Problem Sheet 4

 L_p spaces

Jun. Prof. Juanjo Rué Clement Requilé Stochastics II, Summer 2015

Deadline: 19th May 2014 (Tuesday) by 10:00, at the end of the lecture.

Problem 1 [10 points]: A proof of Young's inequality: let $p, q \ge 0$ be such that $\frac{1}{p} + \frac{1}{q} = 1$, $0 < \alpha < 1$ and consider the real differentiable function $\phi(t) = \alpha t - t^{\alpha}$.

- 1. Show that $\phi'(t) < 0$ when 0 < t < 1, $\phi'(t) > 0$ if t > 1, $\phi(t) \ge \phi(1)$ and $\phi(t) = \phi(1)$ iff t = 1.
- 2. Use the previous observations to show that $t^{\alpha} \leq \alpha t + (1 \alpha), t \geq 0$.
- 3. Write $\alpha = 1/p$, t = a/b in the previous expression. Manipulate the final form and get Young's inequality as stated in the lecture.

Problem 2 [10 points]: Let (X, χ, μ) be a measure space such that $\mu(X) < +\infty$. Show that

a.- $L_q \subset L_p$ for all $1 \le p \le q < \infty$.

b.- $L_r \subset L_p + L_q$ for all p < r < q. That is, every $f \in L_r$ can be written as a sum $f_p + f_q$ where $f_p \in L_p$ and $f_q \in L_q$ with the previous condition p < r < q.

(*Hint*: In b.-, you would like to write $f \in L_r$ in the form $f = f\mathbb{I}_{\{|f| \ge 1\}} + f\mathbb{I}_{\{|f| < 1\}}$).

Problem 3 [10 points]: for which values of a the following functions are objects in $L_p((0,\infty))$?

a.- x^a .

b.- e^{ax} .

c.- $|\log(x)|^a$.

Problem 4 [10 points]: Is the product of two functions of L_2 in L_1 ? And is the product of two functions of L_1 in L_1 ?

Problem 5 [10 points]: Let E be a measurable set with finite measure in (X, χ, μ) , $f \in L_2(E)$ and $\{F_n\}_n$ a sequence of measurable sets with $F_n \subset E$ such that $\lim_{n\to\infty} \mu(F_n) = 0$. Show that

$$\lim_{n\to\infty}\frac{1}{\sqrt{\mu(F_n)}}\int_{F_n}|f|d\mu=0$$

(*Hint:* Firstly, bound conveniently the object under study using Cauchy-Schwartz. Later, use Problem 8 in the Problem Sheet 2.)

Problem 6 [10 points]: Let $1 \le p_i < \infty$ (i = 1, 2, 3) such that $p_1^{-1} + p_2^{-1} + p_3^{-1} = 1$.

1. Show that if f_1, f_2, f_3 are measurable functions over \mathbb{R} , then

$$\int_{\mathbb{R}} |f_1 f_2 f_3| \, d\mu \le ||f_1||_{p_1} ||f_2||_{p_2} ||f_3||_{p_3}.$$

2. Application: show that if p < 1/3, then $(x|1-x|(2-x))^{-p} \in L_1(0,2)$.