
Physica D 237 (2008) 2599–2615
www.elsevier.com/locate/physd

Computation of derivatives of the rotation number for parametric families of
circle diffeomorphisms

Alejandro Luque, Jordi Villanueva∗
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Abstract

In this paper we present a numerical method to compute derivatives of the rotation number for parametric families of circle diffeomorphisms
with high accuracy. Our methodology is an extension of a recently developed approach to compute rotation numbers based on suitable averages
of iterates of the map and Richardson extrapolation. We focus on analytic circle diffeomorphisms, but the method also works if the maps are
differentiable enough. In order to justify the method, we also require the family of maps to be differentiable with respect to the parameters and the
rotation number to be Diophantine. In particular, the method turns out to be very efficient for computing Taylor expansions of Arnold Tongues of
families of circle maps. Finally, we adapt these ideas to study invariant curves for parametric families of planar twist maps.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The rotation number, introduced by Poincaré, is an important
topological invariant in the study of the dynamics of circle
maps and, by extension, invariant curves for maps or two
dimensional invariant tori for vector fields. For this reason,
several numerical methods for approximating rotation numbers
have been developed during the last years. We refer to
the works [3,4,8,13,14,21,24,31] as examples of methods of
different nature and complexity. This last ranges from pure
definition of the rotation number to sophisticated and involved
methods like frequency analysis. The efficiency of these
methods varies depending if the approximated rotation number
is rational or irrational. Moreover, even though some of them
can be very accurate in many cases, they are not adequate
for every kind of application, for example due to violation of
their assumptions or due to practical reasons, like the required
amount of memory.
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Recently, a new method for computing Diophantine rotation
numbers of circle diffeomorphisms with high precision at
low computational cost has been introduced in [27]. This
method is built assuming that the circle map is conjugate to
a rigid rotation in a sufficiently smooth way and, basically,
it consists in averaging the iterates of the map together with
Richardson extrapolation. This construction takes advantage of
the geometry and dynamics of the problem, so it turns out to be
very efficient in multiple applications. The method is specially
suited if we are able to compute iterates of the map with a high
precision, for example if we can work with computer arithmetic
having a large number of decimal digits.

The goal of this paper is to extend the method of [27] in
order to compute derivatives of the rotation number with respect
to parameters in families of circle diffeomorphisms. We follow
the same averaging-extrapolation process applied to derivatives
of iterates of the map. To this end, we require the family to
be differentiable with respect to parameters. Hence, we are
able to obtain accurate variational information at the same time
that we approximate the rotation number. Consequently, the
method allows us to study parametric families of circle maps
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from a point of view that is not given by any of the previously
mentioned methods.

From a practical point of view, circle diffeomorphisms
appear in the study of quasi-periodic invariant curves for maps.
In particular, for planar twist maps, any such a curve induces
a circle diffeomorphism in a direct way just by projecting
the iterates on the angular variable. Then, using approximate
derivatives of the rotation number, we can continue these
invariant curves numerically with respect to parameters by
means of the Newton method. The methodology presented is
an alternative to more common approaches based on solving
the invariance equation numerically, interpolation of the map or
approximation by periodic orbits (see for example [5,7,12,28]).
Furthermore, using the variational information obtained, we are
able to compute asymptotic expansions relating parameters and
initial conditions that correspond to curves of fixed rotation
number.

Finally, we point out that the method can be formally
extended to deal with maps on the torus with a Diophantine
rotation vector. However, in order to apply the method to the
study of quasi-periodic tori for symplectic maps in higher
dimensions, there is not an analogue of the twist condition
to guarantee a well defined projection of iterates on the
standard torus. Then, our interest is immediately focused
on a generalization of the method in the case of non-twist
maps with folded invariant curves (for example, so-called
meanderings [29]). These and other extensions will be object
of future research [22].

Contents of the paper are organized as follows. In Section 2
we recall some fundamental facts about circle maps and we
briefly review the method of [27]. In Section 3 we describe
the method for the computation of derivatives of the rotation
number. The rest of the paper is devoted to illustrate the method
through several applications. Concretely, in Section 4 we study
the Arnold family of circle maps. Finally, in Section 5 we
focus on the computation and continuation of invariant curves
for planar twist maps and, in particular, we present some
computations for the conservative Hénon map.

2. Notation and previous results

All the results presented in this section can be found in the
bibliography, but we include them for self-consistency of the
text. Concretely, in Section 2.1 we recall the basic definitions,
notations and properties of circle maps that we need in the paper
(we refer to [9,18] for more details and proofs). On the other
hand, in Section 2.2 we review briefly the method of [27] for
computing rotation numbers of circle diffeomorphisms.

2.1. Circle diffeomorphisms

Let T = R/Z be the real circle which inherits both a group
structure and a topology by means of the natural projection
π : R → T (also called the universal cover of T). We denote
by Diffr

+(T), r ∈ [0, +∞) ∪ {∞, ω}, the group of orientation-
preserving homeomorphisms of T of class Cr . Concretely, if
r = 0 it is the group of homeomorphisms of T; if r ≥ 1, r ∈
(0, ∞) \ N, it is the group of Cbrc-diffeomorphisms whose brc-
th derivative verifies a Hölder condition with exponent r − brc;
if r = ω it is the group of real analytic diffeomorphisms.

Given f ∈ Diffr
+(T), we can lift f to R by π obtaining a Cr

map f̃ that makes the following diagram commute

π ◦ f̃ = f ◦ π.

Moreover, we have f̃ (x + 1) − f̃ (x) = 1 (since f is
orientation-preserving) and the lift is unique if we ask for
f̃ (0) ∈ [0, 1). Accordingly, from now on we choose the lift
with this normalization so we can omit the tilde without any
ambiguity.

Definition 2.1. Let f be the lift of an orientation-preserving
homeomorphism of the circle such that f (0) ∈ [0, 1). Then the
rotation number of f is defined as the limit

ρ( f ) := lim
|n|→∞

f n(x0) − x0

n
,

that exists for all x0 ∈ R, is independent of x0 and satisfies
ρ( f ) ∈ [0, 1).

Let us remark that the rotation number is invariant under
orientation-preserving conjugation, i.e., for every f, h ∈

Diff0
+(T) we have that ρ(h−1

◦ f ◦ h) = ρ( f ). Furthermore,
given f ∈ Diff2

+(T) with ρ( f ) ∈ R \ Q, Denjoy’s theorem
ensures that f is topologically conjugate to the rigid rotation
Rρ( f ), where Rθ (x) = x +θ . That is, there exists η ∈ Diff0

+(T)

making the following diagram commute

f ◦ η = η ◦ Rρ( f ). (1)

In addition, if we require η(0) = x0, for fixed x0, then the
conjugacy η is unique.

All the ideas and algorithms described in this paper make
use of the existence of such conjugation and its regularity. Let
us remark that, although smooth or even finite differentiability
is enough, in this paper we are concerned with the analytic case.
Moreover, it is well known that regularity of the conjugation
depends also on the rational approximation properties of ρ( f ),
so we will focus on Diophantine numbers.

Definition 2.2. Given θ ∈ R, we say that θ is a Diophantine
number of (C, τ ) type if there exist constants C > 0 and τ ≥ 1
such that∣∣∣1 − e2π ikθ

∣∣∣−1
≤ C |k|

τ , ∀k ∈ Z∗.

We will denote by D(C, τ ) the set of such numbers and by D
the set of Diophantine numbers of any type.
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Although Diophantine sets are Cantorian (i.e., compact,
perfect and nowhere dense) a remarkable property is that R \D
has zero Lebesgue measure. For this reason, this condition fits
very well in practical issues and we do not resort to other
weak conditions on small divisors such as the Brjuno condition
(see [33]).

The first result on the regularity of conjugacy (1) is
due to Arnold [2] but we also refer to [16,19,30,33] for
later contributions. In particular, theoretical support of the
methodology is provided by the following result:

Theorem 2.3 (Katznelson and Ornstein [19]). If f ∈

Diffr
+(T) has Diophantine rotation number ρ( f ) ∈ D(C, τ )

for τ + 1 < r , then f is conjugated to Rρ( f ) by means of
a conjugacy η ∈ Diffr−τ−ε

+ (T), for any ε > 0. Note that
Diffω+(T) = Diffω−τ−ε

+ (T) while the domain of analyticity is
reduced.

2.2. Computing rotation numbers by averaging and extrapola-
tion

We review here the method developed in [27] for
computing Diophantine rotation numbers of analytic circle
diffeomorphisms (the Cr case is similar). This method is highly
accurate with low computational cost and it turns out to be very
efficient when combined with multiple precision arithmetic
routines. The reader is referred there for a detailed discussion
and several applications.

Let us consider f ∈ Diffω+(T) with rotation number
θ = ρ( f ) ∈ D. Notice that we can write the conjugacy of
Theorem 2.3 as η(x) = x + ξ(x), ξ being a 1-periodic function
normalized in such a way that ξ(0) = x0, for a fixed x0 ∈ [0, 1).
Now, by using the fact that η conjugates f to a rigid rotation, we
can write the following expression for the iterates under the lift:

f n(x0) = f n(η(0)) = η(nθ) = nθ +

∑
k∈Z

ξ̂ke2π iknθ , (2)

∀n ∈ Z, where the sequence {ξ̂k}k∈Z denotes the Fourier coef-
ficients of ξ . Then, the above expression gives us the following
formula

f n(x0) − x0

n
= θ +

1
n

∑
k∈Z∗

ξ̂k(e2π iknθ
− 1),

to compute θ modulo terms of order O(1/n). Unfortunately,
this order of convergence is very slow for practical purposes,
since it requires a huge number of iterates if we want to com-
pute θ with high precision. Nevertheless, by averaging the iter-
ates f n(x0) in a suitable way, we can manage to decrease the
order of this quasi-periodic term.

As a motivation, let us start by considering the sum of the
first N iterates under f , that has the following expression (we
use (2) to write the iterates)

S1
N ( f ) :=

N∑
n=1

( f n(x0) − x0) =
N (N + 1)

2
θ − N

∑
k∈Z∗

ξ̂k

+

∑
k∈Z∗

ξ̂k
e2π ikθ (1 − e2π ik Nθ )

1 − e2π ikθ
,

and we observe that the new factor multiplying θ grows
quadratically with the number of iterates, while it appears a
linear term in N with constant A1 = −

∑
k∈Z∗

ξ̂k . Moreover,
the quasi-periodic sum remains uniformly bounded since θ is
Diophantine and η is analytic (use Lemma 2.4 with p = 1).
Thus, we obtain

2
N (N + 1)

S1
N ( f ) = θ +

2
N + 1

A1 +O(1/N 2), (3)

that allows us to extrapolate the value of θ with an error
O(1/N 2) if, for example, we compute SN ( f ) and S2N ( f ).

In general, we introduce the following recursive sums for
p ∈ N

S0
N ( f ) := f N (x0) − x0, S p

N ( f ) :=

N∑
j=1

S p−1
j ( f ). (4)

Then, the result presented in [27] says that under the above
hypotheses, the following averaged sums of order p

S̃ p
N ( f ) :=

(
N + p

p + 1

)−1

S p
N ( f ) (5)

satisfy the expression

S̃ p
N ( f ) = θ +

p∑
l=1

Ap
l

(N + p − l + 1) · · · (N + p)
+ E p(N ), (6)

where the coefficients Ap
l depend on f and p but are

independent of N . Furthermore, we have the following
expressions for them

Ap
l = (−1)l(p − l + 2) · · · (p + 1)

∑
k∈Z∗

ξ̂k
e2π ik(l−1)θ

(1 − e2π ikθ )l−1 ,

E p(N ) = (−1)p+1 (p + 1)!

N · · · (N + p)

×

∑
k∈Z∗

ξ̂k
e2π ikpθ (1 − e2π ik Nθ )

(1 − e2π ikθ )p
.

Finally, the remainder E p(N ) is uniformly bounded by an
expression of order O(1/N p+1). This follows immediately
from the next standard lemma on small divisors.

Lemma 2.4. Let ξ ∈ Diffω+(T) be a circle map that can be
extended analytically to a complex strip B∆ = {z ∈ C :

|Im(z)| < ∆}, with |ξ(z)| ≤ M up to the boundary of the strip.
If we denote {ξ̂k}k∈Z the Fourier coefficients of ξ and consider
θ ∈ D(C, τ ), then for any fixed p ∈ N we have∣∣∣∣∣∑
k∈Z∗

ξ̂k
e2π ikpθ (1 − e2π ik Nθ )

(1 − e2π ikθ )p

∣∣∣∣∣ ≤
e−π∆

1 − e−π∆
4MC p

( τp

π∆e

)τp
.

To conclude this survey, we describe implementation of the
method and discuss the expected behavior of the extrapolation
error. In order to make Richardson extrapolation we assume, for
simplicity, that the total number of iterates is a power of two.
Concretely, we select an averaging order p ∈ N, a maximum
number of iterates N = 2q , for some q ≥ p, and compute the
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averaged sums {S̃ p
N j

( f )} j=0,...,p with N j = 2q−p+ j . Then, we
can use formula (6) to obtain θ by neglecting the remainders
E p(N j ) and solving the resulting linear set of equations for the
unknowns θ, Ap

1 , . . . , Ap
p.

However, let us point out that, due to the denominators
(N j + p − l + 1) · · · (N j + p), the matrix of this linear system
depends on q , and this is inconvenient if we want to repeat the
computations using a different number of iterates. Nevertheless,
we note that expression (6) can be written alternatively as

S̃ p
N ( f ) = θ +

p∑
l=1

Âp
l

N l + Ê p(N ), (7)

for certain { Âp
l }l=1,...,p, also independent of N , and with

a new remainder Ê p(N ) that differs from E p(N ) only by
terms of order O(1/N p+1). Then, by neglecting the remainder
Ê p(N ) in Eq. (7), we can obtain θ by solving a new (p +

1)-dimensional system of equations, independent of q, for
the unknowns θ, Âp

1 /21(q−p), . . . , Âp
p/2p(q−p). Therefore, the

rotation number can be computed as follows

θ = Θq,p( f ) +O(2−(p+1)q), (8)

where Θq,p is an extrapolation operator, that is given by

Θq,p( f ) :=

p∑
j=0

cp
j S̃ p

2q−p+ j ( f ), (9)

and the coefficients {cp
j } j=0,...,p are

cp
l = (−1)p−l 2l(l+1)/2

δ(l)δ(p − l)
, (10)

where we define δ(n) := (2n
− 1)(2n−1

− 1) · · · (21
− 1) for

n ≥ 1 and δ(0) := 1.

Remark 2.5. Note that the dimension of this linear system
and the asymptotic behavior of the error only depend on the
averaging order p. For this reason, in [27] p is called the
extrapolation order. However, this is not always the case when
computing derivatives of the rotation number. As we discuss
in Section 3, the extrapolation order is in general less than the
averaging order.

As far as the behavior of the error is concerned, using (8) we
have that

|θ − Θq,p( f )| ≤ c/2q(p+1),

for certain constant c, independent of q , that we estimate
heuristically as follows. Let us compute Θq−1,p( f ) and
Θq,p( f ). Since Θq,p( f ) is a better approximation of θ , it turns
out that

c ∼ 2(q−1)(p+1)
|Θq,p( f ) − Θq−1,p( f )|.

Then, we obtain the expression

|θ − Θq,p( f )| ≤
ν

2p+1 |Θq,p( f ) − Θq−1,p( f )|, (11)
where ν is a “safety parameter” whose role is to prevent
oscillations in the error as a function of q due to the quasi-
periodic part. In every numerical computation we take ν = 10.
For more details on the behavior of the error we refer to [27].

Now, we comment on two sources of error to take into
account in the implementation of the method:

• The sums S p
N j

( f ) are evaluated using the lift rather than the

map itself. Of course, this makes the sums S p
N j

( f ) increase

(actually they are of order O(N p+1)) and is recommended
to store their integer and decimal parts separately in order to
keep the desired precision.

• If the required number of iterates increases, we have to
be aware of round-off errors in evaluation of the iterates.
For this reason, when implementing the above scheme
in a computer, we use multiple-precision arithmetics. The
computations presented in this paper have been performed
using a C++ compiler and multiple arithmetic has been
provided by the routines double–double and quad-double
package of [17], which include a double–double data type
of approximately 32 decimal digits and a quadruple-double
data type of approximately 64 digits.

Along this section we have required the rotation number
to be Diophantine. Of course, if θ ∈ Q Eq. (6) is not valid
since, in general, the dynamic of f are not conjugate to a rigid
rotation. Anyway, we can compute the sums S p

N ( f ) and it turns
out that the method works as well as for Diophantine numbers.
We can justify this behavior from the known fact that, for any
circle homeomorphism of rational rotation number, every orbit
is either periodic or its iterates converge to a periodic orbit
(see [9,18]). Then the iterates of the map tend toward periodic
points, and for such points, one can see that the averaged sums
S̃ p

N ( f ) also satisfy an expression like (7) with an error of the
same order, and this is all we need to perform the extrapolation.
In fact, the worst situation appears when computing irrational
rotation numbers that are “close” to rational ones (see also the
discussion in Section 4.1).

3. Derivatives of the rotation number with respect to
parameters

Now we adapt the method already described in Section 2
in order to compute derivatives of the rotation number with
respect to parameters (assuming that they exist). For the sake
of simplicity, we introduce the method for one-parameter
families of circle diffeomorphisms, albeit the construction can
be adapted to deal with multiple parameters (we discuss this
situation in Remark 3.3). Thus, consider µ ∈ I ⊂ R 7→ fµ ∈

Diffω+(T) depending on µ in a regular way. Rotation numbers
of the family { fµ}µ∈I induce a function θ : I → [0, 1) given
by θ(µ) = ρ( fµ). Then our goal is to numerically approximate
the derivatives of θ at a given point µ0.

Let us remark that the function θ is only continuous in C0-
topology and, actually, the rotation number depends on µ in
a very non-smooth way: generically, there exists a family of
disjoint open intervals of I , with dense union, such that θ
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takes constant rational values on these intervals (a so-called
Devil’s Staircase). However, θ ′(µ) is defined for any µ such
that θ(µ) 6∈ Q (see [15]).

Higher order derivatives are defined in “many” points in
the sense of Whitney. Concretely, let J ⊂ I be the subset
of parameters such that θ(µ) ∈ D (typically a Cantor set).
Then, from Theorem 2.3, there exists a family of conjugacies
µ ∈ J 7→ ηµ ∈ Diffω+(T), satisfying fµ ◦ ηµ = ηµ ◦ Rθ(µ),
that is unique if we fix ηµ(0) = x0. Then, if fµ is Cd with

respect to µ, the Whitney derivatives D j
µηµ and D j

µθ , for
j = 1, . . . , d , can be computed by taking formal derivatives
with respect to µ on the conjugacy equation and solving small
divisor equations thus obtained. Actually, we know that if we
define J (C, τ ) as the subset of J such that θ(µ) ∈ D(C, τ ), for
certain C > 0 and τ ≥ 1, then the maps µ ∈ J (C, τ ) 7→ ηµ

and µ ∈ J (C, τ ) 7→ θ can be extended to Cs functions on
I , where s depends on d and τ , provided that d is big enough
(see [32]).

As it is shown in Section 3.1, when we extend the method for
computing the d-th derivative of θ , in general, we are forced to
select an averaging order p > d and the remainder turns out to
be of orderO(1/N p−d+1). Nevertheless, if the rotation number
is known to be constant as a function of the parameters, we can
avoid previous limitations. Concretely, in this case we can select
any averaging order p, independent of d , since the remainder is
now of order O(1/N p+1). Of course, if the rotation number is
constant, then the derivatives of θ are all zero and the fact that
we can obtain them with better precision seems to be irrelevant.
However, from the computation of these vanishing derivatives,
we can derive information about other involved objects. This
is the case of many applications in which this methodology
turns out to be very useful (two examples are worked out in
Sections 4.3 and 5.3).

3.1. Computation of the first derivative

We start by explaining how to compute the first derivative of
θ . For notational convenience, from now on we fix µ0 such that
θ(µ0) ∈ D and we omit the dependence on µ as a subscript
in families of circle maps. In addition, let us recall that we
can write any conjugation as η(x) = x + ξ(x) and denote by
{ξ̂k}k∈Z the Fourier coefficients of ξ . Finally, we denote the first
derivatives as θ ′

= Dµθ and ξ̂ ′

k = Dµξ̂k .
As we did in Section 2.2, we begin by computing the first

averages (of the derivatives of the iterates) in order to illustrate
the idea of the method. Thus, we proceed by formally taking
derivatives with respect to µ at both sides of Eq. (2)

Dµ f n(x0) = nθ ′
+

∑
k∈Z

ξ̂ ′

ke2π iknθ
+ 2π inθ ′

∑
k∈Z

kξ̂ke2π iknθ .

Then, notice that a factor n appears, multiplying the second
quasi-periodic sum. However, if we perform recursive sums,
we can still manage to control the growth of this term due to
the quasi-periodic part. Let us compute the sum
DµS1
N ( f ) :=

N∑
n=1

Dµ( f n(x0) − x0)

=
N (N + 1)

2
θ ′

− N
∑
k∈Z∗

ξ̂ ′

k

+

∑
k∈Z∗

ξ̂ ′

k
e2π ikθ (1 − e2π ik Nθ )

1 − e2π ikθ

+ 2π iθ ′
∑
k∈Z∗

kξ̂k

×
Ne2π ik(N+2)θ

− (N + 1)e2π ik(N+1)θ
+ e2π ikθ

(1 − e2π ikθ )2 .

Hence, we observe that the method is still valid, even though
for θ ′

6= 0 the quasi-periodic sum is bigger than expected a
priori. Indeed, we obtain the following formula

2
N (N + 1)

DµS1
N ( f ) = θ ′

+O(1/N ), (12)

that is similar to Eq. (3), but notice that the term 2A1/(N + 1)

has been included in the remainder since there are oscillatory
terms of the same order. Proceeding as in Section 2.2, we
introduce recursive sums for derivatives of the iterates

DµS p
N ( f ) := Dµ( f N (x0) − x0),

DµS p
N ( f ) :=

N∑
j=1

DµS p−1
j ( f ),

and their corresponding averaged sums of order p

Dµ S̃ p
N ( f ) :=

(
N + p

p + 1

)−1

DµS p
N ( f ).

Finding an expression like (12) for p > 1 is quite
cumbersome to do directly, since the computations are very
involved. However, the computation is straightforward if we
take formal derivatives at both sides of Eq. (6). The resulting
expression reads as

Dµ S̃ p
N ( f ) = θ ′

+

p∑
l=1

Dµ Ap
l

(N + p − l + 1) · · · (N + p)

+ DµE p(N ),

where the new coefficients are Dµ Ap
l = (−1)l(p − l +

2) · · · (p + 1)Dµ Al with

Dµ Al =

∑
k∈Z∗

e2π ik(l−1)θ

(1 − e2π ikθ )l−1

(
ξ̂ ′

k +
2π ik(l − 1)ξ̂kθ

′

1 − e2π ikθ

)
,

and the new remainder is

DµE p(N ) = (−1)p+1 (p + 1)!

N · · · (N + p)

∑
k∈Z∗

e2π ikpθ

(1 − e2π ikθ )p

×

{
ξ̂ ′

k(1 − e2π ik Nθ ) + 2π ikξ̂kθ
′

×

(
p

1 − e2π ik Nθ

1 − e2π ikθ
− Ne2π ikpNθ

)}
.
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Assuming that θ(µ0) ∈ D and θ ′(µ0) 6= 0, we can obtain
bounds analogous to those of Lemma 2.4 and conclude that
the remainder satisfies DµE p(N ) = O(1/N p). Moreover, we
observe that the coefficient Dµ Ap

p corresponds to a term of the
same order, so we have to redefine the remainder in order to
include this term. Hence, as we did in Eq. (7), we can arrange
the unknown terms and obtain

Dµ S̃ p
N ( f ) = θ ′

+

p−1∑
l=1

Dµ Âp
l

N l +O(1/N p),

where {Dµ Âp
l }l=1,...,p−1 are derivatives of { Âp

l }l=1,...,p−1 that
appear in Eq. (7).

Finally, we can extrapolate an approximation to θ ′ using
Richardson’s method of order p − 1 as in Section 2.2.
Concretely, if we compute N = 2q iterates, we can approximate
the derivative of the rotation number by means of the following
formula

θ ′
=

p−1∑
j=0

cp−1
j Dµ S̃ p

2q−p+1+ j ( f ) +O(2−pq), (13)

where the coefficients {cp−1
j } j=0,...,p−1 are given by (10).

3.2. Computation of higher order derivatives

The goal of this section is to generalize formula (13) to
approximate Dd

µθ for any d , when they exist. Then, we assume
that the family µ 7→ f ∈ Diffω+(T) depends Cd -smoothly with
respect to the parameter. As usual, we define the recursive sums
for the d-derivative and their averages of order p as

Dd
µS0

N ( f ) := Dd
µ( f n(x0) − x0),

Dd
µS p

N ( f ) :=

N∑
j=0

Dd
µS p−1

j ( f ),

and

Dd
µ S̃ p

N ( f ) :=

(
N + p

p + 1

)−1

Dd
µS p

N ( f ),

respectively. As before, we relate these sums to Dd
µθ by taking

formal derivatives in Eq. (6), thus obtaining

Dd
µ S̃ p

N ( f ) = Dd
µθ +

p∑
l=1

Dd
µ Ap

l

(N + p − l + 1) · · · (N + p)

+ Dd
µE p(N ). (14)

It is immediate to check that, if θ(µ0) ∈ D and Dd
µθ(µ0) 6=

0, the remainder Dd
µE p(N ) is of order O(1/N p−d+1), so this

expression makes sense if the averaging order satisfies p > d.

Remark 3.1. Notice that in order to work with reasonable
computational time and round-off errors, p cannot be taken
arbitrarily large. Consequently, there is a (practical) limitation
in the computation of high order derivatives.
In addition, as it was done for the first derivative, the
remainder Dd

µE p(N ) must be redefined in order to include the
terms corresponding to l ≥ p − d + 1 in Eq. (14). Then we can
extrapolate Dd

µθ by computing N = 2q iterates and solving
the linear (p − d + 1)-dimensional system associated to the
following rearranged equation

Dd
µ S̃ p

N ( f ) = Dd
µθ +

p−d∑
l=1

Dd
µ Âp

l

N l +O(1/N p−d+1). (15)

Since the averaging order p and the extrapolation order p−d
do not coincide, let us define the extrapolation operator of order
m for the d-derivative as

Θd
q,p,m( f ) :=

m∑
j=0

cm
j Dd

µ S̃ p
2q−m+ j ( f ), (16)

where coefficients {cm
j } j=0,...,m are given by (10). Therefore,

according to the formula (15), we can approximate the d-th
derivative of the rotation number as

Dd
µθ = Θd

q,p,p−d( f ) +O(2−(p−d+1)q).

Furthermore, as explained in Section 2.2, by comparing the
approximations that correspond to 2q−1 and 2q iterates, we
obtain the following heuristic formula for the extrapolation
error:

|Dd
µθ − Θd

q,p,p−d( f )| ≤
ν

2p−d+1 |Θd
q,p,p−d( f )

−Θd
q−1,p,p−d( f )|, (17)

where, once again, ν is a “safety parameter” that we take as
ν = 10.

Remark 3.2. Up to this point we have assumed that Dd
µθ 6= 0

at the computed point. However, if we know a priori that
Dr

µθ = 0 for r = 1, . . . , d, then Eq. (14) holds with the
following expression for the remainder:

Dd
µE p(N ) = (−1)p+1 (p + 1)!

N · · · (N + p)

×

∑
k∈Z∗

Dd
µξ̂k

e2π ikpθ (1 − e2π ik Nθ )

(1 − e2π ikθ )p
,

which now is of order O(1/N p+1). As in Section 2, this allows
us to approximate Dd

µθ with the same extrapolation order as the
averaging order p. Indeed, we obtain

0 = Dd
µθ = Θd

q,p,p( f ) +O(2−(p+1)q),

and we observe that the order d is not limited by p.

The case remarked above is very interesting since we know
that many applications can be modeled as a family of circle
diffeomorphisms of fixed rotation number. The possibilities of
this approach are illustrated by computing the Taylor expansion
of Arnold Tongues (Section 4.3) and the continuation of
invariant curves for the Hénon map (Section 5.3).
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3.3. Scheme for evaluating the derivatives of the averaged
sums

Let us introduce a recursive way for computing the sums
Dd

µ S̃ p
N ( f ) required to evaluate the extrapolation operator (16).

First of all, notice that by linearity it suffices to compute
Dd

µ( f n(x0)) for any n ∈ N.

To compute the derivatives of f n
= f ◦

(n)
· · · ◦ f , we proceed

inductively with respect to n and d . Thus, let us assume that the
derivatives Dr

µ( f n−1(x0)) are known for a given n ≥ 1 and for
any r ≤ d . Then, if we denote z := f n−1(x0), our goal is to
compute Dr

µ( f (z)) for r ≤ d by using the known derivatives of
z.

For d = 1, a recursive formula appears directly by applying
the chain rule

Dµ( f (z)) = ∂µ f (z) + ∂x f (z)Dµ(z). (18)

This formula can be implemented provided the partial
derivatives ∂µ f and ∂x f can be numerically evaluated at the
point z.

In general, we can perform higher order derivatives and
obtain the following expression

Dd
µ( f (z)) = Dd−1

µ

(
∂µ f (z) + ∂x f (z)Dµ(z)

)
= Dd−1

µ (∂µ f (z)) +

d−1∑
r=0

(
d − 1

r

)
Dr

µ(∂x f (z))Dd−r
µ (z).

This motivates the extension of recurrence (18), since
for evaluating the previous formula we require to know the
derivatives Dr

µ(∂x f (z)) for r < d and Dd−1
µ (∂µ f (z)). We note

that these derivatives can also be computed recursively using
similar expressions for the maps ∂x f and ∂µ f , respectively.

Concretely, assuming that we can evaluate ∂
i, j
µ,x f (z) for any

(i, j) ∈ Z2
+ such that i + j ≤ d , we can use the following

recurrences

Dr
µ(∂

i, j
µ,x f (z)) = Dr−1

µ (∂
i+1, j
µ,x f (z))

+

r−1∑
s=0

(
r − 1

s

)
Ds

µ(∂
i, j+1
µ,x f (z))Dr−s

µ (z),

to compute in a tree-like order the corresponding derivatives.
To prevent redundant computations in implementation of the
method, we store the value of “intermediate” derivatives
Dr

µ(∂
i, j
µ,x f (z)) so they only have to be computed once. For

this reason, this scheme turns out to be more efficient than
evaluating explicit expressions such as Faà di Bruno formulas
(see for example [20]). Fig. 1 summarizes the recursive
computations required and the convenience of storing these
intermediate computations.

Remark 3.3. The above scheme can be generalized immedi-
ately to the case of several parameters. For example, consider
a two-parameter family (µ1, µ2) 7→ fµ1,µ2 ∈ Diffω+(T) whose
rotation number induces a map (µ1, µ2) 7→ θ(µ1, µ2). Then,
if θ(µ0

1, µ
0
2) ∈ D, we can obtain a similar scheme to ap-

proximate Dd1,d2
µ1,µ2θ(µ0

1, µ
0
2). In this context, note that the op-

erator Θd1,d2
q,p,p−d1−d2

can be defined as (16), but averaging the
Fig. 1. Schematic representation of recurrent computations performed to
evaluate Dd

µ( f (z)).

derivatives Dd1,d2
µ1,µ2( f n(x0)). Finally, if we write z := f n−1(x0),

we can compute inductively the derivatives Dm,l
µ1,µ2

( f (z)), for
m ≤ d1 and l ≤ d2, using the following recurrences

Dm,l
µ1,µ2

(∂
i, j,k
µ1,µ2,x f (z)) = Dm−1,l

µ1,µ2
(∂

i+1, j,k
µ1,µ2,x f (z))

+

m−1∑
s=0

l∑
r=0

(
m − 1

s

)(
l

r

)
Ds,r

µ1,µ2
(∂

i, j,k+1
µ1,µ2,x f (z))

× Dm−s,l−r
µ1,µ2

(z),

if m 6= 0 and

D0,l
µ1,µ2

(∂
i, j,k
µ1,µ2,x f (z)) = D0,l−1

µ1,µ2
(∂

i, j+1,k
µ1,µ2,x f (z))

+

l−1∑
r=0

(
l − 1

r

)
D0,r

µ1,µ2
(∂

i, j,k+1
µ1,µ2,x f (z))D0,l−r

µ1,µ2
(z),

if l 6= 0. Of course, D0,0
µ1,µ2

(∂
i, j,k
µ1,µ2,x f (z)) = ∂

i, j,k
µ1,µ2,x f (z)

corresponds to evaluation of the partial derivative of the map.

4. Application to the Arnold family

As a first example, let us consider the Arnold family of circle
maps, given by

fα,ε : S −→ S
x 7−→ x + 2πα + ε sin(x),

(19)

where (α, ε) ∈ [0, 1)×[0, 1) are parameters and S = R/(2πZ).
Notice that this family satisfies fα,ε ∈ Diffω+(S) for any value of
the parameters. Let us remark that (19) allows to illustrate the
method in a direct way, since there are explicit formulas for the
partial derivatives ∂

i, j,k
α,ε,x f (x) of the map, for any (i, j, k) ∈ Z3

+.
In Section 5 we will consider another interesting application in
which the studied family is not given explicitly.

For this family of maps, it is convenient to take the angles
modulo 2π just to avoid the loss of significant digits due to
the factors (2π)d−1 that would appear in the d-derivative of the
map.

The contents of this section are organized as follows.
First, in Section 4.1 we compute the derivative of a Devil’s
Staircase, that corresponds to the variation of the rotation
number of (19) with respect to α for a fixed ε. In Section 4.2
we use the computation of derivatives of the rotation number
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Fig. 2. Devil’s Staircase α 7→ ρ( fα) (top-left) and its derivative (top-right) for the Arnold family with ε = 0.75. The plots in the bottom correspond to some
magnifications of the top-right one.
to approximate the Arnold Tongues of the family (19) by
means of the Newton method. Furthermore, we compute the
asymptotic expansion of these tongues and obtain pseudo-
analytical expressions for the first coefficients, as a function of
the rotation number.

4.1. Stepping up to a Devil’s staircase

Let us fix the value of ε ∈ [0, 1) and consider the one-
parameter family { fα}α∈[0,1) given by Eq. (19), i.e. fα := fα,ε.
Let us recall that we can establish an ordering in this family
since the normalized lifts satisfy fα1(x) < fα2(x) for all x ∈ R
if and only if α1 < α2. Then, we conclude that the function
α 7→ ρ( fα) is monotone increasing. In particular, for α1 < α2
such that ρ( fα1) ∈ R \ Q we have ρ( fα1) < ρ( fα2). On
the other hand, if ρ( fα1) ∈ Q, there is an interval containing
α1 giving the same rotation number. As the values of α for
which fα has a rational rotation number are dense in [0, 1) (the
complement is a Cantor set), there are infinitely many intervals
where ρ( fα) is locally constant. Therefore, the map α 7→ ρ( fα)

gives rise to a “staircase” with a dense number of stairs, that is
usually called a Devil’s Staircase (we refer to [9,18] for more
details).

To illustrate the behavior of the method we have computed
the above staircase for ε = 0.75. The computations have been
performed by taking 104 points of α ∈ [0, 1), using 32-digit
arithmetics (double–double data type from [17]), and a fixed
averaging order p = 8. In addition, we estimate the error in
the approximation of ρ( fα) and Dαρ( fα) using formulas (11)
and (17), respectively. Then, we stop the computations for
a tolerance of 10−26 and 10−24, respectively, using at most
222

= 4194304 iterates.
Let us discuss the results obtained. First, we point out

that only 11.4% of the selected points have not reached the
previous tolerances for 222 iterates. Moreover, we observe that
the rotation number for 98.8% of the points has been obtained
with an error less that 10−20, while the estimated error in the
derivatives is less than 10−18 for 97.7% of the points. Let us
focus in α = 0.3377, that is one of the “bad” points. The
estimated errors for the rotation number and the derivative
at this point are of order 10−18 and 10−9, respectively. We
observe that, even though this rotation number is irrational
(the derivative does not vanish), it is very close to the rational
105/317, since |317 · Θ22,9( f0.3377) − 105| ' 4.2 × 10−6.

In Fig. 2 we show α 7→ ρ( fα) and its derivative α 7→

Dαρ( fα) for those points that satisfy that the estimated error is
less than 10−18 and 10−16, respectively. We recall that rational
values of the rotation number correspond to constant intervals
in the top-left plot, and note that by looking at the derivative
(top-right plot) we can visualize the density of the stairs better
than looking at the staircase itself. We remark that both these
rational rotation numbers and their vanishing derivatives have
been computed as well as in the Diophantine case.

Moreover, at the bottom of the same figure, we plot some
magnifications of the derivative to illustrate non-smoothness
of a Devil’s Staircase. Concretely, the plot in the bottom-
left corresponds to 105 values of α ∈ [0.2, 0.3] using the
same implementation parameters as before. Once again, if the
estimated error is bigger than 10−16 the point is not plotted.
Finally, on the right plot we give another magnification for 106
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Fig. 3. Left: Graph of the derivatives ε 7→ Dαρ(α(ε), ε) and ε 7→ Dερ(α(ε), ε) along Tθ , for θ = (
√

5 − 1)/2. The solid curve corresponds to (Dαρ − 1) and the
dashed one to (20 · Dερ). Right: error (estimated using (11)) in log10 scale in the computation of these derivatives.
values of α ∈ [0.282, 0.292] that are computed with p = 7,
and allowing at most 221

= 2097152 iterates. In this case,
points that correspond to the branch in the left (i.e. close to
α = 0.2825), are typically computed with an error 10−10.

4.2. Newton method for computing the Arnold Tongues

Since fα,ε ∈ Diffω+(S), we obtain a function (α, ε) 7→

ρ(α, ε) := ρ( fα,ε) given by the rotation number. Then, the
Arnold Tongues of (19) are defined as the sets Tθ = {(α, ε) :

ρ(α, ε) = θ}, for any θ ∈ [0, 1). It is well known that if θ ∈ Q,
then Tθ is a set with interior; otherwise, Tθ is a continuous curve
which is the graph of a function ε 7→ α(ε), with α(0) = θ . In
addition, if θ ∈ D, the corresponding tongue is given by an
analytic curve (see [25]).

Using the method described in Section 2.2, some Arnold
Tongues Tθ of Diophantine rotation number were approximated
in [27] by means of the secant method. Now, since we can
compute derivatives of the rotation number, we are able to
repeat the computations using a Newton method. To do that, we
fix θ ∈ D and solve the equation ρ(α, ε)−θ = 0 by continuing
the known solution (θ, 0) with respect to ε. Indeed, we fix
a partition {ε j } j=0,...,K of [0, 1), and compute a numerical
approximation α∗

j for every α(ε j ).
To this end, assume that we have a good approximation α∗

j−1
to α(ε j−1) and let us first compute an initial approximation for
α(ε j ). Taking derivatives in the equation ρ(α(ε), ε) − θ = 0
we obtain

Dαρ(α(ε), ε)α′(ε) + Dερ(α(ε), ε) = 0. (20)

Thus, we can approximate α′(ε j−1) by computing numerically
the derivatives Dαρ and Dερ at (α∗

j−1, ε j−1). Hence, we obtain

an approximated value α
(0)
j = α∗

j−1 + α′(ε j−1)(ε j − ε j−1) for
α(ε j ). Next, we apply the Newton method

α
(n+1)
j = α

(n)
j −

ρ(α
(n)
j , ε j ) − θ

Dαρ(α
(n)
j , ε j )

,

and stop when we converge to a value α∗

j that approximates
α(ε j ).

Computations are performed using 64 digits (quadruple-
double data type from [17]) and, in order to compare with the
results obtained in [27], we select the same parameters in the
implementation. In particular, we take a partition ε j = j/K
with K = 100 of the interval [0, 1), we select an averaging
order p = 9 and allow at most 223

= 8388608 iterates
of the map. The required tolerances are taken as 10−32 for
computation of the rotation number (we use (11) to estimate the
error) and 10−30 for convergence of the Newton method. Let
us remark that computations are done without any prescribed
tolerance for computation of derivatives Dαρ and Dερ, even
though we check, using (17), that the extrapolation is done
correctly.

Let us discuss the results obtained for θ = (
√

5 − 1)/2.
As expected, the number of iterates of the Newton method is
less than the ones required by the secant method. Concretely,
we perform from 2 to 3 corrections as we approach the critical
value ε = 1, while using the secant method we need at least 4
steps to converge. However, we observe that computation of the
derivatives Dαρ and Dερ fails if we take ε = 1, even though
the secant method converges after 18 iterations. This is totally
consistent since we know that fα,1 ∈ Diff0

+(T) but is still an
analytic map, and that the conjugation to a rigid rotation is only
Hölder continuous (see [8,34]).

In Fig. 3(left) we plot the derivatives ε 7→ Dαρ(α(ε), ε)

and ε 7→ Dερ(α(ε), ε) evaluated on the previous tongue. We
observe that the derivatives have been normalized in order to fit
together in the same plot. On the other hand, in the right plot we
show the estimated error in the computation of these derivatives
(obtained from Eq. (17)). In the worst case, ε = 0.99, we obtain
errors of order 10−27 and 10−29 for Dαρ and Dερ, respectively.

4.3. Computation of the Taylor expansion of the Arnold
Tongues

As we have mentioned in Section 4.2, if θ ∈ D then the
Arnold Tongue Tθ of (19) is given by the graph of an analytic
function α(ε), for ε ∈ [0, 1). Then, we can expand α at the
origin as

α(ε) = θ +
α′(0)

1!
ε +

α′′(0)

2!
ε2

+ · · · +
α(d)(0)

d!
εd

+O(εd+1), (21)
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Table 1

Derivatives of 2πα(ε) at the origin for θ = (
√

5 − 1)/2

d 2πα(d)(0) e1 e2

0 3.883222077450933154693731259925391915269339787692096599014776434 – –
1 5.289596087298835974306750728481413682115174017433159533705768026 × 10−54 2 × 10−50 5 × 10−54

2 −1.944003667801032197325141712953470682792841985057545477738933600 × 10−1 7 × 10−50 2 × 10−53

3 6.353866339253870417285870622952031667026712174414003758743809499 × 10−52 3 × 10−48 6 × 10−52

4 9.865443989835495993231949890783720243438883460505483297079900562 × 10−1 2 × 10−47 5 × 10−51

5 4.733853534850495777271526084574485398105534790325269345544052633 × 10−49 2 × 10−45 5 × 10−49

6 −1.451874181864020963416053802229271731186248529989217665545212404 × 101 6 × 10−45 1 × 10−48

7 −1.986768674642925514096249083525472601734104441662711304098209993 × 10−47 7 × 10−44 2 × 10−47

8 1.673363822376717001078781931538386967523434046199355922539083323 × 101 8 × 10−42 2 × 10−45

9 −5.559060362825539878039137008326038842079877436013501651866007318 × 10−44 2 × 10−40 6 × 10−44

10 1.974679484744669888248485084754876332689468886829840384314732615 × 104 2 × 10−39 4 × 10−43

11 4.019718902900154426125206309959051888079502318143227318836414835 × 10−42 1 × 10−38 4 × 10−42

12 3.594891944526889578314748272295019294147597687816868847742850594 × 105 6 × 10−37 –
13 −4.123166034989923032518732576715313341946051550138603536248010821 × 10−39 2 × 10−35 4 × 10−39

14 2.198602821435568153883567054383394767567371744732559263055644337 × 106 3 × 10−33 –
15 1.307318024754974551233761145122558811543944190022138837513637182 × 10−35 6 × 10−32 1×10−35

16 −4.009257214040427899940043656551946700300230713255210114705187412 × 1010 4 × 10−31 –
17 −6.641638995605492204184114438636683272452899190211080822408603857 × 10−33 4 × 10−29 7×10−33

18 −2.582559893723659427522610275977697024396910000154382754643273110 × 1012 1 × 10−27 –
19 −4.366235264281358239242428788236090577328510850575386329987344515 × 10−30 2 × 10−26 4×10−30

The column e1 corresponds to the estimated error using (11). The column e2 is the real error, that for even derivatives is computed comparing with the analytic
expressions (25) and (26) using the coefficients from Table 2.
Table 2
Coefficients for trigonometric polynomials P3, P4 and P5

P3 P4
j a j j a j j a j

1 −105 0 −360150 14 −177625
3 825 2 40950 16 −14770
5 −465 4 469630 18 34755
7 −315 6 91140 20 49735
9 120 8 −378700 22 −53235

11 −60 10 67165 24 18900
12 215355 26 −3150

P5

j a j j a j j a j

1 33992959770 21 46136915685 41 6059661930
3 −96457394880 23 −28888862310 43 −4422651975
5 107920471050 25 23182141500 45 1217211030
7 −47792873520 27 −24695086815 47 651686490
9 −1102024980 29 7313756940 49 −826836885

11 3276815850 31 14354738685 51 404729640
13 −38366469540 33 −20342636055 53 −112651560
15 97991931555 35 13721635620 55 17781120
17 −74144022120 37 −4249642635 57 −1270080
19 −11687638410 39 −3152375100

and the goal is now to numerically approximate the terms
in this expansion. We know that every odd derivative in this
expansion vanishes, so the Taylor expansion can be written
in terms of powers in ε2 (see [26] for details). However, we
do not use this symmetry, but instead we verify the accuracy
of computations according to this information (see the results
presented in Table 1).

First of all, we want to emphasize that direct extension of the
computations performed in the previous subsection is hopeless.
Concretely, as we did for approximating α′(ε), we could take
higher order derivatives with respect to ε at Eq. (20) and, after
evaluating at the point (α, ε) = (θ, 0), isolate the derivatives
α(r)(0), 1 ≤ r ≤ d. For example, once we know α′(0), the
computation of α′′(0) would follow from the expression

Dαρ(α(ε), ε)α′′(ε) + (D2
αρ(α(ε), ε)α′(ε)

+ 2Dα,ερ(α(ε), ε))α′(ε) + D2
ερ(α(ε), ε) = 0, (22)

that requires to compute second order partial derivatives of
the rotation number (see Remark 3.3). Then, by induction, we
would obtain recurrent formulas to compute the expansion (21)
up to order d. However, this approach is highly inefficient due
to the following reasons:

• As discussed in Section 3.2, using this approach we are
limited in computing α(r)(0) up to order p − 1, where p
is the selected averaging order. Of course, the precision for
α(r)(0) decreases dramatically when r increases to p.

• Note that, for the Arnold family, we can write explicitly
Dα( f n

α,ε(x0))|(θ,0) = n. Then, if we look at the formulas
in Remark 3.3, we expect the terms Dm,l

α,ε ( f n
α,ε(x0))|(θ,0) to

grow very fast, since they contain factors of the previous
expression. Actually, we find that these quantities depend
polynomially on n, with a power that increases with the order
of the derivative. On the other hand, we expect the sums
Dm,l

α,ε S̃ p
N ( fα,ε) to converge, and therefore many cancelations

are taking place in the computations. Consequently, when
implementing this approach we unnecessarily lose a high
number of significant digits.

• Even if we could compute Dm,l
α,ε ρ(θ, 0) up to any order,

it turns out that generalization of Eq. (22) for computing
α(r)(0) is badly conditioned. Concretely, derivatives of the
rotation number increase with order, giving rise to a large
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propagation of errors. Actually, the round-off errors increase
so fast that, in practice, we cannot go beyond order 5 in the
computation of (21) with the above methodology.

Therefore, we have to approach the problem in a different
way. Concretely, our idea is to use the fact that the
rotation number is constant on the tongue combined with
Remark 3.2. To this end, we consider the one-parameter family
{ fα(ε),ε}ε∈[0,1) of circle diffeomorphisms, where the graph
of α parametrizes the tongue Tθ . For this family, we have
ρ( fα(ε),ε) = θ for any ε ∈ [0, 1), and hence, from Remark 3.2
we read the expression

0 = Θd
q,p,p( fα(ε),ε) +O(2−(p+1)q), (23)

where p is the averaging order, we use 2q iterates and Θd
q,p,p

is the extrapolation operator (16) that, in this case, depends
on derivatives of α(ε) up to order d . With this idea in mind,
the aim of the following paragraphs is to show how we can
isolate inductively these derivatives at ε = 0 from the previous
equation.

Let us start by describing how to approximate the
first derivative α′(0). As mentioned above, we have to
write Θ1

q,p,p( fα(ε),ε)|ε=0 in terms of α′(0) and we note
that, by linearity, it suffices to work with the expression
Dε( f n

α(ε),ε(x0))|ε=0. To do that, we write

f (x) = 2πα(ε) + g(x), g(x) = x + ε sin(x),

in order to uncouple the dependence on α in the circle map.
Observe that, as usual, we omit dependence on the parameter in
the maps. Using this notation, we have:

Dε( f (x0)) = 2πα′(ε) + ∂εg(x0),

Dε( f 2(x0)) = 2πα′(ε)

+ ∂εg( f (x0)) + ∂x g( f (x0))Dε( f (x0))

= 2πα′(ε){1 + ∂x g( f (x0))} + ∂εg( f (x0))

+ ∂x g( f (x0))∂εg(x0).

Similarly, we can proceed inductively and split the derivative of
the nth iterate, Dε( f n(x0)), in two parts, one of them having
a factor 2πα′(ε). Moreover, if we set ε = 0 in Dε( f n(x0)),
then it is clear that, with the exception of the previous factor,
the resulting expression does not depend on α′(0) but only on
α(0) = θ .

Now, we generalize the above argument to higher
order derivatives. Let us assume that α′(0), . . . , α(d−1)(0)

are known, and isolate the derivative α(d)(0) from Dd
ε

( f n(x0))|ε=0. We claim that the following formula holds

Dd
ε ( f n(x0))|ε=0 = 2πnα(d)(0) + gd

n , (24)

where the factor 2πn comes from the fact that ∂x g|ε=0 = 1,
and gd

:= {gd
n }n∈N is a sequence that only requires the known

derivatives α(r)(0), for r < d . Concretely, let us obtain the term
gd

n of the sequence by induction with respect to n. Once again,
it is straightforward to write

Dd
ε ( f n(x0)) = Dd−1

ε (2πα′(ε) + ∂εg( f n−1(x0))

+ ∂x g( f n−1(x0))Dε( f n−1(x0)))
= 2πα(d)(ε) + Dd−1
ε (∂εg( f n−1(x0)))

+

d−1∑
r=0

(
d − 1

r

)
Dr

ε(∂x g( f n−1(x0)))Dd−r
ε ( f n−1(x0)).

We note that the term r = 0 in this expression contains
Dd

ε ( f n−1(x0)). Then, if we set ε = 0 and replace inductively
the previous term by Eq. (24), we find that

gd
n = Dd−1

ε (∂εg( f n−1(x0)))|ε=0 +

d−1∑
r=1

(
d − 1

r

)
× Dr

ε(∂x g( f n−1(x0)))Dd−r
ε ( f n−1(x0))|ε=0 + gd

n−1

and let us remark that, as mentioned, this expression is
independent of α(d)(0).

We conclude the explanation of the method by describing
the extrapolation process that allows us to approximate these
derivatives. To this end, we introduce an extrapolation operator
as (9) for the sequence gd . Indeed, we extend the recursive
sums (4) and the averaged sums (5) for this sequence, thus
obtaining

Θq,p(g
d) :=

p∑
j=0

cp
j S̃ p

2q−p+ j (g
d).

Recalling that Dd
ε θ vanishes, we obtain from Eq. (23) that

Θd
q,p,p( f )|ε=0 = 2πα(d)(0) + Θq,p(g

d) = O(2−(p+1)q).

Therefore, the Taylor expansion (21) follows from
sequential computation of α(d)(0) by means of the expression

α(d)(0) = −
1

2π
Θq,p(g

d) +O(2−(p+1)q).

Let us discuss some of the results obtained. The following
computations are performed using 64 digits (quadruple-double
data type from [17]). Implementation parameters are selected
as p = 11, q = 23 and any tolerance is required in the
extrapolation error (which is estimated by means of (11)).

In Table 1 we show the computations of 2πα(d)(0), for
0 ≤ d ≤ 19, that correspond to the Arnold Tongue associated
to θ = (

√
5 − 1)/2.

In addition, we use the above computations to obtain
formulas, depending on θ , for the first coefficients of (21).
To make this dependence explicit, we introduce the notation
αr (θ) := α(2r)(0), where (ε, α(ε)) parametrizes the Arnold
Tongue Tθ . Analytic expressions for these coefficients can be
found, for example, by solving the conjugation equation of
diagram (1) using Lindstedt series. However, the complexity
of the symbolic manipulations required for carrying the
above computations is very large. In particular, the first two
coefficients, whose computation is detailed in [26], are

α1(θ) =
cos(πθ)

22π sin(πθ)
,

α2(θ) = −
3 cos(4πθ) + 9

25π (sin(πθ))2 sin(2πθ)
.

(25)
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From these formulas and a heuristic analysis of the small
divisors equations to be solved for computing the remaining
coefficients, we make the following guess for αr (θ):

αr (θ)

=
Pr (θ)

2c(r)π(sin(πθ))2r−1
(sin(2πθ))2r−2

···(sin((r−1)πθ))2 sin(rπθ)
, (26)

where c(r) is a natural number and Pr is a trigonometric
polynomial of the form

Pr (θ) =

dr∑
j=1

a j cos( jπθ),

with integer coefficients and degree dr = 2r+1
− r − 2 that

coincides with the degree of the denominator. In addition, the
coefficients a j vanish except for indexes j such that j ≡

dr (mod 2).
In order to obtain the coefficients of Pr , we have computed

Taylor expansions of the Arnold Tongues for 120 different
rotation numbers. Concretely, we have selected quadratic
irrationals θa,b = (

√
b2 + 4b/a − b)/2, for 1 ≤ a ≤ b ≤ 5,

that have periodic continued fraction given by θa,b = [0; a, b].
Then, we fix the value of c(r) and perform a minimum square fit
for coefficients a j . We validate the computations if the solution
corresponds to integer numbers, or we otherwise increase
c(r). In order to detect if a j ∈ Z, we require an arithmetic
precision higher than 64 digits. These computations have been
implemented in PARI-GP (available at [1]) using 100-digit
arithmetics.

Following the above idea, we have obtained expressions
for the next three coefficients. Concretely, we find the values
c(3) = 10, c(4) = 19, and c(5) = 38. On the other hand,
the corresponding polynomials Pr are given in Table 2. The
comparison between these pseudo-analytical coefficients and
the values computed numerically for θ = (

√
5−1)/2 are shown

in column e2 of Table 1, obtaining a very good agreement. Let
us observe that coefficients of Pr grow very fast with respect
to r , and the same occurs to c(r). Indeed, the values that
correspond to r = 6 are too large to be computed with the
selected precision, due to the loss of significant digits.

Finally, we also compare truncated Taylor expansions with
the numerical approximation of the Arnold Tongue for θ =

(
√

5 − 1)/2, computed using the Newton method. To this end,
we perform the computation of Section 4.2 for ε ∈ [0, 0.1],
using quadruple-double precision, an averaging order p = 9
and requiring tolerances of 10−42 for the computation of the
rotation number, and 10−40 for convergence of the Newton
method. In all the computations, we allow at most 223 iterates of
the map. Then, in Fig. 4 we compare the approximated tongue
with Taylor expansions truncated at orders 2, 4, 6, 8 and 10.

5. Study of invariant curves for planar twist maps

In this last section we deal with a classical problem
in dynamical systems that arise in many applications: the
study of quasi-periodic invariant curves for planar maps.
Concretely, we focus on the context of so-called twist maps,
Fig. 4. Comparison between the numerical expressions of α(ε) for the Arnold
Tongue Tθ , with θ = (

√
5 − 1)/2, obtained using the Newton method and the

truncated Taylor expansion (21) up to order d. Concretely we plot, as a function
of ε, the difference in log10 scale between these quantities. The curves from top
to bottom correspond, respectively, to d = 2, 4, 6, 8 and 10.

Table 3

Derivatives of 2πα(y0) at the origin for θ = (
√

5 − 1)/2

d 2πα(d)(0) e1

0 3.8832220774509331546937312599254 –
1 2.9215929940647956972904287221575 × 10−29 6 × 10−27

2 −3.9914536995187621201317645570286 × 10−1 6 × 10−28

3 −7.2312013917244657534375078612123 × 10−1 5 × 10−27

4 −1.4570409862191278806067261207843 × 100 9 × 10−27

5 2.0167847130561842764416032369501 × 101 4 × 10−26

6 1.2357011948811946999538300791232 × 102 1 × 10−25

7 −9.1717201199029959021691212417954 × 101 2 × 10−25

8 −3.0832824868383111456060167381447 × 103 4 × 10−24

9 −7.2541251340271326844826925983923 × 104 2 × 10−22

The column e1 corresponds to the estimated error using (11).

because in this case we can easily make a link with circle
diffeomorphisms. First of all, in Section 5.1 we formalize
the problem and fix some notation. Then, in Section 5.2
we adapt our methodology to compute invariant curves and
their evolution with respect to parameters by means of the
Newton method. Finally, in Section 5.3 we follow the ideas
of Section 4.3 and compute asymptotic expansions relating
initial conditions and parameters that correspond to invariant
curves of fixed rotation number. As an example, we study the
neighborhood of the elliptic fixed point for the Hénon map,
which appears generically in the study of area-preserving maps.

5.1. Description of the problem

Let A = T × I be the real annulus, where I is any real
interval, that can be lifted to the strip A = R × I using the
universal cover π : A → A. Let also X : A → R and
Y : A → I denote the canonical projections X (x, y) = x
and Y (x, y) = y.

In this section, we consider diffeomorphisms F : A → A
and their lifts F̃ : A → A given by F ◦ π = π ◦ F̃ . Note that
the lift is unique if we require X (F̃(0, y0)) ∈ [0, 1) for certain
y0 ∈ I , so we omit the tilde in the lift. In addition, we restrict to
maps satisfying that ∂(X ◦ F)/∂y does not vanish, a condition
that is called twist.
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Assume that F : A → A is a twist map having an invariant
curve Γ , homotopic to the circle T × {0}, of rotation number
θ ∈ R \ Q. Concretely, there exists an embedding γ : R → A,
such that Γ = γ (R), satisfying γ (x + 1) = γ (x) + (1, 0) for
all x ∈ R, and making the following diagram commute

F(γ (x)) = γ (x + θ). (27)

Since F is a twist map, the Birkhoff Graph Theorem
(see [11]) ensures that Γ is a Lipschitz graph over its projection
on the circle T × {0}, and hence the dynamics on Γ induces
a circle homeomorphism fΓ simply by projecting the iterates,
i.e., fΓ (X (γ (x))) = X (F(γ (x))). We observe that, if F and γ

are Cr -diffeomorphisms, then fΓ ∈ Diffr
+(T).

From now on, we fix an angle x0 ∈ T and identify invariant
curves with points y0 ∈ I . Then, if (x0, y0) belongs to an
invariant curve Γ , we also denote the previous circle map as fy0

instead of fΓ . Of course, the parameterization γ is unknown
in general, so we do not have an expression for fy0 . But we
can evaluate the orbit (xn, yn) = Fn(x0, y0) and consider
xn = f n

y0
(x0). We recall that this orbit is the only thing we

need to compute numerically the rotation number θ using the
method of [26] (reviewed in Section 2.2).

Remark 5.1. If the map F does not satisfy the twist condition,
their invariant curves are not necessarily graphs over the circle
T × {0}. Of course, if Γ is an invariant curve of F , its
dynamics still induces a circle diffeomorphism, even though its
construction is not so obvious. Since the non-twist case presents
another difficulties and it has interest of its own, we plan to
adapt the method to consider the general situation in subsequent
work [22].

If F is a Cr -integrable twist map, then there is a Cr -family
of invariant curves of F satisfying (27), and y0 7→ fy0 is a
one-parameter family in Diffr

+(T). In this case, we obtain a Cr -
function y0 ∈ I 7→ ρ( fy0). Of course, this is not the general
situation and, actually, we do not expect this function to be
defined for every y0 ∈ I . Nevertheless, in many problems we
have a family of invariant curves defined on a Cantor subset
J ⊂ I having positive Lebesgue measure and we still have
differentiability of ρ( fy0) in the sense of Whitney. For example,
if the map F is a perturbation of an integrable twist map that is
symplectic or satisfies the intersection condition, KAM theory
establishes (under other general assumptions) the existence of
such a Cantor family of invariant curves (we refer to [6,23]).

For practical purposes, even if a point (x0, y0) ∈ A does not
belong to a quasi-periodic invariant curve, we can compute the
orbit xn = f n

y0
(x0) = X (Fn(x0, y0)), even though fy0 is not a

circle diffeomorphism. Then, we can also compute the averaged
sums S p

N ( fy0) of these iterates but we cannot guarantee in
general that Θq,p( fy0) converges when q → ∞. Nevertheless,
if (x0, y0) is an initial condition close enough to an invariant
curve of Diophantine rotation number θ , we expect Θq,p( fy0)
to converge to a number close to θ , due to the existence of
neighboring invariant curves for a set of large relative measure
(that is called condensation phenomena in KAM theory). On
the other hand, if (x0, y0) belongs to a periodic island, then
we expect Θq,p( fy0) to converge to the winding number of
the “central” periodic orbit. Finally, we recall that the Aubry-
Mather theorem (we refer to [11]) states that F has orbits of
all rotation numbers, so it can occur that the method converges
if (x0, y0) corresponds to a periodic orbit or to a ghost curve
(Cantori).

On the other hand, in order to approximate derivatives of
the rotation number by means of Θd

q,p,p−d( fy0), we have to
compute derivatives of iterates xn . However, as we do not have
an explicit formula for the induced map fy0 , the scheme for
computing derivatives of the iterates is slightly different from
the one presented in Section 3.3. Modified recurrences are
detailed in the moment that they are required.

5.2. Numerical continuation of invariant curves

Let us consider α : Λ ⊂ R 7→ Fα a one-parameter
family of twist maps on A, that induces a function (α, y0) ∈

U ⊂ Λ × I 7→ ρ( fα,y0) differentiable in the sense of
Whitney. In this situation, we can compute derivatives of this
function (at the points where they exist) by using the method of
Section 3. Our goal now is to use these derivatives to compute
numerically invariant curves of Fα by means of the Newton
method, similarly as we did in Section 4.2 for computing the
Arnold Tongues.

Concretely, let Γα0 be an invariant curve of rotation number
θ ∈ D for the map Fα0 . Then, given any α close to α0, we
want to compute the curve Γα , invariant under Fα , having the
same rotation number. Once we have fixed an angle x0 ∈ T, we
identify the invariant curve Γα by the point (x0, y(α)) ∈ Γα .
Then, our purpose is to solve, with respect to y, the equation
ρ( fα,y) = θ by continuing the known solution (α0, y(α0)) ∈

Λ× I . We just remark that, when solving this equation by means
of the Newton method, we have to prevent us from falling into
a resonant island, where the rotation number is locally constant
around this point.

Now, in order to approximate numerically Dαρ and Dy0ρ,
we have to discuss the computation of derivatives of the iterates,
i.e. Dα(xn) and Dy0(xn), where xn = f n

α,y0
(x0). Omitting the

dependence on the parameter α in the family of twist maps, we
denote F1 = X ◦ F and F2 = Y ◦ F , and we obtain the recurrent
expression

Dy0(xn) = ∂x F1(zn−1)Dy0(xn−1) + ∂y F1(zn−1)Dy0(yn−1),

(28)

where zn := (xn, yn). Furthermore, Dy0(yn) follows from
a similar expression replacing F1 by F2. According to our
convention of fixing x0 ∈ T, the computations have to be
initialized by Dy0(x0) = 0 and Dy0(y0) = 1. Analogous
formulas hold for Dα(xn):

Dα(xn) = ∂α F1(zn−1) + ∂x F1(zn−1)Dα(xn−1)

+ ∂y F1(zn−1)Dα(yn−1),
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Fig. 5. Left: Numerical continuation of y0 (horizontal axis) with respect to α (vertical axis) of the invariant curve of rotation number θ = (
√

5 − 1)/2 for the Hénon
map (29). Right: Difference in log10 scale between α(y0) in the left plot and its truncated Taylor expansion (32) up to order d (see Table 3). The curves from top to
bottom correspond, respectively, to d = 2, 4, 6 and 8.
Fig. 6. Left: Invariant curve of (29) of rotation number θ = (
√

5 − 1)/2 corresponding to the last computed point in Fig. 5 (see text) expressed as a graph x 7→ y
on the annulus S× I . Right: Derivative of the left plot computed using finite differences.
and similarly for Dα(yn) using F2. The recursive computations
are now initialized by Dα(x0) = 0 and Dα(y0) = 0.

Let us illustrate the above ideas studying the well known
Hénon family, that is a paradigmatic example since it appears
generically in the study of a saddle-node bifurcation. In
Cartesian coordinates, the family can be written as

Hα :

(
u
v

)
7−→

(
cos(2πα) − sin(2πα)

sin(2πα) cos(2πα)

)(
u

v − u2

)
. (29)

Note that the origin is an elliptic fixed point that corresponds
to a “singular” invariant curve. We can blow-up the origin
if, for example, we bring the map to the annulus by means
of polar coordinates x = arctan(v/u) and y =

√
u2 + v2,

thus obtaining a family α ∈ Λ = [0, 1) 7→ Fα of maps
Fα : S × I 7→ S × I , given by

X ◦ Fα = arctan
sin(x + 2πα) − cos(2πα)y(cos(x))2

cos(x + 2πα) + sin(2πα)y(cos(x))2 , (30)

Y ◦ Fα = y
√

1 − 2y(cos(x))2 sin(x) + y2(cos(x))4. (31)

We remark that, analogously as we did in Section 4, in this
application we consider angles in S = R/2πZ in order to
avoid factors 2π that would appear in derivatives (specially in
Section 5.3 when we consider higher order ones).

Albeit it is not difficult to check that the twist condition
∂(X ◦ F)/∂y 6= 0 is not fulfilled in these polar coordinates,
we can perform a close to the identity change of variables
to guarantee the twist condition except for the values α =

1/3, 2/3. Then, it turns out that there exist invariant curves of
Fα in a neighborhood of S×{0}, whose rotation number tend to
α and are “close to the identity” to graphs over S×{0}. However,
for values of α close to 1/3 and 2/3, meandering phenomena
arise (we refer to [10,29]), i.e., there are folded invariant curves
(see Remark 5.1).

As an example, we study the invariant curves of rotation
number θ = (

√
5−1)/2 by continuing the initial values α0 = θ

and y0 = 0, i.e, the curve S × {0}. The computations have
been performed by using the double–double data type, a fixed
averaging order p = 8 and up to 223 iterates of the map, at
most. As usual, we estimate the error in the rotation number
by using (11), and we validate the computation when the error
is smaller than 10−26. For the Newton method, we require a
tolerance smaller than 10−23 when comparing two successive
computations. Finally, we do not require a prescribed tolerance
in the computation of the derivatives Dαρ and Dy0ρ, but the
biggest error in their computation is less that 10−21.

The resulting curve in the space I×Λ is shown in Fig. 5(left).
During continuation, the step in α is typically taken between
10−4 and 10−3, but falls to 10−10 when we compute the last
point (α, y(α)) = (0.5917905628, 0.8545569509). In Fig. 6
we plot the graph corresponding to this invariant curve and its
derivative. We observe that, even though the curve is still a
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graph, this parameterization is close to have a vertical tangency,
so our approach is not suitable for continuing the curve.
However, since fractalization of the curve has not occurred,
we expect that it still exists beyond this point. To continue the
family of curves in this situation it is convenient to use another
approach (see Remark 5.1).

5.3. Computing expansions with respect to parameters

In the same situation of Section 5.2, our aim now is to use
variational information of the rotation number to compute the
Taylor expansion at the origin of Fig. 5(left). Notice that in the
selected example α′(0) = 0, so we work with the expansion of
the function α(y0) rather than y0(α).

In general, if (x0, y∗

0 ) is a point on an invariant curve of
rotation number θ for a twist map Fα∗ , then we consider the
expansion

α(y0) = α∗
+ α′(y∗

0 )(y0 − y∗

0 ) +
α′′(y∗

0 )

2!
(y0 − y∗

0 )2
+ · · · ,

(32)

that corresponds to the value of the parameter for which (x0, y0)

is contained in an invariant curve of Fα(y0) having the same
rotation number. We know that if θ ∈ D and the family Fα is
analytic, then Eq. (32) is an analytic function around y∗

0 . Once
again, during the rest of the section, we omit the dependence
on the parameter α in the family of twist maps, and we denote
F1 = X ◦ F and F2 = Y ◦ F .

As in Section 4.3, we use that the family y0 7→ fα(y0),y0 ∈

Diffω+(S) induced by y0 7→ Fα(y0) has constant rotation number,
together with Remark 3.2. Concretely, for any integer d ≥ 1 we
have

0 = Θd
q,p,p( fα(y0),y0) +O(2−(p+1)q), (33)

where Θd
q,p,p is the extrapolation operator (16). We observe that

the value of Θd
q,p,p( fy0) at the point y∗

0 only depends on the
derivatives α(r)(y∗

0 ) up to r ≤ d . We use this fact to compute
inductively these derivatives from Eq. (33). To achieve this, we
have to isolate them from Dd

y0
(xn)|y0=y∗

0
for any d ≥ 1, as we

discuss through the next paragraphs.
The following formula generalizes (28):

Dd
y0

(xn) =

d−1∑
j=0

(
d − 1

j

){
D j

y0(∂α F1(zn−1))α
(d− j)(y0)

+ D j
y0(∂x F1(zn−1))Dd− j

y0 (xn−1)

+ D j
y0(∂y F1(zn−1))Dd− j

y0 (yn−1)
}

, (34)

while a similar equation holds for Dd
y0

(yn) replacing F1 by F2.
Moreover, as in Section 3.3, we compute the derivatives Dr

y0
of ∂α F1(zn−1), ∂x F1(zn−1) and ∂y F1(zn−1) by means of the
following recurrent expression

Dr
y0

(∂k,l,m
α,x,y Fi (zn−1))

=

r−1∑
j=0

(
r − 1

j

){
D j

y0(∂
k+1,l,m
α,x,y Fi (zn−1))α

(r− j)(y0)
+ D j
y0(∂

k,l+1,m
α,x,y Fi (zn−1))Dr− j

y0 (xn−1)

+ D j
y0(∂

k,l,m+1
α,x,y Fi (zn−1))Dr− j

y0 (yn−1)
}

,

which only requires evaluation of the partial derivatives of F1
and F2 with respect to α, x and y.

Using the above expressions, we reproduce the inductive
argument of Section 4.3. Let us assume that the values
α′(y∗

0 ), . . . , α(d−1)(y∗

0 ) are known. Then, we observe that if we
set y0 = y∗

0 and α = α∗ in Eq. (34), the only term containing
the derivative α(d)(y∗

0 ) is the one corresponding to j = 0. By
induction, it is easy to find that

Dd
y0

(xn)|y0=y∗

0
= X d

n α(d)(y∗

0 ) + X̂ d
n ,

Dd
y0

(yn)|y0=y∗

0
= Yd

n α(d)(y∗

0 ) + Ŷd
n ,

where the coefficients X d
n , X̂ d

n , Yd
n and Ŷd

n are obtained
recursively and only depend on the derivatives α(r)(y∗

0 ), with

r < d. Concretely, X d
n and X̂ d

n satisfy

X d
n = (∂α F1(zn−1) + ∂x F1(zn−1)X d

n−1

+ ∂y F1(zn−1)Yd
n−1)|y0=y∗

0
,

X̂ d
n =

(
∂x F1(zn−1)X̂ d

n−1 + ∂y F1(zn−1)Ŷd
n−1

+

d−1∑
j=1

(
d − 1

j

)
{D j

y0(∂α F1(zn−1))α
(d− j)(y0)

+ D j
y0(∂x F1(zn−1))Dd− j

y0 (xn−1)

+ D j
y0(∂y F1(zn−1))Dd− j

y0 (yn−1)}

)
|y0=y∗

0
,

and similar equations hold for Yd
n and Ŷd

n replacing F1 by F2.
These sequences are initialized as

X 1
0 := X̂ 1

0 := Y1
0 := 0, Ŷ1

0 := 1, and

X d
0 := X̂ d

0 := Yd
0 := Ŷd

0 := 0, for d > 1.

Finally, if we evaluate the extrapolation operator Θq,p for
the sequences X d

= {X d
n }n=1,...,N and X̂ d

= {X̂ d
n }n=1,...,N ,

then we obtain from (33) the following expression

α(d)(y∗

0 ) = −
Θq,p(X̂ d)

Θq,p(X d)
+O(2−(p+1)q).

Now, we apply this methodology to the Hénon family α ∈

Λ = [0, 1) 7→ Fα given by (30) and (31). In particular, we
fix x0 = 0 and compute the expansion Eq. (32) at y∗

0 = 0
corresponding to invariant curves of rotation number α∗

= θ =

(
√

5 − 1)/2.
Observe that the derivatives of this map are hard to compute

explicitly, so we have to introduce another recursive scheme for
them. Moreover, in order to reduce the number of computations,
we use that the iterates of (0, 0) are xn = 2πnθ and yn = 0.

We detail the computations of ∂
k,l,m
α,x,y(Y ◦ Fα) at the point

(α, x, y) = (θ, xn, 0), while the derivatives of X ◦ Fα

satisfy completely analogous expressions. Let us introduce the
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function

g(x, y) = 1 − 2y(cos(x))2 sin(x) + y2(cos(x))4,

so we can write Y ◦ Fα(x, y) = y
√

g(x, y). First, we observe
that for any s ∈ Q we have ∂

k,l,m
α,x,y(ygs)|y=0 = 0 provided k 6= 0

or m = 0. Otherwise, the required derivatives can be computed
by means of the following recurrent expressions

∂ l,m
x,y (ygs) = ∂ l,m−1

x,y (gs)

+ s
l∑

i=0

m−1∑
j=0

(
l

i

)(
m − 1

j

)
∂

i, j
x,y(ygs−1)∂

l−i,m− j
x,y (g)

and

∂ l,m
x,y (gs) = s

l∑
i=0

m−1∑
j=0

(
l

i

)(
m − 1

j

)
∂

i, j
x,y(ygs−1)∂

l−i,m− j
x,y (g).

Finally, we observe that the derivatives ∂
l−i,m− j
x,y (g) can be

computed easily by expanding the function as a trigonometric
polynomial

g(x, y) = 1 −
y

2
(sin(3x) + sin(x))

+
y2

2

(
3
4

+ cos(2x) +
1
4

cos(4x)

)
.

Computations are performed by using double–double data
type, p = 7 and 221 iterates, at most. We stop the computations
if the estimated error is less than 10−25. Derivatives of the
expansion (32) and their estimated error, are given in Table 3.
Finally, in order to verify the results, we compare truncated
expansions of the curve with the numerical approximation
computed in Section 5.2. The deviation is plotted in log10 scale
in Fig. 5(right).
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[11] C. Golé, Symplectic Twist Maps: Global Variational Techniques, World
Scientific Publishing, 2001.
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cercle à des rotations, Inst. Hautes Études Sci. Publ. Math. (49) (1979)
5–233.

[17] Y. Hida, X. Li, D.H. Bailey, (QD, double–double and quad double
package), http://crd.lbl.gov/˜dhbailey/mpdist/.

[18] A. Katok, B. Hasselblatt, Introduction to the Modern Theory
of Dynamical Systems, in: Encyclopedia of Mathematics and its
Applications, vol. 54, Cambridge University Press, 1995.

[19] Y. Katznelson, D. Ornstein, The differentiability of the conjugation of
certain diffeomorphisms of the circle, Ergodic Theory Dynam. Systems
9 (4) (1989) 643–680.

[20] S.G. Krantz, H.R. Parks, A primer of real analytic functions,
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