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Moser approach

@ McGehee coordinates send “infinity” to the origin. Then, infinity
becomes a parabolic fixed point (linearization equal to the
identity).

@ This parabolic point has invariant manifolds (Parabolic motions).
@ Prove that they intersect transversally.

@ Establish symbolic dynamics close to these invariant manifolds.
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@ The McGehee transformation and the local invariant manifolds of
infinity.

@ The transversality between the invariant manifolds: the
Poincaré—Melnikov method

@ Simo6 and Llibre result: the transversality of invariant manifolds

S

provided p < e~ 3 and Gp > 1.
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The RPC3BP

@ The RPC3BP in rotating polar coordinates

y2 GZ
H(r7¢7Y7G;H):?‘Fﬁ_G_U(ra(b;N)a

where U(r, ¢; 1) is the Newtonian potential

_ (1-p) o
U(r,¢) = [reid + p + |rei® — (1 — )|’

@ Two parameters: p and Gp.

@ Now H corresponds to the Jacobi constant and we can identify it
with Go.

@ Infinity: (r,y) = (4+00,0)
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The McGehee coordinates

@ McGehee change of coordinates r = % sends infinity to x = 0.

@ Only the region x > 0 is meaningful.

@ Integrable case u — 0,

X=—2Xy g/)——H—ZxG
y= g G0 ot G=0
@ G and
_ 2 y2  G*x* X
KO(XuyaG)_HO <F7y7G> _E—i_ ) _?

are first integrals.
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Infinity in McGehee coordinates

. . 1
x:—%xsy b= —1 +ZX4G
y:%GZXG—%XA' G=0

@ The cylinder at infinity is (x, y) = (0, 0), which is invariant.
@ For any value of Gy:
Ag, ={(x,¥,9,G) = (0,0,9, Go),¢ € T}
is a periodic solution.

@ The cylinder of infinity A = Ug, Ag, is foliated by periodic orbits
(one at each level of energy).
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Invariant manifolds of infinity when = 0

G?x* X2

8 2

y2
KO(X’Y’ G) = ? +

@ For fixed G = Gy, dynamics in the (x, y) plane

. 1 1

X = —szy = —szayKo

) 1 1 1

y= §G§x6 — ZX4 = Zx?’axKo
@ The vector field has no linear part at (x, y) = (0,0).
@ Itis a parabolic point (linear part equal to zero).
@ Parabolic points do not always have invariant manifolds.
@ In this case it is enough to use the first integral

y2 G(2)X4 B X_2

KO(X’Y’GO):?‘F 8 2
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Invariant manifolds of infinity when = 0

y2 GZX4
@ Stable/ unstable manifolds defined by o> + %

2
X
370

@ We have a separatrix as for
the Duffing equation.

@ The vertical axis is infinity. m
\J T
@ Attention: Orbits on the

separatrix do not tend to
(x,y) = (0,0) exponentially
but polynomially.
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Local behavior of the RPC3BP

@ Local behavior in McGehee Coordinates

. 1 4
X=Xy

i 1 1
y = ngx6 +o,U (2x‘2, qb) = —ZX4 + x50,

b=—-1+ %Gx4
G=0,U (2x—2, ¢) — x50,

where Ok = O([|(x, y)[I¥).
@ Reducing by the energy, we can eliminate G.
@ Reparameterizing time we can identify it with ¢.

@ So, we can consider a non-autonomous system in the plane
(without modifying the first order).
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The local invariant manifolds

@ Local behavior
X = —%xs‘y + X% (x, y, ¢)
y = —%XA' +x%h(x, y, 0)
@ The change of coordinates
q=5(x-y)

p=(Xx+y)

I\)I—Ll\)l—*

leads to
1
q = 2(a+p°@@+(qa+p)°0o)
1
p'=—7(a+p)*(q+(q+p)°O)
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Local invariant manifolds

@ New system, defined for g + p > 0,

d = 3@+ P (a+(q+p)f00)

P = —4(a+pPa+(a+pPoo)

@ General case of invariant manifolds of parabolic objects is quite
open.

@ Here just look for invariant manifolds for periodic orbits (fixed
points for the Poincaré map).
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Local invariant manifolds

@ McGehee proved the existence of the local invariant manifolds as
graphs for all » € [0,1/2] and Gy > 0.

Theorem

Fix Go > 0. The periodic orbit Ag, at (p,q) = (0,0) possesses
invariant stable and unstable manifolds, Wgo and Wgo.
More concretely,

W&, = {(a.p.¢,G) | p=7"(q. ¢0. Go), q € [0, q0)}

where

@ Y is C*> with respect to q and analytic with respect to (¢g, Go),
Q 1%(q, ¢o, Go) = O(9?).

@ The analogous statement holds for W*, as a graph over p.
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Regularity of the invariant manifolds

@ The invariant manifolds are analytic away from q = 0.

@ We need regularity up to the origin to perform a change of
coordinates which straightens the invariant manifolds.

@ Hyperbolic case: stable/unstable invariant manifolds of periodic
orbits of analytic systems are analytic.

@ Parabolic case: they are only C*>° at g = 0.

@ Baldoma-Fontich-Martin: the invariant manifolds are 1/3-Gevrey
at g = 0: the Taylor coefficients of the parameterization grow as

|P| < CiCk (k)'/3
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Straightening of the invariant manifolds

@ After a change of coordinates

H+ Bounded

1 . 3~
q =2(a+p)’q(1+02)

Fz—ﬂ&+@%ﬁ+0g {xim P

@ The invariant manifolds are
the axes. -

@ We will use this system on
Lecture 4 to study the
dynamics close to infinity.
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The global invariant manifolds

@ We want to study the global invariant manifolds and prove that
they intersect transversally.

@ Poincaré—Melnikov Theory allows to prove the transversality of the
invariant manifolds (in some settings).

@ We apply Melnikov Theory to the RPC3BP.

@ Tomorrow, we will explain how to prove transversality when
Melnikov Theory cannot be applied.

@ This will be related to exponentially small phenomena.
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Melnikov Theory

@ Consider a Hamiltonian with 1 + % degrees of freedom with
2n—periodic time dependence:

H(g,p,t;9) = Ho(q, p) + dH1(q, p, t; 9),

@ Assume that the origin (g, p) = (0,0) is and equilibrium of saddle
typeat Hy =0

@ It has associated separatrices included in Hy (0).

@ Consider one of the separatrices (for instance the one with p > 0)
and write it as

{(qo(t), po(t)), t € R} =:T.
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The easiest possible example: perturbations of the

pendulum

@ Example: the pendulum
Ho(a,p) = & + (cos g — 1).

@ Parameterization of the upper
separatrix

qo(t) = 4 arctan(e’) 0 2m

2
po(t) = cosht

so that

(Go(t), po(t)) — (0 mod 27,0)
for t — +oo.

® So |qo(t)| + lpo(t)] < Ce 1.

©)
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The unperturbed case: the extended phase space

@ Extended phase space: add time as variable (s = 1).
@ A={(qg,p) =(0,0),s € T} is a saddle periodic orbit.
@ A has coincident stable and unstable surfaces.
@ Motion on the upper 2-dimensional separatrix

WO(K) = {(qO(T)apO(T)ﬂS)vT €ER,s¢€ T} =IxT

o(t: qo(7), Po(7), So) = (qo(7 + 1), po(T + 1), So + 1)
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The perturbed case: § # 0 small

H(q,p,t;0) = Ho(q, p) + dH1(q, p, t;9),

@ For § <« 1, there exists a periodic orbit As, with stable/unstable

manifolds W>“(As) and

loc

Ns = N+ O(9), WS’U(/\5) = WS’U(/\) + O(9)

loc loc

@ We want conditions that imply WS(KE) # W“(Kg)

@ Since WS(As) and WY(A;s) are close to WO(A), they can be also
parameterized in terms of 7 and s
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Poincaré—Melnikov Theory

@ We fix &, a transversal
section to the
unperturbed separatrix

pu in order to measure in it
wH " the splitting.
@ We consider a
parameterization ~ of
q the unperturbed
separatrix such that v(0)
belongs to this section.

@ Poincaré—Melnikov Theory: expand the parameterizations of the
invariant manifolds in power series in § and compute the first order
of their difference at x.

@ The distance will be a function periodic in s.
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Poincaré—Melnikov Theory

@ We define the Melnikov function as:

+o0
M(s) = / {Ho. Hi} (qo(t), po(t). t + 5) at

@ We have that |qo(t)| + |po(t)] < Ce~* where A > 0 is the
eigenvalue of the saddle.

@ This implies that the integral is convergent.
@ M can be computed since Hy, Hy and ~ are known.
@ Often is not so easy to compute analytically this integral.

@ If the perturbation his T-periodic, the Melnikov potential and
function are also T-periodic.
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Poincaré—Melnikov Theory

@ The distance between both invariant manifolds for § > 0 is given

by:
LIC— ()

d(s,8) = 5m

@ If there exists sy such that

()M(so)=0 (i) 2M

0s 70

S=9y

Then the invariant manifolds intersect transversally at X for some
s’ 5-close to sp.
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An example: The perturbed pendulum

H i —p—2+(cos —1)+6(cos —1)sini
p’qu - 2 q q T

@ Equations
g=p
. . . .t
p:smq+5smqsm?

@ As = {(0,0)} is a hyperbolic periodic orbit for this system.
@ The Melnikov function is

M(3) = [ (Ho. i) (po(0). qo(0). 5 + o)

:/ po(a)sinqo(a)sins;r_gda

sinho
=4cos = / Si da
~ cosh® & T
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An example: The perturbed pendulum

@ So we only need to compute the integral

/°° sinh t &7/ T o — i 1

—oo cOsh® t T22sinh(x/2T)

@ cosht has zeros at t = +in/2.
@ Applying Residums Theorem, the Melnikov function is
27 1
T2 sinh(x/2T)
@ The distance between manifolds is given by

s
M(s) = cos =

_ o M) 2
d(s.9) = 3 oy + € ()
SO
1 2T 1

[DFo(~(0))]] T2 sinh(x/2T) *°

@ Non-degenerate zeros of M(s) give rise to transversal homoclinic

orbits.
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What happens if we have a fast forcing?

@ Take T = e« 1:
t Jod _t
H P.q, - :?+(c:osq—1)+c5(c:osq—1)smg

@ Apply Poincaré-Melnikov: fix e and expand in 4.

@ The Melnikov function is:
or 1 S

47'(' _ S
M(s.¢) = 22 sinh(nj2e) 0%~ 2 € T8

@ The distance between manifolds is given by
47

_ 52 2
d(s,e,0) = 5||DH0(7(0))|| cos + O(6%)

@ We need§ = O(e‘g_s) to make the error term smaller!
@ If we want ¢ ~ ¢, Poincaré-Melinkov Theory cannot be applied.
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What happens if we have a fast forcing?

@ Poincaré-Melnikov Theory for periodic fast perturbations only
works provided 6 = O(e™ 2¢).

@ If we want ¢ ~ ¢, Poincaré-Melinkov Theory cannot be applied.

@ Exponentially small perturbation is extremely restrictive.

@ Fast forcing is a very important setting: appears tipically when
studying invariant manifolds in the resonances of nearly integrable

Hamiltonian systems.

@ It appears in many Arnold diffusion problems (“a priori stable”
setting).
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Melnikov Theory for the PRCRBP

@ Recall that we have two parameters . and Gy.
@ Unperturbed separatrix (parabolic motion) was parameterized as

1
r=3Go(1+7°)

a=ag+m+2arctanr G .3
,_ or wheret:?<r+§>.
Go(1+72)

G=0Gy

@ Recall that (r,y) = (0,0) is parabolic.

@ As long as the local invariant manifolds are defined, we can (try
to) apply Melnikov Theory.

@ To have an unperturbed problem and a separatrix independent of
the parameters, we apply a scaling.
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The scaled system

@ Fix Gy > 0.

@ Rescaling: r=G3r, y=G,'y, a=a, G= GG
@ Time rescaling: t = G3s.

@ New Hamiltonian

H(r7a7y7 G,S) - 2 + 272
B (1-n) 3 7 .
[Fe'@=Cos + uGy 2|l [[Fe™=% — (1 — )Gy
@ Expanding,
o 2 G A = 3
H(Faa7yaG7S) — ?—i_ﬁ - 7+H1(Faa7qu7GOS)

with Hy = O (#ng).
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The scaled separatrix

@ Scaled separatrix:

r:%(1+72)

a = oo+ m+2arctant 1 -3

,_ o wheret:§<r+§).
(1+72)

G=1

_ o\ —1/2
@ In McGehee coordinates: x = 2 (1 +7 ) .

@ We apply Poincaré-Melnikov Theory using p as a small parameter.
@ The perturbation depends on Gy and so M(s, Gp) too.

@ The computation of this Melnikov function is not so easy.

@ We only know how to compute it if we assume Gy > 1.
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Melnikov Theory applied to the RPC3BP

@ Compared with

t Jod _t
H P.q, - :?+(c:osq—1)+c5(c:osq—1)smg

we have ¢ = G,° and § =

@ Melnikov function

M(s) = CG¥Pe (sm(G3 )+0(Gg1))

for some computable constant C > 0.

@ Distance between manifolds
d(s, 11, Go) ~ pCG2e~ 3 (sm(Gss)JrO (G )) +0 (,ﬁeg“).
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Melnikov Theory applied to the RPC3BP

a3
@ So, Melnikov Theory only applied provided u < GO_3/26‘T°

@ Simo6 and Llibre used this condition to prove the transversality of
the invariant manifolds.

@ Only proved existence of oscillatory motions under this condition.

@ Next day,
@ We will explain how to prove the transversality for fast periodic
perturbations.

o | will apply it to the RPC3BP for any 1. € (0,1/2] and Gy > 1.
@ Construct the symbolic dynamics that leads to oscillatory motions

for the RPC3BP.
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