SOLUTIONS TO PROBLEMS 4 AND 5

Problem 4 (2 points): Let $\{X_n\}_{n\geq 1}$ be a sequence of random variables.

(1) Show that for all $\varepsilon > 0$,

$$P(|X_n| > \varepsilon) \le \frac{1+\varepsilon}{\varepsilon} \mathbb{E}\left[\frac{|X_n|}{1+|X_n|}\right]$$
 (1 points).

(2) Show that $X_n \stackrel{p}{\to} 0$ if and only if $\lim_{n\to\infty} \mathbb{E}\left[\frac{|X_n|}{1+|X_n|}\right] = 0$ (1 points).

Solution: We start proving 1.- To do so, observe that:

$$|X_n| > \varepsilon \Leftrightarrow |X_n| + 1 > 1 + \varepsilon \Leftrightarrow |X_n| + \varepsilon |X_n| > \varepsilon + \varepsilon |X_n|,$$

and as $1+|X_n|>0$, this last inequality is equivalent to $\frac{|X_n|}{1+|X_n|}>\frac{\varepsilon}{1+\varepsilon}$. So,

$$P(|X_n| > \varepsilon) = P\left(\frac{|X_n|}{1 + |X_n|} > \frac{\varepsilon}{1 + \varepsilon}\right),$$

because they are the same event. Now, we can just apply Markov's inequality because the random variable $\frac{|X_n|}{1+|X_n|}$ takes only positive values:

$$P\left(\frac{|X_n|}{1+|X_n|} > \frac{\varepsilon}{1+\varepsilon}\right) \le \frac{1+\varepsilon}{\varepsilon} \mathbb{E}\left[\frac{|X_n|}{1+|X_n|}\right]$$

Let us go now to prove 2.- Observe that the implication \Leftarrow is immediate from what we have done at point 1.-: if $\mathbb{E}\left[\frac{|X_n|}{1+|X_n|}\right]$ tends to 0, then

$$0 \le P(|X_n| > \varepsilon) = P\left(\frac{|X_n|}{1 + |X_n|} > \frac{\varepsilon}{1 + \varepsilon}\right) \le \frac{1 + \varepsilon}{\varepsilon} \mathbb{E}\left[\frac{|X_n|}{1 + |X_n|}\right] \to 0$$

and so $X_n \stackrel{p}{\to} 0$. To prove the inverse implication \Rightarrow , observe that $\frac{|X_n|}{1+|X_n|} \leq 1$, so for every $\varepsilon > 0$ we have that

$$\mathbb{E}\left[\frac{|X_n|}{1+|X_n|}\right] \le 1 \times P\left(\frac{|X_n|}{1+|X_n|} \ge \frac{\varepsilon}{1+\varepsilon}\right) + \frac{\varepsilon}{1+\varepsilon}P\left(\frac{|X_n|}{1+|X_n|} < \frac{\varepsilon}{1+\varepsilon}\right)$$

and so, this can be written as $P(|X_n| \ge \varepsilon) + \frac{\varepsilon}{1+\varepsilon} P(|X_n| < \varepsilon)$. If $X_n \xrightarrow{p} 0$, then we conclude that

$$\mathbb{E}\left[\frac{|X_n|}{1+|X_n|}\right] \le P\left(|X_n| \ge \varepsilon\right) + \frac{\varepsilon}{1+\varepsilon}P\left(|X_n| < \varepsilon\right) \to \frac{\varepsilon}{1+\varepsilon}.$$

As this convergence is true for every choice of $\varepsilon > 0$, making $\varepsilon \to 0$ we have the result as claimed.

Problem 5 (2 points): For $f, g \in L^1(\mathbb{R})$, we define

$$(f * g)(x) = \int_{\mathbb{R}} f(t)g(x - t) dx$$

We will show in this problem that there does not exist an identity element $\delta \in L^1(\mathbb{R})$ such that $\delta * f = f * \delta = f$ for all $f \in L^1(\mathbb{R})$. Assume its existence.

(1) Show that if E has finite measure, then

$$\int_{E} \delta(x) dx = \begin{cases} 1, & 0 \in E, \\ 0, & 0 \notin E. \end{cases}$$
 (0.5 points)

- (2) Write $E' = \{x \in \mathbb{R} : \delta(x) > 0\}$. Show that $\int_{E'} \delta(x) dx = 0$. Prove a similar result for $F' = \{x \in \mathbb{R} : \delta(x) < 0\}$. (0.75 point).
- (3) Conclude from the previous points that $\delta(x) = 0$ for almost all x, and get a contradiction from this fact (0.75 points).

We start with 1.-, if E has finite measure, then its indicator function $\mathbb{I}_E(x) \in L^1(\mathbb{R})$. Hence,

$$\int_{E} \delta(t) dt = \int_{\mathbb{R}} \mathbb{I}_{E}(t) \delta(t) dt = \int_{\mathbb{R}} \mathbb{I}_{-E}(0 - t) \delta(t) dt = \mathbb{I}_{-E}(0)$$

where $-E = \{-x \in E\}$. This is true because E has finite measure if and only if -E has finite measure. Finally $\mathbb{I}_{-E}(0) = \mathbb{I}_{E}(0)$.

Now let us go to point 2.- The main difficulty here is that we cannot apply directly point 1.-, because we do not know if E' has finite measure. We may assume that $\delta(0) = 0$ (otherwise we can just redefine it satisfying this, which only makes a difference in a set of measure 0). To do so, we approximate it by the set $E_n = \{x \in \mathbb{R} : 0 < |x| \le n, \delta(x) > 0\}$, which has finite measure. In particular, $\{E_n\}_{n\geq 1}$ is an increasing sequence of sets, with limit $E' = \bigcup_{n\geq 1} E_n$. Observe that each function $\delta(x)\mathbb{I}_{E_n}(x)$ is dominated by $|\delta(x)| \in L^1(\mathbb{R})$. We can apply then the Dominated Convergence Theorem with catalytic function $g(x) = \delta(x)$. So:

$$\int_{E'} \delta(x) dx = \int_{\mathbb{R}} \lim \delta(t) \mathbb{I}_{E_n} dt = \lim \int_{\mathbb{R}} \delta(t) \mathbb{I}_{E_n}(t) dt = 0$$

because the integral over E_n , by point 1.- is equal to 0. A similar argument applies when dealing with F'.

To conclude, we split \mathbb{R} in terms of E', F' and the set $A = \{x \in \mathbb{R} : \delta(x) = 0\}$, so

$$\int_{\mathbb{R}} \delta(x) \, dx = \int_{E'} \delta(x) \, dx + \int_{F'} \delta(x) \, dx + \int_{A} \delta(x) \, dx = 0 + 0 + 0 = 0,$$

where the last 0 holds because the function is equal to 0 over 0. So we have that $\delta(x)$ is 0 almost always. We conclude the argument taking an arbitrary function $0 \neq f \in L^1(\mathbb{R})$, then, by the definition:

$$f(x) = (\delta * f)(x) = \int_{\mathbb{R}} \delta(x) f(x - t) dx = 0$$