Problem Sheet 8

Tail events. Probability generating functions

Jun. Prof. Juanjo Rué Clement Requilé Stochastics II, Summer 2015

Deadline: 16th June 2014 (Monday) by 10:00, at the end of the lecture.

Problem 1 [10 points]: Let (Ω, \mathcal{A}, p) a probability space, and $\{X_n\}_{n\geq 1}$ a sequence of random variables. Show that the following events are tail events:

- 1. $\{\omega \in \Omega : \lim X_n(\omega) \text{ exists}\}.$
- 2. For each real number x, $\{\omega \in \Omega : \limsup X_n(\omega) \leq x\}$.
- 3. For each real number $x, \{\omega \in \Omega : \lim \frac{1}{n} \sum_{r=1}^{n} X_r(\omega) = x\}.$

Justify that in general $\{\omega \in \Omega : \lim_{r=1}^n X_r(\omega) = x\}$ is not a tail event.

Problem 2 [10 points]: Let X be a random variable taking positive integer values, whose probability generating function is G(s). Write $t_n = P(X > n)$. Show that the generating function of the sequence $\{t_n\}_{n\geq q}$ is equal to

$$T(s) = \frac{1 - G(s)}{1 - s}.$$

Additionally, show that $\mathbb{E}[X] = T(1)$ and $\text{Var}[X] = 2T'(1) + T(1) - T(1)^2$.

Problem 3 [10 points]: Let $G_1(s)$ and $G_2(s)$ be two probability generating functions of two random variables. If $\alpha \in [0,1]$, show that $G_1(s)G_2(s)$ and $\alpha G_1(s) + (1-\alpha)G_2(s)$ also define probability generating functions. Is it true for $G_1(\alpha s)/G_1(\alpha)$?

Problem 4 [10 points]: Prove that if $\mu = \mathbb{E}[Z_1]$ and $\sigma^2 = \text{Var}[Z_1]$, then

$$Var[Z_n] = \begin{cases} n\sigma^2, & \mu = 1\\ \sigma^2(\mu^n - 1)\mu^{n-1}(\mu - 1)^{-1}, & \mu \neq 1. \end{cases}$$

Problem 5 [10 points]: Assume that $\mathbb{E}[s^X]=(2-s)^{-1}$, and $Z_0=1$. Let V_r the total number of generations of size r. Show that $\mathbb{E}[V_1]=\frac{\pi^2}{6}$.

Problem 6 [10 points]: Show that the probability generating function H_n of the total number of individuals in the first n generations satisfies that $H_n(s) = sG(H_{n-1}(s))$.