Problem Sheet 5

Probability Theory Strikes Back

Jun. Prof. Juanjo Rué Clement Requilé Stochastics II, Summer 2015

Deadline: 26th May 2014 (Monday) by 08:15, at the beginning of the lecture.

Problem 1 [10 points]: Let (Ω, \mathcal{A}, p) be a probability space, and X a random variable. Let $a \in \mathbb{R}$. Show that for each decreasing sequence $\{a_n\}_{n\geq 1}$ with limit $a, F_X(a_n) \to F_X(a)$, and hence $F_X(x)$ is right continuous (*Hint*: consider a a convenient sequence of decreasing events).

Problem 2 [10 points]: Prove Markov's inequality. Use the proof of Markov's inequality to prove Tchebicheff's inequality.

Problem 3 [10 points]: Lyapunov's inequality. Let Z be a random variable over a probability space (Ω, \mathcal{A}, p) such that $\mathbb{E}[|Z|^r] < +\infty$ for all choice of $r \geq 0$.

- Show that the function $g(r) = \log \mathbb{E}[|Z|^r]$ is convex (*Hint*: conveniently take a pair of random variables X and Y and apply Cauchy-Schwarz).
- Deduce from the previous point that if $a \ge b > 0$ we have that $\mathbb{E}[|Z|^a]^{1/a} \ge \mathbb{E}[|Z|^b]^{1/b}$.

This exercise shows that if Z has finite ath moment, then it also has finite bth moment for all positive $b \leq a$.

Problem 4 [10 points]: Let (Ω, \mathcal{A}, p) be a probability space, A_1, \ldots, A_n be events. Show that A_1, \ldots, A_n are independent iff $p(B_1 \cap \cdots \cap B_n) = p(B_1) \ldots p(B_n)$ where $B_i \in \sigma(A_i) = \{\emptyset, A_i, \overline{A_i}, \Omega\}$.

Problem 5 [10 points]: Let X_1 and X_2 be two independent uniform random variables in [0, 1]. A stick is broken at distance X_1 and X_2 from one of the ends. Which is the probability that the resulting three pieces can be used to build a triangle?

Problem 6 [10 points]: A counterexample for the covariance. Given two random variables X, Y, the covariance of X and Y is defined as $Cov(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$. Then, it is obvious that if X and Y are independent, then Cov(X,Y) = 0. The opposite, however, is not true.

Let X be a N(0,1), and ε a random variable independent with X such that $p(\varepsilon=1)=p(\varepsilon=-1)=1/2$. Let $Y=\varepsilon X$. Show that the covariance of X and Y is 0, but that they are not independent.