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a b s t r a c t

Recently, a new numerical method has been proposed to compute rotation numbers of analytic circle
diffeomorphisms, as well as derivatives with respect to parameters, that takes advantage of the existence
of an analytic conjugation to a rigid rotation. This method can be directly applied to the study of invariant
curves of planar twist maps by simply projecting the iterates of the curve onto a circle. In this work we
extend the methodology to deal with general planar maps. Our approach consists in computing suitable
averages of the iterates of the map that allow us to obtain a new curve for which the direct projection
onto a circle is well posed. Furthermore, since our construction does not use the invariance of the quasi-
periodic curve under the map, it can be applied to more general contexts. We illustrate the method with
several examples.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

In this paper we present numerical algorithms to deal with
quasi-periodic invariant curves of planar maps by adapting a
method presented in [1] to compute rotation numbers of analytic
circle diffeomorphisms. The developed ideas do not require the
curve to be invariant under any map; so they can be applied to
more general objects that we refer to as quasi-periodic signals (see
Definition 2.2).
The method of [1] is built assuming that the circle map is ana-

lytically1 conjugate to a rigid rotation and, basically, it consists in
computing suitable averages of the iterates of themap followed by
the Richardson extrapolation. Since this construction takes advan-
tage of the geometry and the dynamics of the problem, themethod
turns out to be highly accurate and very efficient in multiple appli-
cations. In a few words, if we compute N iterates of the map, then
we can approximate the rotation number with an error of order
O(1/Np+1) where p is the selected order of averaging (compared
withO(1/N) obtained using the definition). This methodology has
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1 Themethods of [2,1] alsowork in the class ofCr circle diffeomorphisms, r being
sufficiently large, but we restrict the discussion to the analytic case in order to
simplify the exposition.
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been extended in [2] to deal with derivatives of the rotation num-
ber with respect to parameters. In this case, it is required to com-
pute and average the corresponding derivatives of the iterates of
the circle map. We want to point out that this variational informa-
tion cannot be obtained in such a direct way by means of other
existing methods to compute rotation numbers (we refer to the
works [3–8]).
As a matter of motivation, let us assume first that F is a map

on the real annulus T × I , where I is a real interval and T =
R/Z, and let X : T × I → R denote the canonical projection
X(x, y) = x. If F is a twist2 map, the Birkhoff Graph Theorem
(see [9]) ensures that every invariant curve Γ is a graph over its
projection on the circle by means of X , and its dynamics induces a
circle map by projecting the iterates. Hence, it is straightforward
to apply the method of [1] in order to approximate the rotation
number of Γ , since for any (x0, y0) ∈ Γ we can compute the orbit
xn = X(F n(x0, y0))— this is the only data that themethod requires.
Furthermore, if F has a differentiable family of invariant curves or
a Cantorian family differentiable in the sense of Whitney, we can
approximate derivatives of the rotation number with respect to
initial conditions and parameters. This allows us to implement a
Newton scheme for the computation and continuation of invariant
curves of twist maps (as it is discussed in detail in [2]).

2 The map F satisfies the twist condition if ∂(X ◦ F)/∂y does not vanish.
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If themap does not satisfy the twist condition or it is notwritten
in suitable coordinates, its invariant curves are not necessarily
graphs over the projection on a circle. In this situation, invariant
curves can fold in a very wild way (see Section 3.3 and references
given therein for examples of such curves). Nevertheless, if we can
select a suitable circle so that the folded curve ‘‘rotates’’ around
it, then the projection of the iterates of the map does not define a
circle map but a ‘‘circle correspondence’’ and we can compute the
rotation number of the curve from the ‘‘lift’’ of this correspondence
to the real line — see Section 2.1 for details. Moreover, albeit we do
not have a justification of this fact,we realize that the extrapolation
methods of [2,1] work quite well when applied to the iterates of
this ‘‘lift’’.
In some cases – for example, if the rotation number is large

compared with the size of the folds – we can compute numerically
this ‘‘lift’’ from the iterates of the map. However, if the curve
is extremely folded additional work is required in order to face
the problem in a systematic way. Hence, we propose a numerical
method to construct a circlemap – preserving the rotation number
– from a general invariant curve on the plane. Themethod consists
in averaging the iterates of an orbit of the curve in such a way that
the new iterates belong to another curve, no longer invariant under
the map, but having the same rotation number. Concretely, if we
know an approximation of the rotation number with error ε, we
construct a sequence of (averaged) curves that approaches a circle
up to terms of orderO(ε).We refer to this construction as unfolding
of the curve since if ε is small enough, then this construction
provides us with a circle map. Taking into account the discussion
in the previous paragraph, in order to apply the methods of [2,1] it
is not necessary to unfold completely the curve, but only to ‘‘kill’’
its main folds so we can compute the ‘‘lift’’ of the correspondence
generated by the projection of the iterates of the new (less-folded)
curve. In order to justify this unfolding procedure we require
the curve to be analytic (or at least differentiable enough) and
the rotation number to be Diophantine. Sometimes the requested
approximation of the rotation number is given by the context of
the problem – for example, if we look for invariant curves of fixed
rotation number – or it can be obtained by means of any method
of frequency analysis (see for example [6,7]). Therefore, we obtain
a very efficient toolkit for the study of invariant curves of planar
maps and their numerical continuation.
Let us remark that due to the importance, both theoretical and

applied, of invariant curves of maps or two-dimensional tori of
flows (for example, they play a fundamental role in the design of
space missions [10,11] and also in the study of models in Celestial
Mechanics [12], Molecular Dynamics [13,14] or Plasma-Beam
Physics [15], just to say a few), several approaches to deal with
these objects have been developed in the literature. For example,
the methods in [16–18] have been applied efficiently in a wide set
of contexts. However, they require to compute a representation
– by means of a trigonometric polynomial – of the curve which
solves the invariance equation of the problem, so it is required to
solve large systems of equations — as large as the used number
of Fourier modes, say M . One possibility to face this difficulty is
to solve these full linear systems, with a cost O(M3) in time and
O(M2) in memory, by means of efficient parallel algorithms as
is proposed in [18]. Another recent approach presented in [17],
based on the analytic and geometric ideas developed in [19], allows
us to reduce the computational effort of the problem to a cost
of order O(M logM) in time and O(M) in memory. On the other
hand, we can compute the invariant curve by looking for a point
so that the corresponding orbit has a prefixed rotation number.
Then, rather than approximating explicitly the parameterization
of the curve, we reduce the problem to finding a zero of a function.
This approach can be implemented using interpolation methods
as in [20] or also using the extrapolation methods in [2,1]. These
extrapolation methods, that are the cornerstone of the presented
paper, have a cost of orderO(N logN) in terms of the used number
of iterates N and are free in memory. Once we know a point on the
curve and its rotation number, we can compute a trigonometric
approximation of the curve ‘‘a posteriori’’, using Fourier Transform
(FT) on the iterates of the curve. In addition, in Section 2.7 we
develop a method for performing this FT based also on averaging-
extrapolation ideas.
Given a numerical method for the continuation of invariant

curves, it is specially interesting to verify if the method is valid up
to the breakdown threshold corresponding to the critical invariant
curve (see [21–23]). These critical curves are specially important
objects that organize the long-term behavior of a given dynamical
system, because of their role as ‘‘last barriers’’ or ‘‘bottlenecks’’ to
chaos (see [9]). Actually, the critical value for the breakdown of
the golden curve for the Chirikov standard map was estimated by
means of extrapolationmethods in [1] obtaining a good agreement
with the value predicted bymeans of the classical Greene criterion
in [22]. For the non-twist case, we refer to computations in [24,25]
as examples of breakdown studies in non-twist maps. It is worth
mentioning that the methods presented in this paper can be
applied also in this context.
Since our construction does not use the invariance of the curve

under the map, it can be applied to the study of quasi-periodic
curves that are not necessarily embedded (that we call quasi-
periodic signals). This context is very interesting since it allows us
to analyze sets of data obtained from real experiments or observed
natural phenomena. Actually, in order to check that the methods
are robust when facing experimental data, we consider the effect
of Gaussian error in the evaluation of iterates of a known quasi-
periodic function.
Wewant to point out that our approach can be also understood

as a method for the refinement of the frequency analysis of [7].
Actually, an efficient refinement of these methods, based in the
simultaneous improvement of the frequencies and the amplitudes
of the signal, is given in [6]. Once again, the main advantage of our
approach is that we do not have to compute Fourier coefficients of
the curve. This fact reduces the computational effort of solving big
linear systems of equations required to refine the representation
of the signal. In addition, the accuracy in the computation of the
rotation number is not limited by the truncation error in the
representation of the signal.
Finally, we notice that the methodology of [2,1] also works

for dealing with maps of the d-dimensional torus that admit
an analytic conjugation to a rigid rotation having a Diophantine
rotation vector. Our aim is to explore the extension of the ideas
presented in this paper to deal with invariant tori and quasi-
periodic signals of arbitrary number of frequencies.
The paper is organized as follows. In the first part, contained

in Section 2, we develop and justify different results, methods
and algorithms to study quasi-periodic invariant curves (or quasi-
periodic signals). In the second part, presented in Section 3, we
consider several examples in order to illustrate different features
of the presentedmethodology. These examples have been selected
in order to sustain the presentation of themethods and to highlight
both some of the possibilities and limitations of our approach.

2. Exposition of methods

As we said in the introduction, we approach the study of quasi-
periodic signals by computing the rotation number of a circle
map (or a circle correspondence) induced by the curve. The main
definitions and notation, together with a brief overview of the
problem, are given in Section 2.1. After that, we present and justify
a method to unfold a quasi-periodic signal. We first assume in
Section 2.2 that the rotation number is known exactly in order to
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Fig. 1. Left: Folded invariant curve with quasi-periodic dynamics that rotates around the origin in the complex plane (this curve corresponds to an example discussed in
Section 3.3). Right: ‘‘Lift’’ of the associated circle correspondence given by (1).
highlight the involved ideas. Basically, we construct a sequence
of curves that converges to a circle whose dynamics corresponds
to a rigid rotation. In Section 2.3 we assume that we only have
an approximation of the rotation number and we show that the
previous construction allows us to obtain a curve that is C1-close
to be a circle — the proximity being of the same order as the error
in the initial guess of the rotation number.
In order to obtain the required approximation, a possibility is

to resort to frequency analysis methods. In Section 2.4 we review
Laskar’s frequency analysis method in terms of the language
presented in this paper, just to stress that the same algorithms
derived to unfold the curve can be adapted to obtain the required
approximation of the rotationnumber as alternative of the classical
methods.
For the sake of completeness we include in Section 2.5 a brief

survey of the methods of [2,1] to compute the rotation number
and derivatives with respect to parameters of the obtained circle
map or correspondence. This review is necessary to understand the
higher ordermethod that we develop in Section 2.6 to improve the
unfolding of curves. During the exposition it will be clear that the
ideas used in the unfolding are related to FT. This fact is exploited
in Section 2.7 in order to extrapolate Fourier coefficients once the
rotation number is known.

2.1. Setting of the problem

For convenience, we identify the real plane with the set of
complex numbers by defining z = u + iv for any (u, v) ∈ R2.
Let Γ ⊂ C be a quasi-periodic invariant curve for a map F : U ⊂
C→ C of rotation number θ ∈ R \Q. Let us assume, for example,
that the curve ‘‘rotates’’ around the origin and that it is a graph of
the angular variable. Then, the projection

Γ −→ T
z 7−→ x = arg(z)/2π (1)

generates a circle map induced by the dynamics of F |Γ . On the
other hand, if Γ is folded, then the projection (1) does not provide
a circle map, but defines a correspondence on T that we can
‘‘lift’’ to R. For example, in the left plot of Fig. 1 we show a
‘‘folded’’ invariant curve on the complex plane for an example
considered in Section 3.3. In the right plot of Fig. 1 we show the
‘‘lift’’ of the correspondence on T given by (1). Since the rotation
number of the curve is no more than the averaged number of
revolutions per iterate, it is not surprising thatwe can compute it as
limn→∞(xn−x0)/n, where xn are the iterates under the ‘‘lift’’ toR of
the circle correspondence. In this situation, we have observed that
themethods of [2,1] can be applied to such a ‘‘lift’’ (see examples in
Section 3.3), even thoughwe do not have a justification of this fact.
In some cases, for example if the rotation number is large
enough as to avoid the folds, we can compute numerically the ‘‘lift’’
of (1) using the iterates of an orbit. However, if the invariant curve
presents large folds or we cannot identify directly a good point
around which the curve is rotating, we cannot compute this ‘‘lift’’
in a systematic way. Then, our aim is to construct another curve,
having the same rotation number, by using suitable averages of
iterates of the original map. If we manage to eliminate (or at least
minimize) the folds in the new curve, then we are able to obtain a
circle diffeomorphism (or at least a circle correspondence that we
can ‘‘lift’’ numerically).
As Γ is a quasi-periodic invariant curve of rotation number θ ,

there exists an analytic embedding γ : T→ C verifyingΓ = γ (T)
and

F(γ (x)) = γ (x+ θ).

In this situation, since the parameterization γ is periodic, we
can use the Fourier series

γ (x) =
∑
k∈Z

γ̂ke2π ikx,

and, moreover, for a given z0 ∈ Γ we can ask for γ (0) = z0. Then,
the iterates of z0 under F can be expressed using γ as

zn = F n(z0) = F n(γ (0)) = F n−1(γ (θ))

= γ (nθ) =
∑
k∈Z

γ̂ke2π iknθ . (2)

As we will see, our method does not use the invariance of Γ
under F but only the expression (2) for the iterates. Furthermore,
even if we start with an invariant curve of a map, the intermediate
stages of our construction may produce curves that are not
embedded in C. Using this fact as a motivation, we state the
following definitions:

Definition 2.1. We say that a complex sequence {zn}n∈Z is a quasi-
periodic signal of rotation number θ if there exists a periodic
function γ : T→ C such that zn = γ (nθ). We also call Γ = γ (T)
a quasi-periodic curve.

Definition 2.2. Under the above conditions, let {zn}n∈Z be a quasi-
periodic signal. Then, for any θ0 ∈ R and L ∈ N, we define the
following iterates

z(L,θ0)n =
1
L

L+n−1∑
m=n

zme2π i(n−m)θ0 . (3)
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It is clear that {z(L,θ0)n }n∈Z is a quasi-periodic signal on another
curve Γ (L,θ0) = γ (L,θ0)(T) of the same rotation number, i.e.,

z(L,θ0)n = γ (L,θ0)(nθ) =
∑
k∈Z

γ̂
(L,θ0)
k e2π iknθ , (4)

and the new Fourier coefficients are given by

γ̂
(L,θ0)
k =

γ̂k

L

L+n−1∑
m=n

e2π i(m−n)(kθ−θ0) =
γ̂k

L
1− e2π iL(kθ−θ0)

1− e2π i(kθ−θ0)
. (5)

In Section 2.2 we show that, under conditions on regularity and
non-resonance, if θ0 = θ , then the new curve γ (L,θ) is arbitrarily
C1-close to a circle (see Lemma2.6) for L large enough. On the other
hand, if ε = θ0− θ is small, then we can choose L = L(ε) such that
the new curve is C1-close to a circle with an error of order O(ε)
(this is concluded from Proposition 2.8) so that the projection

Γ (L,θ0) ⊂ C∗ −→ T
z(L,θ0)n 7−→ x(L,θ0)n = arg(z(L,θ0)n )/2π,

(6)

provides an orbit of a circle diffeomorphism f (L,θ0)Γ . Once this
circle map has been obtained (as we have discussed, in practice
it suffices to obtain a slightly folded curve such that we can
compute the ‘‘lift’’ of the circle correspondence defined by the
direct projection), we can apply the methodology of [2,1] to
compute the rotation number and derivatives with respect to
parameters (this is described in Section 2.5). In order to justify this
construction, we require the rotation number to be Diophantine.

Definition 2.3. Given θ ∈ R, we say that θ is aDiophantine number
of (C, τ ) type if there exist constants C > 0 and τ ≥ 1 such that

|kθ − l|−1 ≤ C |k|τ , ∀(l, k) ∈ Z× Z∗. (7)

We will denoteD(C, τ ) the set of such numbers andD the set of
Diophantine numbers of any type.

In the aim of KAM theory, we know that the hypothesis of
Diophantine rotation number for the dynamics on the curve is
consistent with its own existence. Although Diophantine sets
are Cantorian – i.e., compact, perfect and nowhere dense – a
remarkable property is that R \D has zero Lebesgue measure. For
this reason, this condition fits very well in practical issues and we
do not resort to other weaker conditions on small divisors such as
the Brjuno condition (see [26]). It is worth mentioning that if θ is
a ‘‘bad’’ Diophantine rotation number, i.e., having a large constant
C in (7), then the methods presented in this paper turn out to be
less efficient as we discuss in Section 3.

2.2. Unfolding a curve of known rotation number

Let us consider the previous setting and suppose that the
Fourier coefficients of γ are γ̂1 6= 0 and γ̂k = 0 for k ∈ Z \ {1}.
In this case, Γ = {z ∈ C | |z| = |γ̂1|} and the circle map obtained
by the projection (1) is a rigid rotation Rθ (x) = x+ θ .
Assume now that γ̂1 6= 0 and |γ̂k| is small (compared with |γ̂1|)

for every k ∈ Z\ {1} in such a way that the curve γ is alsoC1-close
to a circle. In this case, the projection x = arg(z)/2π also makes
sense and defines a circle diffeomorphism.
In the general case this projection does not provide a circle

map. However, it turns out that the projection of the iterates
z(L,θ0)n is well posed if we take θ0 = θ and L large enough. More
quantitatively, we assert that the curve γ (L,θ) differs from a circle
by an amount of order O(1/L). In Lemma 2.6 bellow we make
precise the above arguments.
Definition 2.4. Given an analytic function γ : T → C and
its Fourier coefficients {γ̂k}k∈Z, we consider the norm ‖γ ‖ =∑
k∈Z |γ̂k|.

Definition 2.5. Given k ∈ Z \ {0} and r ∈ C, we define the map
γk[r] : T→ C as

γk[r](x) = r e2π ikx.

Then we state the following result:

Lemma 2.6. Let us consider a quasi-periodic signal zn = γ (nθ) of
rotation number θ ∈ D(C, τ ). Assume that γ : T → C is analytic
in the complex strip B∆ = {z ∈ C : |Im(z)| < ∆} and bounded
in the closure, with M = supz∈B∆ |γ (z)|. Then, if γ̂1 6= 0, the curve
γ (L,θ) : T→ C given by (4) and (5) satisfies

‖γ (L,θ) − γ1[γ̂1]‖ ≤
A
L
,

where A is a constant depending on M, C, τ and∆.

Proof. First, let us observe that the Fourier coefficients of the new
curve are given by

γ̂
(L,θ)
1 = γ̂1, γ̂

(L,θ)
k =

γ̂k

L
1− e2π i(k−1)θL

1− e2π i(k−1)θ
, k ∈ Z \ {1}.

Then, we have to bound the expression

‖γ (L,θ0) − γ1[γ̂1]‖ ≤
1
L

∑
k∈Z\{1}

∣∣∣∣γ̂k 1− e2π i(k−1)θL1− e2π i(k−1)θ

∣∣∣∣
≤
1
L

∑
k∈Z\{1}

2|γ̂k|
|1− e2π i(k−1)θ |

.

We observe that the Fourier coefficients of γ satisfy |γ̂k| ≤
Me−2π∆|k| and we use (7) to control the small divisors. Concretely,
standard manipulations show that (see for example [27])

|1− e2π i(k−1)θ |−1 ≤
C
4
|k− 1|τ .

Introducing these expressions in the previous sum we obtain
that

‖γ (L,θ0) − γ1[γ̂1]‖ ≤
CM
2L

∑
k∈Z\{1}

|k− 1|τe−2π∆|k|

≤
CM
L
sup
x≥0
{e−π∆x(x+ 1)τ }

∞∑
k=0

e−π∆k.

Moreover, we observe that

sup
x≥0
{e−sx(x+ 1)m} =

{
1 if s ≥ m,

(m/(se))mes if s < m.

Finally, taking A = MC
1−e−π∆ (1 + (

τ
π∆
)τ ) the stated bound follows

immediately. �

Remark 2.7. Note that in order to guarantee that the projection (6)
is well posed we also need to control the derivative (γ (L,θ))′(x). Of
course, this can be donemodifying slightly the proof of Lemma 2.6.
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2.3. Unfolding a curve of unknown rotation number

Since we are concerned with the computation of θ , the con-
struction presented in the previous section seems useless. Next we
show that themethod still works –with certain restrictions – if the
rotation number θ is unknown, but we have an approximation θ0.

Proposition 2.8. Let us consider a quasi-periodic signal zn = γ (nθ)
of rotation number θ ∈ D(C, τ ). Assume that γ : T → C is
analytic in the complex strip B∆ and bounded in the closure, with
M = supz∈B∆ |γ (z)|. Suppose that θ0 is an approximation of θ and
let us denote ε = θ0 − θ and Kε = b(2C |ε|)−1/τ c. Then, if γ̂1 6= 0
and Kε ≥ 1, for every L ∈ N the following estimate holds

‖γ (L,θ0) − γ1[γ̂
(L,θ0)
1 ]‖

|γ̂
(L,θ0)
1 |

≤

∣∣∣∣ sin(πε)sin(πεL)

∣∣∣∣
×

(
A
|γ̂1|
+
2ML
|γ̂1|

e−2π∆(Kε−1)

1− e−2π∆

)
, (8)

where A is a constant depending on M, C, τ and∆.

Proof. Let us consider the sets

K(ε) = {k ∈ Z \ {1} : |k− 1| ≤ Kε},
K ∗(ε) = Z \ (K(ε) ∪ {1}).

Then, if k ∈ K(ε) the following bound is satisfied ∀l ∈ Z

|kθ − θ0 − l| ≥ |(k− 1)θ − l| − |ε|

≥
1

C |k− 1|τ
− |ε| ≥

1
2C |k− 1|τ

allowing us to control the small divisors

|1− e2π i(kθ−θ0)| ≥
2

C |k− 1|τ
∀k ∈ K(ε). (9)

Then, from formula (5) and recalling that the Fourier coefficients
satisfy |γ̂k| ≤ Me−2π∆|k|, we obtain estimates for γ̂

(L,θ0)
k . If k ∈

K(ε), we use (9) to obtain |γ̂ (L,θ0)k | ≤ MCL−1|k − 1|τe−2π∆|k|. On
the other hand, for indexes k ∈ K ∗(ε) we use that |γ̂ (L,θ0)k | ≤ |γ̂k|.
Therefore, we have to consider the following sums

‖γ (L,θ0) − γ1[γ̂
(L,θ0)
1 ]‖ ≤

MC
L

∑
k∈K(ε)

|k− 1|τe−2π∆|k|

+M
∑
k∈K∗(ε)

e−2π∆|k|.

Now, the sum for k ∈ K(ε) is controlled by splitting it
into the sets [−Kε + 1, 0] ∩ Z and [2, Kε + 1] ∩ Z. Then, we
proceed as in the proof of Lemma 2.6 obtaining the constant
A = 2MC

1−e−π∆
(
1+

(
τ
π∆

)τ ). Finally, we compute the first Fourier
coefficient

|γ̂
(L,θ0)
1 | =

∣∣∣∣ γ̂1L
∣∣∣∣ ∣∣∣∣1− e−2π iεL1− e−2π iε

∣∣∣∣ = ∣∣∣∣ γ̂1L
∣∣∣∣ ∣∣∣∣ sin(πεL)sin(πε)

∣∣∣∣ ,
ending up with estimate (8). �

Remark 2.9. If we restrict Proposition 2.8 to those values of θ0
such that the Diophantine condition (9) is valid ∀k ∈ Z \ {1}, then
we obtain the estimate

‖γ (L,θ0) − γ1[γ̂
(L,θ0)
1 ]‖

|γ̂
(L,θ0)
1 |

≤

∣∣∣∣ sin(πε)sin(πεL)

∣∣∣∣ A|γ̂1| . (10)

Indeed, if we denote E ⊂ R the set of values of ε such that
θ0 = θ + ε satisfies estimate (9) for every k ∈ Z \ {1}, then for
Fig. 2. This diagram summarizes the construction of the analytic circle
diffeomorphism f (L,θ0)Γ from a folded invariant curve Γ of F of rotation number θ .

every ε0 sufficiently small the measure of the set [−ε0, ε0] \ E is
exponentially small in ε0.3

Observe that for any fixed |ε| > 0, estimate (10) depends | 1
ε
|-

periodically on L and also does (8) modulo exponentially small
terms in |ε|. Since we are interested in the minimization of (8), we
point out that if L ' | 12ε |, then

‖γ (L,θ0) − γ1[γ̂
(L,θ0)
1 ]‖

|γ̂
(L,θ0)
1 |

= O(ε).

Hence, the new parameterization is closer to a circle for |ε|
sufficiently small and the projection

Γ (L,θ0) ⊂ C∗ −→ T
z(L,θ0)n 7−→ x(L,θ0)n = arg(z(L,θ0)n )/2π,

induces a well-posed circle diffeomorphism that we denote as
f (L,θ0)Γ . Of course, the regularity of the circlemap f (L,θ0)Γ follows from
the regularity of γ . In Fig. 2 we include a schematic representation
of our procedure. Hence, we can compute the rotation number
θ and derivatives with respect to parameters by applying the
methods of [2,1] that we recall briefly in Section 2.5. Before that,
we discuss how this required guess θ0 can be obtained.

2.4. First approximation of the rotation number

The classical frequency analysis approach introduced by J. Laskar
(see [7]) to obtain an approximation of frequencies of a quasi-
periodic signal – here we are considering only one independent
frequency – is to look for the frequencies as peaks of the modulus
of the Discrete Fourier Transform (DFT) of the studied signal. In
this section we translate the elementary ideas used in frequency
analysis into the terminology introduced in Section 2.3.
Let us focus on the iterates {z(L,θ0)n }n∈Z of Definition 2.2. We

observe that they look very similar to the DFT of the signal.We also
notice that they can be defined for any θ0 but the Fourier coefficient
γ̂
(L,θ0)
1 , given explicitly in (5), has a local maximumwhen θ0 equals
θ , and from Proposition 2.8 we conclude that, for L large enough,
the function θ0 7→ |z

(L,θ0)
n | has a local maximum for a value of θ0

close to θ . In general, this phenomena occurs for the tth coefficient
if we select θ0 close to an integer multiple of the rotation number,
i.e., θ0 = tθ + ε, t ∈ Z. The corresponding justification is given
by the following proposition (the proof is analogous to that of
Proposition 2.8).

3 These two points of view are analogous to different approaches followed in [28,
29] to study reducibility of quasi-periodic linear equations.
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Proposition 2.10. Let us consider a quasi-periodic signal zn =
γ (nθ) of rotation number θ ∈ D(C, τ ). Assume that γ : T → C
is analytic in the complex strip B∆ and bounded in the closure, with
M = supz∈B∆ |γ (z)|. Suppose that θ0 is an approximation of tθ and
let us denote ε = θ0 − tθ and Kε = b(2C |ε|)−1/τ c. Then, if γ̂t 6= 0
and Kε ≥ |t|, for every L ∈ N the following estimate holds

‖γ (L,θ0) − γt [γ̂
(L,θ0)
t ]‖

|γ̂
(L,θ0)
t |

≤

∣∣∣∣ sin(πε)sin(πεL)

∣∣∣∣
×

(
A
|γ̂t |
+
2ML
|γ̂t |

e−2π∆(Kε−|t|)

1− e−2π∆

)
, (11)

where A = 2MC
1−e−π∆

(
|t|τ +

(
τ
π∆

)τ ).
According with this result and the previous discussion, we

summarize the following observations:
• First, we notice that Remark 2.9 also holds in this context, and
so we conclude that this estimate behaves periodically in L for
most of the values of θ0 close to tθ .
• FromEq. (5),we observe that γ̂ (L,θ0)t → γ̂t when ε→ 0 and that
the modulus |γ̂t | is an upper bound for |γ̂

(L,θ0)
t |. Moreover, for L

sufficiently large, we obtain a local maximum in themodulus of
the iterates z(L,θ0)n for a value of θ0 close to tθ .
• On the other hand, the estimate (11) grows with |t| thus
implying that, for fixed L, only low order harmonics can be
detected.

The previous discussion gives us a heuristic method for
computing an approximation θ0 of the rotation number θ (and its
multiples modulo 1). Basically, we fix L and compute the iterates
z(L,θ0)n for different values of θ0 in order to compute local maxima
of the modulus. In particular, if we just study the modulus of the
initial iterate z(L,θ0)0 , we recover the method of [7]. This method is
enough for our purposes – we recall that we just look for a rough
approximation of the rotation number – but in Remark 2.12 we
explain some refinements that can be performed in this procedure.
Thus, from themethod of [7] we find a finite number of candidates
for the rotation number and we have to decide which one is the
generator. Details are given in the next four steps.

Step 1: Maxima chasing. First, we fix L ∈ N and define the
function

T −→ R

θ0 7−→ |z(L,θ0)0 | =

∣∣∣∣∣1L
L−1∑
m=0

zme−2π imθ0
∣∣∣∣∣ . (12)

We want to obtain values of θ0 that correspond to
maxima of the function (12). To this end, let us consider
a sample of points {θ i0}i=1,...,N , where N ∈ N and
θ i0 ∈ [0, 1] (actually, one can reduce the interval if some
information about the rotation number is available, say
θ ∈ [θmin, θmax]). Then, for every pair {θ

j
0, θ

j+1
0 }, j =

1, . . . ,N − 1, we compute a local maximum for (12) by
means of golden section search using a tolerance εGSS (we
refer to [30] for details). Then, we introduce the following
terminology:

- θ̃ j0: Maximum obtained from the pair {θ
j
0, θ

j+1
0 }. Let

us observe that this maximum is not necessarily
contained in the interval [θ j0, θ

j+1
0 ].

- np: Number of maxima obtained at the end of this
step. In order to avoid redundant information, two
maxima are considered equivalent if dT(̃θ

j
0, θ̃

k
0 ) ≤

10εGSS where dT is the quotient metric induced on the
torus.
Step 2: Maxima selection. Now we sort the obtained points
{̃θ i0}1,...,np according to

|z
(L,̃θ i0)
0 | > |z

(L,̃θ j0)
0 | provided i < j.

At this point, we select the first nu points just omitting
those oneswhose correspondingmaxima are small when

compared with |z
(L,̃θ10 )
0 |. In particular, we only take those

elements such that

|z
(L,̃θ10 )
0 | < ν|z

(L,̃θ i0)
0 |, (13)

where ν > 1 is a ‘‘selecting factor’’ (we typically
take values of ν between 3 and 6) and we denote by
{θ k0 }k=1,...,nu the set of numbers thus obtained.

Step 3: Rotation number selection. This set {θ k0 }k=1,...,nu , with
θ k0 ∈ [0, 1], corresponds to approximate multiples of
the rotation number computed modulo 1. In addition, if
|γ̂1| is not too small, there is an element in this set that
approximates the rotation number. Notice that for every
θ k0 there exist mk, nk ∈ Z such that θ k0 ≈ mkθ + nk. This
motivates the following definitions

kij = argmink∈Z {dT(kθ i0, θ
j
0)}, κi =

nu∑
j=1

|kij| (14)

dij = mink∈Z {dT(kθ i0, θ
j
0)}, δi =

nu∑
j=1

dij. (15)

Let us observe that if we assume that θ i0 ≈ θ , then κi
corresponds to the sum of the order of Fourier terms
that allow us to approximate the remaining points θ j0.
On the other hand, δi gives an idea of the error when
θ i0 is selected. If the minimum values of {κi}i=1,...,nu and
{δi}i=1,...,nu correspond to the same index k ∈ {1, . . . , nu},
then we select θ0 = θ k0 as an approximation of θ . If they
do not coincide but δk = mini{δi} is small, then we select
θ0 = θ k0 . Otherwise we start again from Step 1 using a
larger value of L.

Step 4: Validation and iteration. Of course, it is recommended to
verify that the computations are stable by repeating the
process (from Step 1) with larger values of N and L.

Remark 2.11. When the frequency of the quasi-periodic signal is
not an integer multiple of the ‘‘basic frequency’’ 1/L associated
to the sample interval of the associated DFT in (12), there appear
in the DFT spurious frequencies, that is, the DFT is different from
zero at frequencies not being multiple of the frequency of the
function. This is a phenomenon known as leakage, that it can
be reduced by means of the so-called filter or window functions
(see [6,7]). Nevertheless, these spurious peaks are smaller than the
corresponding harmonic that generates them, sowe get rid of them
in Step 2 of the described procedure.

Remark 2.12. Finally, we notice that this procedure can be
modified in several ways taking into account the ideas introduced
in this paper. For example, when looking for local maxima of
function (12) we can minimize with respect to θ0 the distance of
the iterates {z(L,θ0)n }n∈Z to be on a circle – see Proposition 2.10 –
that can be measured by means of several criteria discussed in
Section 3.1. On the other hand, we can use higher order averages
as discussed in Section 2.6 in order to improve the resolution of the
maxima. These refinements may become relevant when dealing
withmore than one frequency as a possible alternative to the filters
mentioned in Remark 2.11.
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2.5. Computation of rotation numbers and derivatives

Next, we include a brief review of the methods developed in
[1,2] to compute numerically the rotation number of circle diffeo-
morphisms together with derivatives with respect to parameters.
We include this review to set the notation of the rest of the paper
and also in order to remark that ideas of Sections 2.6 and 2.7 follow
from those introduced in [1] in a close way.
Given an orientation-preserving circle homeomorphism f :

T→ T, we identify f with its lift to R by fixing the normalization
condition f (0) ∈ [0, 1). Then, we recall that the rotation number
of f is defined as the limit

θ = lim
|n|→∞

f n(x0)− x0
n

, (16)

that exists for all x0 ∈ R, is independent of x0 and satisfies θ ∈
[0, 1). It is well known (we refer to [31]) that if f is an analytic
diffeomorphism and θ ∈ D , then f is analytically conjugate to
a rigid rotation Rθ (x) = x + θ , i.e., there exists an orientation-
preserving analytic circle diffeomorphism η such that f ◦η = η◦Rθ .
Moreover, we can write this conjugacy as η(x) = x+ ξ(x), ξ being
a 1-periodic function normalized in such a way that ξ(0) = x0,
for a fixed x0 ∈ [0, 1). Now, by using the fact that η conjugates f
to a rigid rotation, we can write the following expression for the
iterates under the lift:

f n(x0) = f n(η(0)) = η(nθ) = nθ +
∑
k∈Z

ξ̂ke2π iknθ , ∀n ∈ Z,

where the sequence {ξ̂k}k∈Z denotes the Fourier coefficients of ξ .
Then, the above expression gives us the following formula

f n(x0)− x0
n

= θ +
1
n

∑
k∈Z∗

ξ̂k(e2π iknθ − 1),

to compute θ modulo terms of order O(1/n). Unfortunately, this
order of convergence is very slow for practical purposes, since it
requires a huge number of iterates if we want to compute θ with
high precision. Nevertheless, by averaging the iterates f n(x0) in a
suitable way, we can manage to decrease the size of the quasi-
periodic remainder.
Given p ∈ N∪{0}, that we call the averaging order, we introduce

the following recursive sums of order p

S0N = f
N(x0)− x0, SpN =

N∑
j=1

Sp−1j ,

and the corresponding averaged sums of order p

S̃pN =
(
N + p
p+ 1

)−1
SpN .

Then, as is shown in [1], these averages satisfy the following
property.

Proposition 2.13. If f is the lift of an orientation-preserving analytic
circle diffeomorphism of rotation number θ ∈ D , then the following
expression holds

S̃pN = θ +
p∑
l=1

Âpl
N l
+ Êp(N), (17)

where the coefficients Âpl depend on f and p but are independent of
N. Furthermore, the remainder Êp(N) is uniformly bounded by an
expression of order O(1/Np+1).

Let us observe that Eq. (17) allows us to extrapolate the rotation
number just by computing S̃pN for different values of N , neglecting
the remainder and solving a set of linear equations.
Algorithm 2.14. Once an averaging order p is selected, we take
N = 2q iterates of the map, for some q > p, and compute the
sums {̃SpNj}j=0,...,p with Nj = 2

q−p+j. We approximate the rotation
number using the formula

θ = Θq,p + O(2−(p+1)q),

Θq,p =

p∑
j=0

c(p)j S̃
p
2q−p+j

,
(18)

where the coefficients c(p)j are given by

c(p)l = (−1)
p−l 2

l(l+1)/2

δ(l)δ(p− l)
, (19)

with δ(n) = (2n−1)(2n−1−1) · · · (21−1) for n ≥ 1 and δ(0) = 1.
The operator Θq,p corresponds to the Richardson extrapolation of
order p of Eq. (17).

As far as the behavior of the error is concerned, if we fix the
extrapolation order p and compute Θq,p, from Eq. (18) we know
that |θ − Θq,p| ≤ c/2q(p+1), for certain (unknown) constant c
independent of q (see [1]). To estimate c , we compute Θq−1,p and
consider the expression |θ − Θq−1,p| ≤ c/2(q−1)(p+1). Then, we
replace in this inequality the exact value of θ byΘq,p, as we expect
Θq,p to be closer to θ thanΘq−1,p. After that, we estimate c by

c ' 2(q−1)(p+1)|Θq,p −Θq−1,p|.

From this approximation we obtain the following (heuristic)
expression

|θ −Θq,p| ≤
ν

2p+1
|Θq,p −Θq−1,p|, (20)

where ν is a ‘‘safety parameter’’ whose role is to prevent
oscillations of c a function of q due to the quasi-periodic part. In
the computations of Section 3 we take ν = 10 (this value works
quite well as observed in [1]).
Furthermore, let us consider a family µ ∈ I ⊂ R 7→ fµ of

orientation-preserving analytic circle diffeomorphisms depending
Cd-smoothly with respect toµ. The rotation numbers of the family
{fµ}µ∈I induce a function θ : I → [0, 1) given by θ(µ) = ρ(fµ).
Let us remark that the function θ is continuous but non-smooth:
generically, there exist a family of disjoint open intervals of I , with
dense union, such that θ takes distinct constant values on these
intervals (a so-called Devil’s Staircase). However, the derivatives
of θ are defined in ‘‘many’’ points (see the discussion in [2] and
references given therein).
In order to computeDdµθ(µ0), the dth derivativewith respect to

µ at µ0, we proceed as before and define recursive sums of order
p (we omit the notation regarding the fact that themap is evaluated
at µ = µ0)

DdµS
0
N = D

d
µ(f

N
µ (x0)− x0), DdµS

p
N =

N∑
j=0

DdµS
p−1
j ,

and the corresponding averaged sums

Ddµ̃S
p
N =

(
N + p
p+ 1

)−1
DdµS

p
N .

Proposition 2.15. If θ(µ0) ∈ D and Ddµθ(µ0) exists, we obtain
(omitting the point µ0)

Ddµ̃S
p
N = D

d
µθ +

p−d∑
l=1

DdµÂ
p
l

N l
+ DdµÊ

p(N), (21)

where the remainder DdµÊ
p(N) is of order O(1/Np−d+1).
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Therefore, according to formula (21), we implement the
following algorithm to extrapolate the dth derivative of the
rotation number.

Algorithm 2.16. Once an averaging order p is selected, we take
N = 2q iterates of the map, for some q > p, and compute the
sums {Ddµ̃S

p
Nj
}j=0,...,p with Nj = 2q−p+j+d. We approximate the dth

derivative of the rotation number using the formula

Ddµθ = Θ
d
q,p,p−d + O(2−(p−d+1)q), Θdq,p,m =

m∑
j=0

c(m)j D
d
µ̃S
p
2q−m+j

,

where the coefficients c(m)j are also given by Eq. (19). The operator
Θdq,p,p−d corresponds to the Richardson extrapolation of order p−d
of Eq. (21).

In this case, we obtain the following heuristic expression for the
extrapolation error

|Ddµθ −Θ
d
q,p,p−d| ≤

ν

2p−d+1
|Θdq,p,p−d −Θ

d
q−1,p,p−d|. (22)

We remark that if we select an averaging order p, then we are
limited to extrapolate with order p− d instead of p. Moreover, p is
the maximum order of the derivative that can be computed.
Let us observe that, in order to approximate derivatives of the

rotation number, we require to compute efficiently the quantities
Ddµ(f

n
µ(x)), i.e., the derivatives with respect to the parameter of the

iterates of an orbit. If the familyµ 7→ fµ is known explicitly or it is
induced directly by amap on the annulus, several algorithms based
on recursive and combinatorial formulas are detailed in [2]. In the
rest of this sectionwedevelop recursive formulas to compute these
derivatives when the family comes from a general planar map.
Let us consider an analytic map F : C→ C, with F = F1 + iF2,

having a Cantor family of invariant curves differentiable in the
sense of Whitney, i.e., there exists a family of parameterizations
µ ∈ U 7→ γ µ defined in a Cantor set U such that γ µ(T) = Γ µ and
F(γ µ(x)) = F(x + θ(µ)), for θ(µ) ∈ D . In the following, we fix a
value of the parameter and we omit the dependence onµ in order
to simplify the notation and we write zn = F n(z0), for z0 ∈ Γ . As
in Section 2, we consider a curve γ of rotation number θ and we
assume that we have an approximation θ0. Then, we suppose that
we can select L ∈ N (depending on µ0 and θ0) in order to unfold
the curve and obtain an orbit of a circle map f = f (L,θ0) (or circle
correspondence), that has the same rotation number θ , given by

x(L,θ0)n =
1
2π
arctan

Im z(L,θ0)n

Re z(L,θ0)n

where z(L,θ0)n are given in Eq. (3). The computation of the derivatives
of x(L,θ0)n = f n(x(L,θ0)0 ), that are required to compute DµS

p
N , are

carried out as
Dµ(x(L,θ0)n )

=
1
2π
Im ((Dµzn)(L,θ0))Re z

(L)
n − Re ((Dµzn)(L,θ0))Im z

(L,θ0)
n

(Re z(L,θ0)n )2 + (Im z(L,θ0)n )2
,

where

(Dµzn)(L,θ0) =
1
L

L+n−1∑
m=n

Dµzme2π i(n−m)θ0 .

Then, given an averaging order p, we can compute the sums DµS
p
N

that allow us to extrapolate Dµθ with an error of order O(1/Np).
The only point that we need to clarify is the computation of
the derivatives Dµzn. They are easily obtained by means of the
recursive formula

Re(Dµzn) =
∂F1
∂u
(zn−1)Re(Dµzn−1)+

∂F1
∂v
(zn−1)Im(Dµzn−1)

and similarly for Im(Dµzn) replacing F1 by F2.
Furthermore, if we consider a family of analytic maps α ∈
Λ ⊂ R 7→ Fα such that for any α we have a family of invariant
curves as described before, i.e., there is a parameter µ labeling
invariant curves of Fα in a Cantor set Uα . This setting induces a
function (α, µ) 7→ θ(α, µ). Omitting the dependence on (α, µ),
let z(L,θ0)n be the unfolded iterates of an orbit that belongs to one of
the above curves. Then, we can compute the derivative of θ with
respect toα just by averaging the sums ofDα(x

(L,θ0)
n ). These iterates

are evaluated as explained in the text but using now the recursive
formulas

Re(Dαzn) =
∂F1
∂α
(zn−1)+

∂F1
∂u
(zn−1)Re(Dαzn−1)

+
∂F1
∂v
(zn−1)Im(Dαzn−1),

and similarly for Im(Dαzn) replacing F1 by F2.
The generalization of the previous recurrences to compute

high order derivatives of the rotation number is straightforward
from Leibniz and product rules (see [2]). We also refer there for
details about the use of this information to implement a Newton
method for the numerical continuation of invariant curves. In
addition, expression (21) allows us to obtain (pseudo-analytic)
asymptotic expansions relating parameters and initial conditions
that correspond to curves of prefixed rotation number (see an
application to Hénon’s map in [2]).

2.6. Higher order unfolding of curves

As is discussed in Section 2.3, if we know the rotation number
with an error ε small enough, then we can select a number L ∈ N
(depending on ε) to unfold the curve obtaining a new curve which
is a circle with an error of order O(ε) = O(1/L) — we refer to
the discussion that follows Proposition 2.8. Roughly speaking, in
the same way that the method of [1] accelerates the convergence
of the definition in (16) to the rotation number from O(1/N) to
O(1/Np+1), we introduce higher order averages to the iterates
z(L,θ0)n to accelerate the convergence of the new curve to a circle.
Concretely, by performing averages of order pwe improve the rate
of convergence from O(1/L) to O(1/Lp).
Given θ0 ∈ R, a complex sequence {zn}n∈Z and a natural number

Lwe introduce the following recursive sums of order p

S1L,θ0,n =
L+n−1∑
m=n

zme−2π imθ0 , S
p
L,θ0,n
=

L∑
l=1

S
p−1
l,θ0,n

,

and the corresponding averaged sums

S̃
p
L,θ0,n
=

(
L+ p− 1
p

)−1
S
p
L,θ0,n

.

Definition 2.17. Under the above conditions, given p ∈ N, we
define the following iterates for any integer q ≥ p

z(2
q,θ0,p)

n =

(
p−1∑
j=0

c(p−1)j S̃
p
Lj,θ0,n

)
e2π inθ0 , (23)

where Lj = 2q−p+j+1 and the coefficients c(p−1)j are given in
formula (19).

We remark that z(2
q,θ,1)

n = z(2
q,θ)

n , but that the iterates z(L,θ0,p)n
are only defined for L being a power of 2, since they are constructed
following the ideas in Algorithms 2.14 and 2.16.We see next that if
certain non-resonance conditions are fulfilled, these new iterates
belong to a quasi-periodic signal such that the corresponding
curve approaches a circle improving Proposition 2.8. For the
sake of simplicity, we assume non-resonance conditions as those
discussed in Remark 2.9.
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Proposition 2.18. Let {zn}n∈Z be a quasi-periodic signal of rotation
number θ ∈ D and averaging order p. Let us consider that ε = θ0−θ
is small and that θ0 satisfies

|1− e2π i(kθ−θ0)| ≥
2

C |k− 1|τ
∀k ∈ Z \ {1}, (24)

for some C, τ > 0. Then, there exists a periodic analytic function
γ (2

q,θ0,p) : T → C such that z(2
q,θ0,p)

n = γ (2
q,θ0,p)(nθ) and it turns

out that

‖γ (2
q,θ0,p) − γ1[γ̂

(2q,θ0,p)
1 ]‖ = O(2−qp), (25)

where the function γ1[·] was introduced in Definition 2.5. Moreover,
γ̂
(2q,θ0,p)
1 – the first Fourier coefficient of γ (2

q,θ0,p) – has the following
expression

γ̂
(2q,θ0,p)
1 =

p−1∑
j=0

c(p−1)j ∆̃
p
Lj,ε
, Lj = 2q−p+j+1, (26)

where ∆̃pL,ε is defined recursively as follows

∆1L,ε = γ̂1
1− e−2π iεL

1− e−2π iε
, ∆

p
L,ε =

L∑
l=1

∆
p−1
l,ε ,

∆̃
p
L,ε =

(
L+ p− 1
p

)−1
∆
p
L,ε.

In particular, we have that limε→0 γ̂
(2q,θ0,p)
1 = γ̂1.

Proof. This result is obtained by means of the same arguments
used in [1]. First, we claim that the following expression follows
by induction

S̃
p
L,θ0,n
= ∆̃

p
L,εe
−2π inε

+

(p−1∑
l=1

A
p
l,θ0
(nθ)

(L+ p− l) · · · (L+ p− 1)
+ E

p
L,θ0
(nθ)

)
e−2π inθ0 , (27)

where the coefficients {Apl,θ0(nθ)}l=1,...,p−1 are given by

A
p
l,θ0
(nθ) = (−1)l+1(p− l+ 1) · · · p

×

∑
k∈Z\{1}

γ̂k
e2π i(l−1)(kθ−θ0)

(1− e2π i(kθ−θ0))l
e2π iknθ

and the remainder is

E
p
L,θ0
(nθ) =

(−1)p+1p!
L · · · (L+ p− 1)

∑
k∈Z\{1}

γ̂k

×
e2π i(p−1)(kθ−θ0)(1− e2π iL(kθ−θ0))

(1− e2π i(kθ−θ0))p
e2π iknθ .

For example, we consider the sum for p = 2

S2L,θ0,n =
L∑
l=1

l+m−1∑
m=n

zme−2π imθ0 =
L∑
l=1

l+m−1∑
m=n

∑
k∈Z

γ̂ke2π im(kθ−θ0)

=

L∑
l=1

l+m−1∑
m=n

γ̂1e−2π imε

+

∑
k∈Z\{1}

γ̂k

L∑
l=1

l+m−1∑
m=n

e2π im(kθ−θ0) = ∆2L,εe
−2π inε

+ L
∑
k∈Z\{1}

γ̂k
e2π in(kθ−θ0)

1− e2π i(kθ−θ0)

−

∑
k∈Z\{1}

γ̂k
e2π i(n+1)(kθ−θ0)(1− e2π iL(kθ−θ0))

(1− e2π i(kθ−θ0))2
.

Dividing this expression by L(L + 1)/2, we obtain (27) and we
proceed inductively to prove the claim. Hence, it is clear that the
sequence z(2

q,θ0,p)
n in (23) corresponds to a quasi-periodic signal

since it is a linear combination of quasi-periodic functions.
Using the analyticity assumptions and estimates in (24) it turns

out that the obtained remainder is of orderEpL,θ0(nθ) = O(1/Lp). To
extrapolate in this expressionusing the coefficients (19)we require
the denominators (L+ p− l) · · · (L+ p− 1) in (27) not to depend
on p. To this end, we write

S̃
p
L,θ0,n
= ∆̃

p
L,εe
−2π inε

+

(p−1∑
l=1

Â
p
l,θ0
(nθ)

Ll
+ Ê

p
L,θ0
(nθ)

)
e−2π inθ0 ,

by redefining the coefficients {Âpl,θ0(nθ)}l=1,...,p−1, also indepen-
dent of L, where Ê

p
L,θ0
(nθ) differs from E

p
L,θ0
(nθ) only by terms of

orderO(1/Lp). Hence, we can use the Richardson extrapolation us-
ing a maximum number of iterates L = 2q and introduce the cor-
responding expression into (23), thus obtaining

z(2
q,θ0,p)

n =

(p−1∑
j=0

c(p−1)j ∆̃
p
Lj,ε

)
e2π inθ

+

p−1∑
j=0

c(p−1)j Ê
p
Lj,θ0

(nθ) = γ (2
q,θ0,p)(nθ).

Therefore, the estimate (25) is obtained after observing that the
first Fourier coefficient is given by Eq. (26). Finally, using that∑p−1
j=0 c

(p−1)
j = 1 we get limε→0 γ̂

(2q,θ0,p)
1 = γ̂1. �

2.7. Extrapolation of Fourier coefficients

Our goal now is to adapt the previous methodology in order to
obtain the Fourier coefficients of a quasi-periodic signal of known
rotation number. Let us recall that standard FFT algorithms are
based in equidistant samples of points. Since the iterates of a quasi-
periodic signal are not distributed in such a way on T, one has
to implement a non-equidistant FFT or resort to interpolation of
points (see for instance [24,5,32]). We avoid this difficulty using
the fact that the iterates are equidistant ‘‘according with the quasi-
periodic dynamics’’.
We consider a quasi-periodic signal zn = γ (nθ) of rotation

number θ ∈ D as given by Definition 2.1. Let us observe that we
can compute the tth Fourier coefficient, γ̂t , as the average of the
quasi-periodic signal zne−2π intθ . For this purpose, we introduce the
following recursive sums of order p

S0N,t = zNe
−2π iNtθ , S

p
N,t =

N∑
n=1

S
p−1
n,t , (28)

and their corresponding averages

S̃
p
N,t =

(
N + p− 1

p

)−1
S
p
N,t .

Proposition 2.19. For any analytic quasi-periodic signal zn = γ (nθ)
of rotation number θ ∈ D the following expression is satisfied

S̃
p
N,t = γ̂t +

p−1∑
l=1

A
p−1
t,l

N l
+ E

p
t (N),

where the coefficients A
p
t,l are independent of N. Furthermore, the

remainder E
p
t (N) is uniformly bounded by an expression of order

O(1/Np).
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This proposition, that can be proved analogously as Proposi-
tion 2.13, allows us to obtain the following extrapolation scheme
to approximate γ̂t .

Algorithm 2.20. Once an averaging order p is selected, we take
N = 2q iterates of the map, for some q > p, and compute the
sums {SpNj,t}j=0,...,p with Nj = 2

q−p+j+1. We approximate the tth
Fourier coefficient using the formula

γ̂t = Φq,p,t + O(2−pq), Φq,p,t =

p−1∑
j=0

c(p−1)j S̃
p
Nj,t
,

using the same formula (19) for the coefficients c(p−1)j .

The extrapolation error of this algorithm can be estimated by
means of the following (heuristic) expression

|γ̂t − Φq,p,t | ≤
ν

2p
|Φq,p,t − Φq−1,p,t |. (29)

Remark 2.21. As was mentioned in the introduction, the typical
approach to compute an invariant curve is to look for it in terms of
its Fourier representation. One of themain features of themethod-
ology discussed in this paper is that we can compute these ob-
jects looking for an initial condition on the curve (see Section 3.3
and also examples in [2,1]) without computing simultaneously any
Fourier expansion or similar approximation. Then, themethod dis-
cussed above allows us to obtain ‘‘a posteriori’’ Fourier coefficients
of the parameterization from the iterates of the mentioned initial
condition.

Remark 2.22. If wewant to computeM Fourier coefficients, notice
that Algorithm 2.20 involves a computational cost of orderO(NM)
that seems to be deceiving when comparing with FFT methods.
Nevertheless, it is clear that the sums (28) can be also computed as
it is standard in FFT since they also satisfy the Danielson–Lanczos
Lemma (see for example [30]), thus obtaining a cost of order
O(N logN) for computing N coefficients. However, unlike in the
other algorithms presented in this paper, this fast implementation
requires to store the iterates of the map.

Remark 2.23. We point out that with Algorithm 2.20 we can com-
pute isolated coefficients, meanwhile FFT computes simultane-
ously all the coefficients up to a given order. This can be useful
if one is interested only in computing families of coefficients with
high precision, as for example it is done in [33] – using similar ideas
– for coefficients corresponding to Fibonacci numbers.

3. Some numerical illustrations

In this part of the paper we illustrate several features of the
methods discussed in Section 2. To this end, we have selected three
different contexts that we summarize next.

• First, in Section 3.1, we study invariant curves inside the Siegel
domain of a quadratic polynomial. We use this example, where
the rotation number is known ‘‘a priori’’, as a test of the
methods. In particular, we show how difficult it is to unfold a
given invariant curve as a function of the arithmetic properties
of the selected rotation numbers. Furthermore, we introduce
two simple criteria to decide if the projection of the iterates of
the invariant curve induces a circle map.
• Then, in Section 3.2, we dealwith a toymodel obtained by fixing
the Fourier coefficients and the rotation number that define a
non-embedded quasi-periodic signal. In this example we study
the behavior of the unfolded curve γ (L,θ0) and we check the
estimates in Lemma 2.6 and Proposition 2.8. Furthermore, in
order to simulate uncertainty coming from experimental data
we add to this signal a normally distributed random error and
we show that the method still provides very accurate results to
compute the rotation number of the signal.
• In Section 3.3 we consider the study of quasi-periodic invariant
curves for planar non-twist maps. For the standard non-twist
map, we apply Algorithm 2.14 to compute the rotation number
in cases where we can compute easily the ‘‘lift’’ of the circle
correspondence induced by the direct projection, and also in
a very folded curve that we require to unfold. Moreover, we
unfold a shearless invariant curve comparing the methods in
Sections 2.3 and 2.6. For Hénon’s map, we apply Algorithm 2.16
to illustrate the computations of derivatives of the rotation
number from the ‘‘lift’’ of circle correspondences induced by a
family of invariant curves. Finally, we use our methodology to
continue numerically a folded (labyrinthic) invariant curve in a
more degenerate family of maps.

Let us observe that, since all the recursive sums are evaluated
using lifts rather than maps, they turn out to be very large when
we increase the order of averaging and the number of iterates.
Concretely,

SpN = O(Np+1), DdµS
p
N = O(Np+1),

S
p
L,θ0,n
= O(Lp), S

p
N = O(Np).

A natural way to overcome this problem is to do computations
by using a representation of real numbers using a computer
arithmetic having a large number of decimal digits. Moreover, we
have to be very carefulwith themanipulation of this large numbers
to prevent the loss of significant digits (for example, by storing
separately integer and decimal parts) and beware not to ‘‘saturate’’
them.
The presented computations have been performed using a

C++ compiler and multiple arithmetic (when it is required) has
been provided by the routines double–double and quad–double
package of [34], which include a double–double data type of
approximately 32 decimal digits and a quadruple–double data type
of approximately 64 digits.

3.1. Siegel domain of a quadratic polynomial

Let F : U → C be an analytic map, where U ⊂ C is an open
set, such that F(0) = 0 and F ′(0) = e2π iθ . It is well known that if
θ is a Brjuno number, then there exists a conformal isomorphism
that conjugates F to a rotation around the origin of angle 2πθ
(see [26]). The conjugation determines a maximal set (called Siegel
disk) which is foliated by invariant curves of rotation number θ .
In particular, we consider the case of the quadratic polynomial

F(z) = λ(z − 1
2 z
2),with λ = e2π iθ , for several rotation numbers θ .

Concretely,we use θ = θ (s) ∈ (0, 1)which is a zero of θ2+sθ−1 =
0, with s ∈ N. It is clear that θ (s) is a Diophantine number for any s
butwith a larger constant C (recall Definition 2.3)when s increases.
Note that θ (s) = 1/s− 6/s3 + O(1/s5) shows that, for large s, θ (s)
is ‘‘close’’ to a rational number.
Even in this simple example, the direct projection on the

angular variable does not always give a diffeomorphism on T.
For example, in the left plot of Fig. 3 we show the curve that
corresponds to θ = θ (50) for the initial condition z0 = 0.8. The
right plot of Fig. 3 corresponds to the averaged iterates z(200,θ

(50))
n

according to (3). As expected, the new curve is closer to a circle
centered at the origin.
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Fig. 3. Left: iterates (in the complex plane) of the point z0 = 0.8 for the quadratic polynomial with θ = θ (50) . Right: averaged iterates z
(200,θ (50))
n of this curve given by (3).
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Fig. 4. Unfolding of the invariant curve corresponding to the point z0 = 0.8 for the quadratic polynomial. Left plot: we show, versus the integer s, the value of L for which
the curve γ (L,θ

(s)) is ‘‘almost’’ a circle (solid line, right vertical axis) and the minimum value of L for which the projection defines a circle map (dashed line, left vertical axis).
Right plot: we plot function (30) for the averaged curve of Fig. 3 (left plot) versus the arc parameter α on T described in Remark 3.1.
Our first goal is to emphasize how difficult it becomes to unfold
the invariant curve of the point z0 = 0.8 depending on the chosen
rotation number θ (s) (as s increases). To this end, we introduce
a criterion to decide when the curve is ‘‘close enough’’ to be a
circle. Given a fixed value of θ (s), we choose L = 1 and compute
{z(L,θ

(s))
n }n=1,...,50 000 iterates, the mean value of their modulus,
and the corresponding standard deviation. Then, if the relative
standard deviation is less than 0.5%, we consider that the curve
γ (L,θ

(s)) is close enough to be a circle or we increase L otherwise.
The continuous line in the left plot of Fig. 4 (using the vertical
axis on the right) shows the obtained value of L versus the integer
s that labels the rotation number θ (s). As expected, we require
larger values of L when the rotation number is closer to a rational
number.
Let us observe that in practice we do not require to take such

large values of L to unfold the curve. Rather than obtaining a circle,
we are interested in unfolding the curve in a way that can be
projected smoothly into a circle. To this end, we propose a simple
criterion to decide if the curve is already unfolded or not. This can
be done by computing the changes of sign of the function

z ∈ γ (T) 7−→ det(vt(z), vr(z)) ∈ [−1, 1], (30)

where vt(z) is the oriented (in the sense of the dynamics) unitary
tangent vector of γ at the point z and vr(z) the corresponding
unitary radial vector with respect to the origin. It is clear that
if det(vt(z), vr(z)) changes sign at some point, then the curve γ
is still folded. Moreover, if γ (T) is exactly a circle, we have that
det(vt(z), vr(z)) is constant for all z ∈ γ (T), taking the value−1 or
1, depending if the iterates rotate clockwise or counterclockwise.
As an example, we apply this criterion to the invariant curve
shown in the left plot of Fig. 3. The function (30) is shown in the
right plot of Fig. 4. The horizontal axis in this plot corresponds
to the sampling of points on the curve distributed according to
Remark 3.1. Let us observe that this function oscillates due to the
folds of the invariant curve, and there are changes of sign since the
projection is not well posed. Now, we unfold this invariant curve
for different values of θ (s) looking for the minimum value of L such
that min(det(vt(z), vr(z))) > 0. The discontinuous line in the left
plot of Fig. 4 (using the vertical axis on the left) shows this value of
L versus s, and we observe that it is much smaller than the value of
L for which the curve is almost a circle.

Remark 3.1. Function (30) is evaluated by computing the tangent
vector vt(z) using finite differences. To this end, we require a good
distribution of points along the curve γ that are obtained using the
fact that we know the rotation number (at least approximately).
In particular, we fix a number of points M to discretize the curve
parameterized by an ‘‘arc parameter’’ α ∈ [0, 1) on T defined by
the quasi-periodic dynamics. We start with a point z0 ∈ γ (T)
that we identify with the reference parameter α = 0. Then, we
compute the next iterate of the map and we update the parameter
α ← α + θ0 (mod 1). Defining i as the integer part of αM and
if dT(α, i/M) < 10−4 we store the iterate in the position ith of
an array. We iterate this process till we store M points on γ (T).
Observe that these computed points are ordered following the
dynamics of the curve sowe can compute the tangent vector just by
finite differences.Wewill consider thatmin(det(vt(z), vr(z))) > 0
if the minimum value at theM selected points is positive.
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Fig. 6. Left: we plot function (32) versus L. Right: we plot function (33) versus L using the approximation θ0 = θ + 1/250..
Table 1
Fourier coefficients defining expression (31) and the numerical error obtained
in their approximation using the method of Section 2.7. The estimated error is
obtained by means of formula (29).

Coefficient Value Estimated error Real error

γ̂−1 1.4–2i 6× 10−40 1× 10−40

γ̂0 4.1+ 1.34i 6× 10−41 9× 10−42

γ̂1 −2+ 2.412i 5× 10−41 8× 10−42

γ̂2 −2.5− 1.752i 4× 10−40 8× 10−41

3.2. Study of a quasi-periodic signal

We consider a quasi-periodic signal zn = γ (nθ), with θ =
(
√
5 − 1)/2 ∈ D , as introduced in Definition 2.1. Interest is

focused in the case where γ is not an embedding, and hence the
corresponding orbit is not related to a planar map. In particular,
we consider

γ (x) = γ̂−1e−2π ix + γ̂0 + γ̂1e2π ix + γ̂2e4π ix, (31)

where the Fourier coefficients, given in Table 1, have been selected
in such a way that the curve γ (T) intersects itself.
First, we show the initial curve γ (T) (left plot of Fig. 5) and

averaged curves γ (L,θ)(T) (right plot of Fig. 5) corresponding to
L = 2, 3, 4. Observe that we are using the exact value of the
rotation number to compute the averaged iterates given by (3). As
expected, the new curves are unfolded and become close to a circle.
Since in this problem we know the rotation number, we can

perform a simple test of the method presented in Section 2.7
computing the non-zero Fourier coefficients of the initial curve. To
this end we use 64-digit arithmetics (quadruple–double data type
from [34]) taking an averaging order p = 9 and N = 223 iterates of
themap. Both the estimated extrapolation error using (29) and the
real one are shown in Table 1 observing a very good agreement.
Our goal now is to study the dependence with respect to L of

the norms in Lemma 2.6 and Proposition 2.8. In Fig. 6 (left) we plot
the function

L 7−→ log10

(
‖γ (L,θ) − γ1[γ̂1]‖

|γ̂1|

)
, (32)

that can be evaluated from expression (5) using the exact value of
the rotation number. We observe that the computed points can be
bounded from above in a sharp way by 3.19/L.
On the other hand, assuming that we only have an approxima-

tion θ0 of the rotation number θ , we want to study the estimate (8)
of Proposition 2.8. Concretely, we compute the function

L 7−→ log10

(
‖γ (L,θ0) − γ1[γ̂

(L,θ0)
1 ]‖

|γ̂
(L,θ0)
1 |

)
(33)

using the approximation θ0 = θ + 1/250. In the right plot of
Fig. 6 we observe that this function is close to be periodic, of
period approximately 250, and it reaches a minimum at L ≈
125 (mod 250) so the bound given in Proposition 2.8 turns out to
be quite good in this case.
It is very interesting to study the effect of a random error in

the evaluation of iterates, trying to simulate that the source of our
quasi-periodic signal is experimental data. Concretely, we consider
the iterates zn = γ (nθ) + εxn, where the real and the imaginary
parts of the noise xn are normally distributed with zero mean and
unit variance. Of course, the new iterates zn donot belong to a curve
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Fig. 7. Effect of a random noise in the quasi-periodic signal (31). Left: Unfolded clouds of points (in the complex plane) corresponding to the curves in the right plot of Fig. 5
using ε = 0.5 (see text for details). Right: For different noises, taken as ε = 10−δ for δ = 1, . . . , 10,∞, we plot log10 of the real error versus q in the computation of the
rotation number (using p = 9 and 2q iterates). The data is ‘‘unfolded’’ using L = 10 and θ0 = θ + 1/250.
but they are distributed in a cloud around the curve in Fig. 5 (left
plot). If we compute the iterates z(L,θ0)n , using the approximation
θ0 = θ + 1/250, then it turns out that we can ‘‘unfold’’ the cloud
of points in a similar way. For example, in the left plot of Fig. 7 we
showunfolded clouds for an error of size ε = 0.5, using L = 2, 3, 4,
i.e., the same values that we used in Fig. 5 (right plot).
Now we focus on the effect of this external noise when com-

puting the rotation number θ of the ‘‘circle map’’ thus obtained.
The size of the considered noise ranges as ε = 10−δ for δ =
1, . . . , 10,∞. Although we observe in Fig. 5 (right plot) and Fig. 7
(left plot) that the ‘‘projection’’ is well defined for L = 4, in the
following computations we take L = 10 since for this value the
corresponding curve is almost a circle. To the constructed ‘‘circle
map’’ we apply Algorithm 2.14 to refine the numerical computa-
tion of the rotation number. As implementation parameters we
take an averaging order p = 9 and N = 2q iterates of the map,
with q = 9, . . . , 22. The random numbers xn are generated using
the routine gasdev from [30] for generating normal (Gaussian)
deviates. Computations are performed using 32-digit arithmetics
(double–double data type from [34]).
In the right plot of Fig. 7 we show, in log10 scale, the error

in the computation of the rotation number with respect to q for
different values of ε. Let us observe that for ε = 0 (lowest curve)
the extrapolation error is saturated around 10−31 for q ≥ 18. We
notice that this error is of the order of the selected arithmetics. The
other curves in the right Fig. 7 correspond to increasing values of
ε (from bottom to top). Let us remark that in all cases the random
error is averaged in a very efficient way, and it turns out that the
rotation number is approximated with an error of order ε×10−10.

3.3. Study of invariant curves in non-twist maps

Finally, we apply the developed methodology to the study of
quasi-periodic invariant curves of non-twist maps. It is known
that the Aubry–Mather variational theory for twist maps does not
generalize to the non-twist case, but there is an analogue of KAM
theory (see for example the works of [35,36]). However, the loss of
the twist condition introduces different properties than in the twist
case, for example the fact that the Birkhoff Graph Theorem does
not generalize. A classical mechanism that creates folded invariant
curves is called reconnection. Reconnection is a global bifurcation of
the invariantmanifolds of two ormore distinct hyperbolic periodic
orbits having the samewinding number (we refer to [25,36,37] and
references therein for discussion of this bifurcation).
Let us start by considering the family of area preserving non-

twist maps given by

Fa,b : (x, y) 7−→ (x̄, ȳ) =
(
x+ a(1− ȳ2), y− b sin(2πx)

)
, (34)
where (x, y) ∈ T × R are phase space coordinates and a, b
parameters. This family is usually called standard non-twist map
and it is studied as a paradigmatic example of a non-twist family.
Although this family is non-generic (it is degenerate in the sense
that it contains just one harmonic), it describes the essential
features of non-twist systems with a local quadratic extremum in
the rotation number.
It is clear that the standard non-twist map violates the twist

condition along the curve y = b sin(2πx) which is called non-
monotone curve. Only orbits with points falling on this curve and
orbits with points on both sides of it are affected by the non-
twist property. Among these orbits, of special interest is the one
that corresponds to an invariant curve having a local extremum
in the rotation number, called shearless invariant curve γS . For the
standard non-twistmap this curve is characterized by the fact that,
when it exists, it must contain the points

(x(0)± , y
(0)
± ) =

(
±
1
4
,±
b
2

)
(x(1)± , y

(1)
± ) =

(
a
2
±
1
4
, 0
)
,

that are called indicator points (see [38]). These points are used
extensively in the literature to study the breakdown of shearless
invariant curves (we refer for example to [24,37]).
In the left plot of Fig. 8 we show some invariant curves close

to a reconnection scenario for a = 0.615 and b = 0.4. We observe
somemeandering curves, i.e., curves that are folded around periodic
orbits in such a way that they are not graphs over x. In addition,
we plot the four indicator points in order to identify the shearless
invariant curve. Actually, the invariant curve that we used as an
illustration in Section 2.1 (see Fig. 1) is precisely this shearless
curve in the complex variable z = eyeix.
First, we focus on this shearless curve computing its rotation

number by applying the extrapolation method of Algorithm 2.14
to the circle correspondence obtained by direct projection (see
the discussion in Sections 1 and 2.1) on the angular variable x.
Since the folds of this example are relatively small and the rotation
number is quite big – it is close to 0.6, i.e., the winding number
of the nearby periodic orbits – this direct projection allows us to
compute numerically the lift of this circle correspondence without
unfolding the curve. In Table 2we give the estimated extrapolation
error, by means of formula (20), in the computation of the rotation
number of γS , for different values of the extrapolation order p
and number of iterates 2q. Computations are performed using
32-digit arithmetics (double–double data type from [34]). Let us
observe that the extrapolation method allows us to obtain a very
good approximation of the rotation number with a relative small
number of iterates, in contrast with p = 0 which corresponds
to the definition of the rotation number — let us mention that
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Fig. 9. Left: we plot in the xy-plane the shearless curve γS = γ (1,θ0) in Fig. 8 and the averaged curve γ (70,θ0) , where θ0 = Θ21,7 . Right: we plot function (30) on the previous
curves versus the arc parameter α on T described in Remark 3.1..
Table 2
Estimated extrapolation error, using formula (20), in the approximation of the rotation number of the shearless curve of the map (34) that corresponds to a = 0.615 and
b = 0.4.

p q = 10 q = 11 q = 12 q = 13 q = 14 q = 15 q = 16 q = 17 q = 18 q = 19 q = 20 q = 21

0 1.4e−03 7.3e−04 1.9e−04 1.9e−04 8.1e−05 3.6e−05 1.1e−05 1.0e−05 5.0e−06 2.5e−06 1.0e−06 3.4e−07
1 7.9e−06 5.5e−06 2.6e−07 8.1e−07 1.4e−07 6.9e−08 3.7e−09 1.9e−09 1.2e−09 2.5e−11 8.8e−12 6.4e−12
2 3.8e−07 8.6e−09 3.0e−08 4.5e−08 4.6e−09 2.1e−10 3.7e−11 1.4e−12 8.5e−13 1.9e−14 4.1e−16 1.3e−16
3 1.6e−05 9.5e−11 1.0e−09 8.5e−10 7.0e−12 1.2e−11 5.0e−13 6.5e−14 2.3e−16 1.2e−16 1.6e−17 7.1e−22
4 1.6e−05 1.2e−07 1.9e−09 5.2e−11 2.2e−12 8.9e−13 2.0e−14 2.8e−16 1.0e−17 1.9e−19 1.2e−20 8.8e−23
5 4.9e−06 7.0e−07 2.1e−08 5.0e−12 6.9e−14 2.2e−14 3.3e−17 1.7e−17 2.0e−19 6.0e−21 4.0e−24 8.2e−25
6 2.6e−06 1.0e−06 2.8e−08 4.5e−11 4.5e−13 3.5e−15 3.6e−18 1.9e−18 9.3e−21 4.5e−23 3.3e−25 2.0e−27
7 4.7e−06 8.8e−07 8.5e−09 4.5e−10 2.7e−12 7.7e−16 1.6e−18 6.9e−20 2.1e−23 2.5e−24 8.6e−27 5.9e−29
some recent works like [37] use the definition to approximate the
rotation number. According to our estimates, the best computed
approximation of the rotation number turns out to be
θ ' Θ21,7 = 0.59918902772269558576430971159247.
In addition, we compute the rotation number of meandering

curves in the left plot of Fig. 8 using an averaging order p = 7
and 221 iterates of the map. In Fig. 8 (right plot) we show the
rotation number profile in this reconnection scenario. Concretely,
we compute the rotation number for the orbits corresponding to
1000 points along an straight line connecting (x, y) = (0.21, 0.15)
and (x, y) = (0.29, 0.235), that are close to the elliptic periodic
orbits ofwindingnumber 3/5. As far as the estimated extrapolation
error is concerned, 93% of the points have an error less than 10−26
and 98% of the points have an error less than 10−20. The minimum
value in the profile corresponds to the rotation number of γS , and
we observe the loss of uniqueness of invariant curves when the
twist condition fails.
Remark 3.2. Of course, the points in the left plot of Fig. 8 to
which we assign a rational rotation number (the profile is locally
constant) cannot belong to an invariant curve. These points
correspond to ‘‘secondary invariant curves’’ or ‘‘islands’’, which are
invariant curves of a suitable power of the map, that appear close
to the elliptic periodic orbits. Thus, for a point on these islands,
what we obtain is the ‘‘winding number’’ of the periodic orbit in
the middle of the island. We refer to discussions in [2,1].

Now, let us illustrate the methodology of Section 2 in order to
unfold the shearless invariant curve γS . To this end, we complexify
phase space by means of the change of variables z = eye2π ix

and compute the new quasi-periodic signal {z(L,θ0)n } using the
approximation θ0 = Θ21,7. In Fig. 9 (left plot) we show the original
curve γS , corresponding to L = 1, together with the curve γ (70,θ0)
that is less folded but its projection is not well defined yet. In Fig. 9
(right plot) we show function (30) for γS and γ (70,θ0). Actually, the
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Table 3
Estimated distance to be a circle of the higher order averaged curve γ (2

q,θ0,p) , where θ0 = Θ21,7 , for the shearless curve γS in Fig. 8. The meaning of the symbols is the
following: (−) if the curve is still folded, (=) if the curve is unfolded but not close enough to a circle and (+) if the curve is close to be a circle.

q p = 1 p = 2 p = 3 p = 4 p = 5

6 2.8e−02 (−) 5.6e−02 (−) 7.1e−02 (−) 7.5e−02 (−) 7.4e−02 (−)
7 1.1e−01 (+) 1.5e−01 (=) 1.2e−01 (=) 7.7e−02 (−) 4.2e−02 (−)
8 4.0e−02 (+) 5.6e−02 (+) 9.6e−02 (=) 1.4e−01 (=) 1.4e−01 (=)
9 1.8e−03 (+) 4.4e−03 (+) 3.4e−02 (+) 6.7e−02 (+) 6.4e−02 (=)
10 2.8e−03 (+) 3.6e−05 (+) 7.8e−03 (+) 1.2e−02 (+) 1.1e−02 (+)
11 2.0e−03 (+) 3.5e−05 (+) 1.0e−06 (+) 2.6e−04 (+) 1.9e−03 (+)
12 3.0e−03 (+) 2.1e−04 (+) 7.6e−06 (+) 2.4e−06 (+) 1.3e−04 (+)
13 9.6e−04 (+) 1.1e−04 (+) 3.0e−06 (+) 9.8e−08 (+) 1.5e−08 (+)
14 8.0e−04 (+) 2.0e−05 (+) 3.8e−07 (+) 7.7e−08 (+) 4.5e−09 (+)
15 3.0e−04 (+) 3.5e−06 (+) 1.7e−07 (+) 1.9e−08 (+) 8.0e−10 (+)
16 2.0e−05 (+) 8.4e−07 (+) 1.9e−08 (+) 9.3e−10 (+) 1.8e−11 (+)
Fig. 10. Top-left: Higher order meandering curve for the standard non-twist map in the complexified phase space using z = e
√
2π |a|ye2π ix . Top-right: Circle correspondence

obtained from the direct projection – defined in (1) – of the iterates of the curve in top-left plot. Bottom: We show the curves γ (L,θ0) , where θ0 = 0.0429853252, for L = 50
(left) and L = 150 (right) in the complex plane.
projection into a circle iswell posed for L = 75 and the curve is very
close to be a circle – the minimum of function (30) is' 0.999897
– for L = 240.
Furthermore, we try to unfold γS using higher order averages to

accelerate the convergence to a circle. To this end, we still fix θ0 =
Θ21,7 and apply thehigher ordermethod explained in Section 2.6 to
unfold the curve, using different values of the extrapolation order p
and number of iterates L = 2q. In Table 3 we present the estimated
error whenwe compare the new curve with a circle. Since we have
constructed a sequence of curves tending to a circle – up to small
error – we estimate the distance of these curves to be a circle just
looking at the number of digits that coincide for a point on these
curves when we increase the number of iterates from 2q−1 to 2q,
this is,weuse the formula |z(2

q,θ0,p)
0 −z(2

q−1,θ0,p)
0 |, where θ0 = Θ21,7.

The adjacent symbol in this table indicates if the projection of the
invariant curve induces a circle map, according to the criterion of
the sign of function (30) — as explained in Remark 3.1. We put the
symbol (−) if theminimumof function (30) is negative, we put (=)
if this minimum is positive but less than 0.99 andwe put (+) if this
minimum is between 0.99 and 1. As expected, for p = 1 and q = 6
the curve is still folded since z(2

q,θ0)
n = z(2

q,θ0,1)
n and 26 = 64 < 75.

Let us observe that whenwe increase the order of averagingwe re-
quire more iterates in order to appreciate an improvement in the
extrapolation. Nevertheless, after this transition the method turns
out to bemuchmore efficient (for example, see the row for q = 16).
A further step is to consider the case of the so-called higher order

meanderings that appear due to reconnections involving periodic
orbits in a neighborhood of ameandering curve. The considered ex-
ample is selected from [36] andwe refer there for a constructive ex-
planation. Concretely, we consider the values a = −0.071963192
and b = −0.44614508325727 and the curve that corresponds
to the initial condition (x0, y0) = (0,−2.00377736103447). In
Fig. 10 (left plot) we show this higher order meandering curve
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Fig. 11. We plot the function θ0 7→ |z
(L,θ0)
0 | using the values L = 30 (left) and 60 (right) for the meandering curve in Fig. 10. The real value of the rotation number is around

0.04332244074906551 (see the text for details).
Table 4
Relevant maxima of the function θ0 ∈ [0, 1] 7→ |z

(L,θ0)
0 | for different values of L corresponding to the invariant curve in Fig. 10 (top-left plot). In parentheses we show the

value of the function at the local maxima. We write in bold the value of the maximum that approximates the rotation number of the curve.

L = 30 L = 60 L = 90 L = 120 L = 150

0.9577778096 (0.74) 0.1303407362 (0.95) 0.1302228135 (0.86) 0.1302697604 (0.82) 0.1301364744 (0.84)
0.1371713373 (0.67) 0.9562939918 (0.75) 0.9565703718 (0.77) 0.9565427675 (0.72) 0.9569018161 (0.70)
0.0465959056 (0.54) 0.1734756047 (0.74) 0.0870283875 (0.68) 0.0870160838 (0.62) 0.0865975344 (0.65)
0.2046548291 (0.50) 0.0872525690 (0.73) 0.1733546296 (0.64) 0.0437697415 (0.59) 0.0429853252 (0.62)
0.3084897181 (0.29) 0.2166379341 (0.68) 0.0437231352 (0.61) 0.1737224972 (0.58) 0.1736243983 (0.61)
0.8683260095 (0.23) 0.0435679422 (0.61) 0.2169984090 (0.58) 0.2172096615 (0.54) 0.2171559900 (0.57)
0.3631744037 (0.19) 0.2593740449 (0.50) 0.2601564576 (0.42) 0.2604187823 (0.38) 0.2606176626 (0.40)
0.4154453760 (0.15) 0.3024868348 (0.41) 0.3037390964 (0.34) 0.3041163591 (0.32) 0.3041431703 (0.34)
in the complex plane by means of the change of variables z =
e
√
2π |a|ye2π ix.
Let us observe that the invariant curve of this example is folded

in a verywildway. Actually, in the top-right plot of Fig. 10we show
the ‘‘lift’’ toR of the circle correspondence thatwe obtain bymeans
of the direct projection on the angular variable x. This plot has been
obtainedprojecting iterates of an orbit of the curve, andweobserve
that it is not easy to compute numerically this lift just looking at
isolated iterates of the circle correspondence — without any ‘‘a
priori’’ information on the rotation number. Therefore, we apply
Laskar’s method of frequency analysis (implemented as described
in Section 2.4) to obtain a sufficiently good approximation of the
rotation number in order to unfold the curve. Maxima chasing is
performed looking for localmaxima of θ0 7→ |z

(L,θ0)
0 | in the interval

[0, 1]. These maxima are obtained using a partition of 500 points
of this interval and asking for a tolerance εGSS = 10−10 in the
golden section search. In Table 4 we show the relevant maxima,
using ν = 5 in Eq. (13), for several values of L. Moreover, in Fig. 11
we plot the function θ0 7→ |z(L,θ0)0 |, for L = 30 (left plot) and
L = 60 (right plot). Of course, when we increase L we observe a
larger number of maxima but the width of the peaks is reduced so
their approximation is improved.
As explained in Section 2.4, we assume that one of these

maxima approximates the rotation number of the curve in such a
way that the rest are multiples of it (modulo 1). To select which
maximum approximates the rotation number, we compute the
indicators kij, κi, dij and δi given in Eqs. (14) and (15). For example,
the values corresponding to L = 60 are given in Tables 5 and 6.
Let us point out that the maximum corresponding to the ith row
in these tables can be read in the ith row of Table 4. If we select
the 2nd or the 6th maxima as the approximation θ0 of the rotation
number, then the remaining peaks are approximated – with the
error shown in Table 6 – as multiples kθ0 (modulo 1) using smaller
values for k than if we make any other choice (see Table 5). These
two peaks correspond to approximations of 1 − θ and θ , and we
Table 5
Indicators kij and κi corresponding to the step ‘‘rotation number selection’’
described in Section 2.4. We use L = 60.

i ki1 ki2 ki3 ki4 ki5 ki6 ki7 ki8 κi

1 1 −8 9 −7 −6 8 2 10 51
2 −3 1 −4 −2 −5 −1 −6 −7 29
3 −5 −6 1 −11 7 6 13 −4 53
4 −10 −12 2 1 −9 −11 3 −8 56
5 −4 9 10 5 1 −9 −8 6 52
6 3 −1 4 2 5 1 6 7 29
7 −11 −4 −7 8 −3 4 1 5 43
8 7 −10 −6 −3 4 10 −9 1 50

select the 6th one as an approximation of the rotation number
since is follows the positive orientation of the dynamics. We write
this peak in bold in Table 4.
Let us refine the approximation of the rotation number from the

6th peak. In Fig. 10 we plot γ (L,θ0) using the approximation θ0 =
0.0429853252 for L = 50 (bottom-left plot) and L = 150 (bottom-
right plot). We observe that for L = 50 the curve is still very folded
but ifwe take L = 150, even thought there are still someharmonics
that fold the curve, we are close to a circle centered at the origin
and the projection gives us a circle correspondence that we can
‘‘lift’’ toR easily, since the size of the folds is small when compared
with θ0. Finally, we compute the rotation number of this invariant
curve from the circle correspondence obtained by means of this
unfolding procedure. We apply Algorithm 2.14, using p = 7 and
q = 21, to the iterates xn = arg(z

(150,θ0)
n )/2π thus obtaining the

approximationΘ7,21 = 0.04332244074906551 with an estimated
error 1.7× 10−13.
We observe that the computation of the rotation number does

not work as well as in previous examples, but an error of order
10−13 is very satisfying in this context since a huge number of
Fourier coefficients is required to approximate the curve with
this error and the rotation number is close to resonance (see
also the discussion regarding Hénon’s map example). To show
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Table 6
Indicators dij and δi corresponding to the step ‘‘rotation number selection’’ described in Section 2.4. We use L = 60.

i di1 di2 di3 di4 di5 di6 di7 di8 δi

1 0.00e+00 9.80e−04 4.00e−04 3.60e−04 1.30e−03 8.40e−04 1.30e−03 9.20e−04 6.10e−03
2 7.70e−04 0.00e+00 1.30e−03 1.50e−04 1.80e−03 1.30e−04 2.80e−03 3.40e−03 1.00e−02
3 2.20e−03 2.80e−03 0.00e+00 4.50e−03 2.30e−03 2.70e−03 4.10e−03 3.60e−03 2.20e−02
4 2.80e−03 3.30e−03 1.00e−03 0.00e+00 1.90e−03 3.30e−03 2.30e−03 5.00e−04 1.50e−02
5 3.10e−03 6.50e−03 7.10e−03 4.00e−03 0.00e+00 6.60e−03 7.50e−03 2.60e−03 3.70e−02
6 3.60e−04 1.30e−04 7.90e−04 1.10e−04 1.20e−03 0.00e+00 2.00e−03 2.40e−03 7.10e−03
7 1.60e−02 6.20e−03 1.00e−02 1.20e−02 5.20e−03 6.00e−03 0.00e+00 5.60e−03 6.20e−02
8 1.20e−02 1.80e−02 1.10e−02 5.20e−03 6.60e−03 1.80e−02 1.80e−02 0.00e+00 9.20e−02
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Fig. 12. We plot log10 |Φ21,7,k| versus k corresponding to the approximated Fourier coefficients of two studied invariant curves. Left: Higher order meandering curve in
Fig. 10 (top-left plot). Right: Shearless invariant curve in Fig. 8 (left plot).
this, let us compute the Fourier coefficients corresponding to
|k| ≤ 750 by means of Algorithm 2.20 using p = 7, q =
21 and θ ' Θ21,7. Computations are performed using 32-digit
arithmetics (double–double data type from [34]). The modulus of
the obtained valuesΦ21,7,k are shown in the left plot of Fig. 12. The
extrapolation error, estimated using (29), typically ranges between
10−10 and 10−8. As expected, the decay of these coefficients is
very mild and we point out that coefficients for |k| ' 750
are still of order 10−5 It is interesting to compare this behavior
to that corresponding to the shearless curve in Fig. 8 since the
extrapolation methods can be applied successfully to this case.
For this curve the Fourier coefficients – computed using the same
implementation parameters – decaymuch faster (see the right plot
in Fig. 12). In this case, the estimated extrapolation error typically
ranges between 10−16 and 10−24, and Fourier coefficients for |k| ≥
400 are so small that we cannot compute any significant digit
(we detect this fact because |Φ21,7,k| is of the same order as the
extrapolation error). A final remark is that in this plot we observe
an increase of the size of Fourier coefficients around |k| ' 250 and
after that they decay again at the same rate. The rotation number
of this curve has the convergent 145/242, so the small divisor for
the corresponding Fourier coefficient turns out to be very small.
Precisely we observe that |Φ21,7,243| ' 214|Φ21,7,242|.
In the next example we want to illustrate the computation of

derivatives of the rotation number by applying Algorithm 2.16 to
a circle correspondence that we can ‘‘lift’’ numerically to R. More-
over,we alsowant to stress howextrapolationmethods are less ac-
curate when the rotation number is a Diophantine number ‘‘close
to a rational’’ — thus having a large constant C in (7). Therefore,
we select a problem very close to a resonance. Comparing with
previous examples, we point out that the shearless curve in Fig. 8
is not too resonant — actually the continued fraction of the rota-
tion number in that case is [0, 1, 1, 2, 48, 1, . . .]. Meanwhile the
case of higher order meandering in Fig. 10 is more resonant but
the curve extremely complicated. Let us consider the well-known
Hénon family, which is a paradigmatic example since it appears
generically in the study of a saddle–node bifurcation. This family
can be written as

Hα :
(
u
v

)
7−→

(
cos(2πα) − sin(2πα)
sin(2πα) cos(2πα)

)(
u

v − u2

)
.

It is not difficult to check that we can perform a close to the
identity change of variables to guarantee the twist condition close
to the origin, except for the valuesα = 1/3, 2/3. Then, for values of
α close to 1/3 and 2/3, reconnection takes places and meandering
phenomena arises, i.e., there are folded invariant curves. Next we
want to illustrate the computation of the derivatives of the rotation
number for α close to 1/3.
In the left plot of Fig. 13 we show meandering curves for

α = 0.299544. We use the direct projection and we apply
Algorithm 2.16 to the ‘‘lift’’ of the circle correspondence thus
obtained, in order to compute the derivative of the rotation
number with respect to the initial condition u0, for 6000 points
of the form (u0, 0.15) along the dotted line in the figure.
Computations are performed taking p = 8, q = 23, and
using 32-digit arithmetics (double–double data type from [34]).
The corresponding profile is shown in the right plot of Fig. 13,
and we observe that the sign of the derivative changes when we
pass from one twist zone to another. The isolated points where
the derivative vanishes correspond to the shearless invariant curve
while the points where it is locally constant corresponds to the
chain of islands (secondary tori) around the elliptic periodic points
(see Remark 3.2). We want to stress that since we are very close to
a resonance, the convergence of the computations in this example
is not as good as in the far-from-resonance case. For example, for
u0 = 0.28 we obtain the approximationΘ23,8 = 0.299999020519
of the rotation numberwith an estimated error, using (20), of order
10−12 and the derivativeΘ123,8,7 = −6.027735852× 10

−5 with an
estimated error, using (22), of order 10−10. Actually, the continued
fraction expansion of Θ23,8 is given by [0, 3, 2, 1, 10203, 2, . . .]
which is close to 3/10 (winding number of the periodic orbit). It is
interesting to compare the error of order 10−12 in the computation
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Fig. 13. Left: Phase space in the uv-plane of Hénon’s map for α = 0.299544 showingmeandering curves close to periodic orbits of period 3/10. Right: we plot the derivative
of the rotation number u 7→ Duρ along the straight line in the left plot.
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Fig. 14. Phase space in the xy-plane of family (35). Left: ε = 5. Right: ε = 10.
of the rotation number with the error obtained when dealing with
goodDiophantine numbers, that are typically of order 10−30 for the
used implementation parameters. We refer to several comments
given in [2,1] regarding this situation.
We remark that all the previous examples considered in this

section contain only one harmonic or are written as perturbations
of maps that have strong twist behavior. For this reason we have
not shown all the possibilities of our methodology. As is pointed
out in [36], folded invariant curves appear in a natural way, when
we introduce more harmonics in the studied family of maps. Since
these curves can be constructed following arbitrarily complicated
paths in phase space, they got the name of labyrinthic curves. We
shall consider the following family of maps Fε = Fs1,s2,c1,y2,y3,γ ,ε
defined on R/(2πZ)× R:

Fε :
(
x
y

)
7−→

(
x̄
ȳ

)
=

(
x+ εP(ȳ)
y+ εγ T (x)

)
(35)

where

P(y) = y(y− y2)(y− y3)(y− 1)
T (x) = s1 sin(x)+ s2 sin(2x)+ c1(cos(x)− cos(2x)).

From now on, following [36], we fix

y2 = 0.33040195,
y3 = 0.84999789,
s1 = 0.1608819674465999,
s2 = 0.9444712344787136,
c1 = 0.2865154093461046,
γ = −0.0049.
In the left plot of Fig. 14 we show some iterates for ε = 5
corresponding to several initial conditions. We observe that, if we
consider the main elliptic islands as holes on the cylinder, then
we find invariant curves of different homotopy classes. Since these
curves are folded in a very complicated way, it is difficult to face
the systematic computation of the ‘‘lift’’ of the direct projection of
the iterates. Then, the unfoldingmethod turns out to be very useful
to computate these invariant curves.
For example, we consider the curve associated to the initial

condition (x0, y0) = (0, 2.2), for ε = 5. We first obtain an
approximation of the rotation number by means of frequency
analysis as is explained in Section 2.4. In particular, using the
complex variable z = eyeix and L = 100 we obtain
the approximation of the rotation number θ0 = 7.46161 ×
10−3 (details are omitted since they are very similar of those
corresponding to the previously discussed examples). Using this
approximation θ0 we can unfold the invariant curve computing
the averages (3) for L = 150 (for this values the curve is almost
a circle). Then, we apply Algorithm 2.14 using p = 9 and
q = 23. Computations are performed using 32-digit arithmetics
(double–double data type from [34]). We obtain the approximation

θ ' Θ23,9 = 0.0080998168999841202002324221453501 (36)

of the rotation number with an estimated extrapolation error of
order 10−34, that corresponds with the arithmetic precision of our
computations. Let us observe that the number (36) is very close
to zero, but its continued fraction is [0, 123, 2, 5, 1, 2, . . .], so we
conclude that it is not so resonant as the example of Hénon’s
map that we considered before — for this reason the obtained
computations are more accurate.
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Fig. 15. Left: Labyrinthic invariant curve in the xy-plane of (35) corresponding to the initial condition (x0, y0) = (0, 2.2) for ε = 5. Right: We plot y(ε) versus ε, in the
continuation of the invariant curve on the left.
Furthermore, we use the methods of the paper to follow the
evolution, when ε changes, of the invariant curve of Fε having a
prefixed rotation number θ . Concretely, let (x0, y(ε0)) be a point on
an invariant curve of rotation number θ of themap Fε0 . Then, given
ε close to ε0, we want to compute an initial condition (x0, y(ε))
that corresponds to the invariant curve – if it exists – of Fε that
has the same rotation number. Indeed, if we denote by ρ(ε, y0) the
function that gives the rotation number of the invariant curve of Fε
for the point (x0, y0) – if it exists – then we look for solutions with
respect to y0 = y(ε)of the equationρ(ε, y0) = θ . The computation
of the point y(ε) is performed by means of the secant method as
is done in [1] for the standard map. Another possibility is to use a
Newton scheme like in [2] for Hénon’s map, computing derivatives
of the rotation number as described in Section 2.5, but the secant
method is enough for our purposes.
We continue the curve of rotation number given by (36) starting

from the values ε0 = 5 and (x0, y0) = (0, 2.2). Computations
are performed using 32-digit arithmetics (double–double data type
from [34]). In order to unfold invariant curves we use as an
approximation the prefixed value of the rotation number (curves
nearby have a similar rotation number) and we take L = 150. For
computing the rotation number, we apply Algorithm 2.14 using
p = 6 and 216 iterates of the map at most. We estimate the
error of the rotation number by using (20) and we validate this
computation if it is smaller than 10−16. For the secant method we
require an error smaller than 10−14.
The continuation of the invariant curve is performed success-

fully for values of ε in the interval (4.75745894, 5.75985518) — in
Fig. 15we plot y(ε) in this interval. For ε = 4.75745894 the invari-
ant curve turns shearless and then it disappears after the collapse
with the other invariant curve of the same rotation number on the
other side of the meandering, so we have a turning point in the
continuation. For ε = 5.75985518 we stop because we are very
close to the breakdown of the curve. For ε > 5.75985518 we have
observed that the chaotic zone that appears at the breakdown of
this invariant curve is very narrow and there are still many invari-
ant curves nearby. In the right plot of Fig. 14 we include the phase
space that corresponds to ε = 10 in order to show the chaotic zone
that is created when most of the invariant curves around the con-
tinued one are destroyed.
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