
SOLUTIONS TO PROBLEMS 4 AND 5

Problem 4 (2 points): Let {Xn}n≥1 be a sequence of random variables.

(1) Show that for all ε > 0,

P (|Xn| > ε) ≤ 1 + ε

ε
E
[

|Xn|
1 + |Xn|

]
(1 points).

(2) Show that Xn
p→ 0 if and only if limn→∞ E

[
|Xn|

1+|Xn|

]
= 0 (1 points).

Solution: We start proving 1.- To do so, observe that:

|Xn| > ε ⇔ |Xn|+ 1 > 1 + ε ⇔ |Xn|+ ε|Xn| > ε+ ε|Xn|,

and as 1 + |Xn| > 0, this last inequality is equivalent to |Xn|
1+|Xn| >

ε
1+ε

. So,

P (|Xn| > ε) = P

(
|Xn|

1 + |Xn|
>

ε

1 + ε

)
,

because they are the same event. Now, we can just apply Markov’s inequality because the

random variable |Xn|
1+|Xn| takes only positive values:

P

(
|Xn|

1 + |Xn|
>

ε

1 + ε

)
≤ 1 + ε

ε
E
[

|Xn|
1 + |Xn|

]
Let us go now to prove 2.- Observe that the implication ⇐ is immediate from what we

have done at point 1.-: if E
[

|Xn|
1+|Xn|

]
tends to 0, then

0 ≤ P (|Xn| > ε) = P

(
|Xn|

1 + |Xn|
>

ε

1 + ε

)
≤ 1 + ε

ε
E
[

|Xn|
1 + |Xn|

]
→ 0

and so Xn
p→ 0. To prove the inverse implication ⇒, observe that |Xn|

1+|Xn| ≤ 1, so for every

ε > 0 we have that

E
[

|Xn|
1 + |Xn|

]
≤ 1× P

(
|Xn|

1 + |Xn|
≥ ε

1 + ε

)
+

ε

1 + ε
P

(
|Xn|

1 + |Xn|
<

ε

1 + ε

)
and so, this can be written as P (|Xn| ≥ ε)+ ε

1+ε
P (|Xn| < ε). If Xn

p→ 0, then we conclude
that

E
[

|Xn|
1 + |Xn|

]
≤ P (|Xn| ≥ ε) +

ε

1 + ε
P (|Xn| < ε) → ε

1 + ε
.

As this convergence is true for every choice of ε > 0, making ε → 0 we have the result as
claimed.
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Problem 5 (2 points): For f, g ∈ L1(R), we define

(f ∗ g)(x) =
∫
R
f(t)g(x− t) dx

We will show in this problem that there does not exist an identity element δ ∈ L1(R)
such that δ ∗ f = f ∗ δ = f for all f ∈ L1(R). Assume its existence.

(1) Show that if E has finite measure, then∫
E

δ(x) dx =

{
1, 0 ∈ E,
0, 0 ̸∈ E.

(0.5 points)

(2) Write E ′ = {x ∈ R : δ(x) > 0}. Show that
∫
E′ δ(x) dx = 0. Prove a similar result

for F ′ = {x ∈ R : δ(x) < 0}. (0.75 point).
(3) Conclude from the previous points that δ(x) = 0 for almost all x, and get a con-

tradiction from this fact (0.75 points).

We start with 1.-, if E has finite measure, then its indicator function IE(x) ∈ L1(R).
Hence, ∫

E

δ(t) dt =

∫
R
IE(t)δ(t) dt =

∫
R
I−E(0− t)δ(t) dt = I−E(0)

where −E = {−x ∈ E}. This is true because E has finite measure if and only if −E has
finite measure. Finally I−E(0) = IE(0).

Now let us go to point 2.- The main difficulty here is that we cannot apply directly
point 1.- , because we do not know if E ′ has finite measure. We may assume that δ(0) = 0
(otherwise we can just redefine it satisfying this, which only makes a difference in a set of
measure 0). To do so, we approximate it by the set En = {x ∈ R : 0 < |x| ≤ n, δ(x) > 0},
which has finite measure. In particular, {En}n≥1 is an increasing sequence of sets, with limit
E ′ =

∪
n≥1En. Observe that each function δ(x)IEn(x) is dominated by |δ(x)| ∈ L1(R). We

can apply then the Dominated Convergence Theorem with catalytic function g(x) = δ(x).
So: ∫

E′
δ(x) dx =

∫
R
lim δ(t)IEn dt = lim

∫
R
δ(t)IEn(t) dt = 0

because the integral over En, by point 1.- is equal to 0. A similar argument applies when
dealing with F ′.

To conclude, we split R in terms of E ′, F ′ and the set A = {x ∈ R : δ(x) = 0}, so∫
R
δ(x) dx =

∫
E′
δ(x) dx+

∫
F ′
δ(x) dx+

∫
A

δ(x) dx = 0 + 0 + 0 = 0,
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where the last 0 holds because the function is equal to 0 over 0. So we have that δ(x) is
0 almost always. We conclude the argument taking an arbitrary function 0 ̸= f ∈ L1(R),
then, by the definition:

f(x) = (δ ∗ f)(x) =
∫
R
δ(x)f(x− t) dx = 0


