Problem Sheet 11

Markov chains

Jun. Prof. Juanjo Rué
Clement Requilé
Stochastics II, Summer 2015
Deadline: 7th July 2014 (Tuesday) by 10:00, at the end of the lecture.

Problem 1 [10 points]: A die is rolled repeatedly. Which of the following are Markov chains? For those which are homogeneus, give the transition matrix:

- The largest number X_{n} shown in the n-th roll.
- The number N_{n} of sixes in n rolls.
- At time r, the time C_{r} since the most recent six.

Problem 2 [10 points]: Prove that

1. $P_{i i}(s)=1+F_{i i}(s) P_{i i}(s)$.
2. $P_{i j}(s)=F_{i j}(s) P_{j j}(s)$, if $i \neq j$.

Prove also that if three states i, j, k satisfy that $i \leftrightarrow j, j \leftrightarrow k$, then $i \leftrightarrow k$.
Problem 3 [10 points]: Let $\left\{X_{n}\right\}_{n \geq 1}$ a sequence of independent identically distributed random variables, and write $S_{n}=\sum_{r=1}^{n} \bar{X}_{n}, S_{0}=0, Y_{n}=X_{n}+X_{n-1}$ (assuming that $X_{0}=0$) and $Z_{n}=\sum_{r=0}^{n} S_{n}$. Which sequence $\left(\left\{S_{n}\right\},\left\{Y_{n}\right\},\left\{Z_{n}\right\}\right)$ defines a Markov chain?

Problem 4 [10 points]: Let $\mathbf{X}=\left\{X_{n}\right\}_{n>0}$ be a Markov chain with an absorving state s such that all the other states i communicate. Show that all states other than s are transient.

