Problem Sheet 5

Probability Theory Strikes Back

Jun. Prof. Juanjo Rué

Clement Requilé
Stochastics II, Summer 2015
Deadline: 26th May 2014 (Monday) by 08:15, at the beginning of the lecture.

Problem 1 [10 points]: Let (Ω, \mathcal{A}, p) be a probability space, and X a random variable. Let $a \in \mathbb{R}$. Show that for each decreasing sequence $\left\{a_{n}\right\}_{n \geq 1}$ with limit $a, F_{X}\left(a_{n}\right) \rightarrow F_{X}(a)$, and hence $F_{X}(x)$ is right continuous (Hint: consider a a convenient sequence of decreasing events).

Problem 2 [10 points]: Prove Markov's inequality. Use the proof of Markov's inequality to prove Tchebicheff's inequality.

Problem 3 [10 points]: Lyapunov's inequality. Let Z be a random variable over a probability space (Ω, \mathcal{A}, p) such that $\mathbb{E}\left[|Z|^{r}\right]<+\infty$ for all choice of $r \geq 0$.

- Show that the function $g(r)=\log \mathbb{E}\left[|Z|^{r}\right]$ is convex (Hint: conveniently take a pair of random variables X and Y and apply Cauchy-Schwarz).
- Deduce from the previous point that if $a \geq b>0$ we have that $\mathbb{E}\left[|Z|^{a}\right]^{1 / a} \geq \mathbb{E}\left[|Z|^{b}\right]^{1 / b}$.

This exercise shows that if Z has finite a th moment, then it also has finite b th moment for all positive $b \leq a$.

Problem 4 [10 points]: Let (Ω, \mathcal{A}, p) be a probability space, A_{1}, \ldots, A_{n} be events. Show that A_{1}, \ldots, A_{n} are independent iff $p\left(B_{1} \cap \cdots \cap B_{n}\right)=p\left(B_{1}\right) \ldots p\left(B_{n}\right)$ where $B_{i} \in \sigma\left(A_{i}\right)=$ $\left\{\emptyset, A_{i}, \overline{A_{i}}, \Omega\right\}$.

Problem 5 [10 points]: Let X_{1} and X_{2} be two independent uniform random variables in $[0,1]$. A stick is broken at distance X_{1} and X_{2} from one of the ends. Which is the probability that the resulting three pieces can be used to build a triangle?

Problem 6 [10 points]: A counterexample for the covariance. Given two random variables X, Y, the covariance of X and Y is defined as $\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$. Then, it is obvious that if X and Y are independent, then $\operatorname{Cov}(X, Y)=0$. The opposite, however, is not true.

Let X be a $\mathrm{N}(0,1)$, and ε a random variable independent with X such that $p(\varepsilon=1)=$ $p(\varepsilon=-1)=1 / 2$. Let $Y=\varepsilon X$. Show that the covariance of X and Y is 0 , but that they are not independent.

