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1% degrees of freedom Hamiltonian systems

We consider close to completely integrable Hamiltonian
h(l,z,7)=ho(l)+ dhi(I,x,T)
where
e /) < 1is asmall parameter.
o (x,7) € T?andl € U C R.
e h is analytic.
Equations of motion:
(& = 0rho(I) + 00rh1 (I, x,T)
I =—00,hi(I,,7)




Unperturbed system

Whené = 0, the equations of motion are

(& = drho(I)

I =0

=1
\

Then,

e [ is an integral of motion and therefore the phase space méaliby
2-dimensional tori.

e The dynamics in the invariant tori is a rotation of frequency
w(l) = (0rho(I),1).




The perturbed system

What happens whelh < § < 1.

e If Orho(1) is irrational enough (Diophantine) the unperturbed torus
with frequencyw () = (0rho(I), 1) is preserved providedis small
enough (Kolmogorov-Arnol'd-Moser Theory).

e If Orho(1) is rational we are in a resonance.

e The unperturbed torus with frequenecy!l) = (0rho(I), 1) breaks
down ford > 0.

We want to study the new invariant objects that appear indlerrances.




e We study what happens close to the resonanee(0, 1)

e Doing a change of variables, one can deduce similar resulkset
ones presented in this talk for any other resonance.




Close to a resonance

By translation, we can locate the resonawce (0,1) atl = 0.

Sincew(I) = (0rho(I),1), this implies that, (1) = I—2 + G(I)

with G(I) = O (I?). ”

The size of the resonant zone is of ordb(f).

To study it, we make a rescaling to magnify it.

Namely, we perform the change
I=Véy, 7=t/Vé

and we take = v/§.




Rescaled Hamiltonian (1)

New Hamiltonian

t 21 t
H (y,x, —) _ 4 + —=G(ey) + Iy (sy,x, —)
g 2 g
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ho(I) = ]; + G(I) with G(I) = O (I%)

The terme—2G(ey) is of orderO(e).

Now the perturbation terrh; has the same order as the integrable
system but is fast and periodic in time.

The fast oscillating terms are expectedhterage out (at first order)
and then to have a small influence.

So, we first study the average of with respect ta.




Rescaled Hamiltonian (1)

We split the Hamiltonian

) e

1 27
<h1(073377_)> — 2_/ hl(oava)dT
0

s

hl (O, X, ’7') — <h1 (O, L, T)>

hl(lava) o hl(O,ZC,T)

The termR <5y,a:, é) Is of orderO(e).




New Hamiltonian:

t y? 1
H L) I e,
(y,x, &:) 2 i g2

Since

e F(x,t/e)is fast oscillating in time

e = 2G(ey) andR(cy, x,t/e) are of orderO ()

we can study our system as a perturbation of

2

Ho(x,y) = 75 + V()



The new unperturbed system

e Given by the Hamiltonian

Ho(z,y) = v + V().

2

e Hjis afirstintegral and therefore the orbits are the level esiiof
Hy.




e GenericallyH, has (at least) a
hyperbolic critical point whose
iInvariant manifolds coincide
along a separatrix.

e With a translation one of the
critical points can be located at
(0,0).

e When the hyperbolic periodic
orbit IS unique, we have a
pendulum-like phase portrait.




The new unperturbed system (1l)

The system can have more than one hyperbolic critical pomtk their
invariant manifolds coinciding along separatrices.

Y

(N N
= —/




The perturbed system (1)

Recall that the system is given by

t

t Y2 1 t
Hlyx,-)==+V(x)+5G(ey)+F |z,- |+ R|ey,z, -
£ 2 g2 3 £

Since the perturbative terms are either small or fast edicily we can
perform one step of averaging, which transforms the systeona
system of the form

_ ¢ J° ~ -
Hl|y,z,-)|==>=+V(x)+eH |y,T,—,¢

g 2

Classical perturbation applied to this new system enshedstose to
(0,0), there exists a hyperbolic periodic orbit and its invariant
manifolds.

These objects areclose to the unperturbed ones.




The perturbed system (II)

4% e 3-dimensional phase space.

e The Invariant manifolds are
now 2-dimensional.




Tipically they do not coincide anymore (the separatrixtsphbut they
intersect transversally.

The transversality of the invariant manifolds implies tkesgence of
chaotic orbits.

We want to prove this fact and give quantitative measureleof t
splitting.

These quantitative estimates give a bound for the regioneophase
space where chaotic orbits are confined.




The 27e-time Poincaré map formulation
t = 1o t =19+ 2me

Pto ('2707e

Pt (zp,yo) : )
. (Lo, Y0

Pt |

t=1tg =ty + 2me

From the perturbed system it can be derivetiszrete dynamicaystem
considering thers-time Poincag map.




The splitting of separatrices in the Poincaké map

to
e Considering the Poincamap,

we obtain this picture.

e \We can measure several quan-
tities to study the splitting.

I
————————————————————————————————————————— R




Since we want to prove the existence of transversal homoclin
points, a natural quantity to measure would be the angledmithe
Invariant manifolds at the homoclinic point.

Nevertheless, the angle depend on the homoclinic pointtaaaot a
symplectic invariant.

The distance between the invariant manifolds also depemdtiseo
chosen coordinates and is neither a symplectic invariant.

Between transversal homaoclinic points, the invariant riodaé create
lobes.

The area of these lobes is invariant by iteration of the Rogémap
due to thesymplectic structure

We will measure the splitting in terms of the area of theses$ob




The first rigorous result dealing with this problem is thedwaling.

Theorem (Neishtadt 84)Let us fixeqg > 0. Then, fore € (0, ¢q), there
exists are-close to the identity canonical transformation that tfamas
system

t 1 t t
H (yvxa_> +V($)+€—2G(€y)—|—F (xag) —|—R(€y,ﬂf,—>

€ €

ot T N . ot
H (yaxag> — y_ —I-V(CC) —|-€H0(y,,fl},€)—|—P (yaxa_)

2 €

and P satisfies
1P| < coe” e

for certain constants;, c; > 0.




This theorem implies that:

The system igxponentially small close to integrable

The invariant manifolds are exponentially close.

Nevertheless, it does not give any information about thitisyg of
the separatrix (we do not know whether they coincide or not).

Namely, it gives an exponentially small upper bound of treaaof
the lobes, but we need also lower bounds to know that thety spli

In particular, we do not know whether the system has chaaotbito
or not.




Perturbative approach in ¢

To see whether the separatrix splits, we can look for paramations of
the invariant manifolds

xz'(r,e), x°(r,e)
— Sincee is small, we can look for formal solutions as a power series
£:

% (r,e) = zo(r) +exf(r) + a5 (r) +... fora=u,s

For these problems which are analytic and have a fast periodi
perturbation:

xy(r) Vk e N

Conclusion

r¥(r,e) — x2%(r,e) = O(e¥) Vk € N

— Proceeding formally we see that their differenceagond all orders




What is happening?

Two options:

1 Both manifolds coincide also in the perturbed case (theipgssd
system is alsintegrablg — the power series iais convergertt

2 Both manifolds do not coincides the power series ia is divergent
and the difference between manifolds has tdlaewith respect.

Tipically is happening the second option




e Since the splitting is a phenomenon beyond all orders, i@ toar
make a perturbative approachdn

e Trick: add a new parameter.

e Namely, we rewrite the rescaled Hamiltonian

t 2 1 t t
Hlyz, - | = y—+V(x)+—G(5y)+F r,— |+ R|(ey,z, -
£ 2 g2 €

E

as

t t
H (:lj,ilf, g) — H()(y,CU) -+ :qu (?J,CU, g7€>

wherep = 1 is a fake parameter and

2

Ho(y,x) = % + V(x)

1
Hi(y,x,7,e) = F(x,7) + E—QG(&?Z/) + R(ey,x, T)




e Even if the general case correspondgte 1, the first results
studying the splitting of separatrices consideneas a small
parameter.

e Namely, let’s forget for a moment thatis a small parameter and let

us considey: as an arbitrarily small parameter.

e In that case, we can consider a perturbative approaghwhich is
usually called Poincé&rMelnikov Method.




Poincaré-Melnikov Theory (1)

1. We fix X, atransversal section
to the unperturbed separatrix in
7[2 order to measure in it the split-

W ting.
2. We consider a parameteriza-
tion v of the unperturbed sep-

X
aratrix such thaty(0) belongs

to this section.




Poincare-Melnikov Theory (1)

3. We define thé/lelnikov functionas:
oo t
M(s,e) = /_OO {Hy, H1} (7(15 — 5), g) dt
where
— s corresponds to the time evolution through the separatrix.
— {Hy, H1} is the Poisson bracket:

O0Hy 0Hy O0H, 0H,
Hy, Hi} = —
{Ho, Hi} or Oy oxr Oy

— M can be computed sindé,, H, and~ are known.




Poincaré-Melnikov Theory (llI)
Then:

e Thedistancebetween both invariant manifolds far> 0 is given by:

- M(s,¢)
d(s, p,€) = |DHy(v(—s))]|

e If there existssy such that

+0 (1)

(i) M(s0,e) = 0 (i) %—]‘j £ 0

S=S

Then the invariant manifoldsitersect transversaliy a point which
IS close toy(sg).

o If 5oy s; are two consecutive simple zeros of the Melnikov functio
theareaof the corresponding lobe is given by:

A:,u/ M(s,e)ds + O (p?)




Conclusion Poincae-Melnikov theory allows to

e Prove the existence of transversal homoclinic orbits

e Compute the distance between manifolds, and thereforempote

asymptotically foru — 0 the region of the phase space where chaof
IS confined.

e Nevertheless, these results are gaarbitrarily small and: fixed.




e To see whether PoinaaMelnikov Theory is valid also for smail
we have to study the dependence:zanf the Melnikov function.

e The dependence anof the Melnikov functions is extremely

sensitive on the analyticity properties of the Hamiltonian

e S0, we need to impose conditions on the Hamiltonian to coetbus
dependence.




Hypothesis on the Hamiltonian
Recall that the original system was given by
h(I,z,7)=ho(l)+ dhi(I,x,T)
Then, we have to assume that the perturbatioil, x, 7) is a
trigonometric polynomial inx.
The potential/ has been defined as

1

T on

27
/ h1(0, 2, 7)dT
0

V()

We have also to assume the generic hypothesidilal has the
same degree ds .




Hypotheses on the separatrix

Let us consider the parameterization of the separatrix of
2
Ho(y,z) = 5 + V(x):

Y(u) = (zo(u), yo(u))

yo(u) has always singularities in the complex plane.

Then, there exists > 0 such thatyy(u) is analytic in the complex
strip {|Imu| < a} and cannot be extended in any wider strip.

We assume thaj, (u) has only one singularity in each of the
boundary line§Imu = +a}.

Then, they are order one poles.

Moreover, the parameterization ofcan be chosen such that they arg
located at, = +1ia.




With these hypotheses we can study the dependene@®btine
Melnikov function .

Namely, we can use Residuums Theorem to compute

M(s,e) = /+OO{HO,H1} (w(t ), f) dt.

oo €

Then Melnikov Theory formula for the area of the lobes is

Ale, i) = pAo(e) + O(1?)

Ap(e) = Cée_% (14 O(")) where

— a IS the imaginary part of the singularity of the separatrix.

— ('is areal constant given by Melnikov Theory.
— v > 0.

Melnikov theory only applies if: is exponentially small with respect
to € but we wantu = 1.




Even if Melnikov Theory only applies ifi is exponentially small
with respect ta, one can ask whether the Melnikov function gives

the true first order for a wider range in

Using complex perturbation techniques, these results ingrsoved.

V. Gelfreich (1997), proved that Melnikov predicts corfgthe area
of the lobes providegd = <" with n big enough.

A. Delshams and T. Seara (1997) improved this result to tke ca
= emwithn > 2.




e The only results dealing with the cage= 1 (usually calledsingular
cas¢ are due to V. Gelfreich, D. Treschev, and T. Seara, C.édnd
G., but only deal with the pendulum with certain perturbasiavhich,
In particular, do not depend an

e Inthese cases, one can see that Melnikov does not prediateheof
the lobes correctly.

¢ In the present work we deal with the general case (assumeng th
explained hypotheses).




Main theorem

There exists a constabtand an analytic functiorf (1) such that for any
fixed p such thatf (1) # 0 ande small enough:

e The invariant manifolds split creating transversal ineetsns.

e Thearea of the lobess given by theasymptotic formula

A:He_%WZbln%(f(u)Jr(’)( ! ))

3 | Ing|

e In particular, ifu =1,

1
c1-b

A:




The function f(u)

Recall the expression of the Hamiltonian

52

Hlyat) = y;W(a:)w (F (x é) + LGy + R <5y,x, é))

1 t .
The term— G(ey) + R <€y, T, —) IS of ordere.
E €

Nevertheless, the functiofi ;) depends on the full jet ip of G and
R.

Namely, any finite order truncation iof the Hamiltonian does not
predict correctly the area of the lobes.




e Since fory = 1 the area is given by

A= Ell_be_ (f(1)+0 (\éd))’

to know whether there is splitting or not in the original exadenit is
enough to check if (1) # 0.

e It is difficult to know the functionf analytically.

e |t can be studied numerically using a different problem petedent
of ¢, which is usually calleadhner equation




The constantb

The constant changes the algebraic order in front of the
exponentially small term.

It can be computed explicitly and generically satisfies 0.

Nevertheless, satisfiés= 0 if G = 0 andR = 0, that is, if H; does
not depend om.

Therefore, it had not been detected before since all theestud
examples did not depend an




Validity of the Melnikov function prediction

Melnikov prediction:

rue first order
a 2
Ko +u bln%

A ~ f(M)g
e The functionf satisfiesf (u) = C + O(u).

e Then, if
1

V| Ing|

Melnikov theory predicts correctly the area of the lobe.

o <<

e If b = 0, Melnikov works provided. is small independently aof.

e In the other cases, Melnikov fails to predict correctly.




e Namely, genericallyy = 1) Melnikov Theory fails to predict

— The constant in front of the exponential.

— The polynomial power in front of the exponential.

e That s, it only predicts correctly the exponential coeéfidl




Some ideas of the proof

e Consider the simpler case in which:

— The periodic orbit remains at the origin after perturbation

— The unperturbed separatrix is a graph over the base (likeein t
pendulum).

e \We look for parameterizations of the invariant manifoldgesphs
using the Hamilton-Jacobi equation.

e Namely, we look for functiong™-* solutions

0;5"° (ZIZ, E) +H (x,@xsu’s (:E, E) ,£> =0
£ e) €

which satisfy
lim 0,5" (x,t/e) =0

r—0

lim 8,5° (x,t/e) = 0

rT— 27T




We reparametrize = xo(u) andT**(u,t/e) = S*“*(xq(u),t/e)
and then we look for solutions of

Oy T™* <u, E) + H <x0(u), ! Oy T"* <u, E) : ) =0
£ Yo (u) £

which satisfy

([ lim yy N (w)0, T (u,t/e) =0
Reu——oo

lim gy (w)0,T° (u,t/e) =0
L Reu—+c

This gives parameterizations of the invariant manifold&hefform

(2 = x0(u)




For realu andt, the invariant manifolds are well approximated by the
unperturbed separatrix.

Nevertheless, they are exponentially close to each otltetramefore
it is very difficult to study the difference.

We extend the parameterization to the complex plane f@p to a
distance of orde@(¢) of the singularities of the unperturbed
separatrixu = +ia.

Close to these singularities, the invariant manifolds bezbigger
and therefore it is easy to study its difference.
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At a distance of orde®)(¢) of u = +ia the unperturbed system and
the perturbation have the same size.

This implies that in this case the invariant manifolds arewell
approximated by the unperturbed separatrix.

We have to look for different first approximations of the inaat
manifolds close taw = +a.

They are solutions of a new Hamilton-Jacobi equation inddpet of
e usually callednner equation

This equation was studied |. Baldan(2006).




e Roughly speaking, the difference of these first approxiomesti
replaces the Melnikov function in the first order.

e Namely, from the first order of the difference near the siagty, one

can deduce true first order of the difference between theianta
manifolds in the reals.




