Problem Sheet 3

The Dominated Convergence Theorem

Jun. Prof. Juanjo Rué Clement Requilé Stochastics II, Summer 2015

Deadline: 12th May 2015 (Tuesday) by 10:00, at the end of the lecture.

Problem 1 [10 points]: Let $f: \mathbb{R} \to \mathbb{R}$ be a measurable function. We define $E = \{x \in [0,1]: f(x) \in \mathbb{Z}\}.$

- 1. Show that E is measurable.
- 2. Show that for every choice of $m \in \mathbb{N}$, the function $g : \mathbb{R} \to [0,1]$, defined by $g(x) = |\cos(\pi f(x))|^m$ is measurable.
- 3. Show that

$$\lim_{m \to +\infty} \int_{[0,1]} g \, d\lambda = \lambda(E).$$

Problem 2 [10 points]: Show that if $f \in L(X, \chi, \mu)$ and g is a bounded measurable function, then $fg \in L(X, \chi, \mu)$.

Problem 3 [10 points]: Let $\alpha > 1$. Show that

$$\lim_{n \to +\infty} \int_{[0,1]} \frac{nx \sin(x)}{1 + (nx)^{\alpha}} d\lambda = 0.$$

Problem 4 [10 points]: Compute $\lim_{n\to+\infty}\int_E f_n\,d\lambda$ in the following cases:

- 1. $f_n(x) = \frac{n\sqrt{x}}{1+n^2x^2}, E = [0,1],$
- 2. $f_n(x) = \frac{nx}{1+n^2x^2}, E = [0,1],$
- 3. $f_n(x) = (1 + \frac{x}{n})^{-n} \sin(\frac{x}{n}), E = [0, +\infty).$

Problem 5 [10 points]: Let $f_n(x) = \frac{-1}{n} \mathbb{I}_{[0,n]}(x)$.

- 1. Show that the sequence $\{f_n\}_{n\geq 1}$ converge uniformly to f=0 in $[0,+\infty)$.
- 2. Show that

$$\int_{[0,+\infty)} f_n \, d\lambda = -1, \quad \int_{[0,+\infty)} f \, d\lambda = 0.$$

3. Conclude that

$$\liminf \int_{[0,+\infty)} f_n \, d\lambda < \int_{[0,+\infty)} \liminf f \, d\lambda.$$

Does this example contradict Fatou Lemma?

(Comment: remember the notion of uniform convergence: a sequence of functions from X with image in \mathbb{R} $\{f_n\}_{n\geq 1}$ is uniform convergent to f if for all $\varepsilon > 0$ there exists $n \geq n_0(\varepsilon)$ such that for all $x \in X$, $|f_n(x) - f(x)| < \varepsilon$. In other words, the speed of convergence does not depend of the choice of x).

Problem 6 [10 points]: Let p > a, b > 0. Compute

$$\int_{[0,+\infty)} \frac{e^{ax} - e^{bx}}{x} e^{-px} \, d\lambda$$

(*Hint*: you may want to study first the derivative with respect to p).