Problem Sheet 11

Markov chains

Jun. Prof. Juanjo Rué Clement Requilé Stochastics II, Summer 2015

Deadline: 7th July 2014 (Tuesday) by 10:00, at the end of the lecture.

Problem 1 [10 points]: A die is rolled repeatedly. Which of the following are Markov chains? For those which are homogeneus, give the transition matrix:

- The largest number X_n shown in the *n*-th roll.
- The number N_n of sixes in n rolls.
- At time r, the time C_r since the most recent six.

Problem 2 [10 points]: Prove that

- 1. $P_{ii}(s) = 1 + F_{ii}(s)P_{ii}(s)$.
- 2. $P_{ij}(s) = F_{ij}(s)P_{ij}(s)$, if $i \neq j$.

Prove also that if three states i, j, k satisfy that $i \leftrightarrow j, j \leftrightarrow k$, then $i \leftrightarrow k$.

Problem 3 [10 points]: Let $\{X_n\}_{n\geq 1}$ a sequence of independent identically distributed random variables, and write $S_n=\sum_{r=1}^n X_n,\ S_0=0,\ Y_n=X_n+X_{n-1}$ (assuming that $X_0=0$) and $Z_n=\sum_{r=0}^n S_n$. Which sequence $(\{S_n\},\ \{Y_n\},\ \{Z_n\})$ defines a Markov chain?

Problem 4 [10 points]: Let $\mathbf{X} = \{X_n\}_{n \geq 0}$ be a Markov chain with an absorving state s such that all the other states i communicate. Show that all states other than s are transient.