Lecture 5: Oscillatory motions for the RPE3BP

Marcel Guardia

Universitat Politècnica de Catalunya

February 10, 2017

Outline

Oscillatory motions for the RPE3BP

Instabilities in the RPE3BP (Arnold diffusion)

Abundance of the different types of final motions.

The RPE3BP

The RPE3BP in polar coordinates

$$H(r,\phi,y,G;\mu)=\frac{y^2}{2}+\frac{G^2}{2r^2}-U(r,\alpha,t;\mu),$$

where

$$U(r,\alpha,t;\mu) = \frac{(1-\mu)}{\|re^{i\alpha} - q_1(t)\|} + \frac{\mu}{\|re^{i\alpha} - q_2(t)\|}.$$

and q_1 , q_2 are the positions of the primaries.

- Three parameters: μ , e_0 and G_0 .
- The Sitnikov problem and the RPC3BP could be reduced to a 2-dim Poincaré map.
- The RPE3BP has a phase space of dimension 5.

3 / 25

The RPE3BP

 The increase of dimension makes more difficult to construct symbolic dynamics as in the Moser approach.

- We will use simpler techniques to construct oscillatory motions
- We will not be able to construct orbits with any combination of past and future.

We use techniques from Arnold diffusion: a transition chain.

Infinity and their invariant manifolds

Now at infinity we have a cylinder

$$\Lambda = \left\{ (r, y) = (+\infty, 0), G \in [G_1, G_2], (\alpha, t) \in \mathbb{T}^2 \right\}$$

• In McGehee coordinates $r = 2x^{-2}$,

$$\Lambda = \left\{ (x,y) = (0,0), G \in [G_1,G_2], (\alpha,t) \in \mathbb{T}^2 \right\}$$

Dynamics in Λ is foliated by periodic orbits.

$$\dot{G} = 0$$
 $\dot{\alpha} = 0$
 $\dot{t} = 1$

- Consider the Poincaré map \mathcal{P} to the section $\{t=0\}$
- The cylinder $\Lambda_0 = \Lambda \cap \{t = 0\}$ is foliated by fixed points.

5 / 25

$$\Lambda_0 = \{(x, y) = (+\infty, 0), G \in [G_1, G_2], \alpha \in \mathbb{T}\}$$

- Each fixed point $z = (\alpha, G)$ has stable/unstable invariant manifolds $W^{u,s}(z)$.
- All together form $W^s(\Lambda_0)$ and $W^u(\Lambda_0)$.
- Take $G_1 \gg 1$
- For $e_0 = 0$ (RPC3BP) we have proven transversality of the invariant manifolds.
- For $e_0 \ll 1$, the invariant manifolds of the cylinder intersect transversally.
- Thus: there are heteroclinic orbits connecting different fixed points of infinity.

- Construct an infinite sequence of heteroclinic orbits $\{\gamma_i\}_{i\geq 0}$ to the cylinder Λ_0 such that the forward limit of γ_i coincides with the backward limit of γ_{i+1} .
- Such sequence is called transition chain.
- We will construct such sequence
- We will look for orbits which "shadow" such sequence getting closer to the heteroclinics and the cylinder.
- lim inf of distance between the orbit and the cylinder equal to zero implies the orbit is oscillatory (in forward time).

The scattering map

- First step: construct a transition chain (a sequence of heteroclinic orbits).
- We use the scattering map defined by Delshams-de la Llave-Seara for normally hyperbolic invariant manifolds.
- It also can be defined in this degenerate setting.
- It was introduced to study Arnold diffusion in nearly integrable Hamiltonian systems.
- Consider the cylinder Λ_0 .
- Their invariant manifolds $W^{u,s}(\Lambda)$ intersect transversally along a homoclinic manifold Γ .

The scattering map

Scattering map associated to the homoclinic manifold Γ.

$$S: \Lambda_0 \to \Lambda_0$$

given by: $z_+ = S(z_-)$ provided $\exists \tilde{z} \in \Gamma$ such that

$$W^s(z_+) \cap W^u(z_-) \cap \Gamma \neq \emptyset$$

• $z_+ = S(z_-)$ implies that z_- and z_+ are connected by a heteroclinic orbit.

9 / 25

The scattering map

- Different homoclinic manifolds lead to different scattering maps
- Usually, S is only defined locally since it is hard to analyze the homoclinic manifold (often we only can define them locally).
- In the case of RPC3BP and RPE3BP, the homoclinic channel is diffeomorphic to Λ_0 .
- The associated scattering map is globally defined
- One can obtain formulas for the scattering map using Melnikov functions

Scattering map versus separatrix map

- The scattering map and the separatrix map are strongly related but quite different.
- Separatrix map: involves finite (long) time and its domain are points "close" to the invariant manifolds of Λ_0 .
- Scattering map: involves infinite time and its domain is Λ_0
- Orbits of the Separatrix maps are true orbits of the original system.
- Orbits of the Scattering map correspond to heteroclinic orbits to Λ_0 in the original system.

The scattering map for the RPC3BP and the RPE3BP

- In the previous lecture: invariant manifolds of infinity intersect for any $\mu \in (0, 1/2]$ and $G_0 \gg 1$.
- We can define a scattering map.

$$S_0: \begin{pmatrix} \alpha \\ G \end{pmatrix} \longmapsto \begin{pmatrix} \alpha + f(\mu, G) \\ G \end{pmatrix}.$$

- Defined for all $\mu \in (0, 1/2]$ and $G \ge G_0 \gg 1$.
- It is integrable and a twist map: $\partial_G f(\mu, G) > 0$.
- RPE3BP: transversality of $W^{u,s}(\Lambda_0)$ in $[G_1, G_2]$ and e_0 small enough.
- The scattering map S_{e_0} is defined $S: \Lambda_0 \cap [G_1, G_2] \to \Lambda_0$.
- S_{e_0} is e_0 -close to S_0 .

M. Guardia (UPC) Lecture 5 February 10, 2017 12 / 25

Orbits of the scattering map

- We want an infinite transition chain: a sequence of points in Λ connected by heteroclinic orbits.
- This is given by an orbit of the scattering map.
- Problem: we want the transition chain to be in a compact set $\mathbb{T} \times [G_1, G_2]$.
- If the transition chain leaves $\mathbb{T} \times [G_1, G_2]$, goes to regions were we do not know whether the invariant manifolds intersect (scattering maps are not defined).
- Nearly integrable twist maps have bounded orbits.
- A bounded orbit of the scattering map corresponds to a transition chain of periodic orbits such that all periodic orbits belong to $\mathbb{T} \times [G_1, G_2]$.

M. Guardia (UPC) Lecture 5 February 10, 2017 13 / 25

A C^0 (reversed) Lambda lemma

- There exists a sequence of points $\{x_i\}_{i\geq 1}\subset \Lambda_0$ connected by heteroclinic orbits.
- We want orbits shadowing such sequence.
- We use a Lambda lemma.

Theorem

Let Γ be a curve which transversally intersects $W^u(\Lambda_0)$ at P such that $P \in W^u(X_0)$ for some $X_0 \in \Lambda_0$.

Then
$$W^s(X_0) \subset \overline{\cup_{j>0} f^{-j}(\Gamma)}$$
.

 Compared to the Lambda lemma used for the Sitnikov problem, we have extra "central variables".

M. Guardia (UPC) Lecture 5 February 10, 2017 14 / 25

Shadowing argument

- Let $\{P_i\}_{i=1}^{+\infty}$ be a sequence of transition periodic orbits in Λ .
- That is: $W^u(P_i) \cap W^s(P_{i+1})$.
- Given $\{\varepsilon_i\}_{i=1}^{+\infty}$ a sequence of strictly positive numbers, we can find a point P and a increasing sequence of numbers T_i such that

$$\Phi_{T_i}(P) \in N_{\varepsilon_i}(P_i)$$

where $N_{\varepsilon_i}(P_i)$ is a neighborhood of size ε_i of the periodic orbit P_i .

Proof

• Let $x \in W_{P_1}^s$. We can find a closed ball B_1 , centered on x, and such that

$$\Phi_{P_1}(B_1)\subset N_{\varepsilon_1}(P_1).$$

By the Lambda Lemma

$$W_{P_2}^s \cap B_1 \neq \emptyset$$
.

• Hence, we can find a closed ball $B_2 \subset B_1$, centered in a point in $W_{P_n}^s$ such that

$$\Phi_{T_2}(B_2) \subset N_{\epsilon_2}(P_2).$$

(and also $\Phi_{P_1}(B_1) \subset N_{\varepsilon_1}(P_1)$).

• By induction, there is a sequence of closed balls

$$B_i \subset B_{i-1} \subset \cdots \subset B_1$$

 $\Phi_{T_i}(B_i) \subset N_{\varepsilon_i}(P_j), \quad i \leq j.$

16 / 25

• Since the balls are compact, $\cap B_i \neq \emptyset$. A point P in the intersection satisfies the required property.

Shadowing argument

• Given $\{\varepsilon_i\}_{i=1}^{+\infty}$ a sequence of strictly positive numbers, we can find a point P and a increasing sequence of numbers T_i such that

$$\Phi_{T_i}(P) \in N_{\varepsilon_i}(P_i)$$

where $N_{\varepsilon_i}(P_i)$ is a neighborhood of size ε_i of the periodic orbit P_i .

- This is true for any sequence $\{\varepsilon_i\}_{i=1}^{+\infty}$.
- Take any sequence $\varepsilon_i \to 0$ as $i \to \infty$.
- The lim inf of the distance between the orbit and the cylinder Λ_0 is 0.
- Undoing McGehee change of coordinates $r = \frac{2}{x^2}$, lim sup of the orbit is infinity.

M. Guardia (UPC) Lecture 5 February 10, 2017 17 / 25

Oscillatory motions for the RPE3BP

Theorem (Guardia-Martin-Seara-Sabbagh)

Fix any $\mu \in (0, 1/2]$ and e_0 small enough. There exists an orbit (q(t), p(t)) of the RPE3BP which satisfies

$$\limsup_{t\to +\infty}\|q\|=+\infty \quad \text{and} \quad \liminf_{t\to +\infty}\|q\|<+\infty.$$

M. Guardia (UPC) Lecture 5 February 10, 2017 18 / 25

$$H(r, \phi, y, G; \mu) = \frac{y^2}{2} + \frac{G^2}{2r^2} - U(r, \alpha, t; \mu),$$

- Besides oscillatory motions, several other interesting phenomena take place close to parabolic motion.
- There exists Arnold diffusion: drift of actions
- The angular momentum G is a first integral when $\mu = 0$ (two body problem).
- Traveling close to the invariant manifolds of infinity, G can make big excursions.

Arnold diffusion in the RPE3BP

Theorem (de la Rosa - Delshams - Kaloshin - Seara)

Fix $G_2 > G_1 \gg 1$. Then for e_0 and μ small enough, there exists a trajectory of the RPE3BP and some T > 0 such that

$$G(0) < G_1, \qquad G(T) > G_2.$$

- Main idea: use (several) scattering maps to construct transition chains with a big increase in angular momentum.
- Shadow this transition chain.
- It is only proven for $\mu \ll 1$ and $e_0 \ll 1$.
- It should happen for any $\mu \in (0, 1/2]$ and $e_0 \in (0, 1)$.
- Even more: orbits such that $G(t) \to +\infty$ as $t \to +\infty$.

Measure of final motions

• For the RPC3BP, we have construct any possible combinations $X^- \cap Y^+$ with X, Y = B, P, H, OS.

• How abundant these combinations are?

Do they have zero or positive measure?

Measure of final motions

• Any combination involving P^{\pm} must have measure zero since P^{\pm} are the invariant manifolds of infinity.

For the other combinations

	B^+	H ⁺	OS ⁺
B ⁻	Measure > 0	Measure = 0	Measure = 0
H ⁻	Measure = 0	Measure > 0	Measure = 0
OS ⁻	Measure = 0	Measure = 0	?

• The only one still not known is $OS^- \cap OS^+$.

Measure conjecture

 Question by Arnold in the Conference in honor of the 70th anniversary of Alexeev:

Is the Lebesgue measure of the set of oscillatory motions positive?

- Arnold considered this problem the central problem of celestial mechanics.
- Conjecture (Alexeev, Kolmogorov): The Lebesgue measure is zero.

Hausdorff dimension

 Kaloshin/Gorodetski consider the set of oscillatory motions for the RPC3BP (also Sitnikov)

 The Hausdorff dimension of the set of oscillatory motions is maximal for a Baire generic subset of an open set of parameters (the mass ratio and the Jacobi constant in the RPC3BP).

Existence of oscillatory motions

- Proved for all μ in the circular case.
- Proved for all μ and $e_0 \ll 1$ for the elliptic problem.
- Problem to extend the results $e_0 \in (0, 1)$: prove the transversality between the invariant manifolds.
- Non restricted 3BP:
 - Oscillatory motions only proved for a Sitnikov like configuration (Alexeev) with a third body with small mass.
 - Arnold diffusion should imply exchange of angular momentum between the parabola of body 3 and the ellipse of bodies 1 and 2.
- For more bodies no results at all.