small parameter.

• In that case, we can consider a perturbative approach inµ.

• This approach was initially considered by Poincaré and is usually

called Poincaŕe-Melnikov Method.
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Poincaré-Melnikov Theory (I)

x

y
Σ

Wu

Ws

1. We fixΣ, a transversal section

to the unperturbed separatrix in

order to measure in it the split-

ting.

2. We consider a parameteriza-

tion γ of the unperturbed sep-

aratrix such thatγ(0) belongs

to this section.
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Poincaré-Melnikov Theory (II)

3. We define theMelnikov functionas:

M(s, ε) =

∫ +∞

−∞

{H0, H1}
(
γ(t− s),

t

ε

)
dt

where

– s corresponds to the time evolution through the separatrix.

– {H0, H1} is the Poisson bracket:

{H0, H1} =
∂H0

∂x

∂H1

∂y
− ∂H1

∂x

∂H0

∂y

→M can be computed sinceH0, H1 andγ are known.
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Poincaré-Melnikov Theory (III)

Then:

• Thedistancebetween both invariant manifolds forµ > 0 is given by:

d(s, µ, ε) = µ
M(s, ε)

‖DH0(γ(−s))‖ +O
(
µ2
)

• If there existss0 such that

(i)M(s0, ε) = 0 (ii)
∂M

∂s

∣∣∣∣
s=s0

6= 0

Then the invariant manifoldsintersect transversallyin a point which
is close toγ(s0).

• If s0 y s1 are two consecutive simple zeros of the Melnikov function,
theareaof the corresponding lobe is given by:

A = µ

∫ s1

s0

M(s, ε)ds+O
(
µ2
)
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Conclusion: Poincaŕe-Melnikov theory allows to

• Prove the existence of transversal homoclinic orbits

• Compute the distance between manifolds, and therefore to compute

asymptotically forµ → 0 the region of the phase space where chaos

is confined.

• Nevertheless, these results are forµ arbitrarily small andε fixed.
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• To see whether Poincaré-Melnikov Theory is valid also for smallε

we have to study the dependence onε of the Melnikov function.

• The dependence onε of the Melnikov functions is extremely

sensitive on the analyticity properties of the Hamiltonian.

• So, we need to impose strong conditions on the Hamiltonian to

compute this dependence.
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Hypotheses on the Hamiltonian

Assume

• V (x) is either a polynomial or a trigonometric polynomial.

• H1(x, y, t/ε) is

– A polynomial iny.

– Either a polynomial or a trigonometric polynomial onx.

– Any dependence ont.
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Hypotheses on the separatrix

• Parameterization of the separatrixγ(u) = (x0(u), y0(u)).

• (x0(u), y0(u)) must have singularities in the complex plane. Why?

– (x0(u), y0(u)) are analytic functions bounded at infinity.

– If they do not have singularities, they are entire, and then by

Liouville Theorem they must be constant.

– Therefore, they must have some singularities.
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• Let us assume that

– y0(u) is analytic in a complex strip{|Imu| < a}.

– y0(u) has only one singularity in the lines{Imu = ±a}. We

chooseγ such that they are atu = ±ia.

• Then,y0(u) satisfies

y0(u) ∼
1

(u∓ ia)r

for certainr ≥ 1.
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Example satisfying these hypotheses

The perturbed Duffing equation:

H (x, y) =
y2

2
− x2

2
+

x4

4

The unperturbed separatrix is

γ(u) =

( √
2

cosh t
,−

√
2
sinh t

cosh2 t

)

has singularities atu = i
π

2
+ kπ, k ∈ Z. Moreover

−
√
2
sinh t

cosh2 t
∼ 1

(u± iπ/2)2

That is,r = 2.
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The order of the perturbation

There existsℓ > 0 such that

H1

(
x0(u), y0(u),

t

ε

)
∼ 1

(u∓ ia)ℓ
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Poincaré-Melnikov prediction

• With these (strong) hypotheses we can compute the Melnikov
function using Residuums Theory or other complex analytic
techniques.

• The area of the lobes is given by,

A = µ
|f0|
εℓ−1

e−
a
ε +O

(
µ2
)

where

– a is the imaginary part of the singularity of the unperturbed
separatrix.

– ℓ is the order of the perturbation.

– f0 ∈ C is a constant independent ofµ andε given by the
Melnikov integral, which generically satisfiesf0 6= 0.

• The first order inµ is exponentially small with respect toε.
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• If we takeµ = εp for p ≥ 0 (which is the natural relation):

A(ε) = |f0|e−
a
ε εp−ℓ+1 +O

(
ε2p
)
.

Therefore, ifµ = εp, the remainder is bigger than the Melnikov

function prediction.

• µ has to beexponentially smallwith respect toε to apply

Poincar’e-Melinkov Theory.
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Previous results

Consider

H

(
x, y,

t

ε

)
= H0(x, y) + µH1

(
x, y,

t

ε

)

Assuming the same hypotheses as us and takingµ = εp:

• V. Gelfreich (1997) proved that Melnikov function predicted

correctly the splitting providedp was big enough.

• A. Delshams and T. Seara (1997) improved the result top > ℓ.
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• Results in the caseµ constant independent ofε have only been

obtained for particular examples.

• Only for the pendulum with certain perturbations: D. Treschev

(1997), V. Gelfreich (2001), C. Oliv́e (2006), M. G., C. Oliv́e, T. M.

Seara (2010).

• In particular, in all these cases the perturbation did not depend ony.

• In all these cases it is seen that the splitting is exponentially small but

the first asymptotic order does not coincide with Melnikov.
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Our results

• We generalize the previous results, giving an asymptotic formula for

the area of the lobes for wider ranges inµ.

• In some cases we are able to give results for fixedµ independent ofε.

• In this case the unperturbed system and perturbation have the same

size.

• In some other cases we have to restrict ourselves takingµ

polynomially small with respect toε.

• We see that in general, Melnikov does not predict the splitting

correctly.

• In this talk, we show them focusing on an example:The perturbed

Duffing equation
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The perturbed Duffing equation

H

(
x, y,

t

ε

)
=

y2

2
− x2

2
+

x4

4
+ µxn sin

t

ε

Order of the perturbation:

(x0(u))
n ∼ 1

(u± iπ/2)n

That isℓ = n.

Melnikov prediction:

A = µ
|f0|
εn−1

e−
π
2ε +O

(
µ2
)

The constantf0 can be explicitly computed and satisfiesf0 6= 0.
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True asymptotic formula

We obtain different results depending onn.

First case:n < 4 (namelyℓ− 2r < 0)

For anyµ independent ofε andε small enough:

A = µ
|f0|
εn−1

e−
π
2ε

(
1 +O

(
1

| ln ε|ν
))

for someν > 0.

Conclusion: In this case, Melnikov predicts correctly evenif the

perturbation has the same size as the unperturbed system.
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Second case:n = 4 (namelyℓ− 2r = 0)

For anyµ independent ofε andε small enough, there exists a function

f(µ), such that, iff(µ) 6= 0,

A = µ
|f(µ)|
εn−1

e−
π
2ε

(
1 +O

(
1

| ln ε|

))

The functionf(µ) is analytic and satisfesf(µ) = f0 +O(µ).

Conclusions:

• As in the previous case, even if perturbation and unperturbed system

have the same size, the splitting is exponentially small.

• If µ is small, Melnikov predicts correctly the splitting.

• If µ is independent ofε, Melnikov fails to predict the splitting.
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Third case:n > 4 (namelyℓ− 2r > 0)

• We are not able to give results for anyµ independent ofε. We have to

takeµ ∼ εp with p ≥ n− 4.

• Takeµ = δεn−4. Namely,

H

(
x, y,

t

ε

)
=

y2

2
− x2

2
+

x4

4
+ µxn sin

t

ε

• Then, for anyδ independent ofε andε small enough, there exists a

functionf(δ), such that, iff(δ) 6= 0,

A = δ
|f(δ)|
ε3

e−
π
2ε

(
1 +O

(
1

| ln ε|n−4

))

The functionf(δ) is analytic and satisfesf(δ) = f0 +O(δ).
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Conclusions:

• Sincef(δ) = f0 +O(δ), for δ small Melnikov predicts correctly.

• In the original parameter, ifµ ∼ εp with p > n− 4 Melnikov

predicts correctly.

• If δ is independent ofε, that isµ ∼ εn−4, Melnikov fails to predict

the splitting.

• The true asymptotic formula forµ independent ofε (unperturbed

system and perturbation of the same size) has probably aditional

correcting terms in the exponential.

• There is not any result dealing with this case.
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Perturbations depending ony

• If the perturbation depends ony, the first order also changes.

• Example:

H

(
x, y,

t

ε

)
=

y2

2
− x2

2
+

x4

4
+ µ

(
y2 cos

t

ε
+ x4 sin

t

ε

)

• Then, forµ independent ofε andε small enough,

A = µ
|f(µ)|
ε3

e−
π
2ε

+µ2b ln 1

ε

(
1 +O

(
1

| ln ε|n−4

))

= µ
|f(µ)|
ε3+µ2b

e−
π
2ε

(
1 +O

(
1

| ln ε|n−4

))
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Conclusions

• Forµ independent ofε, Melnikov does not predict correctly even the

power ofε in front of the exponentially

• Namely, in these cases Melnikov only predicts correctly the

coefficient in the exponential.

• Nevertheless, ifµ ≪ 1√
| ln ε|

, Melnikov predicts correctly.
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Splitting of separatrices for a meromorphic perturbation

• The results given apply whenV andH1 are polynomials or

trigonometric polynomials inx and polynomials iny.

• Nevertheless, in many models, for instance in Celestial Mechanics,

the Hamiltonian functions are not entire but have a finite strip of

analyticity.

• Sometimes, the strip of analyticityσ is large of the formσ ∼ lnα

with α ≪ 1.
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Questions

• Which is the size of the Melnikov function for this kind of

Hamiltonian Systems?

• When does the Melnikov function predict correctly the size of the

splitting of separatrices?

• When the strip is of the formσ ∼ lnα with α ≪ 1, can we expand

the perturbation inα and just consider the first order? or all the

orders make a contribution to the first order of the difference between

manifolds?
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A simple model

• Example:

ẍ = sinx+ µ
sinx

(1− α sinx)2
sin

t

ε

whereα ∈ (0, 1).

• It has Hamiltonian

H(x, y, t) =
y2

2
+ cosx− 1 + µm(x) sin

t

ε

wherem is the primitive of
sinx

(1− α sinx)
2

.

• (0, 0) is a hyperbolic periodic orbit even for the perturbed system.
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Computation of the Melnikov function

• Melnikov function:

M(t0) =

∫ +∞

−∞

y(u)
sinx(u)

(1− α sinx(u))
2
sin

(
u+ t0

ε

)
du

= 4

∫ +∞

−∞

sinhu coshu
(
cosh2 u− 2α sinhu

)2 sin

(
u+ t0

ε

)
du

• The first order of this integral can be computed using residues

theorem.
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Computation of the Melnikov function (II)

• If α = O (εq) with q > 2: Since the integral is uniformly convergent
in the reals, we can expandM(t0) in power series ofα and split the
integral

M(t0) = 4
∞∑

k=0

(k + 1)2kαk

∫ +∞

−∞

sinhk+1 u

cosh2k+3 u
sin

(
u+ t0

ε

)
du

• Its first term gives the bigger contribution to the splitting

M(t0) ∼ 4πε−2e−
π
2ε

• In that case, the exponential coefficient is given by the complex
singularity of the separatrix.

• Conclusion: If the analyticity strip of the perturbation isbig enough
(α ≪ ε2), the size of the Melnikov function is given as in the entire
perturbation case.
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Computation of the Melnikov function (III)

• If α = O(εq) with q ∈ [0, 2], the integral of the summands is bigger

ask increases.

• We look for the singularities of the integrand.

• Consideru∗ = η ± iρ singularities of the integrand closest to the

reals.

• If α is smallρ = ±
(π
2
−
√
α+O(α)

)
.

• If α is fixed and independent ofε, ρ is also independent ofε and is

unrelated to the singularities of the separatrix.
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Computation of the Melnikov function (IV)

• Then, Melnikov is given by

M(t0) ∼ e−
ρ
ε

(
εp−1

√
α

+ smaller terms

)

• If, for instance, one takesα = ε,

M(t0) ∼ e−
π−2

√
ε

2ε

(
εp−

3

2 + smaller terms
)

• In these cases, even ifα is small, the first order of the Melnikov

function is given by the full jet inα of the perturbation.
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Validity of the Melnikov prediction

• If α = O(εq) with q > 2 andε is small enough: the Melnikov

function predicts correctly the splitting providedµ = O (εp) with

p > 0.

• The limit caseµ fixed and independent ofε (integrable system and

perturbation of the same order) is expected to have exponentially

small splitting of separatrices which is not well predictedby the

Melnikov function.

• If α = O(εq) with q ∈ [0, 2], ε is small enough andα < 1: Melnikov

function predicts correctly the splitting providedp+
q

2
− 1 > 0.

• The limit casep+
q

2
− 1 = 0 is expected to have exponentially small

splitting of separatrices which is not well predicted by theMelnikov

function.
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Non-exponentially small splitting of separatrices

Recall

ẍ = sinx+ µ
sinx

(1− α sinx)2
sin

t

ε

If we takeα = 1−O (εr):

• The strip of analyticity inx of the Hamiltonian isO
(
ε

r

2

)
.

• If r > 2, the Melnikov function satisfies

M(t0) ∼ ε−1

• If µ = εp with p > 1, Melnikov predicts correctly the difference

between the invariant manifolds, which is not exponentially small.
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