## **Mock Exam**

Stochastics II, Summer 2015 Jun. Prof. Juanjo Rué Clément Requilé

Deadline:  $\frac{8 \text{th July 2015}}{\text{No points}}$  (Wednesday) by 10:00, at the end of the lecture.

## Problem 1 (2 points):

- Let  $(X, \chi, \mu)$  a measurable space. Define  $\chi$ -measurable function over  $(X, \chi, \mu)$  (0.5 points).
- Let  $(X, \chi, \mu)$  a measurable space. the set  $L(X, \chi, \mu)$  of integrable functions (0.5 points).
- Prove that  $f \in L(X, \chi, \mu)$  if and only if  $|f| \in L(X, \chi, \mu)$  (1 point).

**Problem 2 (2 points):** Let  $\{X_n\}_{n\geq 1}$  be a sequence of random variables.

- Define convergence in distribution and convergence in the r-th mean mode (0.5 points).
- Prove that if  $X_n \stackrel{d}{\to} X$  and  $p(|X_n| \le k) = 1$  for all n and some k, then  $X_n \stackrel{r}{\to} X$ ,  $r \ge 1$  (1.5 points).

**Problem 3 (2 points):** Let  $f_n(x) = \frac{-1}{n} \mathbb{I}_{[0,n]}(x)$ .

- Show that the sequence  $\{f_n\}_{n\geq 1}$  converge uniformly to f=0 in  $[0,+\infty)$  (0.5 points).
- Show that

$$\int_{[0,+\infty)} f_n d\lambda = -1, \quad \int_{[0,+\infty)} f d\lambda = 0 \qquad (0.5 \text{ points}).$$

• Conclude that

$$\liminf \int_{[0,+\infty)} f_n \, d\lambda < \int_{[0,+\infty)} \liminf f \, d\lambda \quad (0.5 \, \text{points}).$$

• Does this example contradict Fatou Lemma? (0.5 points)

## Problem 4 (2 points):

- Find the moment generating function of the Poisson distribution with parameter  $\lambda$  (1 point).
- Show that a sequence of binomial random variables  $Bin(n, \frac{\lambda}{n})$  converges in distribution to a Poisson random variable with parameter  $\lambda$  (1 point).

**Problem 5 (2 points):** Let  $f \in L^p((0,1))$  for all  $p \ge 1$ , such that  $||f||_{r+1}^{r+1} \le r||f||_r^r$ . Show that for  $0 \le \alpha < 1$  we have that

$$\int_{(0,1)} e^{\alpha |f(x)|} dx \le 1 - ||f||_1 \log(1 - \alpha).$$

- The time for this exam is 2 hours.
- You can solve each section (or subsection) independently.
- You should try to write and justify ALL steps.
- This will NOT be counted towards your homework requirements.