Problem Sheet 1

Preliminaries. σ-algebras and measures

Jun. Prof. Juanjo Rué
Clement Requilé
Stochastics II, Summer 2015
Deadline: 28th April 2015 (Tuesday) by 10:00, at the end of the lecture.

Problem 0 [0 points]: (Mandatory) When presenting the solutions of the first problem sheet, you must write also:

- Your complete name and matriculation number (specially if you are not from FU Berlin).
- An e-mail which I can use to contact you.

Problem 1 [10 points]: Let $\left\{A_{n}\right\}_{n \geq 1}$ a sequence of subsets in a certain set X. Define

- $\lim \sup \left\{A_{n}\right\}_{n \geq 1}=\bigcap_{m \geq 1} \bigcup_{n \geq m} A_{n}$ is the set of elements of X which belongs to infinite sets of the sequence $\left\{A_{n}\right\}_{n \geq 1}$.
- $\liminf \left\{A_{n}\right\}_{n \geq 1}=\bigcup_{m>1} \bigcap_{n>m} A_{n}$ is the set of elements of X which belongs to all but except a finite number of the sets of the sequence $\left\{A_{n}\right\}_{n \geq 1}$.

Prove that

1. If $\left\{A_{n}\right\}_{n \geq 1}$ is an monotone increasing sequence of sets, then $\lim \sup \left\{A_{n}\right\}_{n \geq 1}=\bigcup_{n \geq 1} A_{n}=$ $\liminf \left\{A_{n}\right\}_{n \geq 1}$.
2. If $\left\{A_{n}\right\}_{n \geq 1}$ is an monotone decreasing sequence of sets, then $\lim \sup \left\{A_{n}\right\}_{n \geq 1}=\bigcap_{n \geq 1} A_{n}=$ $\liminf \left\{\bar{A}_{n}\right\}_{n \geq 1}$.

Problem 2 [10 points]: Show that every open set in \mathbb{R} is a countable union of open intervals (one can prove it with or without the Axiom of Choice!). This shows that Borel sets are also generated by open sets.

Problem 3 [10 points]: Show that

$$
[a, b]=\bigcap_{n=1}^{\infty}\left(a-\frac{1}{n}, b+\frac{1}{n}\right),(a, b)=\bigcup_{n=1}^{\infty}\left[a+\frac{1}{n}, b-\frac{1}{n}\right] .
$$

This shows that every σ-algebra containing closed intervals also contains open intervals, and viceversa. Show also that the Borel algebra is also generated by semiopen intervals ($a, b]$ and sets of the form (a, ∞).

Problem 4 [10 points]: Let \mathcal{X} be a σ-algebra over X, f be a \mathcal{X}-measurable function from X to \mathbb{R}^{*} and $n>0$. Define

$$
f_{n}(x)=\left\{\begin{array}{c}
f(x), \text { if }|f(x)| \leq n \\
n, \text { if } f(x)>n \\
-n, \text { if } f(x)<-n
\end{array}\right.
$$

Show that f_{n} is a \mathcal{X}-measurable.
Problem 5 [10 points]: Give examples of measurable spaces (X, \mathcal{X}) and functions $f: X \rightarrow$ \mathbb{R} which are not \mathcal{X}-measurable, but such that $|f|$ and f^{2} are \mathcal{X}-measurable.

Problem 6 [10 points]: Let \mathcal{X} be a σ-algebra over X. Show that a function $f: X \rightarrow \mathbb{R}$ is \mathcal{X}-measurable if and only if $A_{\alpha}=\{x \in X: f(x)>\alpha\} \in \mathcal{X}$ for all $\alpha \in \mathbb{Q}$. (Hint: you may want to use the well known fact that every real number can be approximated by a sequence of rational numbers).

Problem 7 [10 points]: Let \mathcal{X} be a σ-algebra over $X, f: X \rightarrow \mathbb{R}$ a \mathcal{X}-measurable function and $\phi: \mathbb{R} \rightarrow \mathbb{R}$ a continous function. Show that $\phi \circ f$ is \mathcal{X}-measurable (Hint: you may want to use the result proven in Problem 2).

Problem 8 [10 points]: Let \mathcal{X} be a σ-algebra over X. Show that it $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ are measures over \mathcal{X}, and a_{1}, \ldots, a_{n} are non-negative real numbers, then the linear combination $\sum_{j=1}^{n} a_{j} \mu_{j}$ is a measure over \mathcal{X}.

Problem 9 [10 points]: Let (X, \mathcal{X}, μ) be a measure space, and $\left\{E_{n}\right\}_{n \geq 1}$ a sequence of sets in \mathcal{X}. Assuming that $\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right)<+\infty$, show that $\lim \sup \left\{\mu\left(E_{n}\right)\right\}_{n \geq 1} \leq \mu\left(\lim \sup \left\{E_{n}\right\}_{n \geq 1}\right)$. Show that this is not true if we assume that $\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right)=+\infty$ (You may want to remember which is the definition of $\left.\lim \sup \left\{E_{n}\right\}_{n \geq 1}\right)$.

