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Moser approach

McGehee coordinates send “infinity” to the origin. Then, infinity

becomes a parabolic fixed point (linearization equal to the

identity).

This parabolic point has invariant manifolds (Parabolic motions).

Prove that they intersect transversally.

Establish symbolic dynamics close to these invariant manifolds.
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Outline

The McGehee transformation and the local invariant manifolds of

infinity.

The transversality between the invariant manifolds: the

Poincaré–Melnikov method

Simó and Llibre result: the transversality of invariant manifolds

provided µ ≪ e−
G3

0
3 and G0 ≫ 1.
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The RPC3BP

The RPC3BP in rotating polar coordinates

H(r , φ, y ,G;µ) =
y2

2
+

G2

2r2
− G − U(r , φ;µ),

where U(r , φ;µ) is the Newtonian potential

U(r , φ) =
(1 − µ)

‖reiφ + µ‖
+

µ

‖reiφ − (1 − µ)‖
.

Two parameters: µ and G0.

Now H corresponds to the Jacobi constant and we can identify it

with G0.

Infinity: (r , y) = (+∞,0)
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The McGehee coordinates

McGehee change of coordinates r =
2

x2
sends infinity to x = 0.

Only the region x > 0 is meaningful.

Integrable case µ → 0,

ẋ = −
1

4
x3y φ̇ = −1 +

1

4
x4G

ẏ =
1

8
G2x6 −

1

4
x4 Ġ = 0

G and

K0(x , y ,G) = H0

(
2

x2
, y ,G

)
=

y2

2
+

G2x4

8
−

x2

2
.

are first integrals.
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Infinity in McGehee coordinates

ẋ = −
1

4
x3y φ̇ = −1 +

1

4
x4G

ẏ =
1

8
G2x6 −

1

4
x4 Ġ = 0

The cylinder at infinity is (x , y) = (0,0), which is invariant.

For any value of G0:

ΛG0
= {(x , y , φ,G) = (0,0, φ,G0), φ ∈ T}

is a periodic solution.

The cylinder of infinity Λ = ∪G0
ΛG0

is foliated by periodic orbits

(one at each level of energy).
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Invariant manifolds of infinity when µ = 0

K0(x , y ,G) =
y2

2
+

G2x4

8
−

x2

2
.

For fixed G = G0, dynamics in the (x , y) plane

ẋ = −
1

4
x3y = −

1

4
x3∂yK0

ẏ =
1

8
G2

0x6 −
1

4
x4 =

1

4
x3∂xK0

The vector field has no linear part at (x , y) = (0,0).

It is a parabolic point (linear part equal to zero).

Parabolic points do not always have invariant manifolds.

In this case it is enough to use the first integral

K0(x , y ,G0) =
y2

2
+

G2
0x4

8
−

x2

2
.
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Invariant manifolds of infinity when µ = 0

Stable/ unstable manifolds defined by
y2

2
+

G2
0x4

8
−

x2

2
= 0

We have a separatrix as for

the Duffing equation.

The vertical axis is infinity.

Attention: Orbits on the

separatrix do not tend to

(x , y) = (0,0) exponentially

but polynomially.
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Local behavior of the RPC3BP

Local behavior in McGehee Coordinates

ẋ = −
1

4
x3y

ẏ =
1

8
G2x6 + ∂r U

(
2x−2, φ

)
= −

1

4
x4 + x6O0

φ̇ = −1 +
1

4
Gx4

Ġ = ∂αU
(

2x−2, φ
)
= x6O0

where Ok = O(‖(x , y)‖k ).

Reducing by the energy, we can eliminate G.

Reparameterizing time we can identify it with φ.

So, we can consider a non-autonomous system in the plane

(without modifying the first order).
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The local invariant manifolds

Local behavior

x ′ = −
1

4
x3y + x6f1(x , y , φ)

y ′ = −
1

4
x4 + x6f2(x , y , φ)

The change of coordinates

q =
1

2
(x − y)

p =
1

2
(x + y)

leads to

q′ =
1

4
(q + p)3(q + (q + p)3O0)

p′ = −
1

4
(q + p)3(q + (q + p)3O0)
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Local invariant manifolds

New system, defined for q + p > 0,

q′ =
1

4
(q + p)3(q + (q + p)3O0)

p′ = −
1

4
(q + p)3(q + (q + p)3O0)

General case of invariant manifolds of parabolic objects is quite

open.

Here just look for invariant manifolds for periodic orbits (fixed

points for the Poincaré map).
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Local invariant manifolds

McGehee proved the existence of the local invariant manifolds as

graphs for all µ ∈ [0,1/2] and G0 > 0.

Theorem

Fix G0 > 0. The periodic orbit ΛG0
at (p,q) = (0,0) possesses

invariant stable and unstable manifolds, W u
G0

and W s
G0

.

More concretely,

W u
G0

= {(q,p, φ,G) | p = γu(q, φ0,G0), q ∈ [0,q0)}

where

1 γu is C∞ with respect to q and analytic with respect to (φ0,G0),

2 γu(q, φ0,G0) = O(q2).

The analogous statement holds for W s, as a graph over p.
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Regularity of the invariant manifolds

The invariant manifolds are analytic away from q = 0.

We need regularity up to the origin to perform a change of

coordinates which straightens the invariant manifolds.

Hyperbolic case: stable/unstable invariant manifolds of periodic

orbits of analytic systems are analytic.

Parabolic case: they are only C∞ at q = 0.

Baldomá-Fontich-Martin: the invariant manifolds are 1/3-Gevrey

at q = 0: the Taylor coefficients of the parameterization grow as

|Pk | ≤ C1Ck
2 (k!)1/3
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Straightening of the invariant manifolds

After a change of coordinates

q̃′ =
1

4
(q̃ + p̃)3q̃(1 +O2)

p̃′ = −
1

4
(q̃ + p̃)3p̃(1 +O2)

The invariant manifolds are

the axes.

We will use this system on

Lecture 4 to study the

dynamics close to infinity.
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The global invariant manifolds

We want to study the global invariant manifolds and prove that

they intersect transversally.

Poincaré–Melnikov Theory allows to prove the transversality of the

invariant manifolds (in some settings).

We apply Melnikov Theory to the RPC3BP.

Tomorrow, we will explain how to prove transversality when

Melnikov Theory cannot be applied.

This will be related to exponentially small phenomena.
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Melnikov Theory

Consider a Hamiltonian with 1 + 1
2

degrees of freedom with

2π–periodic time dependence:

H(q,p, t ; δ) = H0(q,p) + δH1(q,p, t ; δ),

Assume that the origin (q,p) = (0,0) is and equilibrium of saddle

type at H0 = 0

It has associated separatrices included in H−1
0 (0).

Consider one of the separatrices (for instance the one with p > 0)

and write it as

{(q0(t),p0(t)), t ∈ R} =: Γ.
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The easiest possible example: perturbations of the

pendulum

Example: the pendulum

H0(q,p) =
p2

2 + (cos q − 1).

Parameterization of the upper

separatrix

q0(t) = 4 arctan(et)

p0(t) =
2

cosh t

so that

(q0(t),p0(t)) → (0 mod 2π,0)
for t → ±∞.

So |q0(t)| + |p0(t)| 6 Ce−|t|.

π0 2π

p

q
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The unperturbed case: the extended phase space

Extended phase space: add time as variable (ṡ = 1).

Λ = {(q,p) = (0,0), s ∈ T} is a saddle periodic orbit.

Λ has coincident stable and unstable surfaces.

Motion on the upper 2-dimensional separatrix

W 0(Λ̃) = {(q0(τ),p0(τ), s), τ ∈ R, s ∈ T} = Γ× T

is

φ(t ;q0(τ),p0(τ), s0) = (q0(τ + t),p0(τ + t), s0 + t)
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The perturbed case: δ 6= 0 small

H(q,p, t ; δ) = H0(q,p) + δH1(q,p, t ; δ),

For δ ≪ 1, there exists a periodic orbit Λδ, with stable/unstable

manifolds W
s,u
loc (Λ̃δ) and

Λδ = Λ + O(δ), W
s,u
loc (Λδ) = W

s,u
loc (Λ) + O(δ)

We want conditions that imply W s(Λ̃δ) 6= W u(Λ̃δ)

Since W s(Λδ) and W u(Λδ) are close to W 0(Λ), they can be also

parameterized in terms of τ and s
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Poincaré–Melnikov Theory

q

p
Σ

Wu

Ws

We fix Σ, a transversal

section to the

unperturbed separatrix

in order to measure in it

the splitting.

We consider a

parameterization γ of

the unperturbed

separatrix such that γ(0)
belongs to this section.

Poincaré–Melnikov Theory: expand the parameterizations of the

invariant manifolds in power series in δ and compute the first order

of their difference at Σ.

The distance will be a function periodic in s.
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Poincaré–Melnikov Theory

We define the Melnikov function as:

M(s) =

∫ +∞

−∞
{H0,H1} (q0(t),p0(t), t + s) dt

We have that |q0(t)|+ |p0(t)| 6 Ce−λ|t| where λ > 0 is the

eigenvalue of the saddle.

This implies that the integral is convergent.

M can be computed since H0, H1 and γ are known.

Often is not so easy to compute analytically this integral.

If the perturbation h is T -periodic, the Melnikov potential and

function are also T -periodic.
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Poincaré–Melnikov Theory

The distance between both invariant manifolds for δ > 0 is given

by:

d(s, δ) = δ
M(s)

‖DH0(γ(0))‖
+O

(
δ2
)

If there exists s0 such that

(i)M(s0) = 0 (ii)
∂M

∂s

∣∣∣∣
s=s0

6= 0

Then the invariant manifolds intersect transversally at Σ for some

s′ δ-close to s0.
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An example: The perturbed pendulum

H

(
p,q,

t

T

)
=

p2

2
+ (cos q − 1) + δ(cos q − 1) sin

t

T

Equations

q̇ = p

ṗ = sin q + δ sin q sin
t

T

Λδ = {(0,0)} is a hyperbolic periodic orbit for this system.

The Melnikov function is

M(s) =

∫ ∞

−∞
{H0,H1}(p0(σ),q0(σ), s + σ)dσ

=

∫ ∞

−∞
p0(σ) sin q0(σ) sin

s + σ

T
dσ

= 4 cos
s

T

∫ ∞

−∞

sinhσ

cosh3 σ
sin

σ

T
dσ
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An example: The perturbed pendulum

So we only need to compute the integral
∫ ∞

−∞

sinh t

cosh3 t
eiσ/T dσ =

πi

T 2

1

2 sinh(π/2T )
.

cosh t has zeros at t = ±iπ/2.

Applying Residums Theorem, the Melnikov function is

M(s) =
2π

T 2

1

sinh(π/2T )
cos

s

T
.

The distance between manifolds is given by

d(s, δ) = δ
M(s)

‖DH0(γ(0))‖
+O

(
δ2
)

so

d(s, δ) = δ
1

‖DH0(γ(0))‖

2π

T 2

1

sinh(π/2T )
cos

s

T
+O(δ2)

Non-degenerate zeros of M(s) give rise to transversal homoclinic

orbits.
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What happens if we have a fast forcing?

Take T = ε ≪ 1:

H

(
p,q,

t

ε

)
=

p2

2
+ (cos q − 1) + δ(cos q − 1) sin

t

ε

Apply Poincaré-Melnikov: fix ε and expand in δ.

The Melnikov function is:

M(s, ε) =
2π

ε2

1

sinh(π/2ε)
cos

s

ε
∼

4π

ε2
e− π

2ε cos
s

ε
.

The distance between manifolds is given by

d(s, ε, δ) = δ
4π

‖DH0(γ(0))‖
e−

π
2ε cos

s

ε
+O(δ2)

We need δ = O(e−
π
2ε ) to make the error term smaller!

If we want δ ∼ ε, Poincaré-Melinkov Theory cannot be applied.
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What happens if we have a fast forcing?

Poincaré-Melnikov Theory for periodic fast perturbations only

works provided δ = O(e−
π
2ε ).

If we want δ ∼ ε, Poincaré-Melinkov Theory cannot be applied.

Exponentially small perturbation is extremely restrictive.

Fast forcing is a very important setting: appears tipically when

studying invariant manifolds in the resonances of nearly integrable

Hamiltonian systems.

It appears in many Arnold diffusion problems (“a priori stable”

setting).
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Melnikov Theory for the PRCRBP

Recall that we have two parameters µ and G0.

Unperturbed separatrix (parabolic motion) was parameterized as

r =
1

2
G2

0(1 + τ2)

α = α0 + π + 2 arctan τ

y =
2τ

G0(1 + τ2)

G = G0

where t =
G3

0

2

(
τ +

τ3

3

)
.

Recall that (r , y) = (0,0) is parabolic.

As long as the local invariant manifolds are defined, we can (try

to) apply Melnikov Theory.

To have an unperturbed problem and a separatrix independent of

the parameters, we apply a scaling.
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The scaled system

Fix G0 > 0.

Rescaling: r = G2
0 r̃ , y = G−1

0 ỹ , α = α̃, G = G0G̃.

Time rescaling: t = G3
0s.

New Hamiltonian

H̃(r̃ , α̃, ỹ , G̃, s) =
ỹ2

2
+

G̃2

2r̃2

−
(1 − µ)

‖r̃ ei(α̃−G3
0
s + µG−2

0 ‖
−

µ

‖r̃ eiα̃−G3
0
s − (1 − µ)G−2

0 ‖
.

Expanding,

H̃(r̃ , α̃, ỹ , G̃, s) =
ỹ2

2
+

G̃2

2r̃2
−

1

r̃
+ H1(r̃ , α̃, ỹ , G̃,G3

0s)

with H1 = O
(
µG−2

0

)
.
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The scaled separatrix

Scaled separatrix:

r =
1

2
(1 + τ2)

α = α0 + π + 2 arctan τ

y =
2τ

(1 + τ2)

G = 1

where t =
1

2

(
τ +

τ3

3

)
.

In McGehee coordinates: x = 2
(

1 + τ2
)−1/2

.

We apply Poincaré-Melnikov Theory using µ as a small parameter.

The perturbation depends on G0 and so M(s,G0) too.

The computation of this Melnikov function is not so easy.

We only know how to compute it if we assume G0 ≫ 1.
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Melnikov Theory applied to the RPC3BP

Compared with

H

(
p,q,

t

ε

)
=

p2

2
+ (cos q − 1) + δ(cos q − 1) sin

t

ε

we have ε = G−3
0 and δ = µ.

Melnikov function

M(s) = CG
3/2
0 e−

G3
0

3

(
sin(G3

0s) +O
(

G−1
0

))

for some computable constant C > 0.

Distance between manifolds

d(s, µ,G0) ∼ µCG
3/2
0 e−

G3
0

3

(
sin(G3

0s) +O
(

G−1
0

))
+O

(
µ2G−4

0

)
.
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Melnikov Theory applied to the RPC3BP

So, Melnikov Theory only applied provided µ ≪ G
−3/2
0 e−

G3
0

3

Simó and Llibre used this condition to prove the transversality of

the invariant manifolds.

Only proved existence of oscillatory motions under this condition.

Next day,

We will explain how to prove the transversality for fast periodic
perturbations.

I will apply it to the RPC3BP for any µ ∈ (0, 1/2] and G0 ≫ 1.

Construct the symbolic dynamics that leads to oscillatory motions

for the RPC3BP.
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