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Abstract

In this paper we present a numerical method to compute Diophantine rotation numbers of circle maps with high accuracy. We mainly focus
on analytic circle diffeomorphisms, but the method also works in the case of (enough) finite differentiability. The keystone of the method is that,
under these conditions, the map is conjugate to a rigid rotation of the circle. Moreover, although it is not fully justified by our construction, the
method turns out to be quite efficient for computing rational rotation numbers. We discuss the method through several numerical examples.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The main purpose of this work is to introduce a new
numerical method to compute the rotation number of a circle
map. This problem has been formerly considered by many other
authors, and several algorithms have been developed. See, for
instance, [32,5,21,25,24,4,12,13,8]. On the one hand, the level
of complexity of these algorithms ranges from the definition
itself to sophisticated methods of frequency analysis. On the
other hand, some of them are efficient for the computation
of rational rotation numbers and some others work better for
irrational ones.

In this paper we are mainly concerned with analytic circle
diffeomorphisms having Diophantine rotation number. So, we
take strong advantage of the fact that the map is analytically
conjugate to a rotation. The method we present is based on
the computation of suitable averages of the iterates of the map,
followed by Richardson’s extrapolation. The keystone of this
procedure is that we know a priori which is the asymptotic
behavior of these averages when the number of iterates goes
to infinity. This algorithm provides numerical approximations
to the rotation number, with very high accuracy in general.
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To develop this method, we use the hypotheses on the map
to be analytically conjugate to a rigid rotation and to have a
(good) Diophantine rotation number. Although we focus on the
analytic case, the same procedure can be used for smooth circle
diffeomorphisms, but we only expect the method to be efficient
if the conjugation is regular enough.

Of course, the set up of this method is restrictive and
excludes a lot of cases. For instance, if we consider a (generic)
one-parameter family of circle homeomorphisms, the set of
parameters for which the rotation number is rational, and hence
the map is not conjugate to a rotation (in general), is a dense set
with (non-empty) interior. However, if these maps are smooth
perturbations of a rotation, then, under general hypotheses, the
set of parameters for which the rotation number is Diophantine
has big relative measure. On the other hand, if the rotation
number is eventually rational, the method provides quite good
results. We do not have a complete justification of this fact, but
we refer to Remark 9 for a tentative explanation and to Section 4
for examples with rational rotation numbers.

From the practical point of view, the numerical method
presented here is suitable if we are able to compute the iterates
of the map with high precision, for instance if we can work
with a computer arithmetic having a large number of decimal
digits. In this case, we can try to use the method with high-
order extrapolation and, then, we can hope to obtain a good
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approximation for the rotation number from a moderate (but
big) number of iterates. If there are large round-off errors, there
is not much sense in performing a lot of extrapolation steps.

One of the motivations of the method is the computation
of Arnold tongues of two-parameter families of analytic
circle diffeomorphisms, for instance the Arnold family (see
Section 4.2). An Arnold tongue is defined as the set of
parameters for which the corresponding map of the family has a
prefixed rotation number. If we consider a (good) Diophantine
rotation number, it is possible to compute, numerically but with
high accuracy, its Arnold tongue for the Arnold family, which
is known to be an analytic curve. This accuracy is important
if we need to compute a lot of iterates of a map of the family
having parameters on this Arnold tongue, and hence it is very
convenient to know the values of such parameters with small
error.

Our main reason for developing this method goes in this
direction. More precisely, let us consider an Arnold tongue of
the Arnold family having a Diophantine rotation number. We
know that, for any value of the parameters on this tongue, the
corresponding member of the Arnold family has an analytic
conjugation to a rotation. This conjugation can be analytically
continued to a maximal complex strip of width ∆(ε) (see (17)),
where ε is the perturbative parameter of the family. In a
forthcoming paper [27], we are going to perform a numerical
study of the asymptotic behavior of ∆(ε) when ε goes to zero.
See [11,6] for rigorous results on this problem. To compute
∆(ε) numerically, we apply a result of Herman [18,22], which
requires us to compute a lot of iterates of one critical point of
the map. So, we need to know the parameters defining the map
with very high accuracy.

There are other contexts in which the method presented in
this paper can be useful. For instance, if we have an invariant
curve of a map, of arbitrary dimension, and we can introduce an
angular variable as a parameter on it, the dynamics on this curve
induces a circle map. In the aim of KAM theory, we know that
the hypothesis of Diophantine rotation number for the dynamics
on the curve is consistent with its own existence. So, another
application of our method is the computation of invariant curves
with Diophantine rotation number. See Section 4.3.

Finally, we also observe that the method can be extended
to higher dimensions, by considering maps on a d-dimensional
torus whose dynamics is conjugate to a d-dimensional rotation,
having a Diophantine rotation vector (see Remark 4). Moreover,
one can also deal with continuous dynamical systems, by
considering flows on a d-dimensional torus, whose dynamics is
conjugate to a quasi-periodic linear flow having a Diophantine
vector of basic frequencies (see Remark 5). Other extensions
and generalizations of the method will be object of future
research.

The paper is organized as follows. In Section 2 we formalize
the problem and we state some results giving theoretical support
for the method. In Section 3 we properly develop the method for
the computation of the rotation number and give some rigorous
bounds for the error. Finally, Section 4 is devoted to apply
the method to different examples to check its efficiency and
accuracy numerically.
2. Conjugacy to the rotation

In this section we introduce the basic definitions and
properties of circle maps that we need in the paper. We refer
to [9] for details.

Let f : T1
→ T1 be an orientation-preserving

homeomorphism of the circle T1
= R/Z. If we denote by

π the projection π : R → T1, we can consider f̃ , a lift of
f to R, defined so that f ◦ π = π ◦ f̃ . As we work with
the lift rather than with the map itself, we skip the tilde from
f̃ and we identify the circle map with its lift. Thus, the map
on T1 is obtained from the lift simply by taking modulo one
on the definition of f . To normalize the lift, we suppose that
f (0) ∈ [0, 1). To such a map one can assign its rotation number,
defined as

ρ( f ) = lim
n→∞

f n(x0) − x0

n
, (1)

where x0 ∈ R. It is well known that f being an orientation-
preserving homeomorphism of T1 guarantees that this limit
exists and is independent of the point x0.

If θ = ρ( f ) is an irrational number and f is a C2-
diffeomorphism of T1, Denjoy’s theorem ensures that f is
topologically conjugate to the rigid rotation Tθ (x) = x + θ .
That is, there exists a homeomorphism η : T1

→ T1 such that
f ◦ η = η ◦ Tθ , making the following diagram commute:

T1 Tθ
−−−−→ T1

η

y yη

T1 f
−−−−→ T1

(2)

If we require η(0) = x0, for a fixed x0 ∈ T1, then the conjugacy
η is unique.

In this paper we are interested in the case when the
conjugacy η is a smooth function. More precisely, we are
mainly concerned with the analytic case. To guarantee the
regularity of the conjugation, it is not enough to consider
smooth diffeomorphisms of the circle, but we also need the
rotation number θ to be “very irrational”. For the theoretical
discussion of the method, we suppose that θ is a Diophantine
number.

Definition 1. Given θ ∈ R, we say that θ is a Diophantine
number if there exist constants C ′ > 0 and τ ≥ 1 such that
|kθ − l|−1

≤ C ′
|k|

τ , for all (k, l) ∈ Z2 with k 6= 0, or, in
equivalent form

|1 − e2π ikθ
|
−1

≤ C |k|
τ , ∀k ∈ Z \ {0}, (3)

with C > 0. If we denote byD the set of Diophantine numbers,
a remarkable property of D is that the Lebesgue measure of
R \D is equal to zero.

Remark 2. From the numerical point of view, we need the
constant C to be not too small if we want the method of this
paper to work efficiently. However, if θ is an arbitrary real
number (even a rational one) but condition (3) is fulfilled for
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any |k| ≤ N , for large N and for C not too small, we expect
the method to provide a good approximation for θ even if the
map is not conjugate to a rotation. Of course, in a computer, all
numbers are rational. See Fig. 5 for a discussion of the method
for “bad” Diophantine numbers.

The theoretical support for the method is provided by the
following result.

Theorem 3 ([16,34,20,29]). If f is an orientation-preserving
Cr -diffeomorphism of T1 with Diophantine rotation number θ

verifying (3), for certain τ ≥ 1 and τ + 1 < r ≤ +∞, then
f is conjugate to Tθ via a conjugacy η which is a Cr−τ−ε-
diffeomorphism, for any ε > 0. If f is analytic and θ ∈ D,
then the conjugacy η is also analytic.

We can write η(x) = x + ξ(x), where ξ is a 1-periodic
function normalized in such a way that ξ(0) = x0. By using the
fact that η conjugates f to a rigid rotation (see (2)), we have:

f n(x0) = f n(η(0))

= η(nθ) = nθ +

∑
k∈Z

ξke2π iknθ , ∀n ∈ Z, (4)

where

ξ(x) =

∑
k∈Z

ξke2π ikx , (5)

denotes the Fourier series of ξ . Clearly:

f n(x0) − x0

n
= θ +

1
n

∑
k∈Z\{0}

ξk(e2π iknθ
− 1).

Since ξ is a continuous function, the sum on the right-hand
side is uniformly bounded for any n ≥ 1, which makes clear
the computation of the rotation number from definition (1).
Unfortunately, the convergence speed of this limit is, roughly
speaking, of O(1/n) when n goes to infinity. This convergence
is too slow if we want to obtain a good approximation for the
rotation number from a moderate number of iterates.

3. Numerical computation of the rotation number

From now on, f is a lift of an analytic circle diffeomorhism
with Diophantine rotation number θ = ρ( f ) and, hence, it is
analytically conjugate to a rotation.

The purpose of this section is to introduce a numerical
method to approximate θ . From the formal point of view, this
method allows us to compute approximations of θ with very
high precision. Concretely, in Section 3.3 we prove that the
error can be controlled (roughly speaking and in the best case)
by an expression of O(N−(log2 N )/2), where N is the number of
iterates.

This method also works if the conjugation η is only Cr , but in
this case the number of steps of the extrapolation procedure of
Section 3.2 is limited by the order of differentiability. Thus, we
cannot expect to obtain approximations for the rotation number
as good as in the analytic case. See Remark 7 for additional
comments.
The data required are the usual ones to approximate the
rotation number. We take a fixed x0 ∈ R and compute the
iterates { f n(x0)}n=1,...,N of the lift f , for large N . The method
is based on the computation of suitable averages of these
iterates, which are defined from certain recurrent sums. These
sums are introduced in Section 3.1, where their asymptotic
behavior (when N → +∞) is also established. In Section 3.2
we use this asymptotic behavior to perform Richardson’s
extrapolation (see [30]) to approximate the rotation number.
To carry out the extrapolation procedure, we have to compute
such averaged sums for “different values” of N , in geometrical
progression. To simplify the construction, we suppose that N is
a power of two, N = 2q . However, the only reason why we need
to use formula (15) for the p-order extrapolation is that N =

2p N0, for any N0 ∈ N. Furthermore, any general extrapolation
method can be adapted to this context (see also [30]). The
error made when dealing with these averages in terms of its
asymptotic approximation and the total error of the method is
discussed in Section 3.3.

3.1. The averaging procedure

The main goal of this section is to define the normalized
sums S̃ p

N (10) from the p-order sums S p
N (7) of the iterates of

the lift.
Let us start by considering the sum of the first N iterates of

f . We define (see (4))

SN =

N∑
n=1

( f n(x0) − x0)

=
N (N + 1)

2
θ +

N∑
n=1

∑
k∈Z\{0}

ξk(e2π iknθ
− 1)

=
N (N + 1)

2
θ − N

∑
k∈Z\{0}

ξk

+

∑
k∈Z\{0}

ξk
e2π ikθ (1 − e2π ik Nθ )

1 − e2π ikθ
,

and then

2
N (N + 1)

SN = θ −
2

N + 1

∑
k∈Z\{0}

ξk

+
2

N (N + 1)

∑
k∈Z\{0}

ξk
e2π ikθ (1 − e2π ik Nθ )

1 − e2π ikθ
.

This means that, for a suitable constant A1 = −
∑

k∈Z\{0}
ξk =

−x0 + ξ0, independent of N , we have

2
N (N + 1)

SN = θ +
2

N + 1
A1 +O

(
1

N 2

)
, (6)

where the term O(1/N 2) is uniformly bounded with respect
to N due to the analyticity of ξ and the Diophantine character
of θ (see Lemma 6). If we neglect the “error term” O(1/N 2)

from (6), we can use SN and S2N , for instance, to extrapolate
a value of θ with error of O(1/N 2). However, faster speed
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of convergence can be obtained by considering “higher-order
sums”. Hence, before formalizing the extrapolation process of
Section 3.2, we generalize the definition of SN to introduce p-
order sums of the iterates. We define

S2
N =

N∑
j=1

S j ,

and for this sum we obtain:

S2
N =

N (N + 1)(N + 2)

6
θ −

N (N + 1)

2

∑
k∈Z\{0}

ξk

+ N
∑

k∈Z\{0}

ξk
e2π ikθ

1 − e2π ikθ

−

∑
k∈Z\{0}

ξk
e4π ikθ (1 − e2π ik Nθ )

(1 − e2π ikθ )2 .

By taking the same constant A1, and A2 =
∑

k∈Z\{0}
ξk

e2π ikθ/(1 − e2π ikθ ), we have:

6
N (N + 1)(N + 2)

S2
N = θ +

3
N + 2

A1

+
6

(N + 1)(N + 2)
A2 +O

(
1

N 3

)
.

Proceeding by induction, we define

S1
N = SN , S p

N =

N∑
j=1

S p−1
j . (7)

Thus, in the general case we obtain:

S p
N =

(
N + p

p + 1

)
θ +

p∑
l=1

(
N + p − l

p + 1 − l

)
Al

+ (−1)p+1
∑

k∈Z\{0}

ξk
e2pπ ikθ (1 − e2π ik Nθ )

(1 − e2π ikθ )p
, (8)

where the coefficients Al are independent of p and N and are
given by

Al = (−1)l
∑

k∈Z\{0}

ξk
e2(l−1)π ikθ

(1 − e2π ikθ )l−1 . (9)

Now, we define

S̃ p
N =

(p + 1)!

N (N + 1) · · · (N + p)
S p

N =

(
N + p

p + 1

)−1

S p
N ,

Ã(p)
l = (p − l + 2) · · · (p + 1)Al .

(10)

Then, for the normalized sum S̃ p
N we have

S̃ p
N = θ +

p∑
l=1

Ã(p)
l

(N + p − l + 1) · · · (N + p)
+ E(p, N ), (11)

where

E(p, N ) = (−1)p+1 (p + 1)!

N · · · (N + p)
×

∑
k∈Z\{0}

ξk
e2pπ ikθ (1 − e2π ik Nθ )

(1 − e2π ikθ )p
, (12)

can be bounded (for a fixed p) by an expression O(1/N p+1).

3.2. The extrapolation procedure

Let us explain the extrapolation procedure carried out to
obtain an approximation to the rotation number θ . As we have
mentioned before, we simplify the computations by assuming
that N = 2q . Then, we pick up a fixed p (the extrapolation
order), with p ≤ q, and we compute the normalized sums
{S̃ p

N j
} j=0,...,p, with N j = 2q−p+ j . These sums are related to

θ through formula (11). Now, if we set to zero the error terms
E(p, N j ), for any j = 0, . . . , p, we obtain a square system

of linear equations for the unknowns θ and { Ã(p)
l }l=1,...,p. By

solving this system, we compute the (extrapolated) value of θ .

Unfortunately, and due to the denominator of Ã(p)
l in (11),

the matrix of this linear system depends on q. This implies that,
if we fix the value of p and consider different values of q ≥ p,
the systems to be solved have different matrices for different
values of q . We can overcome this problem by considering the
following alternative expression for (11):

S̃ p
N = θ +

p∑
l=1

Â(p)
l

N l + Ê(p, N ), (13)

for certain { Â(p)
l }l=1,...,p, independent of N , where Ê(p, N )

differs from E(p, N ) by an expression of O(1/N p+1). Hence,
a similar error can be expected by neglecting Ê(p, N ) in (13)
instead of E(p, N ) in (11). The linear system thus obtained is

S̃ p
2q−p

S̃ p
2q−p+1

S̃ p
2q−p+2

· · ·

S̃ p
2q



=



1 1 1 · · · 1

1
1

21

1

22 · · ·
1

2p

1
1

22

1

24 · · ·
1

22p

· · · · · · · · · · · · · · ·

1
1

2p

1

22p
· · ·

1

2p2




θ

Â(p)

1 /21(q−p)

Â(p)

2 /22(q−p)

· · ·

Â(p)
p /2p(q−p)

 . (14)

As the matrix of this system is independent of q, we obtain

θ = Θ(p, 2q) + e(p, 2q) =

p∑
l=0

c(p)
l S̃ p

2q−p+l + e(p, 2q), (15)

for certain coefficients {c(p)
l }l=0,...,p, and where we expect

e(p, 2q) = O(1/2(p+1)q). Such coefficients are given by the
first row of the inverse of the matrix of system (14). For
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instance, simple computations show that:

θ = 2S̃1
2q − S̃1

2q−1 +O
(

1

22q

)
,

θ =
8
3

S̃2
2q − 2S̃2

2q−1 +
1
3

S̃2
2q−2 +O

(
1

23q

)
,

θ =
64
21

S̃3
2q −

8
3

S̃3
2q−1 +

2
3

S̃3
2q−2 −

1
21

S̃3
2q−3 +O

(
1

24q

)
,

θ =
1024
315

S̃4
2q −

64
21

S̃4
2q−1 +

8
9

S̃4
2q−2 −

2
21

S̃4
2q−3

+
1

315
S̃4

2q−4 +O
(

1

25q

)
,

θ =
32 768
9765

S̃5
2q −

1024
315

S̃5
2q−1 +

64
63

S̃5
2q−2 −

8
63

S̃5
2q−3

+
2

315
S̃5

2q−4 −
1

9765
S̃5

2q−5 +O
(

1

26q

)
.

In general, the coefficients c(p)
l of (15) are given by

c(p)
l = (−1)p−l 2l(l+1)/2

δ(l)δ(p − l)
, (16)

where we define δ(n) := (2n
− 1)(2n−1

− 1) · · · (21
− 1) for

n ≥ 1 and δ(0) := 1.

Remark 4. We point out that everything is analogous if we
consider a map f : Td

→ Td , where Td is the d-dimensional
torus Td

= (R/Z)d , and we assume that it admits an analytic
(or smooth enough) conjugation to a rotation, with rotation
vector ω ∈ Rd . This means that there is an analytic (or smooth)
diffeomorphism η : Td

→ Td , such that f ◦ η = η ◦ Tω,
where Tω(x) = x + ω is defined analogously to the one-
dimensional case (see [33] for a tutorial on toral maps and
flows). We observe that the Diophantine condition on ω is now

|e2π i〈k,ω〉
− 1|

−1
≤ C(|k1| + · · · + |kd |)τ , ∀k ∈ Zd

\ {0},

for certain C > 0 and τ ≥ d , where 〈·, ·〉 is the inner product
on Rd . In this case, the normalized sums S̃ p

N belong to Rd ( f
plays the rôle of a lift of the map to the universal covering Rd ),
but the formulas for ω are still given by (15), with the same
coefficients (16).

Remark 5. Let ϕt be a flow on Td . If we assume that this flow
is conjugate to a linear quasi-periodic flow, with a vector of
basic frequencies ω ∈ Rd , then we can also extend the method
to the numerical computation of ω. As ϕt takes the following
form (in the covering space)

ϕt (x) = x + ωt +

∑
k∈Zd

ξke2π i〈k,ω〉t ,

there are two ways to deal with this case. The first one is to
consider a Poincaré section of the flow so that we work with
a map on Td−1. The second one is to compute the values of
ϕt (x0), with a fixed x0 ∈ Rd , for a sequence of equi-spaced
values of t . If this constant time step is unity, then everything is
identical for a map on Td .
It is clear that the numerical implementation of this method
in a computer presents several problems. The most evident
arises from the fact that, when computing S p

N , for high values
of p and N , one obtains very big numbers (of order N p+1)
which can give rise to an important loss of precision. Another
source of problems is the computation of the iterates itself. If
we require a great number of them, the accuracy of f n(x0)

decreases with n due to the accumulation of round-off errors.
If the iterates have large error, it is nonsense to use high
extrapolation orders. The most natural way to overcome these
problems is to do the computations by using a representation of
real numbers with a computer arithmetic having a great number
of decimal digits (better multiple precision), and to be very
careful with the manipulation of large numbers, to prevent the
loss of significative digits (for instance, by storing separately its
integer and decimal part) and beware not to “saturate” them.

3.3. Bounding the error of the method

Once we have introduced the extrapolation procedure, in this
section we are going to discuss how the error e(p, 2q) in the
extrapolation process (see (15)) behaves as function of p and
N = 2q .

It is clear that, for a fixed p, the expressions E(p, N )

in (12), Ê(p, N ) in (13) and e(p, N ) in (15) are ofO(1/N p+1).
However, the coefficients giving this order depend on p, and
thus a natural question is how to select p as function of N so
that the error on the approximation of θ becomes as smaller as
possible.

For this purpose, let us start with the following (standard)
bound on small divisors.

Lemma 6. Let ξ(x) be a real analytic function in the complex
strip of width ∆ > 0,

A∆ = {x ∈ C : |Im(x)| < ∆}, (17)

with |ξ(x)| ≤ M up to the boundary of the strip and 1-periodic
in x. If we expand ξ in Fourier series (5) and consider a
Diophantine number θ verifying (3), we have∣∣∣∣∣∣
∑

k∈Z\{0}

ξk
e2pπ ikθ (1 − e2π ik Nθ )

(1 − e2π ikθ )p

∣∣∣∣∣∣
≤

e−π∆

1 − e−π∆
4MC p

( τp

π∆e

)τp
. (18)

Proof. By using standard estimates on the Fourier coefficients
of a real analytic function, we have that |ξk | ≤ Me−2π∆|k|, and
from (3) we have that |1 − e2π ikθ

|
−p

≤ C p
|k|

τp. Moreover, we
observe that supx≥0{e

−π∆x xτp
} = (τp/(π∆e))τp. Thus, the

bound is obtained from the sum of a geometric progression of
ratio e−π∆. �

The estimate given by Lemma 6 is not optimal, but is good
enough for our purposes and simplifies the computations.

Remark 7. It is clear that the expression on the left-hand side
of (18), and thus the error E(p, N ) of (12), is still convergent
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if the conjugacy η(x) = x + ξ(x) is only a Cr function and p
is not too big. More precisely, it is known that, if ξ ∈ Cr , then
|ξk | ∼ O(|k|

−r ). Thus, if r > pτ + 1, the expression on the
left-hand side of (18) is of order O(C p/(r − τp − 1)).

We apply Lemma 6 to E(p, N ) in (12) to obtain

|E(p, N )| ≤
(p + 1)!

N (N + 1) · · · (N + p)

e−π∆

1 − e−π∆

× 4MC p
( τp

π∆e

)τp
. (19)

By applying Stirling’s formula to (19), j ! =
√

2π j j+1/2

e− j+χ j /(12 j) with 0 < χ j < 1, we have

|E(p, N )| ≤
(p + 1)!

N p+1

e−π∆

1 − e−π∆
4MC p

( τp

π∆e

)τp

≤ abp p p(τ+1)

N p+1 , (20)

for certain constants a and b, independent of p and N .
However, if we use the alternative expression (13), we can

ensure that the new error Ê(p, N ) is bounded by an analogous
estimate to (20), with different constants a, b. The reason for
this fact is that, when changing (11) by (13), the error Ê(p, N )

is given by

Ê(p, N ) = E(p, N )

+

(
p∑

l=1

Ã(p)
l

(N + p − l + 1) · · · (N + p)
−

p∑
l=1

Â(p)
l

N l

)
,

where the new coefficients Â(p)
l are defined from the old ones

Ã(p)
l so that the error Ê(p, N ) is still of orderO(1/N p+1). This

implies that Â(p)
l , for any l = 1, . . . , p, is a linear combination

of { Ã(p)
j } j=1,...,l whose coefficients are polynomials in p. The

other important thing here is that formulas (9) and (10) for Ã(p)
l

show that the contribution of the small divisors 1 − e2π ikθ to
Ã(p)

l comes with a smaller power than for E(p, N ) in (12). As
a summary, one can check that the final bound for Ê(p, N ) is
of the form

|Ê(p, N )| ≤ âb̂p p p(τ+1)

N p+1 , (21)

for some constants â and b̂ independent of p and N .
Now, let us resume the extrapolation method. We pick up a

fixed p, compute N = 2q iterates of the map and the averaged
sums S̃ p

N j
, with N j = 2q−p+ j , for j = 0, . . . , p. By using

formula (15) to compute θ , we obtain that the error of the
extrapolation is given by

e(p, 2q) = −

p∑
l=0

c(p)
l Ê(p, 2q−p+l).

To bound this error, we need some idea about how the
coefficients c(p)

l given in (16) behave. From the following lower
bound for δ(n):

δ(n) = 2n(n+1)/2
n∏

j=1

(1 − 2− j ) ≥ 2n(n+1)/2 K ,

where K :=
∏

j≥1(1 − 2− j ), we have

|c(p)
l | ≤

1

K 2 2−(p−l)(p−l+1)/2.

In this way, using (21), we obtain:

|e(p, 2q)| ≤

p∑
l=0

|c(p)
l ||Ê(p, 2q−p+l)|

≤
â

K 2 b̂p p p(τ+1) 1

2q(p+1)

p∑
l=0

2(p−l)(p+l+1)/2

≤ ãb̃p p p(τ+1)2(p/2−q)(p+1), (22)

for some constants ã, b̃ independent of p and q (taking into
account that the biggest term in the last sum corresponds to
l = 0).

Once we have a bound of the method’s error, it is natural
to guess which is the optimal value of p to use for the
extrapolation. This is a very realistic setting: we compute N =

2q iterates and we want to select p so that the error |e(p, 2q)|

becomes as small as possible. To this end, we define (for a fixed
q) the function

g(p) = log2 ã + p log2 b̃ − (q − p/2)(p + 1)

+ (τ + 1)p log2 p,

obtained by taking binary logarithm of the right-hand side of
formula (22), and we try to minimize this function. Thus, we
consider the equation g′(p) = 0,

p − q + 1/2 + log2 b̃ + (τ + 1) log2 p + (τ + 1) log2 (e) = 0,

from which we can compute a zero p∗
= p∗(N ) (not an

integer in general) that behaves (for large values of q) as p∗
'

q − (τ + 1) log2 q = log2 N − (τ + 1) log2(log2 N ). By using
this value of p∗ (in fact, one has to pick up the closest integer),
we optimize the bound (22) of the error, obtaining

|e(p∗, 2q)| ≤
1

N
1
2 log2 N−(τ+1) log2(log2 N )+O(1)

.

So, if we compute N = 2q iterates and use p∗
= p∗(N ) as

extrapolation order, we obtain an asymptotic expression for the
error smaller than any power of 1/N . In Section 4.1 we perform
some numerical comparisons between the real error and the
bound (22) for different values of p (see Figs. 2 and 3).

Remark 8. From the practical (numerical) point of view, it
is difficult to take advantage of this theoretical discussion in
order to optimize the error of the method. Let us introduce the
strategy that we use in Section 4 to estimate the error of the
method.

If we fix the extrapolation order p and compute Θ(p, 2q),
we know that

|e(p, 2q)| = |Θ(p, 2q) − θ | ≤ c/2q(p+1), (23)
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Fig. 1. The circle map f̂s induced by the invariant curve ϕ(Cs ) of F .

for a certain (unknown) constant c, independent of q (see (22)).
If we want to control the size of |e(p, 2q)|, we need to
estimate c. To do that, we also suppose a known Θ(p, 2q−1)

and consider (23) for |e(p, 2q−1)|. Then, we replace in this
inequality the exact value of θ by Θ(p, 2q), as we expect
Θ(p, 2q) to be closer to θ than Θ(p, 2q−1). After that, we
estimate c by

c ∼ 2(q−1)(p+1)
|Θ(p, 2q−1) − Θ(p, 2q)|.

Now, we replace c in (23) by this value and we estimate the
error of Θ(p, 2q) by

|e(p, 2q)| ≤ 2−(p+1)ν|Θ(p, 2q−1) − Θ(p, 2q)|, (24)

where ν is a “safety parameter”, to prevent the fact that the
true value of c can oscillate as function of q . In the numerical
computations of Section 4, we take ν = 10.

Remark 9. All the discussions in this section are only valid
when the rotation number θ is Diophantine. If θ is a rational
number, the sums S p

N in (7) can be computed from the iterates
of the map, but formula (8) makes no sense, because the map is
not conjugate to a rotation. Nevertheless, the numerical results
of Section 4 show that, even in the rational case, the method
works as well as in the Diophantine case.

We do not have a complete justification for the efficiency
of the method in the rational case, but we know that, for any
circle homeomorphism having a rational rotation number, every
orbit is either periodic or its iterates converge to a periodic
orbit (see [9]). Then, at the limit, the iterates of the map
behave as periodic points. For a periodic point, one can see that
the normalized sums S̃ p

N in (10) also behave as in (13), with
Ê(p, N ) = O(1/N p+1), which is the only thing we need for
the extrapolation to work.

In fact, what we observe, numerically, is that the worst case
for this method is when θ is an irrational number too close to
the rational ones (i.e., it is very close to resonance, but it is not
exactly resonant). See Figs. 5 and 7.

4. Numerical results

In this section we consider some numerical applications
of the method introduced in Section 3. The computations
presented here have been performed by using the quad-
double/double-double computation package (see [19]), which
provides a double-double data type of approximately 32
decimal digits and a quad-double data type of approximately
64 decimal digits for a C++ compilator. The reason why we
use these extended arithmetics, and not, for instance, the usual
double data type of a PC, with approximately 16 decimal digits,
is because, by working with the double data type, the method
“saturates” all the significative digits faster (the best error that
we can expect is 10−16), and hence we cannot appreciate the
features of the method for “large values” of p and q.

We consider three different contexts. The first one, which
is applicable in Section 4.1, is the Siegel disk of the quadratic
polynomial F(z) = λ(z −

1
2 z2). We use this example, where

the rotation number is known a priori, as a test of the method.
Section 4.2 is devoted to computing some of the most irrational
Arnold tongues of the Arnold family (27). Moreover, and
mainly to test the method for the case of rational rotation
numbers, we also compute the Devil’s Staircase of (27) for a
fixed value of ε. Finally, in Section 4.3 we consider the two-
dimensional Chirikov standard map (28). First, we perform a
“frequency analysis” of the map for some values of ε. Next to
that, we use the method as a tool to compute the invariant curve
of rotation number the Golden Mean, for increasing values of ε.
We compare the critical value of ε, up to which we can compute
numerically this invariant curve, with the value obtained by
using the classical Greene’s criterion.

4.1. The quadratic polynomial

The first numerical application of the method is a test of the
method itself and, in particular, of the behavior of the error
discussed in Section 3.3. For this purpose, it is better to use
examples for which the rotation number is known a priori, and
hence the error of the method can be computed exactly.

The simplest context is to consider a Siegel disk in the
complex plane. Let F : U → C be an analytic map, where
U ⊂ C is an open set, such that F(0) = 0 and F ′(0) = eiω,
with ω = 2πθ . It is well known that, if θ is an (irrational)
Brjuno number (in particular, if it is Diophantine), then the map
F is analytically linearizable around 0 (see [3,36]). This means
that there is a unique R > 0 (maximal for this property) and a
unique conformal isomorphism

ϕ : DR → U, ϕ(0) = 0, ϕ′(0) = 1,

where DR is the open disk of center 0 and radius R, such that
ϕ conjugates F to the rotation of angle ω around the origin.
That is, F ◦ ϕ = ϕ ◦ Rω in DR , where Rω(z) = eiωz. The
(topological) rotation disk U is called a Siegel disk of F .

It is clear that U is foliated by invariant curves under the
action of F , any of them defined as ϕ(Cs), with 0 < s <

R, where Cs is the circle of radius s around the origin. The
dynamics on any of these curves is analytically conjugate to a
rotation on T1, with rotation number θ . Let us suppose that, for
a given s, the curve ϕ(Cs) can be analytically parameterized by
arg(z)/2π (defined as a map from C \ {0} to T1). This holds,
for instance, if s is small enough, because then ϕ(Cs) is close to
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Fig. 2. Numerical tests of the error in the computation of the rotation number θ = (
√

5 − 1)/2 for the invariant curve of the quadratic polynomial with z0 =
1
2 .

Left: The dashed curve is the graph of log10 |ẽ(2q )| versus q (see (26)). In the continuous curves (from top to bottom) we plot log10 |e(p, 2q )| versus q, for
p ∈ {0, 1, 2, 4, 6, 10}. Right: We plot log2 |e(p, 2q )| + q(p + 1) versus q , for p = 1 (continuous curve) and p = 2 (dashed curve).
Fig. 3. The same example of Fig. 2. Left: For any q ∈ {20, 21, 22, 23} we compute 2q iterates and plot (log2 |e(p, 2q )| + (q − p/2)(p + 1))/(p log2 p) versus
p ≤ q. Right: We plot, for the same values of q , (log2 |e(p, 2q )| + (q − p/2)(p + 1) − 2p log2 p)/p versus p ≤ q .
Cs . Under this assumption, we can consider the circle map f̂s
defined as follows (see Fig. 1). Given x0 ∈ T1, let z0 ∈ ϕ(Cs)

be the unique point such that x0 = arg(z0)/2π . Then

f̂s : T1
→ T1

x0 = arg(z0)/2π 7→ x1 = arg(F(z0))/2π
(25)

is an orientation-preserving analytic circle diffeomorphism,
with rotation number θ . To define the lift of f̂s to R, for which
we keep the same name, we only have to select the suitable
determination of arg(·) in any case. The width of the strip of
analyticity (see (17)) around the real axis of the map f̂s goes to
+∞ when s → 0+ and decreases when s increases.

Moreover, we also have that there exists r0 > 0 such that
these invariant curves can be parameterized by its cut z0 = r
with the positive real axis, for r ∈ (0, r0). Thus, given any
r ∈ (0, r0), we define fr : T1

→ T1 as the map f̂s introduced
in (25) with s = s(r) so that the invariant curve ϕ(Cs) contains
the point z0 = r . We do not have an explicit formula for this
map, but, to apply the method of Section 3, it is enough to know
the iterates of z0 = r , whose argument is x0 = 0. Hence,

f n
r (0) = arg(Fn(r))/2π.

The simplest case of a (non-trivial) Siegel disk is when F is
a quadratic polynomial. Thus, in this section we present several
numerical examples working with the widely studied map
F(z) = λ(z −

1
2 z2), where λ = e2π iθ (see, for instance, [36]).
We observe that F has a critical point at z = 1 which cannot
belong to the Siegel disk U . A remarkable property of F is that,
if θ is a Diophantine number, then this critical point belongs to
the boundary of U (see [17]). Moreover, if we take the critical
point z0 = 1, it is known that the closure of the set defined by its
iterates gives the boundary of the Siegel disk (the limit invariant
curve). This boundary is known to be a quasi-circle, but it is no
longer an analytic curve. This means that if, for certain θ , we
can take r0 = 1, then at the limit r = 1 the function f1 is (in
general) no longer differentiable, but only Hölder continuous
(see [15,31,1]).

Let us now describe the numerical examples that we consider
for the quadratic polynomial F . For the rotation number, we
mainly take the Golden Mean, θ = (

√
5 − 1)/2, because it

is known to be the “best choice” in terms of the Diophantine
condition (3). In particular, as θ is a quadratic irrational, we can
take τ = 1. Two characterizations of the Golden Mean are that
it is a zero of the equation θ2

+θ −1 = 0 and that its continuous
fraction expansion is of constant type, θ = [1, 1, . . .]. We use
these properties as a motivation to introduce the other rotation
numbers that we consider, which are also quadratic irrationals.
We define θs from the (constant) continuous fraction expansion
given by θs = [s, s, . . .], which is a zero of θ2

+ sθ − 1 = 0.
It is clear that θs is a Diophantine number for any s ≥ 1, with
τ = 1 but with a bigger constant C when s increases. Roughly
speaking, for large s, then θs = 1/s − 6/s3

+O(1/s5) is “very
close” to the rational numbers.
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Fig. 4. More numerical tests of the error of the method for the quadratic polynomial for the Golden Mean. Left: we consider different initial conditions z0 = r , with
r ∈ {0.2, 0.5, 0.9, 0.95, 1.}, compute 223 iterates, and plot log10 |e(p, 223)| versus p. The resulting curves are ordered from bottom to top as r increases. Right: we
take z0 = 1 and, for any p ∈ {0, 1, 2, 6, 10}, we plot log10 |e(p, 2q )| versus q. The upper curve corresponds to p = 0. The dashed one is the graph of log10 |ẽ(2q )|

versus q.
Fig. 5. Tests of the error of the method for the quadratic polynomial and different rotation numbers θ . Left: we compute 223 iterates of the initial condition z0 =
1
4

for θ ∈ {θ1, θ10, θ20, θ30, θ40, θ50} and for any θ we plot the graph of log10 |e(p, 223)| versus p. The error curves appear ordered from bottom to top as a function
of the subscript j of θ j . Right: for the case θ = θ50 of the left picture, we plot log10 |e(p, 2q )| versus q for five different extrapolation orders, p ∈ {0, 1, 2, 6, 10}

(from top to bottom). The dashed curve is log10 |ẽ(2q )| versus q.
As we know a priori the rotation number of the map, we
can compute (numerically) the exact error e(p, 2q), introduced
in (15), of the numerical approximation Θ(p, 2q) obtained
by solving the system (14), i.e., 2q is the number of iterates
computed and p is the extrapolation order. We expect for
e(p, 2q) a similar behavior as for its bound (22).

Another point that we consider for this numerical test is
the comparison with another method to compute the rotation
number. The alternative method we use is based on the idea
that the rotation number is the constant rotation that best fits
with the map if we compare it with a rotation. However,
instead of computing the rotation average of the iterates as
in definition (1), we look for a rational approximation for the
rotation number by selecting the iterates that are closest to be
periodic points (“closest returns”; see [23], Appendix C). Let
us compute the iterates { f n(0)}n=1,...,N of a lift f of a circle
map, and let PN , QN ∈ N be such that | f QN (0) − PN | =

min1≤n≤N dist( f n(0), Z). Then, we take the rational number
PN /QN as an approximation to the rotation number. This
method converges to the rotation number θ = ρ( f ) with an
error

ẽ(N ) = PN /QN − θ (26)
that behaves, roughly speaking, as O(1/N 2). Hence, it can
be considered as “equivalent” to using extrapolation order
p = 1 for the method of Section 3. The advantage of
this alternative method is that it works independently of the
arithmetic properties of the rotation number and of the smooth
or analytic character of the map. Thus, it is worth comparing
this method with the one we present in this paper, especially in
the “critical cases”, that is, for “bad” Diophantine numbers or
for non-smooth maps.

For what concerns the iterates of the map, we compute them
up to 223

= 8388 608 at most, by using the quad-double data
type. For this number of iterates, we have not found extremely
bad effects due to round-off errors.

The numerical results obtained are displayed in Figs. 2–5.
To understand the meaning of the axis in the different plots, we
can take into account the following general rules. The vertical
axis is always a quantity related to the log10 of the error of the
method, which gives (minus) the number of correct decimal
digits. The horizontal axis means, depending on the plot, that
the extrapolation order p or q = log2 N , where N = 2q is the
number of iterates used. Finally, as all these error graphs are
discontinuous, to plot them we join consecutive points by lines.
The detailed explanation of these plots is given as follows.
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The four plots displayed in Figs. 2 and 3 correspond to the
same example. We take the invariant curve of F(z), with the
Golden Mean as rotation number, having as initial condition
z0 =

1
2 . For this initial condition, we compute up to 223 iterates

of the map. Then, our purpose in these figures is to illustrate
the results obtained by using different values of q and different
extrapolation orders p, and to compare the exact errors thus
obtained with the “asymptotic behavior” (22) of the error.

Fig. 2: The error-curves plotted on the left appear ordered in
decreasing order with respect to p by its value at q = 23 (recall
that if p = 0, then the method reduces to applying definition
(1)). As expected, the bigger the extrapolation order p is, the
smaller that the error for N = 223 is. However, we observe that,
as some curves intersect each other, to choose the greatest value
of p for a given q is not always the best choice (for the smallest
error). See also Fig. 5 (left). We observe that the dashed curve
log10 |ẽ(2q)| (giving the error of the “closest returns” method)
is very close to the curve corresponding to p = 1. In the right
plot, looking at the bound on the error e(p, 2q) given in (22), we
expect both curves to remain bounded when q goes to infinity.

Fig. 3: For the same example of Fig. 2, we again compare
the bound (22) with the numerical error of the method, but now
for fixed q and varying p. For the selected values of q, we
compute the error e(p, 2q) for all the values of p allowed by
the method. Then, in the left plot, we expect the curves to be
close to τ + 1 = 2 at the “limit” p = q , which fits quite nicely.
In the right plot, we now expect the curves to be bounded at the
“limit” p = q by a constant independent of q . From the results
displayed in this plot, it is clear that formula (22) gives good
asymptotics for the error. However, we cannot say the same
about the “transitory regime”, because it seems that, for values
of the extrapolation order p not “too big” with respect to q, the
error e(p, 2q) is smaller than its bound (22). Of course, this fact
is not bad news but, from the practical point of view, it makes
it more difficult to select the optimal value p∗

= p∗(q). Again,
see Fig. 5 (left) for a clearer view of the behavior of p∗.

Our purpose in Figs. 4 and 5 is to show how the error
e(p, 2q) is affected by the two different aspects that we have
considered in the theoretical analysis: the width of the strip
of analyticity of the conjugation (or its lack of smoothness)
and the good or bad arithmetic properties of the rotation
number. We again consider invariant curves of the quadratic
polynomial F(z), but now we apply the method to different
initial conditions and different values of the rotation number θ .

Fig. 4: On the left plot we show the effect of the width
of analyticity of the conjugation η (see (2)) on the numerical
precision of the rotation number. We observe that the precision
of the method decreases as r increases (and so the width of
analyticity decreases). We recall that, for the limit case z0 = 1,
the invariant curve is only continuous. On the right plot we
discuss more precisely the effect of the non-smoothness of the
conjugation on the precision of the method, by taking the limit
case z0 = 1 of the previous picture. What we observe is that
all the error curves of the plot seem to have the same behavior
for p ≥ 1, with an error of O((1/2q)2), and hence the method
is useless for p > 1. But, although the map at the boundary is
only Hölder continuous but not differentiable, and thus there is
no justification for the extrapolation, the method for p ≥ 1 is
no worse than computing the “closest returns”.

Fig. 5: Now we discuss the effect of the Diophantine
properties of the rotation number on the precision of the
method. In the left plot, as expected, we see that the method
works better for “good” Diophantine numbers. Among the
Diophantine numbers of the left plot, we focus on the worst
case, θ = θ50, and on the right plot we compare with the method
of “closest returns”. We observe that, even though for moderate
values of q the error ẽ(2q) is the smallest, when q increases the
extrapolation effects arise, giving better results if p > 1.

4.2. The Arnold family

Let us consider the Arnold family of circle maps,

fα,ε : T1
−→ T1

x −→ x +
α

2π
+

ε

2π
sin(2πx)

(27)

where (α, ε) are real parameters, α ∈ [0, 2π), ε ∈ [0, 1).
For any pair of values of the parameters, the map fα,ε is an
orientation-preserving analytic circle diffeomorphism, so that
we can define its rotation number as a function of (α, ε),
namely ρ(α, ε). Given an arbitrary θ ∈ [0, 1), the set Tθ =

{(α, ε):ρ(α, ε) = θ} is called the Arnold tongue of rotation
number θ . If θ is a rational number, then Tθ is a set with interior.
If θ is irrational, then Tθ is a continuous curve connecting ε = 0
with ε = 1, which is the graph of a function ε 7→ α(ε), with
α(0) = 2πθ . In the Diophantine case, this curve is known to be
analytic for any ε ∈ [0, 1) (see [26,10]).

The first application of the method is the numerical
computation of some irrational Arnold tongues for this family.
To do that, we fix a Diophantine number θ and solve the
equation g(α, ε) := ρ(α, ε) − θ = 0. As we know the solution
of this equation for ε = 0, we use numerical continuation
with respect to ε to obtain the curve α(ε). To be more precise,
we pick a finite sequence of values of ε, {ε j } j=0,...,K , with
ε0 = 0 and εK = 1 (for instance, ε j = j/K ) and compute a
numerical approximation α∗

j = α∗(ε j ) of α(ε j ). We obtain α∗

j
by solving the equation g(α, ε j ) = 0 by means of the secant
method. To start up the secant method, we need two initial
approximations of α∗

j . In the general case j = 2, . . . , K , these
two approximations are α∗

j−1 and the value obtained by linear
interpolation between (ε j−2, α

∗

j−2) and (ε j−1, α
∗

j−1).
To evaluate ρ(α, ε), we use the method of Section 3. Of

course, for a given pair (α, ε) we cannot ensure that ρ(α, ε)

is Diophantine. However, if (α, ε) is close to an Arnold tongue
Tθ , with a “good” Diophantine number θ , we expect the method
to work quite well (see Remark 2).

Fig. 6: The computation of the Arnold tongues of the left
figure has been performed by using the quad-double data type
and a fixed extrapolation order p = 9. The continuation step
with respect to ε is 10−2, so we plot 100 points for any tongue
Tθ . The errors that we allow for the numerical continuation are,
at most, 10−32 for the evaluation of the rotation number (by
using the estimate (24) with ν = 10) and 10−30 for the secant
method (the distance between two consecutive iterates). This
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Fig. 6. Left: Arnold tongues Tθ of fα,ε for θs = [s, s, . . .], s = 1, . . . , 5. We plot α ∈ [0, 2π) on the horizontal axis and ε ∈ [0, 1] on the vertical axis. Right: we
plot the log10 of the errors on the computation of Tθ1 versus ε after five iterates of the secant method. The upper curve shows the estimated error on α and the lower

curve shows the exact error on the rotation number e(9, 220) for the points (α∗(ε), ε) thus obtained.
Fig. 7. Left: The Devil’s Staircase of the Arnold family for ε = 0.75. We plot the rotation number ρ(α, 0.75) versus α ∈ [0, 2π). Right: We plot the log10 of the
error on the rotation number versus α ∈ [0, 2π), for the points displayed in the left picture.
means that, to evaluate the rotation number, we compute iterates
of the map up to 223 at most, and we stop when the estimated
error (24) is smaller than 10−32. The required number of iterates
increases from 218 to 223 as ε approaches 1. The number of
iterates of the secant method is not limited, but typically we
need four iterates to determine the points of Tθ1 and Tθ2 and
five iterates for the remaining three tongues.

We remark that, for ε = 1, the map (27) is an
analytic orientation-preserving homeomorphism, but not a
diffeomorphism. Nevertheless, Yoccoz [35] proved that such
a map is still conjugate to a rotation if the rotation number is
irrational. What we observe for ε = 1 is that the numerical
computation of the rotation number works quite well. However,
the secant method only has linear speed of convergence, and
a large number of iterates (from 18 to 24, depending on the
tongue) is needed.

In the right plot we illustrate the typical behavior of the
error when computing the Arnold tongues. To obtain error
curves without big oscillations, we fix the number of iterates
of the secant method and set p = 9 and q = 20 in all the
computations. Hence, for most of the values of ε, the errors are
smaller than those required to compute Tθ1 in the left figure. The
gaps of the lower curve correspond to values of ε j for which the
numerical error is zero.

The second application is the numerical computation of the
Devil’s Staircase for a given ε ∈ (0, 1). Thus, we set ε to be
fixed in (27) and consider the one parameter family of circle
maps { fα,ε}α∈[0,2π). The (continuous) graph of the function
α 7→ ρ(α, ε) is called a Devil’s Staircase (see [9]). We observe
that, if ρ(α∗, ε) ∈ Q, for a certain α∗, then this function
is constant in a neighborhood of α∗. If ρ(α∗, ε) 6∈ Q, then
α 7→ ρ(α, ε) is strictly increasing at α = α∗. As the values of α

for which ρ(α, ε) ∈ Q are dense in [0, 2π) (the complementary
is a Cantor set), there are an infinite number of intervals in
which the function is locally constant, giving rise to a staircase
with a dense number of stairs.

Fig. 7: The computation of this Devil’s Staircase has been
performed by using the double-double data type, a fixed
extrapolation order p = 7, and up to 220 iterates of the
map, at most. We estimate the error of the rotation number by
using (24) with ν = 10, and we validate the rotation number
when this error is smaller than 10−24. In the right plot we
show the error (24) for the points displayed on the left plot.
For 91% of the points, this error is smaller than 10−24 after
at most 220 iterates (for 60%, we need at most 218 iterates).
For the remaining 9%, the estimate on the error does not
achieve this critical tolerance after 220 iterates, but it is smaller
than 1.1 × 10−18 except for six points. As we pointed out in
Remark 9, the rotation numbers of these six points seem to be
irrational numbers very close to resonance (thus having a large
constant C in (3) in the Diophantine case). For instance, for the
point α = 872 × 10−3π , we have computed the corresponding
rotation number θ = ρ(α, 0.75) with an error of 1.5 × 10−15.
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Fig. 8. Left: numerical continuation with respect to ε of the invariant curve of rotation number θ the Golden Mean for the Chirikov standard map. We plot the
graph of Y(θ, ε) versus ε. Right: we plot 10 000 iterates of the map SMε , for ε = 0.154640922, of the “last” initial condition displayed in the previous graph. The
horizontal axis is the variable x ∈ [0, 1] and the vertical axis is the variable y.
The computed θ verifies |73 × θ − 15| ∼ 1.3 × 10−5, which
means that it is very close to the rational 15/73.

4.3. The Chirikov standard map

We consider the following family of exact symplectic
analytic diffeomorphisms of the cylinder,

SMε : T1
× R → T1

× R

(x, y) 7→ (x + y + ε sin(2πx), y + ε sin(2πx))
(28)

where ε ≥ 0 is a parameter. The map SMε is usually referred
to as the Chirikov standard map [7].

For ε = 0, the cylinder is filled up by invariant curves
given by T1

× {y0}. The dynamics of the variable x on any
of these invariant circles is a rotation of rotation number y0. As
the map (28) is a perturbation of an integrable twist map, we
can apply Moser’s Twist Theorem to it (see [28]). Then, if we
consider a fixed Diophantine rotation number θ ∈ [0, 1), there
exists εC (θ) such that, for any 0 ≤ ε < εC (θ), the map SMε

has an analytic invariant curve whose dynamics is analytically
conjugate to a rigid rotation of rotation number θ . This curve is
a small perturbation of the circle T1

× {θ}. Moreover, from the
twist character of the map SMε, we can also apply a result due
to Birkhoff (see [2]) which ensures that all these curves can be
written as graphs of the variable y over the variable x . In this
way, the dynamics on any of these curves induces a map on T1

simply by projecting the iterates of SMε on T1.
Let us introduce this circle map more precisely. We take

(x0, y0) ∈ T1
× R, belonging to one of these invariant curves,

and compute (xn, yn) = (SMε)
n(x0, y0), for n ≥ 0. If we call

f the circle map induced by this curve, we have f n(x0) = xn .
Consequently, we can apply the method of Section 3 to this
sequence to compute (with high precision) the rotation number
of this curve.

In this section we use this method from two different points
of view. First, we follow the evolution, when ε increases, of the
invariant curve of SMε having a prefixed rotation number θ ,
up to its critical value εC (θ) for which the curve is destroyed.
We denote by Y(θ, ε) the function given the y-coordinate of
the cut of this invariant curve with x = 0. For a given θ , the
function Y(θ, ·) is defined for any 0 ≤ ε < εC (θ) and verifies
Y(θ, 0) = θ .
The method that we use to obtain the function ε 7→ Y(θ, ε)

is completely analogous to the one used in the computation
of the Arnold tongues in Section 4.2. We fix θ and consider
the equation g(y, ε) := ρ(y, ε) − θ = 0, where ρ(y, ε) is
the rotation number associated with the initial condition (0, y)

for the map SMε (if the point (0, y) belongs to an invariant
curve of SMε). The solution with respect to y of this equation
is y = Y(θ, ε). The function ρ(y, ε) is not properly defined
for any couple (y, ε). However, if y is close to Y(θ, ε) then,
in the Lebesgue measure sense, most of the points of the form
(y, 0) belong to an invariant curve of SMε, and the function
ρ(y, ε) is well defined. From the numerical point of view, what
we observe is that the method works quite well for computing
ρ(y, ε) for values of (y, ε) close to this invariant curve.

To solve the equation g(y, ε) = 0, we use numerical
continuation with respect to ε. We construct a finite and
increasing sequence of values of ε, {ε j } j=0,...,K , with ε0 = 0
and variable step-size. For any j = 0, . . . , K , we compute
a numerical approximation Y∗

j of Y(θ, ε j ), beginning with
Y∗

0 = θ . To obtain Y∗

j we solve numerically the equation
g(y, ε j ) = 0 by using the secant method. If the secant method
does not converge, this means that either we are working with a
value of ε bigger than εC (θ) or that the continuation step-size is
too big. In any of these cases, we are forced to go back to ε j−1
and to reduce the step-size.

Since there is strong (numerical) evidence that the “most
robust” invariant curve is the one having rotation number θ =

(
√

5−1)/2 the Golden Mean, we apply the continuation method
to this value of θ . Our purpose is to compare the numerical
approximation thus obtained for εC (θ) with the value εG(θ) =

0.971635/2π ≈ 0.1546405 obtained by applying Greene’s
criterion to the same problem (see [14]).

Fig. 8: The computation of the continuation curve displayed
in the left picture has been performed by using the double-
double data type, a fixed extrapolation order p = 9, and up
to 223 iterates of the map, at most. We estimate the error of the
rotation number by using (24) with ν = 10, and we validate the
rotation number when this error is smaller than 10−30. For the
secant method, we require an error smaller than 10−25.

The critical value that we obtain for ε is εC = 0.154640922.
We also notice that, if we increase the tolerance for the rotation
number to 10−20 and for the secant method to 10−16, we are
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Fig. 9. We compute 108 iterates of SMε of the initial condition displayed in Fig. 8, for ε = 0.1546405 (left) and ε = 0.1546407 (right), and we zoom in on them.
The width of the y-range of the plots is of order 10−9.
Fig. 10. Frequency analysis of the Chirikov standard map for ε = 0.1. Left: we plot the “rotation number” ρ(y, 0.1) (when defined) versus the coordinate y ∈ [0, 1]

of the initial condition (0, y). Right: we omit from the left picture those points for which the computed rotation number is rational.
able to continue “the invariant curve” up to εC = 0.154643.
Any of these values for εC is larger than the critical value
known from Greene’s criterion, εG ≈ 0.1546405. However, the
question is up to which value of ε can we ensure that the initial
condition computed corresponds to a true invariant curve of
SMε. For instance, in the right picture of Fig. 8, the orbit of the
initial condition for ε = 0.154640922 looks like an invariant
curve but, as we discuss in Fig. 9, we are not completely sure
about this.

Fig. 9: What we see in the left picture looks like what we
expect for an invariant curve. But we cannot ensure that the one
on the right corresponds to a true invariant curve. Of course,
the “islands” in the figure can be originated by the error in
the determination of the initial condition or by its numerical
propagation along 108 iterates. Nevertheless, we point out that
the numerical errors of the initial conditions for ε = 0.1546405
and ε = 0.1546407 are of the same order (concretely, 10−31 for
the secant method and 10−42 for the rotation number).

As a second application of the Chirikov standard map, we
use this method to perform a “frequency analysis” of SMε for a
given ε, to detect which initial conditions on the “vertical line”
x = 0 give rise to an invariant curve simply by computing (if
possible) its (irrational) rotation number. See [21] for a similar
set up. In Fig. 10 we display the frequency analysis of SMε for
ε = 0.1.

Fig. 10: In the left picture we consider points of the form
(0, y j ), with y j = j × 10−3 and j = 0, . . . , 999. Given
the initial condition (0, y j ), we compute (if possible) the
rotation number ρ(y j , 0.1) of this point by assuming that it
belongs to an invariant curve of SM0.1. The computations have
been performed by using the double-double data type, a fixed
extrapolation order p = 7, and up to 220 iterates of the map, at
most. We estimate the error of the rotation number by using (24)
with ν = 10, and we validate the rotation number when this
error is smaller than 10−24. What we plot in this figure is the
graph of the function y j 7→ ρ(y j , 0.05) (when defined).

As the selected value of ε is not “too big”, much of
the points, in the Lebesgue measure sense, belong to an
invariant curve. Then, we have been able to validate the
rotation number for more than the 78% of them (87% if we
decrease the tolerance of the error of the rotation number
to 10−19). Nevertheless, some of the rotation numbers thus
obtained are rational numbers, computed with high precision
(the plot resembles a Devil’s Staircase). Of course, the points
to which we assign a rational rotation number cannot belong
to an invariant curve. This phenomenon can be understood
by remembering that the resonant invariant curves of ε = 0
give rise, for ε > 0, to isolated periodic orbits. Some of
these periodic orbits are linearly stable and most of the initial
conditions around them fall into “secondary invariant curves”
or “islands”, which are invariant curves of a suitable power of
SMε (depending on the period of the orbit). Thus, for a point
on these islands, what we obtain is the “rotation number” of the
periodic orbit in the middle of the island.

To skip the “rational rotation numbers”, we use the following
criteria: we consider that θ is rational if the difference
between θ and its truncated continuous fraction expansion
[a1, a2, a3, a4, a5] is smaller than 10−8. In this way, we
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expect that the points in the right plot correspond to initial
conditions of invariant curves of SM0.1. The surviving points
are 67.3%.
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