Problema 3.4. La transformació que descompon en monofàsics un operador d'inductàncies és:

\[
F = \frac{1}{\sqrt{3}} \begin{pmatrix}
1 & 1 & 1 \\
1 & \alpha & \alpha^2 \\
1 & \alpha^2 & \alpha
\end{pmatrix},
\]

essent \(\alpha \in \mathbb{C}, \alpha^3 = 1, \alpha \neq 1\). Calculeu \(F^4\).

\(<\textbf{Solució}>\). Calculem primer \(F^2\):

\[
F^2 = \frac{1}{3} \begin{pmatrix}
1 & 1 & 1 \\
1 & \alpha & \alpha^2 \\
1 & \alpha^2 & \alpha
\end{pmatrix} \begin{pmatrix}
1 & 1 & 1 \\
1 & \alpha & \alpha^2 \\
1 & \alpha^2 & \alpha
\end{pmatrix} = \frac{1}{3} \begin{pmatrix}
3 & 1 + \alpha + \alpha^2 & 1 + \alpha + \alpha^2 \\
1 + \alpha + \alpha^2 & 1 + \alpha^2 + \alpha^4 & 1 + \alpha^3 + \alpha^3 \\
1 + \alpha + \alpha^2 & 1 + \alpha^3 + \alpha^3 & 1 + \alpha^2 + \alpha^4
\end{pmatrix}.
\]

(1)

Si ara es té en compte que, segons l'enunciat: \(\alpha^3 = 1\), es veu per una banda que:

\(1 + \alpha^3 + \alpha^3 = 3\), i per l'altra: \(1 + \alpha^2 + \alpha^4 = 1 + \alpha + \alpha^2\),

ja que: \(\alpha^4 = \alpha^3 \alpha = \alpha\).

A continuació ve el "truquet". Comproveu que:

\(\alpha^3 - 1 = (\alpha - 1)(1 + \alpha + \alpha^2)\).

(2)

...Surt? Fantàstic! A partir d'aquí, només cal adonar-se de que, essent \(\alpha^3 = 1\) i \(\alpha \neq 1\), (2) implica necessàriament que

\(1 + \alpha + \alpha^2 = 0\).

Oi que si? Bé, recapitulem. Tenim: \(1 + \alpha^3 + \alpha^3 = 3\) i \(1 + \alpha^2 + \alpha^4 = 1 + \alpha + \alpha^2 = 0\). Si substituïm això a l'expressió de \(F^2\) a (1), arribem a:

\[
F^2 = \frac{1}{3} \begin{pmatrix}
3 & 0 & 0 \\
0 & 0 & 3 \\
0 & 3 & 0
\end{pmatrix}
\]

i finalment,

\[
F^4 = F^2 F^2 = \frac{1}{9} \begin{pmatrix}
3 & 0 & 0 \\
0 & 0 & 3 \\
0 & 3 & 0
\end{pmatrix} \begin{pmatrix}
3 & 0 & 0 \\
0 & 0 & 3 \\
0 & 3 & 0
\end{pmatrix} = \frac{1}{9} \begin{pmatrix}
9 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 9
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} = I_3
\]

on denotem \(I_3 = \text{diag}[1,1,1]\), la matrinx unitat \(3 \times 3\). >

\textbf{Remarca 1.} De fet, es pot demostrar, per exemple per inducció (exercici!) que:

\(1 - \alpha^n = (1 - \alpha)(1 + \alpha + \alpha^2 + \cdots + \alpha^{n-1})\),

(3)

per tot \(n \in \mathbb{N}\) i per \(\alpha \in \mathbb{C}\) qualsevol (òbviament (2) correspondria a \(n = 3\)).

\textbf{Suggeriment:} Amb (3), intenteu el problema 1.9 (i.e., el problema 9 del Tema 1: \textit{Nombres comple- xo}s). en particular, proveu que "la suma de les \(n\) arrels \(n\)-èssimes d'un número complex sempre dóna zero" i interpreteu geomètricament aquest resultat.
3.5 Demostruwe que la matriz triangular per blocs \(A = \begin{pmatrix} P & R \\ 0 & Q \end{pmatrix} \) és invertible si, i només si, ho són \(P \) i \(Q \), i que aleshores
\[
A^{-1} = \begin{pmatrix} P^{-1} & -P^{-1}RQ^{-1} \\ 0 & Q \end{pmatrix}.
\] (8)

Solució. Si \(A \) és invertible, \(\exists B = \begin{pmatrix} U & V \\ Z & W \end{pmatrix} \) t. q. \(AB = BA = I_n \) i escriurí \(B = A^{-1} \) (\(\Leftrightarrow A = B^{-1} \)). En particular
\[
AB = \begin{pmatrix} P & R \\ 0 & Q \end{pmatrix} \begin{pmatrix} U & V \\ Z & W \end{pmatrix} = \begin{pmatrix} PU + RZ & PV + RW \\ QZ & QW \end{pmatrix} = \begin{pmatrix} I_r & \cdot \\ \cdot & I_{n-r} \end{pmatrix}
\]
\[\Rightarrow PU + RZ = I_r, \quad PV + RW = 0, \quad QZ = 0, \quad QW = I_{n-r}.
\]
D’aquí tenim que \(Q \) té inversa “per la dreta” i e. \(QW = I_{n-r} \) i com que \(Q \) és una matriz quadrada, llavors \(Q \) és invertible i \(QW = WQ = I_{n-r} \).
Psem doncs \(W = Q^{-1} \) (\(i \), \(Q = W^{-1} \)). Aleshores:

1) \(QZ = 0 \implies WQZ = Q^{-1}QZ = Z = 0 \)

2) \(I_r = PU + RZ = PU \).

Llavors \(P \) té inversa per la dreta, \(U \implies PU = UP = I_r \), d’on \(U = P^{-1} \) (i, equivalentment \(P = U^{-1} \)). Per últim, de \(PV + RW = 0 \iff PV = -RW \)
\[\Leftrightarrow V = -P^{-1}RW = -P^{-1}RQ^{-1}.
\]
D’aquesta manera queda provat que \(P \) i \(Q \) són invertibles i la inversa de la matriz \(A, A^{-1} = B \) vé donada per (8)

D’altra banda, si \(P \) i \(Q \) són invertibles, considerem la matriz \(B = A^{-1} \) donada per (8), llavors:
\[
AB = \begin{pmatrix} P^{-1} & -P^{-1}RQ^{-1} \\ 0 & Q^{-1} \end{pmatrix} = \begin{pmatrix} I_r & \cdot \\ \cdot & I_{n-r} \end{pmatrix}.
\]
\[BA = \begin{pmatrix} P^{-1} & -P^{-1}RQ^{-1} \\ 0 & Q^{-1} \end{pmatrix} \begin{pmatrix} P & R \\ 0 & Q \end{pmatrix} = \begin{pmatrix} I_r & \cdot \\ \cdot & I_{n-r} \end{pmatrix},
\]
d’on \(AB = BA = I_r \) i aleshores \(B = A^{-1} \) i la matriz \(A \) és invertible. 😊
Problema 3.6. Calculeu la potència k-ésima de la matriu:

$$A = \begin{pmatrix}
\lambda & \lambda \\
1 & \lambda \\
\vdots & \vdots \\
1 & \lambda
\end{pmatrix}$$

a Solució. Escrivim $A = \lambda I_n + N_n$, on $I_n \in M_n(\mathbb{R})$ és la matriu identitat (o unitat) $n \times n$, mentre que:

$$N_n := \begin{pmatrix}
0 & 0 & \cdots & 0 \\
1 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 0 & \cdots & 0
\end{pmatrix} \in M_n(\mathbb{R})$$

Les matrius d'aquest tipus són nilpotents, i de fet, és fàcil comprovar que:

$$N_n^2 = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0
\end{pmatrix}, \quad N_n^3 = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0
\end{pmatrix}, \quad \ldots,$$

$$N_n^{n-1} = \begin{pmatrix}
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{pmatrix}, \quad N_n^n = \begin{pmatrix}
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{pmatrix}.$$

Així per exemple, per $n = 4$,

$$N_4 = \begin{pmatrix}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}, \quad N_4^2 = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}, \quad N_4^3 = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}, \quad N_4^4 = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}.$$

Si apliquem la fórmula del binomi:

$$A^k = (\lambda I_n + N_n)^k = \lambda^k I_n + \lambda^{k-1} \binom{k}{1} N_n + \lambda^{k-2} \binom{k}{2} N_n^2 + \lambda^{k-3} \binom{k}{3} N_n^3 + \cdots + \lambda \binom{k}{k-1} N_n^{k-1} + \binom{k}{k} N_n^k,$$

obtenim:

$$A^k = \begin{pmatrix}
\lambda^k & \lambda^k \\
\binom{k}{1} \lambda^{k-1} & \lambda^k \\
\binom{k}{2} \lambda^{k-2} & \binom{k}{2} \lambda^{k-1} & \lambda^k \\
\vdots & \vdots & \ddots & \vdots \\
\binom{k}{k} \lambda & \binom{k}{k} \lambda^2 & \cdots & \lambda^k \\
0 & \binom{k}{k} \lambda & \binom{k}{k} \lambda & \cdots & \binom{k}{k} \lambda^{k-1} & \lambda^k \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots
\end{pmatrix}, \quad (4)$$
Remarca 2. Recordem que si \(A, B \in M_n(\mathbb{K}) \), amb \(\mathbb{K} = \mathbb{R} \) ó \(\mathbb{C} \), commuten (i. e., \(AB = BA \)), aleshores és vàlida la fórmula del binomi de Newton que coneixem. És a dir:

\[
(A + B)^k = \sum_{j=0}^{k} \binom{k}{j} A^{k-j} B^j.
\]

En particular, en el nostre cas, agafem \(A = \lambda I_n \), \(B = N_n \).

Nota: per deduir (4) hem suposat que \(k \in \mathbb{N} \) amb \(k < n \). Es deixa com exercici al lector escriure la fórmula corresponent per \(k \in \mathbb{N} \) amb \(k \geq n \). Per exemple, si \(n = 4 \), llavors:

\[
A = \begin{pmatrix}
\lambda & 1 & \lambda & 1 \\
1 & \lambda & \lambda & 1 \\
\lambda & 1 & \lambda & 1 \\
1 & 1 & \lambda & \lambda
\end{pmatrix}
\]

i aplicant (4) tenim, per \(k = 2, 3, 4 \) i 5:

\[
A^2 = \begin{pmatrix}
\lambda^2 & (\binom{2}{2}) \lambda^2 & \lambda^2 & (\binom{2}{1}) \lambda \\
(\binom{2}{2}) \lambda & (\binom{2}{1}) \lambda^2 & \lambda^2 & (\binom{2}{1}) \lambda \\
0 & (\binom{2}{1}) \lambda & (\binom{2}{1}) \lambda^2 & \lambda^2 \\
0 & 0 & (\binom{2}{1}) \lambda & (\binom{2}{1}) \lambda^2
\end{pmatrix}
\]

\[
A^3 = \begin{pmatrix}
\lambda^3 & (\binom{3}{3}) \lambda^3 & \lambda^3 & (\binom{3}{2}) \lambda^2 \\
(\binom{3}{3}) \lambda & (\binom{3}{2}) \lambda^2 & \lambda^3 & (\binom{3}{2}) \lambda^2 \\
(\binom{3}{2}) \lambda & (\binom{3}{2}) \lambda^2 & (\binom{3}{2}) \lambda^2 & (\binom{3}{2}) \lambda^2 \\
(\binom{3}{2}) \lambda & (\binom{3}{2}) \lambda^2 & (\binom{3}{2}) \lambda^2 & (\binom{3}{2}) \lambda^2
\end{pmatrix}
\]

\[
A^4 = \begin{pmatrix}
\lambda^4 & (\binom{4}{4}) \lambda^4 & \lambda^4 & (\binom{4}{3}) \lambda^3 \\
(\binom{4}{4}) \lambda^3 & (\binom{4}{3}) \lambda^3 & \lambda^4 & (\binom{4}{3}) \lambda^3 \\
(\binom{4}{3}) \lambda^3 & (\binom{4}{3}) \lambda^3 & (\binom{4}{3}) \lambda^3 & (\binom{4}{3}) \lambda^3 \\
(\binom{4}{3}) \lambda^3 & (\binom{4}{3}) \lambda^3 & (\binom{4}{3}) \lambda^3 & (\binom{4}{3}) \lambda^3
\end{pmatrix}
\]

\[
A^5 = \begin{pmatrix}
\lambda^5 & (\binom{5}{5}) \lambda^5 & \lambda^5 & (\binom{5}{4}) \lambda^4 \\
(\binom{5}{5}) \lambda^4 & (\binom{5}{4}) \lambda^4 & \lambda^5 & (\binom{5}{4}) \lambda^4 \\
(\binom{5}{4}) \lambda^4 & (\binom{5}{4}) \lambda^4 & (\binom{5}{4}) \lambda^4 & (\binom{5}{4}) \lambda^4 \\
(\binom{5}{4}) \lambda^4 & (\binom{5}{4}) \lambda^4 & (\binom{5}{4}) \lambda^4 & (\binom{5}{4}) \lambda^4
\end{pmatrix}
\]

respectivament.>
3.7 El model probabilístic de Jukes-Cantor descriu el procés de transformació de cadenes d'ADN formades per 4 nucleotídis mitjançant una matriu del tipus

$$M = \begin{pmatrix}
1 - \alpha & \alpha/3 & \alpha/3 & \alpha/3 \\
\alpha/3 & 1 - \alpha & \alpha/3 & \alpha/3 \\
\alpha/3 & \alpha/3 & 1 - \alpha & \alpha/3 \\
\alpha/3 & \alpha/3 & \alpha/3 & 1 - \alpha
\end{pmatrix} = \left(1 - \frac{4}{3} \alpha\right) I + \frac{\alpha}{3} U$$

on $0 < \alpha < \frac{3}{4}$ i on U és la matriu amb tots els coeficients 1.

(a) Demostra que les seves potències també són del tipus Jukes-Cantor. Concretament:

$$M^k = \left(1 - \frac{4}{3} \alpha\right) I + \frac{\alpha}{3} U^k, \quad \alpha_k = \frac{3}{4} \left(1 - \left(1 - \frac{4}{3} \alpha\right)^k\right)$$

(b) Discutiu per a quins vaors de α és M invertible.

Solució. (a) Com que I i U commuten, aplicarem la fórmula del binomi:

$$M^k = \left(1 - \frac{4}{3} \alpha\right)^k I + \sum_{j=0}^{k} \binom{k}{j} \left(1 - \frac{4}{3} \alpha\right)^{k-j} \left(\frac{\alpha}{3}\right)^j U^j$$

D'altra banda tenim:

$$U = \begin{pmatrix}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{pmatrix} \Rightarrow U^2 = \begin{pmatrix}
m & m & \cdots & m \\
m & m & \cdots & m \\
\vdots & \vdots & \ddots & \vdots \\
m & m & \cdots & m
\end{pmatrix} = m U$$

d'on:

$$U^3 = U \cdot U^2 = m U^2 = m^2 U, \quad U^4 = U \cdot U^3 = m^2 U^2 = m^3 U, \ldots$$

$$\ldots, U^j = m^{j-1} U, \text{ per tot } j = 1, 2, 3, \ldots \text{ (inducción).}$$

Llavors, tornant a la fórmula del binomi,
\[M^K = \left(1 - \frac{4}{3} \alpha \right)^K I + \frac{1}{4} \sum_{j=1}^{K} \binom{K}{j} \left(1 - \frac{4}{3} \alpha \right)^{K-j} \left(\frac{4}{3} \alpha \right)^j U \]

\[= \left(1 - \frac{4}{3} \alpha \right)^K I + \frac{1}{4} \left[\sum_{j=0}^{K} \binom{K}{j} \left(1 - \frac{4}{3} \alpha \right)^{K-j} \left(\frac{4}{3} \alpha \right)^j \right] U \]

\[= \left(1 - \frac{4}{3} \alpha \right)^K I + \frac{1}{4} \left[\left(1 - \frac{4}{3} \alpha + \frac{4}{3} \alpha \right)^K - \left(1 - \frac{4}{3} \alpha \right)^K \right] U \]

\[= \left(1 - \frac{4}{3} \alpha \right)^K I + \frac{1}{4} \left(1 - \left(1 - \frac{4}{3} \alpha \right)^K \right) U \]

\[= \left(1 - \frac{4}{3} \alpha \right)^K I + \frac{\alpha^K}{3} U, \]

on s'ha definit,
\[\alpha^K := \frac{3}{4} \left(1 - \left(1 - \frac{4}{3} \alpha \right)^K \right) \]

(b) \[\det M = \begin{vmatrix}
1 - \alpha & \frac{\alpha}{3} & \frac{\alpha}{3} & \frac{\alpha}{3} \\
\frac{\alpha}{3} & 1 - \alpha & \frac{\alpha}{3} & \frac{\alpha}{3} \\
\frac{\alpha}{3} & \frac{\alpha}{3} & 1 - \alpha & \frac{\alpha}{3} \\
\frac{\alpha}{3} & \frac{\alpha}{3} & \frac{\alpha}{3} & 1 - \alpha \\
\end{vmatrix} = \begin{vmatrix}
1 - \frac{4}{3} \alpha & 0 & 0 & \frac{\alpha}{3} \\
0 & 1 - \frac{4}{3} \alpha & 0 & \frac{\alpha}{3} \\
0 & 0 & 1 - \frac{4}{3} \alpha & \frac{\alpha}{3} \\
0 & 0 & 0 & 1 - \alpha \\
\end{vmatrix} \]

\[= \begin{vmatrix}
1 - \frac{4}{3} \alpha & 0 & 0 & \frac{\alpha}{3} \\
0 & 1 - \frac{4}{3} \alpha & 0 & \frac{\alpha}{3} \\
0 & 0 & 1 - \frac{4}{3} \alpha & \frac{\alpha}{3} \\
0 & 0 & 0 & 1 \\
\end{vmatrix} = \left(1 - \frac{4}{3} \alpha \right)^3, \]

i aleshores la matriz \(M \) és invertible si i només si \(\alpha \neq \frac{3}{4} \). 😊
(3 B) Rang d'una matrīs

3.11 (*) Un sistema de control

\[\dot{x}(t) = A x(t) + B u(t), \quad A \in M_n, B \in M_{n \times m}. \]

resulta ser "controlable" (és a dir, totcanvi en els valors de \(x \) és factible mitjançant un control \(u(t) \) adequat) si i només si, és màxim el rang de l'anomenada "matrīs de controlabilitat"

\[K = (B, AB, A^2 B, \ldots, A^{n-1} B). \]

(a) Discutiu per a quins valors de \(\alpha, \beta \in \mathbb{R} \) és controlable el sistema definit per

\[A = \begin{pmatrix} 0 & 1 & 0 \\ -2 & 1 & 0 \\ \alpha & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}. \]

(b) Discutiu per a quins valors de \(\alpha, \beta \in \mathbb{R} \) és controlable amb només el segon control, és a dir, quan en lloc de la matrīs \(B \) original es considera només la matrīs columna \(B_2 = \begin{pmatrix} 0 \\ 0 \\ \beta \end{pmatrix}. \)

(c) En general, els "índex de controlabilitat" són determinats pels rangs de les matrīs

\[B, (B, AB), (B, AB, A^2 B), \ldots, K \]

Calculeu aquests rangs, en funció dels paràmetres \(\alpha, \beta \in \mathbb{R} \) per al sistema definit per

\[A = \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ \vdots & \vdots & \vdots \\ 0 & 1 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots & \vdots \\ 0 \\ 0 \\ 0 \end{pmatrix}. \]
Solució.

(a) \(B = \begin{pmatrix} 1 & 0 \\ 0 & \beta \end{pmatrix}, \ A = \begin{pmatrix} 0 & \beta \\ \alpha & 1 \end{pmatrix} \), \(A^2B = \begin{pmatrix} -\beta & \beta \\ -\alpha & \alpha \beta + 1 \end{pmatrix} \)

\(K = (B, AB, A^2B) = \begin{pmatrix} 1 & 0 & 0 & \beta & -2 & \beta \\ 0 & \beta & 2 & -\beta & -\beta \\ 0 & 1 & \alpha & 1 & \alpha & \alpha \beta + 1 \end{pmatrix} \)

\(\text{rang } K = \text{rang } \begin{pmatrix} 1 & 0 & 0 & \beta & -2 & \beta \\ 0 & 1 & \alpha & 1 & \alpha & \alpha \beta + 1 \\ 0 & 0 & -2 & \alpha \beta & 0 & -2 \alpha \beta \beta (-2 - \alpha \beta) \end{pmatrix} \)

\[= 3 \iff \alpha \beta \neq -2 \]

(b) Només amb el control, i.e., amb \(B_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \)

\(K_2 = (B_2, AB_2, A^2B) = \begin{pmatrix} 0 & \beta & \beta \\ \beta & \beta & -\beta \\ 1 & 1 & \alpha \beta + 1 \end{pmatrix} \)

\(\text{rang } K_2 = \text{rang } \begin{pmatrix} 1 & 1 & \alpha \beta + 1 \\ \beta & \beta & -\beta \\ 0 & \beta & \beta \end{pmatrix} = \text{rang } \begin{pmatrix} 1 & 1 & \alpha \beta + 1 \\ 0 & 0 & -\beta (2 + \alpha \beta) \\ 0 & \beta & \beta \end{pmatrix} \)

\[= \text{rang } \begin{pmatrix} 1 & 1 & \alpha \beta + 1 \\ 0 & \beta & \beta \\ 0 & 0 & -\beta (2 + \alpha \beta) \end{pmatrix} = 3 \iff \beta (2 + \alpha \beta) \neq 0 \]

(c) \(\text{rang } K_0 = \text{rang } B = 2 \) (óbviament).

\(\text{rang } K_1 = \text{rang } (B, AB) = \text{rang } \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \alpha \beta \\ 0 & \delta & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} f_1' = f_2 - \gamma f_6 \\ f_2' = f_2 - \gamma f_5 - \delta f_6 \\ f_5 = f_5 - \delta f_5 \end{pmatrix} \)

\[= \text{rang } \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} = 4 \forall \delta, \alpha \in \mathbb{R} \]
(3C) Determinants

3.21 Calculeu els següents determinants:

(a) \[
\begin{vmatrix}
3 & -2 & 0 & -1 \\
0 & 2 & 2 & 1 \\
1 & -2 & -3 & -2 \\
0 & 1 & 2 & 1
\end{vmatrix}
\]

(b) \[
\begin{vmatrix}
2 & 1 & 2 & 3 \\
0 & 1 & -2 & 0 \\
1 & -3 & -1 & 2 \\
3 & -4 & 0 & -2
\end{vmatrix}
\]

(c) \[
\begin{vmatrix}
x & 1 & 1 \\
x & 1 & 1 \\
1 & x & 1 \\
1 & 1 & 1 \\
x
\end{vmatrix}
\]

(d) \[
\begin{vmatrix}
1 & 2 & 2 & 4 & 5 \\
6 & 7 & 8 & 10 & \\
11 & 12 & 13 & 14 & 15 \\
16 & 17 & 18 & 19 & 20 \\
21 & 22 & 23 & 24 & 25
\end{vmatrix}
\]

(e) \[
\begin{vmatrix}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 6 \\
3 & 4 & 5 & 6 & 7 \\
4 & 5 & 6 & 7 & 8 \\
5 & 6 & 7 & 8 & 9
\end{vmatrix}
\]

(f) \[
\begin{vmatrix}
\cos x & e^{ix} & e^{-ix} \\
\cos 2x & e^{2ix} & e^{-2ix} \\
\cos 3x & e^{3ix} & e^{-3ix}
\end{vmatrix}
\]

Solució:

(a) \[
\begin{vmatrix}
3 & -2 & 0 & -1 \\
0 & 2 & 2 & 1 \\
1 & -2 & -3 & -2 \\
0 & 1 & 2 & 1
\end{vmatrix}
= \begin{vmatrix}
1 & -2 & -3 & -2 \\
0 & 4 & 9 & 5 \\
0 & 0 & -\frac{3}{2} & -\frac{3}{2} \\
0 & 0 & 0 & 1\
\end{vmatrix}
= 1
\]

(b) \[
\begin{vmatrix}
2 & 1 & 2 & 3 \\
0 & 1 & -2 & 0 \\
1 & -3 & -1 & 2 \\
3 & -4 & 0 & -2
\end{vmatrix}
= \begin{vmatrix}
2 & 1 & 2 & 3 \\
1 & -3 & -1 & 2 \\
3 & -4 & 0 & -2 \\
0 & 1 & -2 & 0
\end{vmatrix}
= \begin{vmatrix}
1 & -3 & -1 & 2 \\
0 & 1 & -2 & 0 \\
0 & 0 & 13 & -8 \\
0 & 0 & 18 & -1
\end{vmatrix}
= 144 - 13 = 131,
\]
\[\begin{bmatrix} x & 1 & 1 & 1 \\ 1 & x & 1 & 1 \\ 1 & 1 & x & 1 \\ 1 & 1 & 1 & x \end{bmatrix} = \begin{bmatrix} x-1 & 0 & 0 & 1 \\ 0 & x-1 & 0 & 1 \\ 0 & 0 & x-1 & 1 \\ 1-x & 1-x & 1-x & x+3 \end{bmatrix} = (x+3)(x-1)^3 = (x^3-3x^2+3x-1)(x+3) = x^4-3x^3+3x^2-x+3x^2-9x^2+9x+3 = x^4-6x^2+8x-3 \]

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>2</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
</tbody>
</table>

\[f_4' = f_4 - \frac{1}{2} (f_3 + f_5) \]

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

\[f_4' = f_4 - \frac{1}{2} (f_3 + f_5) \]

\[\begin{vmatrix} \cos x & e^{i\pi} & e^{-i\pi} \\ \cos 2x & e^{2i\pi} & e^{-2i\pi} \\ \cos 3x & e^{3i\pi} & e^{-3i\pi} \end{vmatrix} = \begin{vmatrix} \cos x & \cos x + i\sin x & \cos x - i\sin x \\ \cos 2x & \cos 2x + i\sin 2x & \cos 2x - i\sin 2x \\ \cos 3x & \cos 3x + i\sin 3x & \cos 3x - i\sin 3x \end{vmatrix} = 0 \]

\[c_4' = c_4 - \frac{1}{2} (c_3 + c_5) \]

Nota: recordemos que:

\[\cos(x) = \frac{1}{2} \left(e^{ix} + e^{-ix} \right) \]

\[\sin(x) = \frac{1}{2i} \left(e^{ix} - e^{-ix} \right) \]
3.23 Demonstre que:

\[
\begin{vmatrix}
a^2 & a & 1 & bcd \\
b^2 & b & 1 & acd \\
c^2 & c & 1 & abd \\
d^2 & d & 1 & abc
\end{vmatrix} = (a-b)(a-c)(b-c)(b-d)(c-d)(d-a).
\]

Solução:

\[
\begin{vmatrix}
a^2 & a & 1 & bcd \\
b^2 & b & 1 & acd \\
c^2 & c & 1 & abd \\
d^2 & d & 1 & abc
\end{vmatrix} = -\begin{vmatrix}
a & a^2 & bcd \\
b & b^2 & acd \\
c & c^2 & abd \\
d & d^2 & abc
\end{vmatrix} = 0 - b-a b^2-a^2 cd(a-b) - c-a c^2-a^2 bd(a-c) - d-a d^2-a^2 bc(a-d)
\]

\[
= -(b-a)(c-a)(d-a) \begin{vmatrix}
1 & b+a & -cd \\
1 & c+a & -bd \\
1 & d+a & -bc
\end{vmatrix} = -(b-a)(c-a)(d-a) \begin{vmatrix}
1 & b+a & -cd \\
1 & c-b & -d(b-c) \\
1 & d-b & -c(b-d)
\end{vmatrix}
\]

\[
= (b-a)(c-a)(b-c)(d-a)(d-b) \begin{vmatrix}
1 & d & 1 \\
1 & d & 1 \\
1 & c & 1
\end{vmatrix} = (a-b)(a-c)(b-c)(b-d)(c-d)(d-a).
\]
3.24 (a) Calculeu els anomenats "determinants de Van der Monde"

\[
D_2 = \begin{vmatrix} 1 & x_1 \\ 1 & x_2 \end{vmatrix}, \quad D_3 = \begin{vmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \end{vmatrix}, \quad D_m = \begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{m-2} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{m-2} \\ & \vdots & \ddots & \vdots & \vdots \\ 1 & x_m & x_m^2 & \cdots & x_m^{m-2} \end{vmatrix}
\]

(b) Deduciu que hi ha un únic polinomi \(P(x) \in \mathbb{R}_{m-1}[x] \) tal que en els punts \(x_1, x_2, \ldots, x_m \) prengui valors \(y_1, y_2, \ldots, y_m \) arbitraris prefixats.

Solució. Calculem directament \(D_m = \Delta(x_1, x_2, \ldots, x_m) = \)

\[
\begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{m-2} & x_1^{m-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{m-2} & x_2^{m-1} \\ 1 & x_3 & x_3^2 & \cdots & x_3^{m-2} & x_3^{m-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 1 & x_m & x_m^2 & \cdots & x_m^{m-2} & x_m^{m-1} \end{vmatrix}
\]

Operem per columnes:
- a la columna \(n \)-èsima, li restem la columna \((n-1) \)-èsima multiplicada per \(x_n \).
- a la columna \((n-1) \)-èsima, li restem la columna \((n-2) \)-èsima multiplicada per \(x_n \).
- a la 2ª columna li restem la 1ª columna multiplicada per \(x_n \).

\[
= \begin{vmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 1 & x_2 - x_1 & x_2(x_2 - x_1) & x_2^2(x_2 - x_1) & \cdots & x_2^{n-3}(x_2 - x_1) & x_2^{n-2}(x_2 - x_1) \\ 1 & x_3 - x_1 & x_3(x_3 - x_1) & x_3^2(x_3 - x_1) & \cdots & x_3^{n-3}(x_3 - x_1) & x_3^{n-2}(x_2 - x_1) \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_m - x_1 & x_m(x_m - x_1) & x_m^2(x_m - x_1) & \cdots & x_m^{n-3}(x_m - x_1) & x_m^{n-2}(x_m - x_1) \\ = (x_2 - x_1)(x_3 - x_1) & \cdots & (x_m - x_1) & 1 & x_2 & x_2^2 & \cdots & x_2^{m-2} \\ \end{vmatrix}
\]
Si definim \(\Delta(x_2, x_3, \ldots, x_m) := \det \begin{vmatrix} x_2 & x_2^2 & \cdots & x_2^{m-2} \\ x_3 & x_3^2 & \cdots & x_3^{m-2} \\ \vdots & \vdots & \ddots & \vdots \\ x_m & x_m^2 & \cdots & x_m^{m-2} \end{vmatrix} \): aquest és un determinant del matrícia tipus, però obrint \(n-1 \), i amb \(x_2, x_3, \ldots, x_m \), aleshores \(D_m = \Delta(x_1, x_2, x_3, \ldots, x_m) \) es pot escriure com:

\[
D_m = \Delta(x_1, x_2, x_3, \ldots, x_m) = (x_2 - x_1)(x_3 - x_1) \cdots (x_m - x_1) \Delta(x_2, x_3, \ldots, x_m)
\]

Repetint els càlculs per columnes d’abans podem trobar el determinant \(\Delta(x_2, x_3, \ldots, x_m) \), i iterant aquest procés s’obté:

\[
D_m = \Delta(x_1, x_2, \ldots, x_m) = (x_2 - x_1)(x_3 - x_1) \cdots (x_m - x_1) \Delta(x_2, x_3, \ldots, x_m)
= (x_2 - x_1)(x_3 - x_1) \cdots (x_m - x_1)(x_3 - x_2)\cdots (x_m - x_m) \Delta(x_3, x_4, \ldots, x_m)
= \cdots = (x_2 - x_1)(x_3 - x_1)\cdots (x_m - x_4)(x_5 - x_2)\cdots (x_m - x_m)
\]

\[
\vdots = (x_4 - x_3)(x_5 - x_3)\cdots (x_m - x_3)(x_m - x_m)\Delta(x_m - x_{m-1})
\]

i aquest producte es pot expressar com:

\[
D_m = \Delta(x_1, x_2, \ldots, x_m) = \prod_{1 \leq i < j \leq m} (x_j - x_i). \tag{1}
\]

En efecte: per \(i = 1 \), \(j \) anirà des de 2 fins a \(n \): \((x_2 - x_1)(x_3 - x_1)(x_4 - x_1) \cdots (x_m - x_1) \);

\[
\vdots \quad i = 2, \quad j^{\text{mòdulo} 3} = 3, \quad n; \quad (x_3 - x_2)(x_4 - x_2)(x_5 - x_2) \cdots (x_m - x_2);
\]

\[
\vdots \quad \text{per} \quad i = n - 2, \quad j \text{ anirà des de } n - 1 \text{ fins a } n; \quad (x_{m - 1} - x_{m - 2})(x_m - x_{m - 2});
\]

\[
\vdots \quad i = n - 1, \quad j \text{ prenderà només el valor } n \text{ i temim el factor: } (x_m - x_{m-1}).
\]

(b) Sigui \(P(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{m-2} x^{m-2} + a_{m-1} x^{m-1} \), imposant les condicions de l’enunciat, i.e.: \(P(x_i) = y_i \), per \(i = 1, 2, \ldots, n \), s’obté el sistema següent pels coeficients \(a_0, a_1, a_2, \ldots, a_{m-1} \):
\[P(x_1) = a_0 + a_1 x_1^1 + a_2 x_1^2 + \cdots + a_{m-2} x_1^{m-2} + a_{m-1} x_1^{m-1} = \gamma_1 \]
\[P(x_2) = a_0 + a_1 x_2^1 + a_2 x_2^2 + \cdots + a_{m-2} x_2^{m-2} + a_{m-1} x_2^{m-1} = \gamma_2 \]
\[\vdots \]
\[P(x_n) = a_0 + a_1 x_n^1 + a_2 x_n^2 + \cdots + a_{m-2} x_n^{m-2} + a_{m-1} x_n^{m-1} = \gamma_n \]

(\text{**)\}

d'on es veu que el determinant del sistema és precisament el determinant de Van der Monde, \(D_n = \Delta (x_1, x_2, \ldots, x_n) \), que és \(\neq 0 \) si les abscisses \(x_1, x_2, \ldots, x_n \) són totes diferents, i.e. si \(x_i \neq x_j \ \forall \ 1 \leq i < j \leq n \).

(fórmula (\text{*})). En aquest cas el sistema (**) és compatible determinat i els coeficients \(a_0, a_1, a_2, \ldots, a_{m-1} \) del polinomi vénen fixats de manera única per \(\gamma_1, \gamma_2, \ldots, \gamma_n \) qualsevol. El polinomi \(P(x) \) que satisfà aquesta propietat reb el nom de \text{polinomi interpolador}. 😊
1. \(\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} \) = \(\begin{bmatrix} 3 - \frac{1}{2} \cdot \frac{2}{3} \cdot 2753 \end{bmatrix} = -27 \)

2. \(\sum_{i=1}^{m} a_i x_i \)

3. \(\prod_{i=1}^{m} a_i x_i \)

Solució:

\[\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \]

Aplicuem aquest resultat al càlcul de:

\[\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} \]

Demostració que si \(a_i \) és positiu, aleatori: 325