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2
degrees of freedom Hamiltonian systems

We consider close to completely integrable Hamiltonian

h(I, x, τ) = h0(I) + δh1(I, x, τ)

where

• δ ≪ 1 is a small parameter.

• (x, τ) ∈ T
2 andI ∈ U ⊂ R.

• h is analytic.

Equations of motion:














ẋ = ∂Ih0(I) + δ∂Ih1(I, x, τ)

İ = −δ∂xh1(I, x, τ)

τ̇ = 1
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Unperturbed system

Whenδ = 0, the equations of motion are














ẋ = ∂Ih0(I)

İ = 0

τ̇ = 1

Then,

• I is an integral of motion and therefore the phase space is foliated by

2-dimensional tori.

• The dynamics in the invariant tori is a rotation of frequency

ω(I) = (∂Ih0(I), 1).
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The perturbed system

What happens when0 < δ ≪ 1:

• If ∂Ih0(I) is irrational enough (Diophantine) the unperturbed torus

with frequencyω(I) = (∂Ih0(I), 1) is preserved providedδ is small

enough (Kolmogorov-Arnol’d-Moser Theory).

• If ∂Ih0(I) is rational we are in a resonance.

• The unperturbed torus with frequencyω(I) = (∂Ih0(I), 1) breaks

down forδ > 0.

We want to study the new invariant objects that appear in the resonances.
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• We study what happens close to the resonanceω = (0, 1)

• Doing a change of variables, one can deduce similar results to the

ones presented in this talk for any other resonance.
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Close to a resonance

• By translation, we can locate the resonanceω = (0, 1) at I = 0.

• Sinceω(I) = (∂Ih0(I), 1), this implies thath0(I) =
I2

2
+G(I)

with G(I) = O
(

I3
)

.

• The size of the resonant zone is of orderO
(√

δ
)

.

• To study it, we make a rescaling to magnify it.

• Namely, we perform the change

I =
√
δy, τ = t/

√
δ

and we takeε =
√
δ.
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Rescaled Hamiltonian (I)

New Hamiltonian

H

(

y, x,
t

ε

)

=
y2

2
+

1

ε2
G(εy) + h1

(

εy, x,
t

ε

)

where

h0(I) =
I2

2
+G(I) with G(I) = O

(

I3
)

• The termε−2G(εy) is of orderO(ε).

• Now the perturbation termh1 has the same order as the integrable

system but is fast and periodic in time.

• The fast oscillating terms are expected toaverage out (at first order)

and then to have a small influence.

• So, we first study the average ofh1 with respect tot.
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Rescaled Hamiltonian (II)

• We split the Hamiltonian

H

(

y, x,
t

ε

)

=
y2

2
+

1

ε2
G(εy) + h1

(

εy, x,
t

ε

)

as

H

(

y, x,
t

ε

)

=
y2

2
+

1

ε2
G(εy) +V (x)+F

(

x,
t

ε

)

+R

(

εy, x,
t

ε

)

where

V (x) = 〈h1(0, x, τ)〉 =
1

2π

∫ 2π

0

h1(0, x, τ)dτ

F (x, τ) = h1(0, x, τ)− 〈h1(0, x, τ)〉
R(I, x, τ) = h1(I, x, τ)− h1(0, x, τ)

• The termR

(

εy, x,
t

ε

)

is of orderO(ε).
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New Hamiltonian:

H

(

y, x,
t

ε

)

=
y2

2
+

1

ε2
G(εy) + V (x) + F

(

x,
t

ε

)

+R

(

εy, x,
t

ε

)

Since

• F (x, t/ε) is fast oscillating in time

• ε−2G(εy) andR(εy, x, t/ε) are of orderO(ε)

we can study our system as a perturbation of

H0(x, y) =
y2

2
+ V (x)
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The new unperturbed system

• Given by the Hamiltonian

H0(x, y) =
y2

2
+ V (x).

• H0 is a first integral and therefore the orbits are the level curves of

H0.
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π 2π

y

x
0

• GenericallyH0 has (at least) a

hyperbolic critical point whose

invariant manifolds coincide

along a separatrix.

• With a translation one of the

critical points can be located at

(0, 0).

• When the hyperbolic periodic

orbit is unique, we have a

pendulum-like phase portrait.
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The new unperturbed system (II)

The system can have more than one hyperbolic critical points, with their

invariant manifolds coinciding along separatrices.

2π

y

x
0
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The perturbed system (I)

• Recall that the system is given by

H

(

y, x,
t

ε

)

=
y2

2
+V (x)+

1

ε2
G(εy) +F

(

x,
t

ε

)

+R

(

εy, x,
t

ε

)

• Since the perturbative terms are either small or fast oscillating we can

perform one step of averaging, which transforms the system into a

system of the form

H

(

ỹ, x̃,
t

ε

)

=
ỹ2

2
+ V (x̃) + εH̃1

(

ỹ, x̃,
t

ε
, ε

)

• Classical perturbation applied to this new system ensures that close to

(0, 0), there exists a hyperbolic periodic orbit and its invariant

manifolds.

• These objects areε-close to the unperturbed ones.
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The perturbed system (II)

Wu Ws

y

x

t
2π

• 3-dimensional phase space.

• The invariant manifolds are

now 2-dimensional.
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• Tipically they do not coincide anymore (the separatrix splits) but they

intersect transversally.

• The transversality of the invariant manifolds implies the existence of

chaotic orbits.

• We want to prove this fact and give quantitative measures of the

splitting.

• These quantitative estimates give a bound for the region of the phase

space where chaotic orbits are confined.
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The 2πε-time Poincaré map formulation

(x0, y0)(x0, y0)

(xp(t0), yp(t0)) P t0(xp(t0), yp(t0))

t = t0 t = t0 + 2πε

P t0(x0, y0)

P t0(x0, y0)

(xp(t0), yp(t0))

t = t0 ≡ t0 + 2πε

From the perturbed system it can be derived adiscrete dynamicalsystem

considering the2πε-time Poincaŕe map.
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The splitting of separatrices in the Poincaŕe map

t0y

x
2π

• Considering the Poincaré map,

we obtain this picture.

• We can measure several quan-

tities to study the splitting.
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• Since we want to prove the existence of transversal homoclinic

points, a natural quantity to measure would be the angle between the

invariant manifolds at the homoclinic point.

• Nevertheless, the angle depend on the homoclinic point and it is not a

symplectic invariant.

• The distance between the invariant manifolds also depends on the

chosen coordinates and is neither a symplectic invariant.

• Between transversal homoclinic points, the invariant manifolds create

lobes.

• The area of these lobes is invariant by iteration of the Poincaŕe map

due to thesymplectic structure.

• We will measure the splitting in terms of the area of these lobes.
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The first rigorous result dealing with this problem is the following.

Theorem (Neishtadt 84)Let us fixε0 > 0. Then, forε ∈ (0, ε0), there

exists anε-close to the identity canonical transformation that transforms

system

H

(

y, x,
t

ε

)

=
y2

2
+ V (x) +

1

ε2
G(εy) + F

(

x,
t

ε

)

+R

(

εy, x,
t

ε

)

into

H

(

ỹ, x̃,
t

ε

)

=
ỹ2

2
+ V (x̃) + εH̃0(y, x, ε) + P

(

ỹ, x̃,
t

ε

)

andP satisfies

|P | ≤ c2e
−

c1

ε

for certain constantsc1, c2 > 0.
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This theorem implies that:

• The system isexponentially small close to integrable.

• The invariant manifolds are exponentially close.

• Nevertheless, it does not give any information about the splitting of

the separatrix (we do not know whether they coincide or not).

• Namely, it gives an exponentially small upper bound of the area of

the lobes, but we need also lower bounds to know that they split.

• In particular, we do not know whether the system has chaotic orbits

or not.

20



Perturbative approach in ε

To see whether the separatrix splits, we can look for parameterizations of

the invariant manifolds

xu(r, ε), xs(r, ε)

→ Sinceε is small, we can look for formal solutions as a power series of

ε:

xα(r, ε) = x0(r) + εxα
1 (r) + ε2xα

2 (r) + . . . for α = u, s

For these problems which are analytic and have a fast periodic

perturbation:

xu
k(r) = xs

k(r) ∀k ∈ N

Conclusion:

xu(r, ε)− xs(r, ε) = O(εk) ∀k ∈ N

→ Proceeding formally we see that their difference isbeyond all orders.
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What is happening?

Two options:

1 Both manifolds coincide also in the perturbed case (the perturbed

system is alsointegrable) → the power series inε is convergent:

2 Both manifolds do not coincide→ the power series inε is divergent

and the difference between manifolds has to beflat with respectε.

Tipically is happening the second option
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• Since the splitting is a phenomenon beyond all orders, is hard to

make a perturbative approach inε.

• Trick: add a new parameterµ.

• Namely, we rewrite the rescaled Hamiltonian

H

(

y, x,
t

ε

)

=
y2

2
+V (x)+

1

ε2
G(εy) +F

(

x,
t

ε

)

+R

(

εy, x,
t

ε

)

as

H

(

y, x,
t

ε

)

= H0(y, x) + µH1

(

y, x,
t

ε
, ε

)

whereµ = 1 is a fake parameter and

H0(y, x) =
y2

2
+ V (x)

H1(y, x, τ, ε) = F (x, τ) +
1

ε2
G(εy) +R(εy, x, τ)
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• Even if the general case corresponds toµ = 1, the first results

studying the splitting of separatrices consideredµ as a small

parameter.

• Namely, let’s forget for a moment thatε is a small parameter and let

us considerµ as an arbitrarily small parameter.

• In that case, we can consider a perturbative approach inµ, which is

usually called Poincaré-Melnikov Method.
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Poincaré-Melnikov Theory (I)

x

y
Σ

Wu

Ws

1. We fixΣ, a transversal section

to the unperturbed separatrix in

order to measure in it the split-

ting.

2. We consider a parameteriza-

tion γ of the unperturbed sep-

aratrix such thatγ(0) belongs

to this section.
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Poincaré-Melnikov Theory (II)

3. We define theMelnikov functionas:

M(s, ε) =

∫ +∞

−∞

{H0, H1}
(

γ(t− s),
t

ε

)

dt

where

– s corresponds to the time evolution through the separatrix.

– {H0, H1} is the Poisson bracket:

{H0, H1} =
∂H0

∂x

∂H1

∂y
− ∂H1

∂x

∂H0

∂y

→M can be computed sinceH0, H1 andγ are known.
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Poincaré-Melnikov Theory (III)

Then:

• Thedistancebetween both invariant manifolds forµ > 0 is given by:

d(s, µ, ε) = µ
M(s, ε)

‖DH0(γ(−s))‖ +O
(

µ2
)

• If there existss0 such that

(i)M(s0, ε) = 0 (ii)
∂M

∂s

∣

∣

∣

∣

s=s0

6= 0

Then the invariant manifoldsintersect transversallyin a point which
is close toγ(s0).

• If s0 y s1 are two consecutive simple zeros of the Melnikov function,
theareaof the corresponding lobe is given by:

A = µ

∫ s1

s0

M(s, ε)ds+O
(

µ2
)
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Conclusion: Poincaŕe-Melnikov theory allows to

• Prove the existence of transversal homoclinic orbits

• Compute the distance between manifolds, and therefore to compute

asymptotically forµ → 0 the region of the phase space where chaos

is confined.

• Nevertheless, these results are forµ arbitrarily small andε fixed.
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• To see whether Poincaré-Melnikov Theory is valid also for smallε

we have to study the dependence onε of the Melnikov function.

• The dependence onε of the Melnikov functions is extremely

sensitive on the analyticity properties of the Hamiltonian.

• So, we need to impose conditions on the Hamiltonian to compute this

dependence.
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Hypothesis on the Hamiltonian

• Recall that the original system was given by

h(I, x, τ) = h0(I) + δh1(I, x, τ)

• Then, we have to assume that the perturbationh1(I, x, τ) is a

trigonometric polynomial inx.

• The potentialV has been defined as

V (x) =
1

2π

∫ 2π

0

h1(0, x, τ)dτ

• We have also to assume the generic hypothesis thatV (x) has the

same degree ash1.
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Hypotheses on the separatrix

• Let us consider the parameterization of the separatrix of

H0(y, x) =
y2

2
+ V (x):

γ(u) = (x0(u), y0(u))

• y0(u) has always singularities in the complex plane.

• Then, there existsa > 0 such thaty0(u) is analytic in the complex

strip{|Imu| < a} and cannot be extended in any wider strip.

• We assume thaty0(u) has only one singularity in each of the

boundary lines{Imu = ±a}.

• Then, they are order one poles.

• Moreover, the parameterization ofγ can be chosen such that they are

located atu = ±ia.
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• With these hypotheses we can study the dependence onε of the
Melnikov function .

• Namely, we can use Residuums Theorem to compute

M(s, ε) =

∫ +∞

−∞

{H0, H1}
(

γ(t− s),
t

ε

)

dt.

• Then Melnikov Theory formula for the area of the lobes is

A(ε, µ) = µA0(ε) +O(µ2)

• A0(ε) = C
1

ε
e−

a
ε (1 +O(εν)) where

– a is the imaginary part of the singularity of the separatrix.

– C is a real constant given by Melnikov Theory.

– ν > 0.

• Melnikov theory only applies ifµ is exponentially small with respect
to ε but we wantµ = 1.
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• Even if Melnikov Theory only applies ifµ is exponentially small

with respect toε, one can ask whether the Melnikov function gives

the true first order for a wider range inµ.

• Using complex perturbation techniques, these results wereimproved.

• V. Gelfreich (1997), proved that Melnikov predicts correctly the area

of the lobes providedµ = εη with η big enough.

• A. Delshams and T. Seara (1997) improved this result to the case

µ = εη with η > 2.
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• The only results dealing with the caseµ = 1 (usually calledsingular

case) are due to V. Gelfreich, D. Treschev, and T. Seara, C. Olivé and

G., but only deal with the pendulum with certain perturbations which,

in particular, do not depend ony.

• In these cases, one can see that Melnikov does not predict thearea of

the lobes correctly.

• In the present work we deal with the general case (assuming the

explained hypotheses).
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Main theorem

There exists a constantb and an analytic functionf(µ) such that for any

fixedµ such thatf(µ) 6= 0 andε small enough:

• The invariant manifolds split creating transversal intersections.

• Thearea of the lobesis given by theasymptotic formula:

A =
µ

ε
e−

a
ε
+µ2b ln 1

ε

(

f(µ) +O
(

1

| ln ε|

))

• In particular, ifµ = 1,

A =
1

ε1−b
e−

a
ε

(

f(1) +O
(

1

| ln ε|

))
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The function f(µ)

• Recall the expression of the Hamiltonian

H (y, x, t) =
y2

2
+V (x)+µ

(

F

(

x,
t

ε

)

+
1

ε2
G(εy) +R

(

εy, x,
t

ε

))

• The term
1

ε2
G(εy) +R

(

εy, x,
t

ε

)

is of orderε.

• Nevertheless, the functionf(µ) depends on the full jet iny of G and

R.

• Namely, any finite order truncation inε of the Hamiltonian does not

predict correctly the area of the lobes.
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• Since forµ = 1 the area is given by

A =
1

ε1−b
e−

a
ε

(

f(1) +O
(

1

| ln ε|

))

,

to know whether there is splitting or not in the original example it is

enough to check iff(1) 6= 0.

• It is difficult to know the functionf analytically.

• It can be studied numerically using a different problem independent

of ε, which is usually calledinner equation.
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The constantb

• The constantb changes the algebraic order in front of the

exponentially small term.

• It can be computed explicitly and generically satisfiesb 6= 0.

• Nevertheless, satisfiesb = 0 if G = 0 andR = 0, that is, ifH1 does

not depend ony.

• Therefore, it had not been detected before since all the studied

examples did not depend ony.
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Validity of the Melnikov function prediction

Melnikov prediction:

A ∼ C
µ

ε
e−

a
ε

True first order

A ∼ f(µ)
µ

ε
e−

a
ε
+µ2b ln 1

ε

• The functionf satisfiesf(µ) = C +O(µ).

• Then, if

µ ≪ 1
√

| ln ε|
Melnikov theory predicts correctly the area of the lobe.

• If b = 0, Melnikov works providedµ is small independently ofε.

• In the other cases, Melnikov fails to predict correctly.
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• Namely, generically (µ = 1) Melnikov Theory fails to predict

– The constant in front of the exponential.

– The polynomial power in front of the exponential.

• That is, it only predicts correctly the exponential coefficient.

40



Some ideas of the proof

• Consider the simpler case in which:

– The periodic orbit remains at the origin after perturbation.

– The unperturbed separatrix is a graph over the base (like in the
pendulum).

• We look for parameterizations of the invariant manifolds asgraphs
using the Hamilton-Jacobi equation.

• Namely, we look for functionsSu,s solutions

∂tS
u,s

(

x,
t

ε

)

+H

(

x, ∂xS
u,s

(

x,
t

ε

)

,
t

ε

)

= 0

which satisfy






lim
x→0

∂xS
u (x, t/ε) = 0

lim
x→2π

∂xS
s (x, t/ε) = 0
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• We reparametrizex = x0(u) andT u,s(u, t/ε) = Su,s(x0(u), t/ε)

and then we look for solutions of

∂tT
u,s

(

u,
t

ε

)

+H

(

x0(u),
1

y0(u)
∂uT

u,s

(

u,
t

ε

)

,
t

ε

)

= 0

which satisfy










lim
Reu→−∞

y−1
0 (u)∂uT

u (u, t/ε) = 0

lim
Reu→+∞

y−1
0 (u)∂uT

s (u, t/ε) = 0

This gives parameterizations of the invariant manifolds ofthe form










x = x0(u)

y = y0(u) + yu,s1

(

u,
t

ε

)
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• For realu andt, the invariant manifolds are well approximated by the

unperturbed separatrix.

• Nevertheless, they are exponentially close to each other and therefore

it is very difficult to study the difference.

• We extend the parameterization to the complex plane foru up to a

distance of orderO(ε) of the singularities of the unperturbed

separatrixu = ±ia.

• Close to these singularities, the invariant manifolds become bigger

and therefore it is easy to study its difference.
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• At a distance of orderO(ε) of u = ±ia the unperturbed system and

the perturbation have the same size.

• This implies that in this case the invariant manifolds are not well

approximated by the unperturbed separatrix.

• We have to look for different first approximations of the invariant

manifolds close tou = ±ia.

• They are solutions of a new Hamilton-Jacobi equation independent of

ε usually calledinner equation.

• This equation was studied I. Baldomá (2006).
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• Roughly speaking, the difference of these first approximations

replaces the Melnikov function in the first order.

• Namely, from the first order of the difference near the singularity, one

can deduce true first order of the difference between the invariant

manifolds in the reals.
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