Growth of Sobolev norms for the analytic non-linear Schrödinger equation

Marcel Guardia (Universitat Politècnica de Catalunya) Emanuele Haus (Universitá di Napoli) Michela Procesi (Universitá di Roma 3)

September 6, 2016

Consider the equation

$$-iu_t + \Delta u = \pm |u|^{2(d-1)}u + G'(|u|^2)u, \quad d \in \mathbb{N}, \ d \ge 2$$

where $x \in \mathbb{T}^2 = \mathbb{R}^2/(2\pi\mathbb{Z})^2, \ t \in \mathbb{R}$ and $u : \mathbb{R} \times \mathbb{T}^2 \to \mathbb{C}$.

- G(y) is an analytic function with a zero of degree at least d + 1.
- In this talk we consider the defocusing setting (+).
- The result presented is also valid for the focusing NLS (-).

Transfer of energy

• L^2 norm (mass) and energy are preserved. Thus,

 $\|u(t)\|_{H^1(\mathbb{T}^2)} \le C \|u(0)\|_{H^1(\mathbb{T}^2)} \ \ \text{for all} \ \ t \ge 0.$

• Fourier series of *u*,

$$u(x,t)=\sum_{n\in\mathbb{Z}^2}a_n(t)e^{inx}.$$

- Can we have transfer of energy to higher and higher modes as $t \to +\infty$?
- We measure it with the growth of *s*-Sobolev norms (*s* > 1)

$$\|u(t)\|_{H^{s}(\mathbb{T}^{2})} := \|u(t,\cdot)\|_{H^{s}(\mathbb{T}^{2})} := \left(\sum_{n\in\mathbb{Z}^{2}} \langle n \rangle^{2s} |a_{n}(t)|^{2}\right)^{1/2},$$

where $\langle n \rangle = (1 + |n|^2)^{1/2}$.

How fast the energy transfer can be?

- Dimension 1, d = 2, G = 0 (cubic case), a priori bounds for all H^s .
- Dimension D ≥ 2 or power d > 2: growth of H^s expected to happen.
- Bourgain: Polynomial upper bounds for the growth of H^s , s > 1:

$$\|u(t)\|_{H^s} \leq t^A \|u(0)\|_{H^s}$$
 for $t \to +\infty$.

for some A > 0.

Question by Bourgain (2000): Are there solutions *u* such that for *s* > 1,

$$\|u(t)\|_{H^s} \to +\infty$$
 as $t \to +\infty$?

• Cubic case:
$$-iu_t + \Delta u = |u|^2 u, x \in \mathbb{T}^2$$
.

 Kuksin (1997): growth of Sobolev norms starting from an already large initial data.

Theorem (Colliander, Keel, Staffilani, Takaoka, Tao (2010))

Fix s > 1, $C \gg 1$ and $\mu \ll 1$. Then there exists a global solution u of NLS on \mathbb{T}^2 and T satisfying that

$$\|u(\mathbf{0})\|_{H^s} \leq \mu, \qquad \|u(\mathbf{T})\|_{H^s} \geq \mathcal{C}.$$

• Valid on any
$$\mathbb{T}^D$$
, $D \ge 2$.

The cubic case

- M. G. and V. Kaloshin: $T \sim e^{\left(\frac{C}{\mu}\right)^{A}}$ for some A > 0.
- M. G. and V. Kaloshin also in the cubic case: Fix K ≫ 1, there exists a solution u of NLS on T² and T satisfying that

$$\|u(T)\|_{H^s} \geq \mathcal{K} \|u(0)\|_{H^s}, \qquad T \sim \mathcal{K}^B, \quad ext{for some } B > 0$$

and

$$\|u(t)\|_{L^2} \leq \mathcal{K}^{-\sigma}$$
 for some $\sigma > 0$.

E. Haus and M. Procesi generalized the I-team result to the quintic NLS (*d* = 3 and *D* ≥ 2).

$$-iu_t + \Delta u = |u|^4 u$$

• Z. Hani, B. Pausader, N. Tzvetkov, N. Visciglia proved unbounded growth for the cubic NLS in $\mathbb{R} \times \mathbb{T}^2$.

$$-iu_t + \Delta u = |u|^{2(d-1)}u + G'(|u|^2)u, \qquad x \in \mathbb{T}^2$$

Theorem (M. G. – E. Haus – M. Procesi)

Let $d \ge 2$ and s > 1. There exists A > 0 such that for any large $C \gg 1$ and small $\mu \ll 1$, there exists a global solution $u(t) = u(t, \cdot)$ of NLS and a time T satisfying

$$T \leq e^{\left(rac{C}{\mu}
ight)^{\mu}}$$

such that

$$\|u(0)\|_{H^{s}} \leq \mu \text{ and } \|u(T)\|_{H^{s}} \geq C.$$

- Valid on any \mathbb{T}^D , $D \geq 2$.
- If we do not assume small initial Sobolev norm, we do not get better time estimates.

M. Guardia (UPC)

Growth of Sobolev norms

The I-team approach for the cubic case

• Cubic NLS as an ode (of infinite dimension) for the Fourier coefficients of *u*:

$$-i\dot{a}_n = |n|^2 a_n + \sum_{\substack{n_1, n_2, n_3 \in \mathbb{Z}^2 \\ n_1 - n_2 + n_3 = n}} a_{n_1} \overline{a_{n_2}} a_{n_3}, \qquad n \in \mathbb{Z}^2.$$

- Drift through resonances.
- Resonant monomial

$$n_1 - n_2 + n_3 - n = 0$$
 and $|n_1|^2 - |n_2|^2 + |n_3|^2 - |n|^2 = 0$

- Non-degenerate resonances form a rectangle in \mathbb{Z}^2 .
- Slider solutions supported in a rectangle (heteroclinics) push energy from two modes to the other two.
- For well chosen rectangles: growth of Sobolev norms by a constant factor.

M. Guardia (UPC)

Traveling through rectangles

- One needs to concatenate many rectangles to attain a growth by a factor C/μ.
- Number of concatenations: $N \sim \log(C/\mu) \gg 1$.
- At each step, the Sobolev norm is pushed to half of the modes (the ones further out)
- One needs many modes to be able to push Sobolev norm through the N "generations".
- The I-team considers a finite set of modes Λ = Λ₁ ∪ ... ∪ Λ_N ⊂ Z² of large size |Λ_j| = 2^{N-1}, N ~ log(C/μ).

$$\Lambda = \Lambda_1 \cup \ldots \cup \Lambda_N \subset \mathbb{Z}^2, \qquad |\Lambda_j| = 2^{N-1}, \qquad N \sim \log(\mathcal{C}/\mu)$$

- They choose carefully Λ such that the modes interact in a very particular way.
- Each rectangle has modes only in two consecutive generations.
- Each mode in generation Λ_j pumps energy from a rectangle involving modes in Λ_{j-1} to a rectangle involving modes in Λ_{j+1}.
- Symmetry condition: take each mode in Λ_j with the same initial condition. Then, they remain equal through time.
- All modes in one generation are reduced to one variable.

The I-team approach for the cubic case

• After these reductions: finite dimensional (toy) model

$$\dot{b}_j = -ib_j^2\overline{b}_j + 2i\overline{b}_j\left(b_{j-1}^2 + b_{j+1}^2
ight), \ j = 1, \dots N.$$

which approximates well certain solutions of NLS.

- Each b_j represents the 2^{N-1} modes in Λ_j .
- They look for orbits b(t) that are localized for t = 0 at b₁ and at a certain t = T ≫ 1 are localized at b_N.

The I-team approach for the cubic case

$$\dot{b}_j = -ib_j^2\overline{b}_j + 2i\overline{b}_j\left(b_{j-1}^2 + b_{j+1}^2
ight), \; j=1,\dots N.$$

- It can be seen as a Hamiltonian system on a lattice Z with nearest neighbor interactions.
- Hamiltonian:

$$h(b) := \frac{1}{4} \sum_{j=1}^{N} |b_j|^4 - \frac{1}{2} \sum_{j=1}^{N} \left(\overline{b}_j^2 b_{j-1}^2 + b_j^2 \overline{b}_{j-1}^2 \right).$$

• It has the mass as a first integral $M = \sum_{i=1}^{N} |b_i|^2$.

Dynamics of the cubic toy model

$$\dot{b}_j = -ib_j^2\overline{b}_j + 2i\overline{b}_j\left(b_{j-1}^2 + b_{j+1}^2\right), \ j = 0, \dots N,$$

Each 4-dimensional plane

$$L_j = \{b_1 = \cdots = b_{j-1} = b_{j+2} = \cdots = b_N = 0\}$$

is invariant and corresponds to two generations interacting

- In L_j , $\mathbb{T}_j = \{b_j \neq 0, b_{j+1} = 0\}$ and $\mathbb{T}_{j+1} = \{b_j = 0, b_{j+1} \neq 0\}$ are (partially hyperbolic) periodic orbits.
- They are connected through heteroclinic orbits.
- To travel close to L_j from T_j to T_{j+1}, they shadow these heteroclinics.

- Shadowing the concatenation of periodic orbits and heteroclinics we go from (close to) the first to (close to) the last plane.
- Problems:
 - The periodic orbits are partially hyperbolic and partially elliptic
 - The hyperbolic eigenvalues of these periodic orbits are resonant.
 - We do not have transversality between invariant manifolds of objects.
- The shadowing argument is delicate.

Resonant monomials

$$\sum_{i=1}^{2d} (-1)^i n_i = 0 \quad \text{and} \quad \sum_{i=1}^{2d} (-1)^i |n_i|^2 = 0.$$

- Combinatorics of resonances are far more complicated.
- Consider solutions supported in a single resonant set: we want to pump energy from some modes to the others.
- Dynamics: we want two invariant objects corresponding to some modes set to zero connected by a heteroclinic orbit.

Generalization of the I-team approach: consider simple resonances {*j*₁,...,*j*_{2k}} with 2 < k ≤ d

(simple = it does not factor out as a sum of lower order resonances).

- The associated Hamiltonian has periodic orbits but they are not connected by heteroclinic connections.
- Procesi and Haus for the quintic NLS (2014): one can still use rectangles as building blocks.

Take a rectangle

$$n_1 - n_2 + n_3 - n_4 = 0$$
 and $|n_1|^2 - |n_2|^2 + |n_3|^2 - |n_4|^2 = 0$

Rectangles induce infinitely many resonances for the quintic NLS

$$n_1 - n_2 + n_3 - n_4 + m - m = 0$$
, $|n_1|^2 - |n_2|^2 + |n_3|^2 - |n_4|^2 + |m|^2 - |m|^2 = 0$

for any $m \in \mathbb{Z}^2$.

- Analogously for any other power.
- We want to build up the concatenation of generations building upon rectangles.
- Problem: the combinatorial analysis of resonances becomes more involved as *d* grows.

The resonant sets in the general case

- We need to impose much more conditions to avoid non-desired resonances than in the cubic case.
- Some resonant interactions are unavoidable: take two rectangles with a common vertex n₄,

$$n_1 - n_2 + n_3 - n_4 = 0 \qquad |n_1|^2 - |n_2|^2 + |n_3|^2 - |n_4|^2 = 0$$

$$n_4 - n_5 + n_6 - n_7 = 0 \qquad |n_4|^2 - |n_5|^2 + |n_6|^2 - |n_7|^2 = 0$$

They create the resonant sextuple with six different modes

$$n_1 - n_2 + n_3 - n_5 + n_6 - n_7 = 0$$

$$|n_1|^2 - |n_2|^2 + |n_3|^2 - |n_5|^2 + |n_6|^2 - |n_7|^2 = 0.$$

• Each mode receives and pumps energy not only through two rectangles but through much more resonant interactions.

M. Guardia (UPC)

Growth of Sobolev norms

The toy model in the general case

Impose the I-team intra-generational symmetry:

$$h(b) = \left(\sum_{i=1}^{N} |b_i|^2\right)^{d-2} \left[\frac{1}{4}\sum_{i=1}^{N} |b_i|^4 - \sum_{i=1}^{N-1} \operatorname{Re}\left(b_i^2 \bar{b}_{i+1}^2\right)\right] + \frac{1}{2^N} \mathcal{P}\left(b, \bar{b}, \frac{1}{2^N}\right)$$

- As noticed by Procesi and Haus for the quintic case: unavoidable "non-rectangular resonances" only appear at higher order in 2^{-N}.
- I-team symmetry condition for modes of the same generation implies that the first order is just the cubic toy model with a power of the mass factored out.

•
$$M = \sum_{i=1}^{N} |b_i|^2$$
 is a first integral.

The toy model in the general case

$$h(b) = \left(\sum_{i=1}^{N} |b_i|^2\right)^{d-2} \left[\frac{1}{4}\sum_{i=1}^{N} |b_i|^4 - \sum_{i=1}^{N-1} \operatorname{Re}\left(b_i^2 \bar{b}_{i+1}^2\right)\right] + \frac{1}{2^N} \mathcal{P}\left(b, \bar{b}, \frac{1}{2^N}\right)$$

- In the quintic case \mathcal{P} is explicit.
- Monomials involve at most three consecutive generations.
- \mathcal{P} is not explicit for higher powers: some monomials involve more generations and/or more separated generations.

$$h(b) = \left(\sum_{i=1}^{N} |b_i|^2\right)^{d-2} \left[\frac{1}{4}\sum_{i=1}^{N} |b_i|^4 - \sum_{i=1}^{N-1} \operatorname{Re}\left(b_i^2 \bar{b}_{i+1}^2\right)\right] + \frac{1}{2^N} \mathcal{P}\left(b, \bar{b}, \frac{1}{2^N}\right)$$

- We want orbits b(t) with transfer of mass as in the cubic case.
- The drift obtained for the cubic toy model takes long time.
- We have to choose carefully the modes in Λ so that *P* preserves the "dynamics" of the cubic case.
- For instance, one can see that:
 - All monomials in \mathcal{P} are of even degree in (b_j, \overline{b}_j) .
 - The subspaces {*b_j* = 0} are invariant (same invariant plane structure).

Properties of the toy model

- The shadowing argument by the I-team (also G.-Kaloshin) relies on the particular form of the toy model.
- Restricted to an invariant plane, the Hamiltonian depending on (b_j, b_j), (b_{j+1}, b_{j+1}) is *j* independent and symmetric with respect to the exchange *j* ←→ *j* + 1.
- This implies that we have periodic orbits with resonant hyperbolic eigenvalues.
- Now we do not have nearest neighbor interaction.
- The strongest non-nearest neighbor interaction is integrable: a monomial depending on two modes $i, j, |i - j| \neq 1$, is of the form $|b_i||b_j|^{d-2}$.

Shadowing the invariant planes

- We proceed as in M. G.- V. Kaloshin.
- We construct solutions that drift through the planes
- These shadowing orbits are a good first order of orbits of NLS undergoing growth of Sobolev norms

Growth of Sobolev norms