Problem Sheet 8

Tail events. Probability generating functions
Jun. Prof. Juanjo Rué
Clement Requilé
Stochastics II, Summer 2015
Deadline: 16th June 2014 (Monday) by 10:00, at the end of the lecture.

Problem 1 [10 points]: Let (Ω, \mathcal{A}, p) a probability space, and $\left\{X_{n}\right\}_{n \geq 1}$ a sequence of random variables. Show that the following events are tail events:

1. $\left\{\omega \in \Omega: \lim X_{n}(\omega)\right.$ exists $\}$.
2. For each real number $x,\left\{\omega \in \Omega: \lim \sup X_{n}(\omega) \leq x\right\}$.
3. For each real number $x,\left\{\omega \in \Omega: \lim \frac{1}{n} \sum_{r=1}^{n} X_{r}(\omega)=x\right\}$.

Justify that in general $\left\{\omega \in \Omega: \lim \sum_{r=1}^{n} X_{r}(\omega)=x\right\}$ is not a tail event.

Problem 2 [10 points]: Let X be a random variable taking positive integer values, whose probability generating function is $G(s)$. Write $t_{n}=P(X>n)$. Show that the generating function of the sequence $\left\{t_{n}\right\}_{n \geq q}$ is equal to

$$
T(s)=\frac{1-G(s)}{1-s}
$$

Additionally, show that $\mathbb{E}[X]=T(1)$ and $\operatorname{Var}[X]=2 T^{\prime}(1)+T(1)-T(1)^{2}$.
Problem 3 [10 points]: Let $G_{1}(s)$ and $G_{2}(s)$ be two probability generating functions of two random variables. If $\alpha \in[0,1]$, show that $G_{1}(s) G_{2}(s)$ and $\alpha G_{1}(s)+(1-\alpha) G_{2}(s)$ also define probability generating functions. Is it true for $G_{1}(\alpha s) / G_{1}(\alpha)$?

Problem 4 [10 points]: Prove that if $\mu=\mathbb{E}\left[Z_{1}\right]$ and $\sigma^{2}=\operatorname{Var}\left[Z_{1}\right]$, then

$$
\operatorname{Var}\left[Z_{n}\right]=\left\{\begin{array}{lr}
n \sigma^{2}, & \mu=1 \\
\sigma^{2}\left(\mu^{n}-1\right) \mu^{n-1}(\mu-1)^{-1}, & \mu \neq 1
\end{array}\right.
$$

Problem 5 [10 points]: Assume that $\mathbb{E}\left[s^{X}\right]=(2-s)^{-1}$, and $Z_{0}=1$. Let V_{r} the total number of generations of size r. Show that $\mathbb{E}\left[V_{1}\right]=\frac{\pi^{2}}{6}$.

Problem 6 [10 points]: Show that the probability generating function H_{n} of the total number of individuals in the first n generations satisfies that $H_{n}(s)=s G\left(H_{n-1}(s)\right)$.

