Problem Sheet 1

Preliminaries. σ -algebras and measures

Jun. Prof. Juanjo Rué Clement Requilé Stochastics II, Summer 2015

Deadline: 28th April 2015 (Tuesday) by 10:00, at the end of the lecture.

Problem 0 [0 points]: (Mandatory) When presenting the solutions of the first problem sheet, you must write also:

- Your complete name and matriculation number (specially if you are not from FU Berlin).
- An e-mail which I can use to contact you.

Problem 1 [10 points]: Let $\{A_n\}_{n\geq 1}$ a sequence of subsets in a certain set X. Define

- $\limsup \{A_n\}_{n\geq 1} = \bigcap_{m\geq 1} \bigcup_{n\geq m} A_n$ is the set of elements of X which belongs to infinite sets of the sequence $\{A_n\}_{n\geq 1}$.
- $\liminf\{A_n\}_{n\geq 1} = \bigcup_{m\geq 1} \bigcap_{n\geq m} A_n$ is the set of elements of X which belongs to all but except a finite number of the sets of the sequence $\{A_n\}_{n\geq 1}$.

Prove that

- 1. If $\{A_n\}_{n\geq 1}$ is an monotone increasing sequence of sets, then $\limsup \{A_n\}_{n\geq 1} = \bigcup_{n\geq 1} A_n = \liminf \{A_n\}_{n\geq 1}$.
- 2. If $\{A_n\}_{n\geq 1}$ is an monotone decreasing sequence of sets, then $\limsup \{A_n\}_{n\geq 1} = \bigcap_{n\geq 1} A_n = \liminf \{A_n\}_{n\geq 1}$.

Problem 2 [10 points]: Show that every open set in \mathbb{R} is a countable union of open intervals (one can prove it with or without the Axiom of Choice!). This shows that Borel sets are also generated by open sets.

Problem 3 [10 points]: Show that

$$[a,b] = \bigcap_{n=1}^{\infty} \left(a - \frac{1}{n}, b + \frac{1}{n}\right), (a,b) = \bigcup_{n=1}^{\infty} \left[a + \frac{1}{n}, b - \frac{1}{n}\right].$$

This shows that every σ -algebra containing closed intervals also contains open intervals, and viceversa. Show also that the Borel algebra is also generated by semiopen intervals (a, b] and sets of the form (a, ∞) .

Problem 4 [10 points]: Let \mathcal{X} be a σ -algebra over X, f be a \mathcal{X} -measurable function from X to \mathbb{R}^* and n > 0. Define

$$f_n(x) = \begin{cases} f(x), & \text{if } |f(x)| \le n, \\ n, & \text{if } f(x) > n, \\ -n, & \text{if } f(x) < -n. \end{cases}$$

Show that f_n is a \mathcal{X} -measurable.

Problem 5 [10 points]: Give examples of measurable spaces (X, \mathcal{X}) and functions $f: X \to \mathbb{R}$ which are not \mathcal{X} -measurable, but such that |f| and f^2 are \mathcal{X} -measurable.

Problem 6 [10 points]: Let \mathcal{X} be a σ -algebra over X. Show that a function $f: X \to \mathbb{R}$ is \mathcal{X} -measurable if and only if $A_{\alpha} = \{x \in X : f(x) > \alpha\} \in \mathcal{X}$ for all $\alpha \in \mathbb{Q}$. (*Hint:* you may want to use the well known fact that every real number can be approximated by a sequence of rational numbers).

Problem 7 [10 points]: Let \mathcal{X} be a σ -algebra over $X, f: X \to \mathbb{R}$ a \mathcal{X} -measurable function and $\phi: \mathbb{R} \to \mathbb{R}$ a continous function. Show that $\phi \circ f$ is \mathcal{X} -measurable (*Hint:* you may want to use the result proven in Problem 2).

Problem 8 [10 points]: Let \mathcal{X} be a σ -algebra over X. Show that it $\mu_1, \mu_2, \ldots, \mu_n$ are measures over \mathcal{X} , and a_1, \ldots, a_n are non-negative real numbers, then the linear combination $\sum_{j=1}^{n} a_j \mu_j$ is a measure over \mathcal{X} .

Problem 9 [10 points]: Let (X, \mathcal{X}, μ) be a measure space, and $\{E_n\}_{n \geq 1}$ a sequence of sets in \mathcal{X} . Assuming that $\mu(\bigcup_{n=1}^{\infty} E_n) < +\infty$, show that $\limsup\{\mu(E_n)\}_{n \geq 1} \leq \mu(\limsup\{E_n\}_{n \geq 1})$. Show that this is not true if we assume that $\mu(\bigcup_{n=1}^{\infty} E_n) = +\infty$ (You may want to remember which is the definition of $\limsup\{E_n\}_{n \geq 1}$).