Problem Sheet 7

Borel-Cantelli results and 0-1 Laws

Jun. Prof. Juanjo Rué Clement Requilé Stochastics II, Summer 2015

Deadline: 9th June 2014 (Monday) by 10:00, at the end of the lecture.

Problem 1 [10 points]: Let (Ω, \mathcal{A}, p) a probability space, and $\{X_n\}_{n\geq 1}$ a sequence of random variables. Show that the set $\{\omega \in \Omega : \lim X_n(\omega) \text{ exists}\}$ is an event $(Hint: \text{ you may want to apply that if } X_n(\omega) \text{ converges, then the sequence } \{X_n(\omega)\}_{n\geq 1}$ is a Cauchy sequence).

Problem 2 [10 points]: A law of large numbers. Let $X_1, X_2, ...$ be a sequence of independent random variables with the same law. Assume that $\mathbb{E}[X_1] = \mu$, $\mathbb{E}[X_1^2] < +\infty$. Show that

$$\frac{1}{n} \sum_{r=1}^{n} X_r \stackrel{2}{\to} \mu.$$

(*Comment*: the previous convergence can be strength to be almost surely. This is essentially the so-called *strong law of large numbers*).

Problem 3 [10 points]: Let (Ω, \mathcal{A}, p) be a probability space, and $\{A_n\}_{n\geq 1}$ be a sequence of events such that $\lim p(A_n)=0$. Show that if

$$\sum_{n>1} p(A_n \cap A_{n+1}^c) < +\infty$$

then $p(\limsup\{A_n\}_{n\geq 1})=0$. This gives an alternative version of Borel-Cantelli.

Problem 4 [10 points]: Let (Ω, \mathcal{A}, p) be a probability space. Assume that A and $\{B_i\}_{i=1}^r$ is a set of events. Show that if A is independent with each B_i , then A is independent with the their union. Show also that A and B_i^c are independent.

Problem 5 [10 points]: Let $\{X_n\}_{n\geq 1}$ be a sequence (not necessarily independent) of random variables with $\mathbb{E}[X_i] = 0$, $\mathbb{E}[X_i^2] < +\infty$. Show that there exist constants $c_n \to \infty$ such that

$$p\left(\lim \frac{X_n}{c_n} = 0\right) = 1$$

Problem 6 [10 points]: Let r > 2 and c > 0. Show that the set

$$\left\{x \in [0,1]: \left| x - \frac{a}{q} \right| \leq \frac{c}{q^r} \text{ for infinitely many } a,q \in \mathbb{N}_{>0} \right\}$$

has measure 0 (Hint: try to write the previous set conveniently in terms of each choice a, q, and apply Borel-Cantelli at the end).