SOLUTIONS TO PROBLEMS 4 AND 5

Problem 4 (2 points): Let $\left\{X_{n}\right\}_{n \geq 1}$ be a sequence of random variables.
(1) Show that for all $\varepsilon>0$,

$$
P\left(\left|X_{n}\right|>\varepsilon\right) \leq \frac{1+\varepsilon}{\varepsilon} \mathbb{E}\left[\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}\right] \text { (1 points). }
$$

(2) Show that $X_{n} \xrightarrow{p} 0$ if and only if $\lim _{n \rightarrow \infty} \mathbb{E}\left[\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}\right]=0$ (1 points).

Solution: We start proving 1.- To do so, observe that:

$$
\left|X_{n}\right|>\varepsilon \Leftrightarrow\left|X_{n}\right|+1>1+\varepsilon \Leftrightarrow\left|X_{n}\right|+\varepsilon\left|X_{n}\right|>\varepsilon+\varepsilon\left|X_{n}\right|,
$$

and as $1+\left|X_{n}\right|>0$, this last inequality is equivalent to $\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}>\frac{\varepsilon}{1+\varepsilon}$. So,

$$
P\left(\left|X_{n}\right|>\varepsilon\right)=P\left(\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}>\frac{\varepsilon}{1+\varepsilon}\right),
$$

because they are the same event. Now, we can just apply Markov's inequality because the random variable $\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}$ takes only positive values:

$$
P\left(\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}>\frac{\varepsilon}{1+\varepsilon}\right) \leq \frac{1+\varepsilon}{\varepsilon} \mathbb{E}\left[\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}\right]
$$

Let us go now to prove 2.- Observe that the implication \Leftarrow is immediate from what we have done at point 1.-: if $\mathbb{E}\left[\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}\right]$ tends to 0 , then

$$
0 \leq P\left(\left|X_{n}\right|>\varepsilon\right)=P\left(\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}>\frac{\varepsilon}{1+\varepsilon}\right) \leq \frac{1+\varepsilon}{\varepsilon} \mathbb{E}\left[\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}\right] \rightarrow 0
$$

and so $X_{n} \xrightarrow{p} 0$. To prove the inverse implication \Rightarrow, observe that $\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|} \leq 1$, so for every $\varepsilon>0$ we have that

$$
\mathbb{E}\left[\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}\right] \leq 1 \times P\left(\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|} \geq \frac{\varepsilon}{1+\varepsilon}\right)+\frac{\varepsilon}{1+\varepsilon} P\left(\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}<\frac{\varepsilon}{1+\varepsilon}\right)
$$

and so, this can be written as $P\left(\left|X_{n}\right| \geq \varepsilon\right)+\frac{\varepsilon}{1+\varepsilon} P\left(\left|X_{n}\right|<\varepsilon\right)$. If $X_{n} \xrightarrow{p} 0$, then we conclude that

$$
\mathbb{E}\left[\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}\right] \leq P\left(\left|X_{n}\right| \geq \varepsilon\right)+\frac{\varepsilon}{1+\varepsilon} P\left(\left|X_{n}\right|<\varepsilon\right) \rightarrow \frac{\varepsilon}{1+\varepsilon}
$$

As this convergence is true for every choice of $\varepsilon>0$, making $\varepsilon \rightarrow 0$ we have the result as claimed.

Problem 5 (2 points): For $f, g \in L^{1}(\mathbb{R})$, we define

$$
(f * g)(x)=\int_{\mathbb{R}} f(t) g(x-t) d x
$$

We will show in this problem that there does not exist an identity element $\delta \in L^{1}(\mathbb{R})$ such that $\delta * f=f * \delta=f$ for all $f \in L^{1}(\mathbb{R})$. Assume its existence.
(1) Show that if E has finite measure, then

$$
\int_{E} \delta(x) d x=\left\{\begin{array}{l}
1,0 \in E, \\
0,0 \notin E .
\end{array} \quad \quad(0.5 \text { points })\right.
$$

(2) Write $E^{\prime}=\{x \in \mathbb{R}: \delta(x)>0\}$. Show that $\int_{E^{\prime}} \delta(x) d x=0$. Prove a similar result for $F^{\prime}=\{x \in \mathbb{R}: \delta(x)<0\}$. (0.75 point).
(3) Conclude from the previous points that $\delta(x)=0$ for almost all x, and get a contradiction from this fact (0.75 points).

We start with 1.-, if E has finite measure, then its indicator function $\mathbb{I}_{E}(x) \in L^{1}(\mathbb{R})$. Hence,

$$
\int_{E} \delta(t) d t=\int_{\mathbb{R}} \mathbb{I}_{E}(t) \delta(t) d t=\int_{\mathbb{R}} \mathbb{I}_{-E}(0-t) \delta(t) d t=\mathbb{I}_{-E}(0)
$$

where $-E=\{-x \in E\}$. This is true because E has finite measure if and only if $-E$ has finite measure. Finally $\mathbb{I}_{-E}(0)=\mathbb{I}_{E}(0)$.

Now let us go to point 2.- The main difficulty here is that we cannot apply directly point 1.- , because we do not know if E^{\prime} has finite measure. We may assume that $\delta(0)=0$ (otherwise we can just redefine it satisfying this, which only makes a difference in a set of measure 0). To do so, we approximate it by the set $E_{n}=\{x \in \mathbb{R}: 0<|x| \leq n, \delta(x)>0\}$, which has finite measure. In particular, $\left\{E_{n}\right\}_{n \geq 1}$ is an increasing sequence of sets, with limit $E^{\prime}=\bigcup_{n \geq 1} E_{n}$. Observe that each function $\delta(x) \mathbb{I}_{E_{n}}(x)$ is dominated by $|\delta(x)| \in L^{1}(\mathbb{R})$. We can apply then the Dominated Convergence Theorem with catalytic function $g(x)=\delta(x)$. So:

$$
\int_{E^{\prime}} \delta(x) d x=\int_{\mathbb{R}} \lim \delta(t) \mathbb{I}_{E_{n}} d t=\lim \int_{\mathbb{R}} \delta(t) \mathbb{I}_{E_{n}}(t) d t=0
$$

because the integral over E_{n}, by point 1.- is equal to 0 . A similar argument applies when dealing with F^{\prime}.

To conclude, we split \mathbb{R} in terms of E^{\prime}, F^{\prime} and the set $A=\{x \in \mathbb{R}: \delta(x)=0\}$, so

$$
\int_{\mathbb{R}} \delta(x) d x=\int_{E^{\prime}} \delta(x) d x+\int_{F^{\prime}} \delta(x) d x+\int_{A} \delta(x) d x=0+0+0=0
$$

where the last 0 holds because the function is equal to 0 over 0 . So we have that $\delta(x)$ is 0 almost always. We conclude the argument taking an arbitrary function $0 \neq f \in L^{1}(\mathbb{R})$, then, by the definition:

$$
f(x)=(\delta * f)(x)=\int_{\mathbb{R}} \delta(x) f(x-t) d x=0
$$

