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a b s t r a c t

We consider the Arnold Tongue of the Arnold family of circle maps associated to a fixed Diophantine
rotation number θ . The corresponding maps of the family are analytically conjugate to a rigid rotation.
This conjugation is defined on a (maximal) complex strip of the circle and, after a suitable scaling, the size
of this strip is given by an analytic function of the perturbative parameter.
Themain purpose of this paper is to perform a numerical accurate computation of this function and of

its Taylor expansion. This allows us to verify previous theoretical results. The rotation numbers we select
are quadratic irrationals, mainly the Golden Mean.
By introducing a nonstandard extrapolation process, especially suited for the problem, we compute

all the quantities required (rotation numbers, Arnold Tongues, Fourier and Taylor coefficients) with high
precision.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

In this paper we consider the widely studied Arnold family of
circle maps,

f̃α,ε : T1 −→ T1

x −→ x+
α

2π
+

ε

2π
sin(2πx) (1)

where T1 = R/Z and (α, ε) are real parameters. For any α ∈
[0, 2π) and ε ∈ [0, 1), the map f̃α,ε is an orientation-preserving
analytic diffeomorphism of the circle and we denote by ρ(α, ε) its
rotation number.
A well-known result on circle maps [1,8,10] ensures that, given

f an analytic diffeomorphism of T1, whose rotation number θ =
ρ(f ) is Diophantine, the map f is analytically conjugate to the
rigid rotation Tθ (x) = x + θ . Concretely, there exists an analytic
diffeomorphism η : T1 → T1 such that η◦Tθ = f ◦η. If we require
η(0) = x0, for a fixed x0 ∈ T1, then the conjugacy is unique. This
conjugation can be written as

η(x) = x+ ξ(x), (2)
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where ξ is a 1-periodic function. As η is (real) analytic, it can be
analytically extended to a maximal complex strip of the form

A(∆) = {x ∈ C : |Im(x)| < ∆}, (3)

for some∆ > 0. Abusing notation,we also denote byη this analytic
extension. By the principle of analytic continuation, the map η still
conjugates f to Tθ inA(∆).
To apply this result to the Arnold family, we have to take into

account the parametric dependence. Thus, for any θ ∈ [0, 1), the
set Tθ = {(α, ε) : ρ(α, ε) = θ} is called the Arnold Tongue of f̃α,ε
of rotation number θ . If θ is a Diophantine number, then Tθ is an
analytic curve which is the graph of a function ε ∈ [0, 1) 7→ α(ε),
with α(0) = 2πθ (see [16]). Hence, if we keep the Diophantine
number θ fixed from now on, we have that the 1-parameter family
of maps f̃α(ε),ε is analytically conjugate to Tθ through a family of
analytic conjugations,

η̃ε : A(∆̃(ε))→ C, (4)

also depending analytically on ε. Here, A(∆̃(ε)) denotes the
maximal strip in which η̃ε is defined.
For ∆̃(ε) we easily have that limε→1− ∆̃(ε) = 0 and

limε→0+ ∆̃(ε) = +∞. In this paper we focus on the asymptotic
behavior of ∆̃(ε)when ε→ 0+. This problemwas first considered
in [4], where an asymptotic expression for this function was given.
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Concretely, if we write

∆̃(ε) =
1
2π
log R̃ε, (5)

it was proved that

R̃ε =
2
ε
Rε =

2
ε
(R0 + O(ε log ε)). (6)

Here, R0 is the conformal radius of the Siegel disk at the origin of
the so-called complex semistandard map

G(z) = zeiωez, (7)

where ω = 2πθ . Indeed, there exists a unique analytic
diffeomorphism

ϕ : DR0 → C (8)

such that ϕ(0) = 0, ϕ′(0) = 1 and ϕ ◦ Rω = G ◦ ϕ, where
DR0 = {z ∈ C : |z| < R0} andRω(z) = eiωz.
The estimate (6) was later improved in [2], where the authors

proved that Rε is an even analytic function in the unit disk D1, so
that

R̃ε =
2
ε
(R0 + O(ε2)). (9)

It is not difficult to give a geometrical view of this result. Let us
consider an analyticmap F : U ⊂ C→ C leaving the unit circle C1
invariant. We say that F|C1 is analytically linearizable if there exists
an analytic diffeomorphism ϕ : C1 → C1, such that ϕ◦Rω = F ◦ϕ.
If we ask ϕ(1) = z0, for some z0 ∈ C1, then ϕ is univocally defined.
Being an analytic function on C1, ϕ can be analytically continued to
a maximal annulus around C1 of the form

A(R) = {z ∈ C : 1/R < |z| < R} , (10)

for some R > 1. Now,we consider f : T1 → T1 the (analytic) circle
map induced by F|C1 , using the exponential map z = e

2π ix, and we
define η : T1 → T1 so that

ϕ(e2π ix) = e2π iη(x), x ∈ T1, (11)

with the normalization η(0) = x0, where e2π ix0 = z0. Then, we
have that η ◦ Tθ = f ◦ η, and thus, f is analytically conjugate to
a rotation. Moreover, η is also analytic and the width of its strip
of analyticity around T1 is ∆ = (1/2π) log R. The image by ϕ of
the maximal annulus A(R) where ϕ can be analytically continued
is called the Herman ring of F and the quantity∆ = (1/π) log R is
called the modulus of the ring.

Remark 1. We use the term rotation domain to refer to the image
of the maximal domain of definition of an analytic conjugation to
a rigid rotation of a circle map. We extend the term to refer to a
Siegel disk or a Herman ring of an analytic map of C, when there
is no danger of confusion. For a Herman ring we call the R in Eq.
(10), that defines the maximal annulus where the conjugation is
defined, for the size of the ring. Similarly, for a Siegel disk we use its
conformal radius R0 of (8) to denote the size of the disk and, for a
circle map, we measure the size of its rotation domain in terms of
the width∆ of the strip of analyticity of the conjugation (3).

Now, we consider the complex standard family

F̃α,ε(z) = zeiαe
ε
2

(
z− 1z

)
, α ∈ [0, 2π), ε ∈ [0, 1). (12)

This is a family of holomorphic maps of C∗ = C \ {0} leaving C1
invariant. In T1, this family of maps induces the Arnold family (1).
Thus, the geometrical meaning of formula (9) is that, by means
of a suitable scaling, the complex standard family becomes the
semistandard map (7) when (α, ε) → (ω, 0) over Tθ , and the
Herman ring of F̃α(ε),ε becomes the Siegel disk of G (see [4]).
The main purpose of this paper is to perform a numerical
verification of the asymptotic formula (9), working with the
standard family f̃α,ε . The rotation numbers we select for the
computations are quadratic irrationals, mainly focusing in the case
when θ is the Golden Mean, θ = (

√
5− 1)/2.

To compute the width of the strip of analyticity of the
conjugation we are going to use a result due to Herman (see
Proposition 3). Moreover, as

∆(ε) =
1
2π
log Rε = ∆̃(ε)−

1
2π
log

(
2
ε

)
(13)

is an analytic (even) function of ε, we also adapt Herman’s method
to compute the Taylor expansion of∆(ε) at ε = 0. Next to that, we
compare this Taylor expansion with∆(ε) computing this function
for a table of values of ε ∈ [0, 1].
Among the problemswe have faced to perform these numerical

computations, with enough precision to make a successful
comparison with the Taylor expansion, here we want to stress
two. First, the accurate computation of the Arnold Tongue Tθ .
For this purpose, we have used a numerical method previously
developed by the authors to compute rotation numbers with
high precision (see [17], Section 4.2). Second, the improvement
of the numerical results for ∆(ε) provided by Herman’s method.
To do that, we have combined the direct computation with
some heuristic observations and semi-analytical ideas, in order to
develop an ad hoc extrapolation process suited for the method,
that depends strongly on the arithmetic properties of the selected
rotation numbers.
To give a partial justification of these ideas, for the case of

the Golden Mean, we have also adapted Herman’s method for
computing the Fourier coefficients of the periodic part of the
conjugation (2).
We alsomention that all the numerical computations have been

implemented ad hoc in C++ code. Moreover, in order to perform
the computations of the different quantities with enough precision
to detect its asymptotic behavior, we have replaced the standard
double data type of the computer by the so-called double–double
data type, of approximately 32 decimal digits, which is provided by
the quad-double/double–double computational package (see [12]).
The paper is structured as follows. In Section 2 we present

Herman’s result and show how it can be used to compute the
function ∆(ε) as well as its derivatives. Moreover, in Section 2.3
we adapt this method for computing the Fourier coefficients of the
conjugation. Section 3 is devoted to apply this methodology to the
Arnold family. For the case of the Golden Mean, we develop an
extrapolation method to improve Herman’s method in Section 3.3.
Moreover, we also give numerical evidences of the correctness
of the asymptotic expansions used in this extrapolation process.
In Section 3.4 we compute some Fourier coefficients of the
conjugation and detect its asymptotic behavior. This behavior is
used in Appendix B to give a partial justification of the asymptotics
used in Section 3.3. In Section 3.5 we briefly discuss the case of
other quadratic irrational rotation numbers. Finally, in Appendix A,
we analytically compute some Taylor coefficients of the function
α(ε) for any Diophantine rotation number θ . These coefficients are
required in Section 3.2.

2. Computation of the size of the rotation domain

In Section 2.1 we introduce Herman’s method to compute the
size of a Siegel disk or a Herman ring of amap in the complex plane.
Our next step is to translate this method in order to compute the
size∆ of the rotation domain of a circle map. Later, in Section 2.2,
we formulate this method in terms of a one-parameter family
of circle maps fµ, so that we can adapt it to the computation
of the derivatives of the size ∆(µ). Finally, in Section 2.3, a
slight modification of the method is used to compute the Fourier
coefficients of the conjugation.
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2.1. Herman’s method

Let F be an analytic map of C, leaving C1 invariant, and f the
induced map on T1 via the complex exponential; we suppose f :
T1 → T1 is an analytic circle diffeomorphism.

Remark 2. In what follows we are going to deal with a lift of F|C1
to R rather than the corresponding map on T1. Thus, from now on
we denote by f this lift, in the understanding that, to define the
corresponding map on T1, we only have to take modulo one in the
formula of f . This construction is straightforward for the Arnold
family.
We suppose that F|C1 has a Diophantine rotation number θ ,

and we want to discuss how to compute the size R of its Herman
ring and the size ∆ of the rotation domain of f (see Remark 1).
If we focus for instance on the definition of R, what we have
to do, in principle, is to compute the Laurent expansion of the
conjugation ϕ around C1 (see (11)). Then, we can obtain its outer
radius of convergence from the behavior of the coefficients of
this expansion. Of course, it is not realistic to expect that, by
applying this method to F̃α(ε),ε in (12), we can obtain a numerical
approximation to R̃ε with enough precision to detect its asymptotic
behavior (9).
Alternatively, we proceed analogously asMarmi in [14], and use

the following result due to Herman.

Proposition 3 (Herman, [11]). Let F be an analytic map in a
neighborhood of the origin, such that F(0) = 0 and F ′(0) = e2π iθ .
If ϕ linearizes F (see (8)) and we let z = ϕ(w), with |w| = r < R,
where R is the conformal radius of its Siegel disk U, we have that z ∈ U
and that

lim
n→+∞

1
n

n−1∑
j=0

log |F j(z)| = log r. (14)

Moreover, if {pj/qj}j≥0 are the convergents of the continued fraction
expansion of θ , then∣∣∣∣∣ 1qj

qj−1∑
j=0

log |F j(z)| − log r

∣∣∣∣∣ ≤ 1qj var(log |ϕ|Cr |), (15)

where var(·) is the variation of the curve.
This result can be generalized to the case of Herman rings of
complexmaps (see [14]). Moreover, if we suppose that we are able
to take the limit when r → R−, then we can use (14) and (15) to
compute R by taking z ∈ ∂U .
Let us explain what Proposition 3 means in terms of the circle

map f and the size of its rotation domain ∆. We consider a point
a − i∆ on the (lower) boundary of the strip of analyticity of the
conjugation η in (2), with a ∈ R, and we iterate x∗ = η(a − i∆)
(assuming this point defined) by the action of f . By expanding ξ in
Fourier series,

ξ(x) =
∑
k∈Z

ξke2π ikx, (16)

we obtain
f n(x∗) = η(a− i∆+ nθ) = a− i∆+ nθ +

∑
k∈Z

ξke2π ik(a−i∆+nθ).

Let us note that, ξ being a real analytic function, its Fourier
coefficients verify ξ−k = ξ̄k, for any k ∈ Z. In particular, ξ0 ∈ R.
Now, if we denote by ξ̂k = ξke2π ik(a−i∆), for k 6= 0, ξ̂0 =

ξ0 + a− i∆ and f̂n = f n(x∗)− nθ , we have

f̂n =
∑
k∈Z

ξ̂ke2π iknθ . (17)

In view of Proposition 3, we consider the sum of the first N iterates
of the map
SN =
N−1∑
n=0

f̂n = N ξ̂0 +
∑
k∈Z\{0}

ξ̂k
1− e2π ikNθ

1− e2π ikθ
. (18)

Hence, by assuming that the sum at the right-hand side of (18)
divided by N goes to zero when N → +∞, we recover Herman’s
result1

lim
N→+∞

Im
(
SN
N

)
= −∆. (19)

Remark 4. We point out that the fastest convergence speed we
can expect for ∆ in (19) is of O(1/N), i. e., the same order of
convergence expected when computing the rotation number of a
circle map from its definition. Later, in Section 3.3, we are going to
discuss how this convergence can be accelerated (for the Arnold
family and θ being the Golden Mean) by means of a suitable
extrapolation process.

The main difficulty in using (19) for computing ∆ lies in
knowing a point x∗ on the boundary of the rotation domain of the
circle map f . The most natural candidates are the critical points
of the map, defined so that f ′(x∗) = 0. It is clear that a critical
point cannot be in the interior of any rotation domain, and a very
important problem is to investigate if there is a critical point on
its boundary. Herman showed in [11] that there are examples of
maps without critical points on the boundary of their Siegel disk.
However, there are several results in the positive direction (see for
instance [6,7,9]). For our concerns, Geyer claimed in [5] (see [3]
for a sketch of a proof) that the critical points of F̃α,ε in (12) are
always on the boundary of its Herman ring for rotation numbers
θ of constant type2 (the same also holds for the Siegel disk of the
semistandard map G in (7)).

2.2. Variationals of Herman’s method

Now we consider a parametric approach to formula (19). Let
us suppose that fµ : R → R is a one-parameter family of
real analytic maps, which are lifts of a one-parameter family of
diffeomorphisms of the circle. We also suppose that the rotation
number θ = ρ(fµ) is independent of µ and Diophantine. If the
dependence on µ of the family fµ is smooth enough (analytic
in our context), one can ask if the function ∆(µ) giving the
size of the rotation domain of fµ is also smooth. Assuming the
answer positive, one can try to use formula (19) to compute the
derivatives of ∆(µ). For this purpose, we suppose known, for any
µ, a (complex) point x∗µ at the (lower) boundary of the rotation
domain of fµ. We also suppose that x∗µ depends smoothly on µ
(from the practical point of view x∗µ has to be a critical point of the
map fµ). Supposing that formula (19) holds on the boundary, we
have

lim
N→+∞

Im

(
1
N

N−1∑
n=0

(f nµ(x
∗

µ)− nθ)

)
= −∆(µ).

Then, by taking derivatives with respect to µ, we obtain the
following (formal) expressions

lim
N→+∞

Im

(
1
N

N−1∑
n=0

dk

dµk
(f nµ(x

∗

µ)− nθ)

)
= −∆(k)(µ), k ≥ 0,

(20)
where the derivatives of f nµ(x

∗
µ) can be computed recurrently (see

Section 3.2).

1 Of course, this property is straightforward if instead of ∆ we take any number
ywith−∆ < y < ∆.
2 θ ∈ R \ Q is of constant type if its continued fraction expansion, θ =
[a0; a1, a2, . . .], verifies a0 ∈ Z, an ∈ N and supn an < +∞.
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2.3. Fourier coefficients of the conjugation

Sometimes it is useful to compute the Fourier coefficients of
ξ(x) in (16). See for instance Section 3.4 for the case of the Arnold
family.
For this purpose, we focus on formula (17) and on the modified

Fourier coefficients ξ̂k, which are those of the Fourier expansion
of ξ at the lower boundary of its domain of analyticity. The most
natural method to compute them numerically is to truncate (17),
and to consider the approximate linear relation thus obtained

f̂n ≈
∑
|k|≤K

ξ̂ke2π iknθ ,

for certain K > 0. Thus, by computing a finite number of iterates of
the map, we can obtain numerical approximations for ξ̂k, |k| ≤ K ,
by solving a linear system of equations.We observe that thematrix
of this system is Vandermonde-like, and the determinant is given
by the product of quantities of the forme2π ikθ−e2π ik

′θ
= e2π ikθ (1−

e2π i(k
′
−k)θ ). This means that the determinant is obtained from a

product of ‘‘small divisors’’, which can lead to an ill-conditioned
system of equations.
In this section we discuss an alternative method, based on a

modification of the definition of SN in (18), allowing to compute
the Fourier coefficients in the same way as ∆ from (19). Given a
fixed k∗ ∈ Z, we denote by f̂ k

∗

n = f̂ne
−2π ik∗nθ . Hence, from (17) we

have

f̂ k
∗

n =
∑
k∈Z

ξ̂ke2π i(k−k
∗)nθ .

In this case, the sum of these modified iterates gives

Sk
∗

N =

N−1∑
n=0

f̂ k
∗

n = N ξ̂k∗ +
∑

k∈Z\{k∗}

ξ̂k
1− e2π i(k−k

∗)Nθ

1− e2π i(k−k∗)θ
. (21)

Then, under the same assumptions on the limit we made in (19),
we obtain

lim
N→+∞

Sk
∗

N

N
= ξ̂k∗ . (22)

Remark 5. If fµ is the one-parameter family ofmaps of Section 2.2,
then we can (formally) compute the derivatives of ξ̂k∗(µ) by
differentiating formula (22) analogously as we did in (20).

Remark 6. The direct evaluation of e2π ikθ = cos(2πkθ) +
i sin(2πkθ), for k ≥ 1, is very expensive from the numerical point
of view, but we observe that cos(2πkθ) and sin(2πkθ) can be
computed recursively by using a recurrence that is numerically
stable. Thus, we only need to compute cos(2πθ) and sin(2πθ).

Formula (22) provides the coefficient ξ̂k∗ for any k∗ ∈ N
(coefficientswith k < 0 can be easily obtained from thosewith k >
0 and are exponentially small in |k|, of O(e−4π∆|k|)). However, we
observe that (22) converges slowly as we increase k∗. The reason
is that, for k∗ big there are many coefficients ξ̂k with 0 ≤ k � k∗

which have bigger size than ξ̂k∗ . In the general case, one can use
the following trick to overcome this problem. First, we use (22)
to compute ξ̂k for 0 ≤ k ≤ K , with K not too big. From the
numerical approximations thus obtained, namely {ξ̄k}0≤k≤K , we
consider again formula (22), but now applied to

f̄ k
∗

n = f̂
k∗
n −

∑
0≤k≤K

ξ̄ke2π i(k−k
∗)nθ .

This new expression can be used to improve the numerical
approximations {ξ̄k}0≤k≤K or to compute new coefficients with
k > K . Of course, this process can be iterated but, unfortunately,
this is more expensive than the direct method (22).
Nevertheless, in this paper we use another approach in order

to improve ξ̂k, that takes advantage of the particular case we are
considering. In Section 3.4,we apply formula (22) to compute these
Fourier coefficients for the Arnold family (1), when the rotation
number is the GoldenMean. Then, the experimental study of these
coefficients gives us the chance to apply an extrapolation process
to refine them.

3. Application to the Arnold family

In this section we consider the methods of Section 2 for the
case when the map F is F̃α(ε),ε in (12), and thus f = f̃α(ε),ε in (1),
where α = α(ε) is the parameterization of an Arnold Tongue Tθ
for the Arnold family, for a fixed Diophantine number θ . In the
numerical experiments we display along this section we take θ to
be the Golden Mean, except for in Section 3.5 where we explore
the case of other quadratic irrational rotation numbers.
The map F̃α,ε has two critical points located at

z∗
±
=
1
ε
(−1±

√
1− ε2) < 0.

If we use the transformation z = e2π ix, we obtain the critical points
of f̃α,ε:

x∗
±
(ε) =

1
2
−
i
2π
log

(
1±
√
1− ε2

ε

)
.

As we are interested in the critical point on the lower boundary,
we pick up x∗ = x∗

+
(ε).

3.1. Scaling the Arnold family

The first problem we face when trying to compute the
asymptotic size of the rotation domain of f̃α(ε),ε is that the function
∆̃(ε) in (5) is not bounded when ε → 0. Nevertheless, as we
know a priori that∆(ε) in (13) can be analytically continued to D1
(see (9)), we perform a scaling on the Arnold family to focus on the
computation of∆(ε).
Thus, we introduce the change of variables x = t −

(i/2π) log(2/ε) and denote by fα,ε the Arnold family f̃α,ε expressed
in this new variable,

fα,ε(t) = t +
α

2π
−
i
2π
e2π it + ε2

i
8π
e−2π it . (23)

The map fα(ε),ε in analytically conjugate to the rotation Tθ through
the (scaled) conjugation

ηε(t) = η̃ε

(
t −

i
2π
log

(
2
ε

))
+
i
2π
log

(
2
ε

)
, (24)

defined in the (maximal) complex strip (see (4))

A(ε) =
{
t ∈ C : −∆(ε) < Im(t) < ∆(ε)+

1
π
log

(
2
ε

)}
.

So, we apply Herman’smethod to compute the lower border of this
strip,

lim
N→+∞

Im

(
1
N

N−1∑
n=0

(f nα(ε),ε(t
∗

ε )− nθ)

)
= −∆(ε), (25)

where

t∗ε =
1
2
−
i
2π
log

(
1+
√
1− ε2

2

)
(26)

is now the lower critical point of fα(ε),ε .
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Fig. 1. Left: the graph of α(ε) for the Arnold Tongue for the Golden Mean. Right: the graph of∆(ε) using (25).
In Fig. 1 it is plotted the function ∆(ε) obtained for the case
of the Golden mean using N = F34 iterates of the map, where
F34 = 9227 465 is a Fibonacci number (see Section 3.3 for the
motivation). We remark that, to perform these computations, we
need to know the function α(ε), giving the Arnold Tongue, with
enough precision. This precision is important to avoid big effects
of the propagation of the error after doing a big number of iterates
of the map. The function α(ε) has been obtained using a method
introduced in [17] for computing the rotation number of a circle
map with high precision (see Section 3.3 for a brief explanation
of the method) and the secant method. See also [13] for a similar
approach using the Newton method. Using [17], the function α(ε)
has been computed (numerically) so that the rotation number of
the points on ‘‘the tongue’’ is the GoldenMeanwith an (estimated)
error smaller than 10−32. The graph of α(ε) is also plotted in Fig. 1.

3.2. Explicit recurrences for the scaled map

Our purpose now is to apply themethod of Section 2 to compute
the Taylor expansion of ∆(ε). As all the quantities we are going
to consider turn to be even with respect to ε, we introduce a new
parameter µ = ε2. Abusing notation, in the rest of this section we
are going to write∆(µ) instead of∆(ε) and the same for the other
ε-depending quantities. In this way, we introduce

fµ(t) = fα(ε),ε(t) = t +
α(µ)

2π
−
i
2π
e2π it + µ

i
8π
e−2π it , (27)

whose lower critical point is

t∗µ =
1
2
−
i
2π
log

(
1+
√
1− µ
2

)
. (28)

We focus on the first three coefficients of the Taylor expansion of
∆(µ)

∆(µ) = δ0 + µδ1 + µ
2δ2 + · · · , (29)

where δk = ∆(k)(0)/k!.
The computation of δ0 follows by applying (19) to the

semistandard map in the circle, which is obtained through the
identification G(e2π it) = e2π ig(t) (see (7)). It is given by the
expression

g(t) = f0(t) = t + θ −
i
2π
e2π it (30)

(recall α(0) = 2πθ ) and has the critical point t∗0 = 1/2. Then, we
have

δ0 = lim
N→+∞

Im
(
SN
N

)
= lim
N→+∞

Im

(
1
N

N−1∑
n=0

ĝn

)
, (31)

where ĝn = gn(1/2)− nθ .
To compute ∆(k)(0) for k = 1, 2, we use (20). So the main
point is to obtain the derivatives of the iterates of the critical
point, d

k

dµk
(
f nµ(t

∗
µ)
)
|µ=0
, which can be computed recursively. More

precisely, we introduce

un(µ) = f nµ(t
∗

µ), vn(µ) = u′n(µ), wn(µ) = u′′n(µ),

and then from (27) we obtain the following recurrences:

un+1(µ) = fµ(un(µ))

= un(µ)+
α(µ)

2π
−
i
2π
e2π iun(µ) + µ

i
8π
e−2π iun(µ),

vn+1(µ) = vn(µ)+
α′(µ)

2π
+ e2π iun(µ)vn(µ)

+
i
8π
e−2π iun(µ) +

µ

4
e−2π iun(µ)vn(µ),

wn+1(µ) = wn(µ)+
α′′(µ)

2π
+ 2π ie2π iun(µ)v2n(µ)

+ e2π iun(µ)wn(µ)+
1
2
e−2π iun(µ)vn(µ)

−µ
π i
2
e−2π iun(µ)v2n(µ)+

µ

4
e−2π iun(µ)wn(µ).

In particular, if we set µ = 0, we have

un+1(0) = un(0)+ θ −
i
2π
e2π iun(0),

vn+1(0) = vn(0)+
α′(0)
2π
+ e2π iun(0)vn(0)+

i
8π
e−2π iun(0),

wn+1(0) = wn(0)+
α′′(0)
2π
+ e2π iun(0)(2π iv2n(0)+ wn(0))

+
1
2
e−2π iun(0)vn(0).

(32)

By expanding (28) in power series we obtain the seeds of this
iterative process,

u0(0) =
1
2
, v0(0) =

i
8π
, w0(0) =

3i
32π

.

The only remaining question to apply recurrences (32) is to
compute the Taylor expansion of the Arnold Tongue α = α(µ).
In Appendix A we analytically compute the first terms of this
expansion, obtaining

α(0) = 2πθ, α′(0) =
cosπθ
4 sinπθ

,

α′′(0) = −
3+ cos 4πθ

64(sinπθ)2 sin 2πθ
.
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Table 1
Numerical values of the Taylor coefficients of∆(µ) in (29) and their errors using the direct method (20) (left) and the extrapolation method of third order induced by (38)
(right).

δ0 −0.1027942932921338± 5× 10−9 −0.1027942850211555± 2× 10−16

δ1 −0.0044572205920056± 2× 10−13 −0.0044572205922061± 2× 10−15

δ2 −0.0015246277775224± 6× 10−13 −0.0015246277774431± 2× 10−15
Remark 7. The computation of the Taylor expansion of α(µ) is
usually done by supposing that the map fµ(t) in (27) fulfills the
necessary conditions to be conjugate to the rigid rotation Tθ (t) =
t + θ . Nevertheless, in Appendix A we use an analogous but
slightly different way which seems to lead to easier computations.
Precisely, we ask fµ(t) to be conjugate to the semistandard map
g(t) of rotation number θ (see (30)). For explicit formulas for more
coefficients, see [13]where they are obtained combiningnumerical
and semi-analytical ideas.

In the first column of Table 1 we display the values of δ0, δ1 and δ2
we have obtained after N = F34 iterates and the behavior of the
error. We estimate the numerical errors by comparing the results
for N = F34 and N = F33 = 5702 887.

3.3. Improvement of the results

Once we have computed the Taylor polynomial (29), our next
step is to compare this truncated Taylor expansion with the
function∆(ε) in order to check their agreement as a function of ε.
At the present moment, one could compare the Taylor polynomial
with the value of∆(ε) obtained through formula (25). However, in
order to avoid numerical errors produced by subtracting two very
similar quantities, wewant to improve the numerical method (25),
for the case of the Arnold family, to get a more accurate value
for∆(ε).
Our first guess is to try to extend the ideas introduced in [17],

for computing rotation numbers of circlemapswith high precision,
in order to accelerate the convergence speed of formula (19).
Unfortunately, this methodology fails in the present context.
However, let us explain briefly the main points of this approach,
adapted to the problem at hand, because the reasons of this failure
help us in order to motivate the subsequent approach.
We look at formula (18) and introduce the sequence {S jN} of

‘‘iterated sums’’ of SN . Concretely, we set S1N = SN and define
inductively

S jN =
N−1∑
k=0

S j−1k , j ≥ 2.

The idea of [17] consists in taking a fixed j and to identify the
asymptotic behavior of S jN , as N → +∞. This behavior is used
to improve the convergence speed of ξ̂0 = limN→+∞ SN/N , and
hence of ∆, by means of an extrapolation process. The motivation
behind this approach is that by increasing j one hopes to obtain
faster convergence. Here we discuss only what happens for S2N .
From formula (18), we obtain

S2N =
(N − 1)N
2

ξ̂0 + NA+
∑
k∈Z

ξ̂k
1− e2π ikNθ

(1− e2π ikθ )2
, (33)

where A =
∑
k∈Z ξ̂k/(1 − e

2π ikθ ) is independent of N . This
formula suggests to ask for the validity of the following asymptotic
expression:

Ŝ2N =
2

(N − 1)N
S2N = ξ̂0 +

2
N
A+ O

(
1
N2

)
. (34)
Assuming (34) to be true, one can use Richardson’s extrapolation
to improve the computation of ξ̂0. For instance:

ξ̂0 = 2Ŝ22N − Ŝ
2
N + O

(
1
N2

)
. (35)

Unfortunately, the numerical experiments show that the asymp-
totic expression (34) is not true and hence (35) does not provide
better results than (19). In fact, these numerical experiments sug-
gest that in formula (35) the remainder is not of order O(1/N2) but
it is still of order O(1/N).
To motivate this assertion, we observe that formula (17) is

obtained evaluating ξ(x) (see (16)) at the point x = a − i∆,
which is on the boundary of its domain of analyticity (3). Then,
its Fourier coefficients ξk get multiplied by e2π ik(a−i∆). So, if k >
0, the modified coefficients ξ̂k = ξke2πk∆e2π ika are no longer
exponentially small decreasing (recall that |ξk| ∼ O(e−2π |k|∆)).
We can expect, at most, the function ξ being Hölder continuous
at the boundary (see [5]), so the coefficients |ξ̂k| ∼ O(k−ν) when
k → +∞, with 0 < ν ≤ 1. Then, as the sum (33) contains the
(small) divisors (1 − e2π ikθ )2, we cannot expect formula (34) to
hold with a remainder of order O(1/N2).
Thus, we have to look for a different method in order to

improve (19), using N of moderate size. For this purpose, we focus
on the assertion (15) of Proposition 3. This formula suggests that, if
we pick up the sequence of values of N given by the denominators
{qj}j≥0 of the convergents of the continued fraction expansion of θ ,
then we can ask if Sqj/qj − ξ̂0 behaves in a certain controlled form.
Now we are going to discuss this behavior for the case of

the standard map and for values of the parameters taken on its
Arnold Tongue when the rotation number θ is the Golden Mean.
In Section 3.5 we briefly discuss other quadratic irrational rotation
numbers. All the results we present are based on numerical
experiments.
For the Golden Mean, it is well-known that the sequence of its

convergents is given by {Fj/Fj+1}j≥0, where {Fj}j≥0 are the so-called
Fibonacci numbers, defined as

F0 = 1, F1 = 1, Fj+1 = Fj + Fj−1, j ≥ 1.

We formulate the following conjecture for the sums SFj .

Conjecture 8. Let θ be the Golden Mean and SFn = SFn(ε), n ≥ 1,
be the sums defined by (18) for the scaled standard map (23), where
α = α(ε) is taken on the Arnold Tongue of rotation number θ
(see (27)). Then, given a fixed 0 ≤ ε < 1, there exist constants
γ , δ ∈ R such that

1
Fn
SFn = a− i∆+ ξ0 +

iγ + (−1)nδ
Fn

+ o
(
1
Fn

)
, (36)

where limn→+∞ Fn · o(1/Fn) = 0.

By assuming this property true,we can improve the approximation
of ∆ = ∆(ε) provided by (19) by extrapolation from two
consecutive Fibonacci numbers:

∆ ≈ −
Im(SFn − SFn−1)

Fn−2
. (37)

We point out that Conjecture 8 means that there is an asymp-
totic line for the iterates Im(SFn), as function of Fn, given by
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Fig. 2. Left: log10 of the error in the numerical computation of∆(ε) versus ε for θ = (
√
5− 1)/2. We use formula (19) and the first three extrapolation methods using (38).

Right: the coefficients γ , A(±1)1 , A(±1)2 of the extrapolation versus ε.
y = −∆x+ γ . In case we were dealing with a smooth function,
the existence of this asymptotic line is not surprising in any sense,
and it is usual in many (computational) contexts (rotation num-
bers, Lyapunov exponents, . . . ). However, we stress this property
in our case, because as we are working on the boundary of the do-
main of analyticity of the conjugation, in principle we can only ex-
pect the map ξ to be (Hölder) continuous, but not differentiable,
on the boundary. Thus, we are not convinced that the existence of
this asymptotic behavior is as natural as it is for the smooth case.
For instance, Conjecture 8 is not true if we consider the sums SN
for arbitrary values of N . Moreover, we observe that there is not
a proper asymptotic line for the sequence defined by Re(SFn), be-
cause it oscillates, depending of n being even or odd, between the
lines y = (a+ ξ0)x± δ.
In Section 3.5 we show that the asymptotic behavior of SN

depends strongly of the arithmetic properties of the rotation
number θ .
We do not plan to prove Conjecture 8, but in Appendix B we

use semi-analytic ideas to relate it with the asymptotic behavior of
the Fourier coefficients of ξ , which is discussed, also numerically,
in Section 3.4.
Still working with the Arnold family and the Golden Mean,

one can think about the possibility of refining Conjecture 8 and
of fitting the terms o(1/Fn), in order to obtain the asymptotic
expansion of SFn/Fn as a function of Fn. More specifically, as we
are only interested in its imaginary part, we state the following
extension of Conjecture 8, also based on strong numerical
evidences.

Conjecture 9. We keep the same notations of Conjecture 8. Given a
fixed 0 ≤ ε < 1, there exist constants γ , A(±1)i ∈ R, for i ≥ 1, such
that

Im
(
SFn
Fn

)
= −∆+

γ

Fn
+
A(−1)

n

1

F 1+θn
+
A(−1)

n

2

F 2n

+
A(−1)

n

3

F 2+θn
+
A(−1)

n

4

F 3n
+ · · · . (38)

In formula (38) we use the expressions A(−1)
n

i to denote the
fact that these coefficients are different for n being even or odd.
Moreover, we also stress that some exponents of this asymptotic
expansion are non-integers, but related with the rotation number
θ = (

√
5− 1)/2.

If we assume the validity of (38), then we have the chance of
applying some steps of a generalized ‘‘Richardson’s extrapolation’’
to it, to improve the numerical computation of∆.
Remark 10. In order to denote the different methods for extrap-
olating ∆ from formula (38), we introduce the following nota-
tion. After computing up to Fn iterates of the critical point, we
call the approximation ∆ ≈ −Im(SFn/Fn) the zero order ex-
trapolation (see (19)). We call the approximation obtained from
formula (37) the first order extrapolation. The second order extrapo-
lation is defined by considering the corrections up to order 1/F 1+θn

in formula (38). Then, taking into account that A(+1)1 and A(−1)1 take
different values, we have to compute the sum SN for four consec-
utive Fibonacci numbers, N ∈ {Fn−3, Fn−2, Fn−1, Fn}, and to solve a
4-dimensional linear system in order to extrapolate∆ with an er-
ror of O(1/F 2n ). We construct higher order extrapolation methods
analogously.
In Fig. 2 we give the comparison between the results obtained

using extrapolation of order from zero to three, according to the
previous remark.
On the left we plot the errors for these four different

extrapolation methods as a function of ε. For this purpose, we
have computed up to N = F34 iterates of the critical point t∗ε
in (26) under the map (23), with α = α(ε). Then we estimate
the numerical error, as we did for δi in Section 3.2, by comparing
the values for ∆(ε) obtained with N = F33 and N = F34
iterates. As expected, the error curves decrease as a function of
the extrapolation order, except when ε approaches to 1. When ε
is close to 1 the precision of the computed Arnold Tongue is not
enough to deal with high extrapolation orders. Conversely, when
ε = 0,we are able to compute the Siegel radius of the semistandard
map (30) with 15 decimal digits using N = F34 iterates.
On the right we plot the behavior of the coefficients γ (the

lower one), A(±1)1 and A(±1)2 as a function of ε. Let us observe that
the numerical values of these coefficients show that, even though
∆ varies with ε, they remain almost constant when ε is close to
zero. Moreover, we also note that even though A(+1)i and A(−1)i are
very similar, for a fixed ε, we cannot achieve the precision for∆(ε)
displayed in the left plot if do not take into account their difference
in the expansion (38).
Fig. 3 shows the samequantities as Fig. 2, on the left the errors in

the computation of∆ for the different extrapolation methods and
on the right the coefficients of formula (38), but now for a fixed
value of ε = 0.1 and different values of N = Fn, up to n = 34. For
a better understanding of the plots we have joined separate points
with lines.
One can think about the possibility that the derivatives of ∆

with respect to ε also verify a formula analogous to (38). Taking
into account that formula (38) depends on ε, Fig. 2 suggests that
the coefficients γ and A(±1)i are smooth functions of ε. If this were
the case, one could apply the extrapolation process to compute the
coefficients δ0, δ1, δ2 of the Taylor series of∆(ε) in (29).
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Fig. 3. Left: log10 of the error in the numerical computation of ∆(0.1) by using the same methods as in Fig. 2, versus the index n of the Fibonacci Fn giving the number of
iterates used. Right: the coefficients γ , A(±1)1 , A(±1)2 of the extrapolation versus n.
Fig. 4. Left: log10 of the error in the numerical computation of δ2 as function of the index n of Fn , using extrapolation of order from zero to three. Right: log10 of the error in
the adjustment of∆(ε) by its constant, linear and quadratic Taylor polynomial.
In the last column of Table 1 we give the improved coefficients
δ0, δ1 and δ2 after performing extrapolation of order three and
N = F34 iterates. We notice that there is not a major improvement
in the computation of δ1 and δ2 with respect to the previous
one. One possible explanation is the almost constant behavior
of the coefficients γ , A(±1)1 and A(±1)2 for small ε, so that their
derivatives are close to zero. Then, if we differentiate formula (38),
the derivatives of the correction coefficients γ , A(±1)1 , A(±1)2 almost
vanish. This means that the direct computation of δi, i = 1, 2
using (20) has an error smaller than expected a priori, whichmakes
the extrapolation almost useless.
Left plot in Fig. 4 shows this phenomenon for δ2. We plot the

errors for the different methods used: direct method (20) and
extrapolation of order 1, 2 and 3.
Right plot in Fig. 4 shows the agreement between the extrap-

olated value of ∆(ε) and the different Taylor approximations:
the constant one δ0, the lineal approximation δ0 + ε2δ1 and the
quadratic approximation δ0 + ε2δ1 + ε4δ2, as a function of ε. The
plot shows the numerical error between∆(ε) and these three dif-
ferent approximations. All the quantities are computed using the
extrapolation method of order 3 with N = F34 iterates.

3.4. Computation and asymptotics of the Fourier coefficients

In this section we consider the function ηε of (24) which gives
the conjugation to a rotation of the scaled Arnold family (23)
when α = α(ε). Our goal is to compute (numerically) some
Fourier coefficients of the periodic part of ηε , when the rotation
number θ is the Golden Mean (see (17)). Next to that, we identify
the asymptotic behavior of these coefficients (see Conjecture 13).
For our purposes, the most interesting point referring to this
behavior is that we can establish a natural connection between
Conjectures 13 and 8. This connection is discussed in Appendix B.
To compute the Fourier coefficients of ηε , namely ξ̂k = ξ̂k(ε),

we use the method introduced in Section 2.3. We fix the value of
ε ∈ [0, 1) and, for a given k ≥ 0, we consider the modified sums
SkN of (21) and the limit (22) (recall that coefficients with k < 0
are exponentially small in k). Then, numerical experiments suggest
a similar behavior as (36) for these sums when N is a Fibonacci
number. Concretely,

SkFn
Fn
= ξ̂k +

B(−1)
n

k

Fn
+ o

(
1
Fn

)
,

where B(±1)k = B(±1)k (ε) are complex numbers (compare also
with (38)). So, analogously towhatwe didwith∆ in Section 3.3,we
can try to improve the computation of ξ̂k by applying a Richardson-
like extrapolation to this formula. The numerical results show that
this methodology to refine these Fourier coefficients works quite
well up to ‘‘moderate values of k’’, without looking for higher order
asymptotics like (38), and is enough for our purposes. For instance,
we have not observed any problem to compute them for 0 ≤ ε ≤
0.5 and 0 ≤ k ≤ 1600, with the precision displayed in the last
column of Table 2.
To discuss the asymptotics of these Fourier coefficients, we

first introduce the following property of the Fibonacci numbers.
See [17] for the proof.

Lemma 11. The set of Fibonacci numbers {Fn}n≥1 is a complete set of
integer numbers. More precisely, every m ∈ N admits a unique de-
composition as sum of non-consecutive Fibonacci numbers. It means
that there is a unique correspondence m 7→ {j1, . . . , js(m)} ⊂ N,
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Table 2
Numerical values of the asymptotic coefficients displayed in Fig. 5 for ε = 0 and their errors. With the factor (−1)n we stress the oscillatory character of the real part with
respect to n.

F j n F jn F jn × ξ̂F jn Error of F jn × ξ̂F jn
F 1
= F (1) 16 1597 (−1)n × 0.03052− 0.01867 i 5× 10−5 + 5× 10−5 i

F 2
= F (4) 13 1364 (−1)n × 0.01091− 0.00301 i 3× 10−5 + 6× 10−6 i

F 3
= F (6) 12 1220 (−1)n × 0.00854− 0.01211 i 3× 10−5 + 5× 10−6 i

F 4
= F (9) 11 1131 (−1)n × 0.00996+ 0.00009 i 9× 10−6 + 2× 10−6 i

F 5
= F (12) 11 1508 (−1)n × 0.00398− 0.00068 i 1× 10−5 + 2× 10−6 i

F 6
= F (14) 10 1076 (−1)n × 0.00372− 0.00979 i 6× 10−6 + 1× 10−6 i
such that j1 < j2 < · · · < js(m) are non-consecutive positive inte-
gers, and m = Fj1 + · · · + Fjs(m) .

We observe that from Lemma 11 we can define the following
relation of equivalence in N.

Definition 12. Given m,m′ ∈ N, we say that they belong to the
same class of generalized Fibonacci numbers, F (m) = F (m′), if
s ≡ s(m) = s(m′) and j1 − j′1 = · · · = js − j

′
s.

Thus, the Fibonacci numbers themselves define a class of
equivalence, F (Fn). For instance, the sum of two Fibonacci
numbers of the form Fn + Fn+2 defines a different class. To label
these classes,we introduce a total ordering on the set of classes.We
say that F (m) < F (m′) if min{q ∈ F (m)} < min{q ∈ F (m′)}.
The label j ∈ N of F (m) is defined by its order position in the set
of classes. For instance, the label of the set of Fibonacci numbers is
1. The label of the class F (4) = F (Fn + Fn+2) is 2. We denote the
elements of the j-class as F j

= {F j1 < F
j
2 < · · ·}.

We observe that the elements of F j verify the same recurrence
as the Fibonacci numbers, F jn+1 = F

j
n+F

j
n−1. As a consequence, they

can be expressed in the following form,

F jn = A
j
(
1
θ

)n
+ Bj (−θ)n , n ≥ 1, (39)

for certain constants Aj and Bj. For instance, A1 = 1/(1 + θ2) and
B1 = θ2/(1+ θ2). Here we give the first six classes of generalized
Fibonacci numbers and their generators.
F 1
= F (Fn) = {1, 2, . . .},

F 2
= F (Fn + Fn+2) = {4, 7, . . .},

F 3
= F (Fn + Fn+3) = {6, 10, . . .},

F 4
= F (Fn + Fn+4) = {9, 15, . . .},

F 5
= F (Fn + Fn+2 + Fn+4) = {12, 20, . . .},

F 6
= F (Fn + Fn+5) = {14, 23, . . .}.
To finish this review of properties of the generalized Fibonacci

numbers we observe that, for a given m ∈ N, it is easy to control
its associated small divisor, defined as mink∈Z{|mθ − k|}, if we
know which family m belongs to. It is not difficult to prove that
if m = F jn this minimum is achieved when k = F jn−1 and that
|F jnθ − F

j
n−1| < θ2 < 1/2 (use Lemma 11 and formula (39) for

the Fibonacci numbers). Precisely, by (39)

F jnθ − F
j
n−1 = −(−θ)

n−1(1+ θ2)Bj

= (−1)n
1+ θ2

θ
AjBj

1

F jn
+ O

(
1

(F jn)3

)
. (40)

Numerical experiments with the modified Fourier coefficients
ξ̂k(ε) suggest the following behavior (see Fig. 5).

Conjecture 13. Given a fixed 0 ≤ ε < 1, for any class of generalized
Fibonacci numbers F j, there exist real constants c j and dj such that

ξ̂F jl
=
(−1)lc j + idj

F jl
+ o

(
1

F jl

)
, l→∞.
In Fig. 5we illustrate Conjecture 13 for two different values, ε =
0 and ε = 0.5, and the six first families of generalized Fibonacci
numbers. We observe that the value of k · Im(ξ̂k) seems to have a
limit as k→∞, depending onwhich family the index k belongs to.
Similar behavior is observed for k · Re(ξ̂k), taking into account the
oscillation pointed out in Conjecture 13. We also remark that the
scaled Fourier coefficients ξ̂k(ε) change very slowly as functions
of ε.
In Table 2 we give the numerical values of the asymptotic

coefficients c j, dj for ε = 0 and the six families considered above.
This is done by computing F jn · ξ̂F jn for a big value of F

j
n. See Table 2

for more details. The error in the computation of these coefficients
has been estimated analogously as we did in the previous sections.
In order to identify the different families in Fig. 5, we observe that
the asymptotic coefficients verify:

c1 > c2 > c4 > c3 > c5 > c6, d1 > d3 > d6 > d2 > d5 > d4.

3.5. Other rotation numbers

Albeit this is not the main objective of this work, in this section
we investigate the validity of Conjecture 8 for general rotation
numbers.
Given a rotation number θ , we denote by θ = [0; a1, a2, · · ·] its

continuous fraction expansion and by {pn/qn}n≥0 its convergents.
For this rotation number we consider the sums Sqn of (18) for
the semistandard map (30) as done in (31). We have studied
numerically the asymptotics of the imaginary part of these
sums as a function of qn and we have observed the following
behavior.

Conjecture 14. With the notations above, we have:

• If the coefficients of the continued fraction expansion of θ are the
same, θ = [0; a, a, . . .], Conjecture 8 holds:

Im
(
Sqn
qn

)
= −∆+

γ

qn
+ o

(
1
qn

)
, (41)

where γ is independent of n. The same behavior is observed if the
coefficients an of the continued fraction expansion of θ become
constant for n ≥ n0.
• For the rest of quadratic irrationals formula (41) is not true
anymore. Nevertheless, as the continued fraction expansion of
a quadratic irrational θ is either periodic or preperiodic, then
if k is the corresponding period we have detected the following
generalization of (41):

Im
(
Sqn
qn

)
= −∆+

γ (n)
qn
+ o

(
1
qn

)
, (42)

where γ (n) is a k-periodic function, γ (n+ k) = γ (n), ∀n ∈ N.
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Fig. 5. The two plots on the top correspond to ε = 0 and those on the bottom to ε = 0.5. Left: (−1)nF jn · Re(ξ̂F jn ) versus log10 F
j
n , j = 1, . . . , 6. Right: F

j
n · Im(ξ̂F jn ) versus

log10 F
j
n , j = 1, . . . , 6.
Table 3
Numerical examples of formula (42) for different quadratic irrational rotation numbers.

θ =
√
2− 1 = [0; 2] θ = (

√
13− 3)/2 = [0; 3]

q18 = 6625109 q13 = 5097243

∆ = −0.103440721109± 2× 10−8 ∆ = −0.106852306065± 3× 10−8

∆ = −0.103440710968± 7× 10−12 ∆ = −0.168522946632± 2× 10−11

γ = −0.06718± 2× 10−5 γ = −0.05812± 4× 10−5

θ =
√
3− 1 = [0; 1, 2] θ = (

√
3− 1)/2 = [0; 2, 1]

q25 = 7865521 q24 = 5757961

∆ = −0.108305561281± 9× 10−9 ∆ = −0.104709458207± 1× 10−8

∆ = −0.108305554285± 6× 10−12 ∆ = −0.104709448652± 9× 10−12

γ (0) = −0.05503± 1× 10−5 γ (0) = −0.09109± 4× 10−5

γ (1) = −0.09110± 4× 10−5 γ (1) = −0.05502± 2× 10−5

θ = (
√
10− 2)/2 = [0; 1, 1, 2] θ = (

√
17− 3)/2 = [0; 1, 1, 3]

q26 = 4052018 q23 = 4597824

∆ = −0.103540643256± 2× 10−8 ∆ = −0.106139432515± 2× 10−8

∆ = −0.103540627567± 2× 10−11 ∆ = −0.106139420833± 2× 10−11

γ (0) = −0.07956± 4× 10−5 γ (0) = −0.08051± 5× 10−5

γ (1) = −0.07535± 5× 10−5 γ (1) = −0.07054± 6× 10−5

γ (2) = −0.06357± 1× 10−5 γ (2) = −0.05371± 1× 10−5
• For general Diophantine rotation numbers, we have not observed
any similar correlation between Im(Sqn/qn) and 1/qn.

Remark 15. The reviewer pointed out to us that Conjecture 14
applies when we expect the boundary of the Herman ring to be
self-similar at the critical points (see [15]).

In Table 3 we illustrate Conjecture 14 for six different rotation
numbers. For any number θ we give its continued fraction
expansion, the value of ∆ computed using the direct formula (31)
and the estimated error, the value of ∆ and of the coefficients
γ (0), . . . , γ (n− 1) computed from (42) as well as their error. The
total number of iterates qn taken in any case is also displayed in the
table.
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Appendix A. Taylor expansion of the Arnold Tongue

In this section, we analytically compute the Taylor expansion,
up to order ε4, of the function α(ε) giving the parameterization of
the Arnold Tongue Tθ for the Arnold family (1), for any Diophantine
rotation number θ . Aswe know a priori thatα(ε) is an analytic even
function of ε, we use the notation introduced in Section 3.2. Then,
we set µ = ε2, and we compute the Taylor expansion of α(µ), up
to orderµ2, byworkingwith the scaled family fµ(t) defined in (27).
To compute α(µ), we use that, θ being a Diophantine number,

fµ is analytically conjugate to the rigid rotation Tθ (t) = t + θ , for
any |µ| < 1. But, instead of looking for an analytic conjugation
between fµ and Tθ , we look for a conjugation between fµ and the
semistandard map g of (30). We proceed in this way because we
also know that g is analytically conjugate to Tθ . Thus, as g gives
the limit when µ = 0 of the family fµ (i. e., g = f0), we expect the
conjugation between both maps to take a simpler form than the
one between fµ and Tθ .
Hence, we look for α(µ) and σµ(t) of the form

α(µ) = 2πθ + µα1 + µ2α2 + · · · ,
σµ(t) = t + µσ1(t)+ µ2σ2(t)+ · · · ,

being σi(t) periodic functions of period one, so that fµ ◦ σµ(t) =
σµ ◦ g(t). More concretely, we have to equate powers of µ of the
following expressions:

fµ ◦ σµ(t) = t + µσ1(t)+ µ2σ2(t)+ · · · + θ + µ
α1

2π
+µ2

α2

2π
+ · · · −

i
2π
e2π i(t+µσ1(t)+µ

2σ2(t)+···)

+µ
i
8π
e−2π i(t+µσ1(t)+µ

2σ2(t)+···),

σµ ◦ g(t) = t + θ −
i
2π
e2π it + µσ1

(
t + θ −

i
2π
e2π it

)
+µ2σ2

(
t + θ −

i
2π
e2π it

)
+ · · · .

The order zero terms in µ are identical and the terms of order µ
and µ2 give the equations:

σ1(t)+
α1

2π
+ e2π itσ1(t)+

i
8π
e−2π it = σ1

(
t + θ −

i
2π
e2π it

)
,

σ2(t)+
α2

2π
+ e2π itσ2(t)+ iπe2π it(σ1(t))2 +

e−2π it

4
σ1(t)

= σ2

(
t + θ −

i
2π
e2π it

)
.

One can easily realize that these equations have solutions for σ1
and σ2 taking the form:

σ1(t) = A−1e−2π it +
∑
k≥1

Ake2π ikt ,

σ2(t) = B−2e−4π it + B−1e−2π it +
∑
k≥1

Bke2π ikt .

From the equation for σ1 we derive the following conditions for α1
and A−1,

A−1 +
i
8π
= A−1e−2π iθ ,

α1

2π
+ A−1 = −A−1e−2π iθ ,

giving

A−1 = −
eπ iθ

16π sinπθ
, α1 =

cosπθ
4 sinπθ

.

The remaining Fourier coefficients Ak can be computed recursively.
For instance A1 verifies

A1 =
1
2
A−1e−2π iθ + A1e2π iθ ,
which gives

A1 = −i
e−2π iθ

64π(sinπθ)2
.

From the equation for σ2 we obtain the following conditions for
B−2, B−1 and α2:

B−2 +
1
4
A−1 = B−2e−4π iθ ,

B−1 + B−2 + iπA2−1 = −2B−2e
−4π iθ

+ B−1e−2π iθ ,
α2

2π
+ B−1 +

1
4
A1 = 2B−2e−4π iθ − B−1e−2π iθ ,

which give the values

B−2 = −i
e3π iθ

128π sinπθ sin 2πθ
,

B−1 =
4+ e4π iθ − e2π iθ

512π(sinπθ)2 sin 2πθ
,

and finally,

α2 =
−(3+ cos 4πθ)

128(sinπθ)2 sin 2πθ
.

Appendix B. Motivation of Conjecture 8

The goal of this section is to show how Conjecture 8, referring
to the asymptotic behavior when n → +∞ of the sums SFn(ε)
in (18), for the scaled standard map (23) and rotation number the
Golden Mean, can be related with Conjecture 13, referring to the
asymptotic behavior of the Fourier coefficients ξ̂k(ε). The keystone
of this connection is given by next result.

Lemma 16. Let θ be the Golden Mean. Given any class of generalized
Fibonacci numbers F j (see Section 3.4) and arbitrary real numbers c j
and dj, we consider the sums:

M jFn =
∑
l≥1

(−1)lc j + idj

F jl

1− e2π iF
j
l Fnθ

1− e2π iF
j
l θ
.

Then, there exist real values γ j, δj such that

lim
n→+∞

(
M jFn −

(
iγ j + (−1)nδj

))
= 0.

From this lemma, one can guess how Conjecture 8 might
follow from Conjecture 13. First, we use that, for negative k, the
corresponding Fourier coefficients ξ̂k can be neglected because
they are exponentially small. Second, for positive k, we use
Conjecture 13. Moreover, to simplify the discussions, we assume
that when k > 0 the coefficients ξ̂k are exactly given by its
asymptotic behavior, depending on which Fibonacci family k
belongs to. With these two assumptions at hand, we consider the
sum SN of (18) for N = Fn. Then, using Lemma 16, the asymptotic
behavior of SFn , when n→+∞, verifies

1
Fn
SFn = ξ̂0 +

1
Fn

∑
k∈Z\{0}

ξ̂k
1− e2π ikFnθ

1− e2π ikθ

≈ ξ̂0 +
1
Fn

∑
j≥1

(∑
l≥1

(−1)lc j + idj

F jl

1− e2π iF
j
l Fnθ

1− e2π iF
j
l θ

)

= ξ̂0 +
1
Fn

∑
j≥1

M jFn ≈ ξ̂0 +
1
Fn

∑
j≥1

(
iγ j + (−1)nδj

)
= a− i∆+ ξ0 +

iγ + (−1)nδ
Fn

,

if we assume the series γ =
∑
j≥1 γ

j and δ =
∑
j≥1 δ

j to be
convergent.
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Proof of Lemma 16. It is clear that the first question is the
convergence of the sum M jFn itself, for any n ≥ 1, but the
convergence follows immediately from the computations we are
going to do.
Using (39) and (40) and some straightforward computations,

we have:

F jl (1− e
2π iF jl θ ) = F jl

(
1− e2π i(F

j
l θ−F

j
l−1)
)

= F jl
(
1− e2π i(−1)

l(1+θ2)Bjθ l−1
)

= (Ajθ−l + Bj(−θ)l)
× (2π i(−1)l+1(1+ θ2)Bjθ l−1 + O(θ2l))

= 2π i(−1)l+1(1+ θ2)θ−1AjBj + O(θ l). (43)

Here we stress that, when writing O(·) during the proof, it means
that the coefficient controlling this order is independent of l and n.
To estimate the contribution of the term 1 − e2π iF

j
l Fnθ , we split

the sum in two parts: for l ≤ n and for l ≥ n + 1. Then, we use
different approximations for this expression on any part. If l ≤ n
we have:

1− e2π iF
j
l Fnθ = 1− e2π iF

j
l (Fnθ−Fn−1)

= 1− e2π i
[
(−1)n(1+θ2)B1Ajθn−l−1+O(θ l+n)

]
= 1− e2π i(−1)

n(1+θ2)B1Ajθn−l−1
+ O(θ l+n). (44)

Moreover, if l ≥ n+ 1 we have

1− e2π iF
j
l Fnθ = 1− e2π i(−1)

l(1+θ2)BlA1θ l−n−1
+ O(θ l+n). (45)

These computations motivate to introduce auxiliary sums M̃ jFn
defined by taking the dominant terms of these expressions:

M̃ jFn =
n∑
l=1

(−1)lc j + idj

2π i(−1)l+1(1+ θ2)θ−1AjBj

×

(
1− e2π i(−1)

n(1+θ2)B1Ajθn−l−1
)

+

∑
l≥n+1

(−1)lc j + idj

2π i(−1)l+1(1+ θ2)θ−1AjBj

×

(
1− e2π i(−1)

l(1+θ2)BlA1θ l−n−1
)

=

n−1∑
k=0

ic j + (−1)k+n+1dj

2π(1+ θ2)θ−1AjBj

(
1− e2π i(−1)

n(1+θ2)B1Ajθk−1
)

+

∑
k≥1

ic j + (−1)k+n+1dj

2π(1+ θ2)θ−1AjBj

(
1− e2π i(−1)

k+n(1+θ2)BlA1θk−1
)

= i · Im(M̂ jFn)+ (−1)
nRe(M̂ jFn),

where
M̂ jFn =
n−1∑
k=0

ic j + (−1)k+1dj

2π(1+ θ2)θ−1AjBj

(
1− e2π i(1+θ

2)B1Ajθk−1
)

+

∑
k≥1

ic j + (−1)k+1dj

2π(1+ θ2)θ−1AjBj

(
1− e2π i(−1)

k(1+θ2)BlA1θk−1
)
.

To obtain this expression,wehave changed the indexes in the sums
by k = n− l when l ≤ n and k = l− n when l ≥ n+ 1. Using the
bound |1− eix| ≤ |x|, ∀x ∈ R, it is clear that M̂ jFn is finite for any n
and that limn→+∞ M̂

j
Fn = iγ

j
+ δj exists.

Finally, it only remains to control the difference between M jFn
and M̃ jFn . From the computations above and the orders of the
remainders in (43)–(45), it is clear that this error is controlled by a
constant factor (independent of n) of the expression
n∑
l=1

θn +
∑
l≥n+1

(θ l+n + θ2l−n−1) = nθn +
θ2n+1

1− θ
+

θn+1

1− θ2
,

that goes to zero as n goes to infinity. �
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