Problem Sheet 6

Modes of convergence of Random variables

Jun. Prof. Juanjo Rué
Clement Requilé
Stochastics II, Summer 2015
Deadline: 2nd June 2014 (Monday) by 10:00, at the end of the lecture.

Problem 1 [10 points]: A bestiary of counterexamples. We show now that most of the implications not proved in the lectures do not hold.

1. Let X be a Bernoulli random variable taking values 0 and 1 with equal probability $1 / 2$. Let $X_{n}=X$ for each n (all these variables are NOT independent). Show that $X_{n} \xrightarrow{d} X$, $X_{n} \xrightarrow{d} 1-X$ but X_{n} cannot converge to Y in any other mode of convergence.
2. Let $r>s \geq 1$ be positive real numbers. Take a sequence of independent random variables $\left\{X_{n}\right\}_{n \geq 1}$ such that

$$
X_{n}=\left\{\begin{array}{c}
n \text { with probability } n^{-(r+s) / 2}, \\
0 \text { with probability } 1-n^{-(r+s) / 2} .
\end{array}\right.
$$

Show that $X_{n} \xrightarrow{s} 0$ but $X_{n} \stackrel{r}{\rightarrow} 0$.
3. Take an independent sequence $\left\{X_{n}\right\}_{n \geq 1}$ with

$$
X_{n}=\left\{\begin{array}{c}
n^{3} \text { with probability } n^{-2} \\
0 \text { with probability } 1-n^{-2}
\end{array}\right.
$$

Show that $X_{n} \xrightarrow{p} 0$ but $X_{n} \xrightarrow{1} 0$.
4. Let $\left\{X_{n}\right\}_{n \geq 1}$ be an sequence of independent random variables defined by

$$
X_{n}=\left\{\begin{array}{c}
1 \text { with probability } n^{-1} \\
0 \text { with probability } 1-n^{-1} .
\end{array}\right.
$$

Show that $X_{n} \xrightarrow{p} 0$ but $X_{n} \xrightarrow{\text { a.s. }} 0$.
Problem 2 [10 points]: Let $\left\{X_{n}\right\}_{n \geq 1}$ be a sequence of random variables, and X another random variable over (Ω, \mathcal{A}, p). Let C be the event $\left\{\omega \in \Omega: X_{n}(\omega) \rightarrow X(\omega)\right\}$. For $\varepsilon>0$, write $A_{n}(\varepsilon)=\left\{\omega \in \Omega:\left|X_{n}-X\right|>\varepsilon\right\}$, and $A(\varepsilon)=\left\{\omega \in \Omega: \omega \in A_{n}(\varepsilon)\right.$ infinitely often $\}$. Show that $p(C)=1$ iff $p(A(\varepsilon))=0$.

Problem 3 [10 points]: Let $\left\{X_{n}\right\}_{n \geq 1}$ be a sequence of random variables such that $X_{n} \xrightarrow{p}$ X. Show that there exists a non-random increasing sequence of integers n_{1}, \ldots such that $X_{n_{i}} \xrightarrow{\text { a.s. }} X($ as $i \rightarrow \infty)$ (Hint: choose a convenient sequence n_{i} from which we can apply the criteria shown in the lecture for almost sure convergence).

Problem 4 [10 points]: Assume that $X_{n} \xrightarrow{\text { a.s. }} X$ and $Y_{n} \xrightarrow{\text { a.s. }} Y$, and that all random variables are defined over the same probability space. Show that $X_{n}+Y_{n} \xrightarrow{\text { a.s. }} X+Y$. Show that the same result happens when dealing with r-th mean convergence mode and convergence in probability, but not when dealing with convergence in distribution.

Problem 5 [10 points]: Let $\left\{X_{n}\right\}_{n \geq 1}$ be a sequence of random variables and $\left\{c_{n}\right\}_{n \geq 1}$ a sequence of real numbers that converge to c. For all types of convergence of $X_{n} \rightarrow X$, show that the same convergence happen for $c_{n} X_{n}$ towards $c X$ (Hint: for the convergence in distribution, you may want to use Skorokhod's Representation Theorem).

