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Summary. In this work we consider time-dependent quasi-periodic perturbations of
autonomous analytic Hamiltonian systems. We focus on the effect that this kind of per-
turbation has on lower dimensional invariant tori. Our results show that, under standard
conditions of analyticity, nondegeneracy, and nonresonance, most of these tori survive,
adding the frequencies of the perturbation to the ones they already have.

The paper also contains estimates on the amount of surviving tori. The worst situation
happens when the initial tori are normally elliptic. In this case, a torus (identified by the
vector of intrinsic frequencies) can be continued with respect to a perturbative parameter
ε ∈ [0, ε0], except for a set ofε of measure exponentially small withε0. In the case
thatε is fixed (and sufficiently small), we prove the existence of invariant tori for every
vector of frequencies close to the one of the initial torus, except for a set of frequencies of
measure exponentially small with the distance to the unperturbed torus. As a particular
case, if the perturbation is autonomous, these results also give the same kind of estimates
on the measure of destroyed tori.

Finally, these results are applied to some problems of celestial mechanics, in order to
help in the description of the phase space of some concrete models.
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1. Introduction

Let H be an autonomous analytic Hamiltonian system with` degrees of freedom, having
the origin as an elliptic equilibrium point. If we take the linearization at this point as a
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first approximation to the dynamics, we see that all the solutions are quasi-periodic and
can be described as the product of` linear oscillators. The solutions of each oscillator
can be parametrized by the amplitude of the orbits.

When the nonlinear part is added, each oscillator becomes a one-parametric family
of periodic orbits (usually called Lyapounov orbits), that can still be parametrized by the
amplitude, at least near the origin (see [33]). Generically, the frequency of these orbits
varies with their amplitude.

The effect that the nonlinear part of the Hamiltonian has on the quasi-periodic solu-
tions is more complex. Without going into the details, KAM theorem states that under
generic conditions of nonresonance on the frequencies of the oscillators and generic
conditions of nondegeneracy on the nonlinear part of the Hamiltonian, most of these
solutions still survive. Their frequencies now vary with the amplitude, and the measure
of the destroyed tori is exponentially small with the distance to the origin (see [8]).

Usually these results are proved by first putting the Hamiltonian into the more general
form

H = H0(I )+ H1(θ, I ), I = (I1, . . . , I`), θ = (θ1, . . . , θ`),

whereH1 is small near the origin. This can be achieved, for instance, by applying some
steps of the process to put the Hamiltonian in (Birkhoff) normal form. If we neglect
H1, each quasi-periodic solution takes place on a torusI = I ∗ with frequencies given
by ∇H0(I ∗). Here the question is whether these invariant tori are preserved when the
perturbing termH1 is added. The usual hypotheses are, essentially, two:

1. Nonresonance. The frequencies of the torus must satisfy a Diophantine condition,

|k>∇H0(I
∗)| ≥ µ

|k|γ1
, γ > `− 1,

wherek>∇H0(I ∗) denotes the scalar product ofk with the gradient ofH0, and
|k|1 = |k1| + · · · + |k`|.

2. Nondegeneracy. The frequencies must depend on the actions:

det

(
∂2H0

∂ I 2
(I ∗)

)
6= 0.

The necessity of the first hypothesis comes from the fact that, during the proof, we
obtain the divisorsk>∇H0(I ∗). Hence, if they are too small it is not possible to prove
the convergence of the series that appear in the proof (see [1] for the details).

An interesting case is whenk>∇H0(I ∗) is exactly zero, for somek. This implies
that, since the frequencies are rationally dependent, the flow on the torusI = I ∗ is not
dense. More precisely, if one has`i independent frequencies, the torusI = I ∗ contains
an (̀ − `i )-family of `i -dimensional invariant tori, and each of these tori is densely
filled up by the flow. Here, the natural problem is also to study the persistence of these
lower dimensional invariant tori when the nonintegrable partH1 is taken into account.
Generically, some of these tori survive but their normal behaviour can be either elliptic
or hyperbolic (see [37], [26], [12], [26], and [20]). The invariant manifolds associated
with the hyperbolic directions of these tori (usually called “whiskers”) seem to be the
skeleton that organizes the diffusion (see [2]).
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Moreover, there are other families of lower dimensional tori that come from the
Hamiltonian in normal formH0. They can be obtained by combining some of the elliptic
directions associated with the fixed point; that is, they come from the product of some
of the oscillators of the linearization. These tori are generically nonresonant, and some
of them also survive when we add the nonintegrable partH1 (see [10]). They are the
generalization of the periodic Lyapounov orbits to higher dimensional tori and hence we
will call them Lyapounov tori.

In this paper we will focus on every kind of nondegenerate low dimensional torus, in
the sense that its normal behaviour only contains elliptic or hyperbolic directions but not
degenerate ones (see [18] and [39] for results in the hyperbolic case and [28], [10], and
[30] for previous results in the general case). This implies that the torus is not contained
in a (resonant) higher dimensional invariant torus.

We will develop a perturbation theory for these tori, focussing on the case in which
the perturbation is analytic and also depends on time in a quasi-periodic way, withs
basic frequencies. The Hamiltonian is of the form

H(θ, x, I , y) = ω̃(0)> Ĩ + H0(θ̂ , x, Î , y)+ H1(θ̂ , θ̃ , x, Î , y), (1)

with respect to the symplectic formdθ̂ ∧ dÎ + dθ̃ ∧ dĨ + dx ∧ dy. Here,θ̂ are the
angular variables that describe an initialr -dimensional torus ofH0, x and y are the
normal directions to the torus,θ̃ are the angular variables that denote the time,Ĩ are the
corresponding momenta (that has only been added to put the Hamiltonian in autonomous
form), andω̃(0) ∈ Rs is the frequency associated with time.

These kinds of Hamiltonians appear in several problems of celestial mechanics: For
instance, to study the dynamics of a small particle (an asteroid or spacecraft) near the
equilateral libration points ([36]) of the earth–moon system, one can take the earth–
moon system as a restricted three-body problem (that can be written as an autonomous
Hamiltonian) plus perturbations coming for the real motion of the earth and moon and
the presence of the sun. As these perturbations can be very well approximated by quasi-
periodic functions (at least for moderate time spans), it is usual to do so. Hence, one
ends up with an autonomous model perturbed with a function that depends on time in a
quasi-periodic way. Details on these models and their applications can be found in [9],
[13], [15], and [17]. For more theoretical results, see [22], [24], and [21].

The problem of the preservation of maximal dimension tori of Hamiltonians like (1)
has already been considered in [24]. There it is proved that most (in the usual measure
sense) of the tori of the unperturbed system survive to the perturbation, but adding the
perturbing frequencies to the ones they already have. Here we will consider the problem of
the preservation of lower dimensional invariant tori, under the same kind of perturbations.
We will show that, under some hypothesis of nondegeneracy and nonresonance (to be
specified later), some of the (lower dimensional) tori are not destroyed but only deformed
by the perturbation, adding the perturbing frequencies to the ones they previously had.

One of the main contributions of this paper is the estimates on the measure of the
destroyed tori, that have been obtained for two different formulations of the problem. In
the first one we study the persistence of a single invariant torus of the initial Hamiltonian,
under a quasi-periodic time-dependent perturbation, using as a parameter the size (ε) of
this perturbation. Our results show that this torus can be continued for a Cantor set of
values ofε, adding the perturbing frequencies to the ones it already has. Moreover, if
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ε ∈ [0, ε0], the measure of the complementary of that Cantor set is exponentially small
with ε0. If the perturbation is autonomous this result is already contained in [20] but for
4-D symplectic maps.

The second approach is to fix the size of the perturbation to a given (and small enough)
value. Then it is possible that the latter result cannot be applied becauseε can be in the
complementary of the above-defined Cantor set. In this case, it is still possible to prove
the existence of invariant tori withr + s basic frequencies, the first of which are close
to those of the unperturbed torus and the last ones those of the perturbation. These tori
are a Cantor family parametrized (for instance) by the frequencies of the unperturbed
problem. Again, the measure of the complementary of this Cantor set is exponentially
small with the distance to the frequencies of the initial torus.

It is interesting to note the implications of this last assertion when the perturbation
is autonomous and the size of the perturbation is fixed: In this case we are proving, for
the perturbed Hamiltonian, the existence of a Cantor family of invariant tori near the
initial one (see [10] and [35]). Moreover, the measure of the complementary of this set
is exponentially small with the distance to the initial tori.

The most difficult case is when the normal behaviour of the torus contains some elliptic
directions, because the (small) divisors obtained contain combinations of the intrinsic
frequencies with the normal ones. As we will see, it is not difficult to control the value of
the intrinsic frequencies but then we have no control (in principle) on the corresponding
normal ones. This is equivalent to saying that we cannot select a torus with both given
intrinsic and normal frequencies, because there are not enough available parameters (see
[28], [5], [35], and [4] for classical methods to deal with this lack of parameters problem).
The main trick in the proofs is to assume that the normal frequencies move as a function
of ε (then we derive the existence of the torus for a Cantor set ofε) or as a function of
the intrinsic frequencies (then we obtain the existence of the above-mentioned family of
tori, close to the initial one).

When the initial torus is normally hyperbolic we do not need to control the eigenvalues
in the normal direction and, hence, we do not have to deal with the lack of parameters. Of
course, in this case the results are much better and the proofs can be seen as simplifications
of the ones contained here. Hence, this case is not explicitly considered.

Finally, we have also included examples where the application of these results helps
to understand the dynamics of concrete problems.

The paper has been organized as follows: Section 2 contains the main ideas used
to derive these results. Section 3 contains the rigorous statement of the results. The
applications of these results to some concrete problems can be found in Section 4 and,
finally, Section 5 contains the technical details of the proofs.

2. Main Ideas

LetH be an autonomous analytic Hamiltonian system of` degrees of freedom inC2`

having an invariantr -dimensional torus, 0≤ r ≤ `, with a quasi-periodic flow given
by a vector of basic frequenciesω̂(0) ∈ Rr . Let us consider the (perturbed) Hamiltonian
systemH = H+ εĤ, whereĤ is also analytic. As mentioned before, we do not restrict
ourselves to the case of autonomous perturbations, but we will assume thatĤ depends
on time in a quasi-periodic way, with a vector of basic frequencies given byω̃(0) ∈ Rs.
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In what follows, we will always assume that vectors are “matrices with one column,”
so the scalar product between two vectorsu andv will be denoted byu>v.

2.1. Reducibility

Let us consider the variational flow around one of the quasi-periodic orbits of the initial
r -dimensional invariant torus ofH. The variational equations are a linear system with
quasi-periodic time dependence, with a vector of basic frequenciesω̂(0). When the torus
is a periodic orbit, the well-known Floquet theorem states that we can reduce this periodic
system to constant coefficients via a linear periodic change of variables (with the same
period of the system). This change can be selected to be canonical if the equations
are Hamiltonian. So, the reduced matrix has a pair of zero eigenvalues (one associated
with the tangent direction to the periodic orbit and a second one from the symplectic
character of the monodromy matrix of the periodic orbit) plus eigenvalues that describe
the linear normal behaviour around the torus. We will assume that these eigenvalues are
all different (this condition implies, from the canonical character of the system, that they
are also nonzero). This implies that the periodic orbit is not contained in a (resonant)
higher dimensional torus. Usually, the imaginary parts of these eigenvalues are called
normal frequencies, and̂ω(0) is called the vector of intrinsic frequencies of the torus.

The quasi-periodic case (r > 1) is more complex, because we cannot guarantee in
general the reducibility to constant coefficients of the variational equations with a linear
quasi-periodic change of variables with the same basic frequencies as the initial system.
The question of reducibility of linear quasi-periodic systems (proved in some cases, see
[19], [6], [11], [22], [24], [20], and [25], among others) remains open in the general
case. However, we can say that if this reduction is possible, we have 2r zero eigenvalues
(related to ther tangent vectors to the torus).

Here we will assume that such reduction is possible for the initial torus. We remark
that, if this initial torus comes from an autonomous perturbation of a resonant torus of
an integrable Hamiltonian, this hypothesis is not very strong. To justify this assertion,
we mention the following fact: Let us write the Hamiltonian asH = H(I )+ εĤ(θ, I ),
and letT0 be a low dimensional invariant tori of the integrable HamiltonianH(I ) that
survives to the perturbationεĤ(θ, I ). Then, under generic hypotheses of nondegeneracy
and nonresonance, this low dimensional torus exists and its normal flow is also reducible
for a Cantor set of values ofε. The Lebesgue measure of the complementary of this set in
[0, ε0] is exponentially small withε0. This fact is proved for symplectic diffeomorphisms
of R4 in [20], but it is immediate to extend to other cases.

Moreover, let us assume that we can introduce (with a canonical change of coordinates)
r angular variableŝθ describing the initial torus. Hence, the Hamiltonian takes the form

H(θ̂ , x, Î , y) = ω̂(0)> Î + 1

2
z>Bz+H∗(θ̂ , x, Î , y),

wherez> = (x>, y>), beingz, θ̂ , and Î complex vectors,x andy elements ofCr , and
θ̂ , and Î elements ofCs, with r +m = `. Here,θ̂ andx are the positions and̂I andy
are the conjugate momenta. In this notationB is a symmetric 2m-dimensional matrix
(with complex coefficients). Moreover,H∗ is an analytic function (with respect to all its
arguments) with 2π -periodic dependence on̂θ . More concretely, we will assume that it
is analytic on a neighbourhood ofz= 0, Î = 0, and on a complex strip of positive width
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ρ for the variableθ̂ , that is, if| Im θ̂j | ≤ ρ, for all j = 1, . . . , r . Then, if we assume that
H has an invariantr -dimensional torus with vector of basic frequenciesω̂(0), given by
Î = 0 andz= 0, this implies that the Taylor expansion ofH∗ must begin with terms of
second order in the variablesÎ andz. If we have that the normal variational flow around
this torus can be reduced to constant coefficients, we can assume that the quadratic terms
ofH∗ in thez variables vanish. Hence, the normal variational equations are given by the
matrix JmB, whereJm is the canonical 2-form ofC2m. We also assume that the matrix
JmB is in diagonal form with different eigenvaluesλ> = (λ1, . . . , λm,−λ1, . . . ,−λm).

Let us make some remarks on these coordinates. First, note that we have assumed that
the initial torus is isotropic (this is, the canonical 2-form ofC2` restricted to the tangent
bundle of the torus vanishes everywhere). This fact (that is always true for a periodic
orbit) is not a strong assumption for a torus, because all the tori obtained by applying
KAM techniques to near-integrable Hamiltonian systems are isotropic.

Another point worth commenting on is the real or complex character of the matrixB.
In this paper we work, in principle, with complex analytic Hamiltonian systems, but the
most interesting case happens when we deal with real analytic ones, and when the initial
torus is also real. In this case, to guarantee that the perturbative scheme preserves the real
character of the tori, we want the initial reduced matrixB to come from a real matrix.
We note that this is equivalent to assuming that ifλ is an eigenvalue ofJmB, thenλ̄ is
also an eigenvalue. This assumption is not true in general for every reducible torus of a
real analytic Hamiltonian system, but it holds for most of the tori one can obtain near an
initial torus with a normal flow reducible overR. Note that in the case of a periodic orbit
one can always assume thatB is real (doubling the period if necessary). The fact thatB
is real guarantees that all the tori obtained are also real. To see this, we note we can use
the same proof but puttingJmB in real normal form instead of diagonal form, and this
makes all the steps of the proof also real. However, the technical details in this case are
a little more tedious and, hence, we have preferred to work with a diagonalJmB.

2.2. Normal Form around the Initial Torus

The first step is to rearrange the initial HamiltonianH(0) ≡ H in a suitable form to apply
an inductive procedure.

In what follows, we will define the degree of a monomialzl Î j as|l |1 + 2| j |1. This
definition is motivated below. Let us expandH(0)∗ in power series with respect toz and
Î around the origin,

H(0)∗ =
∑
d≥2

H(0)d ,

whereH(0)d are homogeneous polynomials of degreed; that is,

H(0)d =
∑

l∈N2m, j∈Nr

|l |1+2| j |1=d

h(0)l , j (θ̂)z
l Î j .

We also expand the (periodic) coefficients by using Fourier series,

h(0)l , j (θ̂) =
∑
k∈Zr

h(0)l , j,k exp(ik>θ̂ ), (2)
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with i = √−1. The definition of degree for a monomialzl Î j counting twice the con-
tribution of the variableÎ is motivated by the definition of the Poisson bracket of two
functions depending on(θ̂ , x, Î , y),

{ f, g} = ∂ f

∂θ̂

(
∂g

∂ Î

)>
− ∂ f

∂ Î

(
∂g

∂θ̂

)>
+ ∂ f

∂z
Jm

(
∂g

∂z

)>
.

Note that, if f is a homogeneous polynomial of degreed1 and g is a homogeneous
polynomial of degreed2 then{ f, g} is a homogeneous polynomial of degreed1+d2−2.
This property shows that if we try to construct canonical changes using the Lie series
method, a convenient way to putH(0) in normal form is to remove in an increasing order
the terms of degree 3, 4,. . . , with a suitable generating function.

To introduce some of the parameters (see Section 2.5), it is very convenient that the
initial Hamiltonian has the following properties:

P1 The coefficients of the monomials(z, Î ) (degree 3) and(z, Î , Î ) (degree 5) are zero.
P2 The coefficients of the monomials(z, z, Î ) (degree 4) and( Î , Î ) (degree 4) do not

depend on̂θ and, in the case of(z, z, Î ), they vanish except for the coefficients of
the trivial resonant terms.

Here, we have used the following notation: For instance, by the terms of order(z, z, Î )
we denote the monomialszl Î j , with |l |1 = 2 and| j |1 = 1, with the corresponding
coefficients. We will apply three steps of a normal form procedure in order to achieve
these conditions. Each step is done using a generating function of the following type:

S(n)(θ̂ , x, Î , y) =
∑

l∈N2m, j∈Nr

|l |1+2| j |1=n

s(n)l , j (θ̂)z
l Î j ,

for n = 3, 4, and 5. Then, if we denote by9S(n) the flow at time one of the Hamiltonian
system associated toS(n), we transform the initial Hamiltonian into

H(n−2) = H(n−3) ◦9S(n)

= H(n−3) + {H(n−3), S(n)} + 1

2!
{{H(n−3), S(n)}, S(n)} + On+1

= ω̂(0)> Î + 1

2
z>Bz+H(n−3)

∗ +
{
ω̂(0)> Î + 1

2
z>Bz, S(n)

}
+ On+1,

for n = 3, 4, 5. In each step, we takeS(n) such thatH(n−3)
n + {ω̂(0)> Î + 1

2z>Bz, S(n)}
satisfies conditionsP1andP2 for the monomials of degreen (n = 3, 4, 5). To compute
S(n) we expandH(n−3)

n and we find (formally) an expansion forS(n),

s(n)l , j,k =
h(n−3)

l , j,k

ik>ω̂(0) + l>λ
,

where the indices have the same meaning as in (2). If we splitl = (l x, l y) (zl = xlx yl y),
the exactly resonant terms correspond tok = 0 and l x = l y (we recall thatλ> =
(λ1, . . . , λm,−λ1, . . . ,−λm)). Hence, it would be possible to formally compute a normal
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form depending only on̂I and the productsxj yj , j = 1, . . . ,m. As it has been mentioned
before, our purpose is much more modest. To kill the monomials mentioned above (in
conditionsP1 andP2) with a convergent change of variables, one needs a condition on
the smallness of|ik>ω̂(0) + l>λ|, k ∈ Zr \ {0}, l ∈ N2m, and|l |1 ≤ 2. We have used the
usual one,

|ik>ω̂(0) + l>λ| ≥ µ0

|k|γ1
,

that we will assume true in the statement of the results. We notice that with these
conditions we can construct convergent expressions for the different generating functions
S(n), n = 3, 4, 5, to achieve conditionsP1andP2. We can call this process a seminormal
form construction.

Then, the final form for the Hamiltonian is

H = ω̂(0)> Î + 1

2
z>Bz+ 1

2
Î >C Î + H∗(θ̂ , x, Î , y), (3)

for which conditionsP1 andP2 hold. Here,C is a symmetric constant matrix and we
will assume the standard nondegeneracy condition,

NDC1 detC 6= 0.

Now let us introduce the quasi-periodic time-dependent perturbation. To simplify
the notation, we write this perturbation in the normal form variables, and we add this
perturbation to (3). We callH to the new Hamiltonian:

H(θ, x, I , y, ε) = ω(0)> I+ 1

2
z>Bz+ 1

2
Î >C Î+H∗(θ̂ , x, Î , y)+εĤ(θ, x, Î , y, ε), (4)

for a fixedω(0)> = (ω̂(0)>, ω̃(0)>), ω(0) ∈ Rr+s, whereθ> = (θ̂>, θ̃>), I > = ( Î >, Ĩ >)
andz> = (x>, y>), beingθ̃ , Ĩ (s-dimensional complex vectors) the new positions and
momenta added to put in autonomous form the quasi-periodic perturbation. Hence,H
is 2π -periodic inθ . Moreover,ε is a small positive parameter. This is the Hamiltonian
that we consider in the formulation of the results.

2.3. The Iterative Scheme

Before the explicit formulation of the results, let us describe a generic step of the iterative
method used in the proof. So, let us consider a Hamiltonian of the form

H(θ, x, I , y) = ω(0)> I + 1

2
z>Bz+ 1

2
Î >C(θ) Î +H∗(θ, x, Î , y)+εĤ(θ, x, Î , y), (5)

with the same notations of (4), where we assume that skipping the termεĤ , we have that
z = 0, Î = 0 is a reducible (r + s)-dimensional torus with vector of basic frequencies
ω(0), such that the variational normal flow is given by

JmB = diag(λ1, . . . , λm,−λ1, . . . ,−λm),

and that det̄C 6= 0, whereC̄ means the average ofC with respect to its angular variables.
(Although initiallyC does not depend onθ , during the iterative scheme it will.) Moreover,
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we suppose that inH∗ the terms of order( Î , z) vanish (that is, we suppose that the
“central” and “normal” directions of the unperturbed torus have been uncoupled up to
the first order). Here we only use the parameterε to show that the perturbationεĤ is of
O(ε).

We expandĤ in power series around̂I = 0, z = 0 and we add these terms to
the previous expansion of the unperturbed Hamiltonian. This makes the initial torus no
longer invariant. Hence, the expression of the Hamiltonian must be (without writing
explicitly the dependence onε):

H(θ, x, I , y) = ω̃(0)> Ĩ + H∗(θ, x, Î , y), (6)

where

H∗ = a(θ)+b(θ)>z+ c(θ)> Î + 1

2
z>B(θ)z+ Î >E(θ)z+ 1

2
Î >C(θ) Î +Ä(θ, x, Î , y),

whereÄ is the remainder of the expansion. Looking at this expression, we introduce the
notation [H ∗](z,z) = B, [H∗]( Î , Î ) = C, [H∗]( Î ,z) = E, and〈H∗〉 = H∗ −Ä.

We have that̃a, b, c− ω̂(0), B−B, C−C, andE areO(ε), where if f (θ) is a periodic
function onθ , f̃ = f − f̄ .

Note that if we are able to kill the terms̃a, b, and c − ω̂(0), we obtain a lower
dimensional invariant torus with intrinsic frequencyω(0). We will try to do that by
using a quadratically convergent scheme. As is usual in this kind of Newton method,
it is very convenient to kill something more. Before continuing, let us introduce the
following notation: IfA is ann×n matrix, dp(A) denotes the diagonal part ofA, that is,
dp(A) = diag(a1,1, . . . ,an,n)

>, whereai,i are the diagonal entries ofA. Here, we want
the new matrixB to verify B = Jm(B), where we defineJm(B) = −Jmdp(JmB̄) (that
is, we ask the normal flow to the torus to be reducible and given by a diagonal matrix as
for the unperturbed torus), and to eliminateE (to uncouple the “central” and the normal
directions of the torus up to first order inε). Hence, the torus we will obtain also has
these two properties. This is a very usual technique (see [10], [20]).

At each step of the iterative procedure, we use a canonical change of variables similar
to the ones used in [3] to prove the Kolmogorov theorem. The generating function is of
the form

S(θ, x, Î , y) = ξ>θ̂ + d(θ)+ e(θ)>z+ f (θ)> Î + 1

2
z>G(θ)z+ Î >F(θ)z, (7)

whereξ ∈ Cr , d̄ = 0, f̄ = 0, and G is a symmetric matrix withJm(G) = 0. Keeping
the same name for the new variables, the transformed Hamiltonian is

H (1) = H ◦9S = ω̃(0)> Ĩ + H (1)∗(θ, x, Î , y),

with

H (1)∗(θ, x, Î , y) = a(1)(θ)+ b(1)(θ)>z+ c(1)(θ)> Î + 1

2
z>B(1)(θ)z

+ Î >E(1)(θ)z+ 1

2
Î >C(1)(θ) Î +Ä(1)(θ, x, Î , y).
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We wantã(1) = 0, b(1) = 0, c(1) − ω̂(0) = 0, E(1) = 0, andJmB(1) to be a constant
diagonal matrix. We will show that this can be achieved up to first order inε. So, we
write those conditions in terms of the initial Hamiltonian and the generating function.
Skipping terms ofO2(ε), we obtain

(eq1) ã− ∂d
∂θ
ω(0) = 0,

(eq2) b− ∂e
∂θ
ω(0) + BJme= 0,

(eq3) c− ω̂(0) − ∂ f
∂θ
ω(0) − C

(
ξ +

(
∂d
∂θ̂

)>)
= 0,

(eq4) B∗ − Jm(B∗)− ∂G
∂θ
ω(0) + BJmG− G JmB = 0,

(eq5) E∗ − ∂F
∂θ
ω(0) − F JmB = 0,

where

B∗ = B−
[
∂H∗
∂ Î

(
ξ +

(
∂d

∂θ̂

)>)
− ∂H∗

∂z
Jme

]
(z,z)

(8)

and

E∗ = E − C
(
∂e

∂θ̂

)>
−
[
∂H∗
∂ Î

(
ξ +

(
∂d

∂θ̂

)>)
− ∂H∗

∂z
Jme

]
( Î ,z)

. (9)

Here we denote by∂
∂q the matrix of partial derivatives with respect to the variables

q and, for instance,∂G
∂θ
ω(0) means

∑r+s
j=1

∂G
∂θj
ω
(0)
j . These equations are solved formally

by expanding them in Fourier series and equating the corresponding coefficients. This
leads us to the following expressions forS:

(eq1)

d(θ) =
∑

k∈Zr+s\{0}

ak

ik>ω(0)
exp(ik>θ).

(eq2) If we pute> = (e1, . . . ,e2m),

ej (θ) =
∑

k∈Zr+s

bj,k

ik>ω(0) + λj
exp(ik>θ).

(eq3)

ξ = (C̄)−1

(
c̄− ω̂(0) − C

(
∂d

∂θ̂

)>)
,

and if we define

c∗ = c̃− C̃ξ − C
(
∂d

∂θ̂

)>
+ C

(
∂d

∂θ̂

)>
,

we have forf > = ( f1, . . . , fr )

f j (θ) =
∑

k∈Zr+s\{0}

c∗j,k
ik>ω(0)

exp(ik>θ).
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(eq4) If we define

B∗∗ = B∗ − Jm(B
∗), (10)

then we have forG = (Gj,l ), 1≤ j, l ≤ 2m,

Gj,l (θ) =
∑

k∈Zr+s

B∗∗j,l ,k
ik>ω(0) + λj + λl

exp(ik>θ), j, l = 1, . . . ,2m.

In the definition ofGj,l , we notice that we have trivial zero divisors when| j − l | =
m andk = 0, but from the expression ofB∗∗, in these cases the coefficientB∗∗j,l ,0
is 0. Moreover, the matrixG is symmetric.

(eq5) If F = (Fj,l ), j = 1, . . . , r , andl = 1, . . . ,2m, then

Fj,l (θ) =
∑

k∈Zr+s

E∗j,l ,k
ik>ω(0) + λl

exp(ik>θ).

Note that if we have the Diophantine hypothesis on the small divisors of these expressions,

|ik>ω(0) + l>λ| ≥ µ0

|k|γ1
, k ∈ Zr+s \ {0}, l ∈ N2m, |l |1 ≤ 2, γ > r + s− 1,

(11)
we can guarantee the convergence of the expansion ofS. We assume that they hold in
the first step, and we want to have similar conditions after each step of the process, to
be able to iterate. As the frequenciesω̃(0) are fixed in all the process and̂ω(0) can be
preserved by the nondegeneracy and the kind of generating function we are using (this is
done by theξ term), we will be able to recover the Diophantine properties on them. The
main problem is the eigenvaluesλ, because, in principle, we cannot preserve their value.
Hence, we will control the way they vary, to try to ensure they are still satisfying a good
Diophantine condition. Our first approach is to considerλ as a function ofε (the size of
the perturbation). This leads us to eliminate a Cantor set of values of these parameters in
order to have good (in a Diophantine sense) values ofλ all the time. Another possibility
is to considerλ as a function of the (frequencies of the) torus. This leads us to eliminate
a Cantor set of those tori. Both procedures require some nondegeneracy conditions.

2.4. Estimates on the Measure of Preserved Tori

The technique we are going to apply to produce exponentially small estimates has already
been used in [24]. It is based on working at every stepn of the iterative procedure with
values ofε for which we have Diophantine conditions of the type

|ik>ω(0) + λ(n)l (ε)| ≥ µn

|k|γ1
exp(−δn|k|1), k ∈ Zr+s \ {0}, (12)

whereλ(n)l (ε) denotes the eigenvalues ofJmB(n)(ε), withB(n)(ε) the matrix that replaces
B after n steps of the iterative process. Of course, we ask for the same condition for
the sum of eigenvaluesλ(n)j + λ(n)l . We will see that, if we take a suitable sequence of
δn, the exponential term in (12) is not an obstruction to the convergence of the scheme.
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This condition will be used to obtain exponentially small estimates for the measure of
the values ofε for which we do not have invariant tori of frequencyω(0) in the perturbed
system. The key idea can be described as follows: For the values ofε for which we can
prove convergence, we obviously have that, ifε is small enough,|λ(n)l (ε) − λl | ≤ aε,
at every stepn. Now, if we assume thatµn ≤ µ0/2, from the Diophantine bounds on
ik>ω(0)+λl in (11), we only need to worry about the resonances corresponding to values
of k such that

|k|1 ≥
( µ0

2aε

)1/γ
≡ K (ε).

This is equivalent to saying that we do not have low order resonances nearby; hence we
only have to eliminate higher order ones. When we eliminate the values ofε for which the
Diophantine condition is not fullfiled for somek, we only need to worry about controlling
the measure of the “resonant” sets associated with|k|1 ≥ K (ε). From that, and from
the exponential in|k|1 for the admissible small divisors, we obtain exponentially small
estimates for the set of values ofε for which we cannot prove the existence of invariant
tori. If ε ∈]0, ε0] this measure is of order exp(−1/εc

0), for any 0< c < 1/γ .
Note that we have usedε because it is a natural parameter of the perturbed problem,

but this technique can also be applied to other parameters. We will do this in the next
section.

2.5. Other Parameters: Families of Lower Dimensional Tori

Let us consider the following truncation of the Hamiltonian (3):

ω̂(0)> Î + 1

2
z>Bz+ 1

2
Î >C Î . (13)

Note that, for this truncation, there exists anr parametric family ofr -dimensional in-
variant tori around the initial torus. One can ask what happens to this family when the
nonintegrable part (including the quasi-periodic perturbations) is added. The natural pa-
rameters in this case are the frequenciesω̂ of the tori of the family. We will work with
this parameter as follows: If for everŷω we perform the canonical transformation,

Î → Î + C−1(ω̂ − ω̂(0)), (14)

on the Hamiltonian (13), we obtain (skipping the constant term) a Hamiltonian like (13),
replacingω̂(0) by ω̂. So, we have that̂I = 0, z = 0 is anr -dimensional reducible torus
but now with vector of basic frequencies given byω̂. If we consider the Hamiltonian
(3), and we perform the transformation (14), it is not difficult to see from conditionsP1
andP2 that theω̂-torus obtained from the truncated normal form remains as an invariant
reducible torus for the Hamiltonian (3), plus an error ofO2(ω̂− ω̂(0)). Then, the idea is
to considerω̂ as a new perturbative parameter (in fact the small parameter isω̂ − ω̂(0)).
In this case we can apply the same technique as in Section 2.4 to control the measure of
the destroyed tori. It turns out that this measure is exponentially small with the distance
to the initial torus.

In fact, the proof has been done working simultaneously with both parametersε

andω̂. This allows us to derive all the results mentioned before in a unified way. In a



Persistence of Lower Dimensional Tori 439

perturbative problem it is usual to ask for smooth dependence on the parameters, but note
that at every step of the inductive process we need to remove the set of resonant values of
the parameters (that are dense), and this does not allow us to keep, in principle, any kind of
smooth dependence for the Hamiltonian with respect to the parameters (because now the
parameters move on a set with an empty interior). Fortunately, there are many solutions
to this problem. One possibility is to work, at every step of the inductive procedure, with
a finite number of terms in the different Fourier expansions with respect toθ . Hence, we
can use the fact that the remainder of the truncated expressions is exponentially small
with the order of truncation and then, if we choose a suitable increasing sequence of
orders for the truncation at the different steps (going to infinity with the index of the
step), we can show the convergence of the sequence of changes given in Section 2.3
(with equations(eq1)–(eq5) truncated at the corresponding order) on a suitable set of
parameters. Then, since we only need to deal with a finite number of resonances at
every step, we can work on open sets with respect to the different parameters, and keep
the smooth parametric dependences in those sets. This smooth dependence allows us
to bound the measure of the resonances in the sets of parameters. These ideas are used
for example in [1], [7], and [20]. Another possibility is to consider Lipschitz parametric
dependence instead of a smooth one (this has already been done in [22] and [24]). We
can see that it is possible to keep this Lipschitz dependence at every step (with analogous
techniques as the ones used to control aC1 dependence), and this kind of dependence
suffices to bound the measure of the resonant sets. In this paper we have chosen this
Lipschitz formulation, which we describe more precisely in Section 5.1.1. This implies
that the invariant tori obtained will depend on the parameters in a Lipschitz way.

If one is interested in obtainingC∞Whitney smoothness (see [29]) for the dependence
of the invariant tori with respect to the parameters, the standard procedure is to work
with a finite number of harmonics in the Fourier expansions, so that at every step we
keep the analytic character of the Hamiltonian (see [32]).

Another approach, that also allows us to obtain Whitney regularity, is to add external
(auxiliary) parameters to the Hamiltonian, in order to have enough parameters to control
the intrinsic and normal frequencies (to avoid the lack of parameters problem), and
such that for every Diophantine vector of intrinsic and normal eigenvalues, we have the
corresponding invariant torus for a suitable value of the (enlarged) parameters. This can
be done with a Whitney smooth foliation (see [5] and [4]). Then, if we consider the value
of the external parameters for which we recover our initial family of Hamiltonians, we
only have to study which of the Diophantine tori constructed correspond to this value of
the extra parameter. It can be done under very weak nondegeneracy hypotheses by using
the theory of Diophantine approximations on submanifolds (see for instance, [35] and
[4], or [38] for the case of volume preserving diffeomorphisms).

3. Statement of Results

Now, we can state precisely the main result of this paper, whose proof we have sketched
above.
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Theorem 1. Let us consider a Hamiltonian of the form(4), satisfying the following
hypotheses:

(i) H∗ and Ĥ are analytic with respect to(θ, x, Î , y) around z= 0 and Î = 0,
with 2π -periodic dependence onθ , for anyε ∈ I0 ≡ [0, ε0], in a domain that is
independent onε. The dependence onε is assumed to be C2, and the derivatives of
the HamiltonianĤ with respect toε are also analytic in(θ, x, Î , y) on the same
domain.

(ii) B is a symmetric constant matrix such that JmB is diagonal with different eigen-
valuesλ> = (λ1, . . . , λm,−λ1, . . . ,−λm).

(iii) C is a symmetric constant matrix withdetC 6= 0 (this is the assumptionNDC1
above).

(iv) For certainµ0 > 0 andγ > r + s−1, the following Diophantine conditions hold:

|ik>ω(0) + l>λ| ≥ µ0

|k|γ1
, k ∈ Zr+s \ {0}, l ∈ N2m, |l |1 ≤ 2.

Then, under certain generic nondegeneracy conditions for the Hamiltonian H (that are
given explicitly inNDC2 at the end of Section5.4.2), the following assertions hold:

(a) There exists a Cantor setI∗ ⊂ I0, such that for everyε ∈ I∗ the Hamiltonian H
has a reducible (r+s)-dimensional invariant torus with vector of basic frequencies
ω(0). Moreover, for every0< σ < 1:

mes([0, ε̄] \ Ī∗) ≤ exp(−(1/ε̄)
σ
γ ),

if ε̄ is small enough (depending onσ ) where, for everȳε, Ī∗ ≡ Ī∗(ε̄) = [0, ε̄] ∩ I∗.
(b) Given R0 > 0 small enough and a fixed0 ≤ ε ≤ R

γ

γ+1

0 , there exists a Cantor
setW∗(ε, R0) ⊂ {ω̂ ∈ Rr : |ω̂ − ω̂(0)| ≤ R0} ≡ V(R0), such that for every
ω̂ ∈ W∗(ε, R0) the Hamiltonian H corresponding to this fixed value ofε has a
reducible (r+ s)-dimensional invariant torus with vector of basic frequenciesω,
ω> = (ω̂>, ω̃(0)>). Moreover, for every0< σ < 1, if R0 is small enough (depending
onσ ),

mes(V(R0) \W∗(ε, R0)) ≤ exp(−(1/R0)
σ
γ+1 ).

Here, mes(A) denotes the Lebesgue measure of the set A.

Note:ConditionNDC2 is a standard nondegeneracy condition on the normal frequencies
of the initial torus. Essentially, it asks that the normal frequencies depend onε and on
the intrinsic frequencies of the basic family of tori (this family has been introduced in
Section 2.5). In order to formulateNDC2 in an explicit form one first has to perform one
step of normal form with respect toε (see Section 5.4.1). This is why we have preferred
to keep this hypothesis inside the proof, where it arises naturally.

3.1. Remarks

The result(b) has special interest if we takeε = 0. It shows that for the unperturbed
system, around the initialr -dimensional reducible torus there exists anr -dimensional
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family (with Cantor structure) ofr -dimensional reducible tori parametrized byω̂ ∈
W∗(0, R0), with relative measure for the complementary of the Cantor set exponentially
small withR0, for values ofω̂ R0-close toω̂(0). There are previous results on the existence
of these lower dimensional tori (see the references), but the estimates on the measure of
preserved tori close to a given one are not as good as the ones presented here.

Moreover, we have the same result around every (r + s)-dimensional torus that we
can obtain for the perturbed system for someε 6= 0 small enough, if we assume that
their intrinsic and normal frequencies verify the same kind of Diophantine bounds as the
frequencies of the unperturbed torus. In this case, for everyR0 small enough we have a
(Cantor) family of (r + s)-dimensional reducible tori parametrized byω̂ ∈ W∗(ε, R0),
with the same kind of exponentially small measure with respect toR0 on the comple-
mentary of this set. To prove this, we remark that we can reduce to the caseε = 0. It is
easy to see that Theorem 1 also holds if the unperturbed Hamiltonian depends onθ and
not only onθ̂ (that is, if the initial torus is (r + s)-dimensional).

If the initial torus is normally hyperbolic, the problem is easier. For instance, it is
possible to prove the existence of invariant tori without using reducibility conditions.
Then, in case(a), one obtains an open set of values ofε for which the torus exists, although
its normal flow could not be reducible. The reason is that the intrinsic frequencies of the
torus are fixed with respect toε and the normal eigenvalues (that depend onε) do not
produce extra small divisors if we consider only equations(eq1)–(eq3) of the iterative
scheme described in Section 2.3 (we takeG = 0 andF = 0 in equation (7)). Note that
now we can solve(eq2) using a fixed point method, because the matricesJmB(n) are
ε-close to the initial hyperbolic matrixJmB (which is supposed to be reducible). This
makes it unnecessary to consider(eq4) and(eq5). Of course, the tori produced in this
way are not necessarily reducible. If one wants to ensure reducibility, it is necessary to
use the normal eigenvalues which can produce (depending on some conditions on those
eigenvalues; see [24]) a Cantor set ofε of the same measure as the one in(a). If we
consider the case(b)when the normal behaviour is hyperbolic, the results do not change
with respect to the normally elliptic case. As we are “moving” the intrinsic frequencies,
we have to take out the corresponding resonances. The order (whenR0 goes to zero) of
the measure of these resonances is still exponentially small withR0 (see Lemma 15).

Finally, let us recall that the Diophantine condition(i v) is satisfied for all the fre-
quenciesω(0) and eigenvaluesλ, except for a set of zero measure.

4. Applications

In this section we are going to illustrate the possible applications of these results to some
concrete problems of celestial mechanics. We have not included a formal verification of
the several hypotheses of the theorems, but we want to make some remarks.

The nondegeneracy conditions can be checked numerically, observing if the fre-
quencies involved depend on the parameters. As the applications we will deal with are
perturbations of families of periodic orbits, this hypothesis can be easily verified com-
puting the variation of the period along the family as well as the eigenvalues of the
monodromy matrix. The numerical verification of the Diophantine condition is more
difficult, but note that the nondegeneracy condition ensures that most of the orbits of the
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family are going to satisfy it. Let us also note that these conditions are generic, and that
the numerical behaviour observed in those examples (see below) corresponds to the one
obtained from our results.

4.1. The Bicircular Model nearL4,5

The bicircular problem is a first approximation to study the motion of a small particle
in the earth–moon system, including perturbations coming from the sun. In this model
it is assumed that the earth and moon revolve in circular orbits around their centre of
masses, and that this centre of masses moves in circular orbit around the sun. Usually, in
order to simplify the equations, the units of length, time, and mass are chosen such that
the angular velocity of rotation of the earth and moon (around their centre of masses),
the sum of masses of the earth and moon, and the gravitational constant are all equal to
one. With these normalized units, the earth–moon distance is also one. The system of
reference is defined as follows: The origin is taken at the centre of mass of the earth–moon
system, theX axis is given by the line that goes from the moon to earth, theZ axis has the
direction of the angular momentum of the earth and moon, and theY axis is taken such
that the system is orthogonal and positive-oriented. Note that, in this (noninertial) frame,
called synodic system, the earth and moon have fixed positions and the Sun is rotating
around the barycentre of the earth–moon system. If we define momentaPX = Ẋ − Y,
PY = Ẏ + X, andPZ = Ż, in these coordinates, the motion of an infinitesimal particle
moving under the gravitational attraction of the earth, moon, and sun is given by the
Hamiltonian

H = 1

2
(P2

X+ P2
Y+ P2

Z)+Y PX−X PY− 1− µ
r P E

− µ

r P M
− ms

r PS
−ms

a2
s

(Y sinθ−X cosθ),

whereθ = wSt , with wS the mean angular velocity of the Sun in synodic coordinates,
µ the mass parameter for the earth–moon system,as the semimajor axis of the sun,ms

the sun mass, andr P E, r P M, r PS defined in the following form:

r 2
P E = (X − µ)2+ Y2+ Z2,

r 2
P M = (X − µ+ 1)2+ Y2+ Z2,

r 2
PS = (X − Xs)

2+ (Y − Ys)
2+ Z2,

whereXs = as cosθ andYs = −as sinθ .
Note that one can look at this model as a time-periodic perturbation of an autonomous

system, the Restricted Three Body Problem (usually called RTBP; see [36] for definition
and basic properties). Hence, the Hamiltonian is of the form

H = H0(x, y)+ εH1(x, y, t),

whereε is a parameter such thatε = 0 corresponds to the unperturbed RTBP andε = 1
to the bicircular model with the actual values for the perturbation.

Note that the bicircular model is not dynamically consistent, because the motion of
the earth, moon, and sun does not follow a true orbit of the system (we are not taking
into account the interaction between the sun and the earth–moon system). Nevertheless,
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numerical simulation shows that, in some regions of the phase space, this model gives
the same qualitative behaviour as the real system and this makes it worth studying (see
[34]).

We are going to focus on the dynamics near the equilateral pointsL4,5 of the earth–
moon system. These points are linearly stable for the unperturbed problem (ε = 0),
so we can associate three families of periodic (Lyapounov) orbits with them: the short
period family, the long period family, and the vertical family of periodic orbits. Classical
results about these families can be found in [36].

When the perturbation is added the pointsL4,5 become (stable) periodic orbits with
the same period as the perturbation. These orbits become unstable for the actual value
of the perturbation (ε = 1 in the notation above). In this last case, numerical simulation
shows the existence of a region of stability not very close to the orbit and outside of the
plane of motion of the earth and moon. This region seems to be centered around some of
the (Lyapounov) periodic orbits of the vertical family. See [17] or [34] for more details.

Let us consider the dynamics nearL4,5 for ε small. In this case, the equilibrium point
has been replaced by a small periodic orbit. Our results imply that the three families of
Lyapounov periodic orbits become three cantorian families of 2-D invariant tori, adding
the perturbing frequency to the one of the periodic orbit. Moreover, the Lyapounov tori
(the 2-D invariant tori of the unperturbed problem that are obtained by the “product” of
two families of periodic orbits) become 3-D invariant tori, provided they are nonreso-
nant with the perturbation. Finally, the maximal dimension (3-D) invariant tori of the
unperturbed problem become 4-D tori, adding the frequency of the sun to the ones they
already had (this last result is already contained in [24]).

Now let us considerε = 1. This value ofε is too big to apply these results. In
particular,ε is big enough to cause a change of stability in the periodic orbit that replaces
the equilibrium point. Hence, if one wants to apply the results of this paper to this case, it is
necessary to start by putting the Hamiltonian in a suitable form. To describe the dynamics
near the unstable periodic orbit that replaces the equilibrium point, we can perform
some steps of a normal form procedure to write the Hamiltonian as an autonomous (and
integrable) Hamiltonian plus a small time-dependent periodic perturbation (see [17],
[23], or [34] for more details about these kinds of computations). Then, if we are close
enough to the periodic orbit, Theorem 1 applies and we have invariant tori of dimensions
1, 2, and 3. They are in the “central” directions of the periodic orbit.

The application to the stable region that is in the vertical direction is more difficult.
One possibility is to compute (numerically) an approximation to a 2-D invariant torus of
the vertical family (note that its existence has not already been proved rigorously) and
to perform some steps of a normal form procedure, in order to write the problem as an
integrable autonomous Hamiltonian plus a time-dependent periodic perturbation. Then,
if the (approximate) torus satisfies the equations within a small enough error, it should
be possible to show the existence of a torus nearby, and to establish that it is stable and
surrounded by invariant tori of dimensions 1 to 4. Numerical experiments suggest (see
[17] or [34]) that this is what happens in this case.

4.1.1. Extensions.In fact, the bicircular model is only the first step in the study of the
dynamics near the libration points of the earth-moon system. One can construct better
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models taking into account the noncircular motion of the earth and moon (see [9], [15],
[17]). Our results can be applied to these models in the same way it has been done in the
bicircular case. The main difference is that now the equilibrium point is replaced by a
quasi-periodic solution that, due to the resonances, does not exist for all values ofε but
only for a Cantor set of them (see [24]).

4.2. Halo Orbits

Let us consider the earth and sun as a RTBP, and let us focus on the dynamics near the
equilibrium point that it is in between (the so-calledL1 point). It is known that there
exists a family of periodic orbits (called Halo orbits, see [31]) such that when one looks
at them from the earth, they seem to describe a halo around the solar disc. These orbits
are a very suitable place to put a spacecraft to study the sun: From that place, the sun
is always visible and it is always possible to send data back to earth (because the probe
does not cross the solar disc; otherwise the noise coming from the sun would make
communications impossible). These orbits have been used by missions ISEE-C (from
1978 to 1982) and SOHO (launched in 1995).

In the RTBP, Halo orbits are a one-parameter family of periodic orbits with a normal
behaviour of the type centre×saddle. Unfortunately, the RTBP is too simple to produce
good approximations to the dynamics. If one wants to have a cheap station keeping it is
necessary to compute the nominal orbit with a very accurate model (see [14], [15], [16],
and [17]).

The usual analytic models for this problem are written as an autonomous Hamiltonian
(the RTBP) plus the effect coming from the real motion of the earth and moon, the effect of
Venus, etc. All these effects can be modelled very accurately using functions that depend
on time in a quasi-periodic way. Hence, we end up with an autonomous Hamiltonian
plus a quasi-periodic time-dependent perturbation withr > 0 frequencies. As usual, we
add a parameterε in front of this perturbation.

Then, Theorem 1 implies that, ifε is small enough, the Halo orbits become a cantorian
family of (r + 1)-D invariant tori. The normal behaviour of these tori is also of the type
centre×saddle.

To study the caseε = 1 we refer to the remarks for the case of the bicircular problem.

5. Proofs

This section contains the proof of Theorem 1. It has been split in several parts to simplify
the reading. Section 5.1 introduces the basic notation used in the proof. In Section 5.2 we
give the basic lemmas needed during the proof. Section 5.3 gives quantitative estimates
on one step of the iterative scheme and Section 5.4 contains the technical details of the
proof.

5.1. Notations

Here we introduce some of the notations used to prove the different results.
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5.1.1. Norms and Lipschitz Constants.As usual we denote by|v| the absolute value
of v ∈ C, and we use the same notation to refer to the (maximum) vectorial or matrix
norm onCn orMn1,n2(C).

Let us denote byf an analytic function defined on a complex strip of widthρ > 0,
havingr arguments and being 2π -periodic in all of them. The range of this function can
be inC, Cn, orMn1,n2(C). If we write its Fourier expansion as

f (θ) =
∑
k∈Zr

fk exp(ik>θ),

we can introduce the norm

| f |ρ =
∑
k∈Zr

| fk| exp(|k|1ρ).

Let f (θ,q) be a 2π -periodic function onθ , and analytic on the domain

U r,m
ρ,R = {(θ,q) ∈ Cr × Cm : | Im θ | ≤ ρ, |q| ≤ R}.

If we write its Taylor expansion aroundq = 0 as

f (θ,q) =
∑
l∈Nm

fl (θ)q
l ,

then, from this expansion we define the norm,

| f |ρ,R =
∑
l∈Nm

| fl |ρR|l |1.

If f takes values inC, we put∇ f to denote the gradient off with respect to(θ,q).
Now, we introduce the kind of Lipschitz dependence considered. Assume thatf (ϕ) is

a function defined forϕ ∈ E , E ⊂ R j for somej , and with values inC,Cn, orMn1,n2(C).
We call f a Lipschitz function with respect toϕ on the setE if

LE{ f } = sup
ϕ1,ϕ2∈E
ϕ1 6=ϕ2

| f (ϕ2)− f (ϕ1)|
|ϕ2− ϕ1| < +∞.

The valueLE{ f } is called the Lipschitz constant off onE . For these kind of functions
we define‖ f ‖E = supϕ∈E | f (ϕ)|.

Similarly, if f (θ, ϕ) is a 2π -periodic analytic function onθ for everyϕ ∈ E , we
denote

LE,ρ{ f } = sup
ϕ1,ϕ2∈E
ϕ1 6=ϕ2

| f (·, ϕ2)− f (·, ϕ1)|ρ
|ϕ2− ϕ1| .

In the same way we can introduceLE,ρ,R{ f }, if we work with f (θ,q, ϕ) and the norm
| · |ρ,R. We can also extend‖ · ‖E to both cases to define‖ · ‖E,ρ and‖ · ‖E,ρ,R.
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5.1.2. Canonical Transformations. In this paper, we will perform changes of variables
using the Lie series method. We want to keep the quasi-periodic time dependence (after
each transformation) with the same vector of basic frequenciesω̃(0) as the initial one.
This is achieved when the generating function does not depend onĨ .

Let us consider a generating functionS(θ, x, Î , y) such that∇Sdepends analytically
on (θ, x, Î , y) and it is 2π -periodic in θ . The equations related to the Hamiltonian
functionSare

˙̂
θ =

(
∂S

∂ Î

)>
,

˙̃
θ =

(
∂S

∂ Ĩ

)>
= 0, ˙̂I = −

(
∂S

∂θ̂

)>
,

˙̃I = −
(
∂S

∂θ̃

)>
, ż= Jm

(
∂S

∂z

)>
.

We denote by9S
t (θ, x, I , y) the flow at timet of S with initial conditions(θ, x, I , y)

whent = 0. We note that9S
t is (for a fixed t) a canonical change of variables that acts

in a trivial way onθ̃ . If we put(θ(t), x(t), I (t), y(t)) = 9S
t (θ(0), x(0), I (0), y(0)), we

can express9S
t as

θ̂ (t) = θ̂ (0)+
∫ t

0

(
∂S

∂ Î
(θ(τ ), x(τ ), Î (τ ), y(τ ))

)>
dτ,

I (t) = I (0)−
∫ t

0

(
∂S

∂θ
(θ(τ ), x(τ ), Î (τ ), y(τ ))

)>
dτ,

z(t) = z(0)+ Jm

∫ t

0

(
∂S

∂z
(θ(τ ), x(τ ), Î (τ ), y(τ ))

)>
dτ,

andθ̃ (t) = θ̃ (0). We note that the function9S
t − I d does not depend on the auxiliary vari-

ablesĨ . Then, we putθ(0) = θ , Î (0) = Î , andz(0) = z to introduce the transformations
9̂S

t and8̂S
t , defined as9̂S

t (θ, x, Î , y) = (θ(t), x(t), Î (t), y(t)) and8̂S
t = 9̂S

t − I d. It
is not difficult to check that̂8S

t (θ, x, Î , y) is (for a fixedt) 2π -periodic inθ .
If we consider the Hamiltonian functionH of (6), and we put

H∗∗ = {H∗, S} − ∂S

∂θ̃
ω̃(0), (15)

9S
t transforms the HamiltonianH into

H◦9S
t (θ, x, I , y) = ω̃(0)> Ĩ+H∗(θ, x, Î , y)+t H∗∗(θ, x, Î , y)+6t (H

∗∗, S)(θ, x, Î , y),

where

6t (H
∗∗, S) =

∑
j≥2

t j

j !
L j−1

S (H∗∗), (16)

with L0
S(H

∗∗) = H∗∗ andL j
S(H

∗∗) = {L j−1
S (H∗∗), S}, for j ≥ 1.

Now, by controlling8̂S
t we will show thatH ◦ 9S

t is defined in a domain slightly
smaller thanH .

Finally, as the change of variables is selected as the flow at time one of a Hamiltonian
S, in what follows we will omit the subscriptt and we will assume that it meanst = 1.
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5.2. Basic Lemmas

5.2.1. Lemmas on Norms and Lipschitz Constants.In this section we state some
bounds used when working with the norms and Lipschitz constants introduced in Sec-
tion 5.1.1. We follow here the same notations of Section 5.1.1 for the different analytic
functions used in the lemmas.

Lemma 1. Let f(θ) and g(θ) be analytic functions on a strip of widthρ > 0, 2π -
periodic inθ and taking values inC. Let us denote by fk the Fourier coefficients of f ,
f (θ) =∑k∈Zr fk exp(ik>θ). Then we have

(i) | fk| ≤ | f |ρ exp(−|k|1ρ).
(ii) | f g|ρ ≤ | f |ρ |g|ρ .

(iii) For every0< ρ0 < ρ,∣∣∣∣ ∂ f

∂θj

∣∣∣∣
ρ−ρ0

≤ | f |ρ
ρ0 exp(1)

, j = 1, . . . , r.

(iv) Let {dk}k∈Zr \{0} ⊂ C satisfy the following bounds:

|dk| ≥ µ

|k|γ1
exp(−δ|k|1),

for someµ > 0, γ ≥ 0, 0 ≤ δ < ρ. If we assume that̄f = 0, then the function g
defined as

g(θ) =
∑

k∈Zr \{0}

fk

dk
exp(ik>θ),

satisfies the bound

|g|ρ−ρ0 ≤
(

γ

(ρ0− δ) exp(1)

)γ | f |ρ
µ
,

for everyρ0 ∈]δ, ρ[.

All these bounds can be extended to the case when f and g take values inCn orMn1,n2(C).
Of course, in the matrix case, in(i i ) it is necessary that the product f g be well defined.

Proof. Items (i ) and (i i ) are easily verified. Proofs of(i i i ) and (i v) are essentially
contained in [24], but working with the supremum norm.

Lemma 2. Let f(θ,q) and g(θ,q) be analytic functions on a domainU r,m
ρ,R and 2π -

periodic inθ . Then we have

(i ) If we expand f(θ,q) =∑l∈Nm fl (θ)ql , then| fl |ρ ≤ | f |ρ,RR|l |1 .
(i i ) | f g|ρ,R ≤ | f |ρ,R|g|ρ,R.
(i i i ) For every0< ρ0 < ρ and0< R0 < R, we have∣∣∣∣ ∂ f

∂θj

∣∣∣∣
ρ−ρ0,R

≤ | f |ρ,R
ρ0 exp(1)

, j = 1, . . . , r,
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and ∣∣∣∣ ∂ f

∂qj

∣∣∣∣
ρ,R−R0

≤ | f |ρ,R
R0

, j = 1, . . . ,m.

As in Lemma 1, all the bounds hold if f and g take values inCn orMn1,n2(C).

Proof. Items(i ) and(i i ) are straightforward. The first part of(i i i ) is a consequence
of Lemma 1. The second part is obtained by applying standard Cauchy estimates to the
function F(q) =∑l∈Nm | fl |ρql .

Lemma 3. Let us take0 < ρ0 < ρ and 0 < R0 < R, and let us consider analytic
functions2(θ,q) (with values inCr ) and X(θ,q) (with values inCm), both2π -periodic
on θ , and such that|2|ρ0,R0 ≤ ρ − ρ0 and |X|ρ0,R0 ≤ R− R0. Let f(θ,q) be a given
(2π -periodic onθ ) analytic function. If we define

F(θ,q) = f (θ +2(θ,q),q + X(θ,q)),

then,|F |ρ0,R0 ≤ | f |ρ,R.

Proof. Expandingf in Taylor series (as(i ) in Lemma 2) one obtains the expansion of
F as a function of2 andX. Then the bound is a consequence of(i i ) in 2.

Lemma 4. Let us consider2( j ) and X( j ), j = 1, 2, with the same conditions as2
and X in Lemma 3, but with the following bounds:|2( j )|ρ0,R0 ≤ ρ − ρ0 − δ and
|X( j )|ρ0,R0 ≤ R− R0−χ , with0< δ < ρ−ρ0 and0< χ < R− R0. Then, if we define

F ( j )(θ,q) = f (θ +2( j )(θ,q),q + X( j )(θ,q)), j = 1, 2,

one has

|F (1) − F (2)|ρ0,R0 ≤
( |2(1) −2(2)|ρ0,R0

exp(1)δ
+m
|X(1) − X(2)|ρ0,R0

χ

)
| f |ρ,R.

Proof. We can use here the same ideas as in Lemma 3, combined with the ones used to
prove Lemmas 1 and 2.

Now we give some basic results related to the Lipschitz dependences introduced in
Section 5.1.1. For that purpose, we work with a parameterϕ on the setE ⊂ R j , for some
j ≥ 1.

Lemma 5. We consider Lipschitz functions f(ϕ) and g(ϕ) defined forϕ ∈ E with
values inC, then

(i) LE{ f + g} ≤ LE{ f } + LE{g}.
(ii) LE{ f g} ≤ ‖ f ‖ELE{g} + ‖g‖ELE{ f }.

(iii) LE{1/ f } ≤ ‖1/ f ‖2ELE{ f }, if f does not vanish.

Moreover,(i ) holds if f and g take values inCn or Mn1,n2(C), and(i i ) and (i i i ) also
hold when f and g are matrix-valued functions such that the matrix product f g is defined
(for case(i i )) and that f is invertible (for case(i i i )).
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Proof. It is straightforward.

Remark. In Lemma 5 we obtain analogous results if we work with functions of the form
f (θ, ϕ)or f (θ,q, ϕ), defined forϕ ∈ E and analytical with respect to the variables(θ,q)
and the norms| · |ρ , | · |ρ,R.

Lemma 6. We assume that f(θ, ϕ) is, for everyϕ ∈ E , an analytic2π -periodic function
in θ on a strip of widthρ > 0, with Lipschitz dependence with respect toϕ. Let us expand
f (θ, ϕ) =∑k∈Zr fk(ϕ) exp(ik>θ). Then, we have

(i) LE{ fk} ≤ LE,ρ{ f } exp(−|k|1ρ).
(ii) For every0< ρ0 < ρ,

LE,ρ−ρ0

{
∂ f

∂θj

}
≤ LE,ρ{ f }
ρ0 exp(1)

, j = 1, . . . , r.

(iii) Let {dk(ϕ)}k∈Zr \{0} be a set of complex-valued functions defined forϕ ∈ E , with the
following bounds:

|dk(ϕ)| ≥ µ

|k|γ1
exp(−δ|k|1),

and

LE{dk} ≤ A+ B|k|1,
for someµ > 0, γ ≥ 0, 0≤ 2δ < ρ, A≥ 0, and B≥ 0. As in Lemma 1 we assume
f̄ = 0 for everyϕ ∈ E . If

g(θ, ϕ) =
∑

k∈Zr \{0}

fk(ϕ)

dk(ϕ)
exp(ik>θ),

then, for everyδ0, 2δ < δ0 < ρ, we have

LE,ρ−δ0{g} ≤
(

γ

(δ0− δ) exp(1)

)γ LE,ρ{ f }
µ

+
(

2γ + 1

(δ0− 2δ) exp(1)

)2γ+1 ‖ f ‖E,ρ
µ2

B

+
(

2γ

(δ0− 2δ) exp(1)

)2γ ‖ f ‖E,ρ
µ2

A.

Proof. It is analogous to Lemma 1, using also the results of Lemma 5.

Lemma 7. We assume that f(θ,q, ϕ) is, for everyϕ ∈ E , an analytic function onU r,m
ρ,R

and2π -periodic inθ . Then we have

(i) If we write f(θ,q, ϕ) =∑l∈Nm fl (θ, ϕ)ql , thenLE,ρ{ fl } ≤ LE,ρ,R{ f }R|l |1 .
(ii) For every0< ρ0 < ρ and0< R0 < R, we have

LE,ρ−ρ0,R

{
∂ f

∂θj

}
≤ LE,ρ,R{ f }
ρ0 exp(1)

, j = 1, . . . , r,
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and

LE,ρ,R−R0

{
∂ f

∂qj

}
≤ LE,ρ,R{ f }

R0
, j = 1, . . . ,m.

Proof. As in Lemma 6, but using now the same ideas as in Lemma 2.

5.2.2. Lemmas on Canonical Transformations.In this section we establish some lem-
mas that we will use to work with the canonical transformations that we introduced in
Section 5.1.2. The purpose is to bound the changes as well as the transformed Hamilto-
nian. We also take into account the possibility that the generating function depends on a
parameterϕ ∈ E in a Lipschitz way.

To simplify the notations in the lemmas of this section, we define

1ρ0,R0 =
r

ρ0 exp(1)
+ r + 2m

R0
, (17)

and we will use (without explicit mention) the notations introduced in Section 5.1.
The proofs of Lemmas 8, 9, 10, and 11 can be obtained from the bounds of lemmas

of Section 5.2.1. The proof of Lemma 9 is essentially contained in [7]. The proof of
Lemma 11 is similar. The proof of Lemma 12 can also be found in [7], where it is
proved working with the supremum norm. In our case the proof is analogous to the
explicit expressions for the transformation9̂S given in Section 5.1.2, using the result of
Lemma 3 to bound the compositions.

Lemma 8. Let us consider f(θ, x, Î , y) and g(θ, x, Î , y) complex-valued functions
such that f and∇g are analytic functions defined onU r+s,r+2m

ρ,R , 2π -periodic onθ .
Then, for every0< ρ0 < ρ and0< R0 < R, we have

|{ f, g}|ρ−ρ0,R−R0
≤ 1ρ0,R0 |∇g|ρ,R | f |ρ,R .

Lemma 9. With the same hypotheses of Lemma 8 we have, for the expression6( f, g)
introduced in(16),

|6( f, g)|ρ−ρ0,R−R0
≤
∑
j≥1

1

j + 1

(
1ρ0,R0 exp(1)|∇g|ρ,R

) j | f |ρ,R.

Lemma 10. Assume that the complex-valued functions f(θ, x, Î , y, ϕ) and
g(θ, x, Î , y, ϕ) verify that, for everyϕ ∈ E , f and ∇g are analytic functions on
U r+s,r+2m
ρ,R , 2π -periodic onθ , with Lipschitz dependence onϕ. Then, if‖ f ‖E,ρ,R ≤ F1,
‖∇g‖E,ρ,R ≤ F2, LE,ρ,R{ f } ≤ L1, andLE,ρ,R{∇g} ≤ L2, we have that, for every
0< ρ0 < ρ and0< R0 < R,

LE,ρ−ρ0,R−R0 {{ f, g}} ≤ 1ρ0,R0 (F1L2+ F2L1) .
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Lemma 11. With the same hypotheses of Lemma 10, we have

LE,ρ−ρ0,R−R0 {6( f, g)} ≤
∑
j≥1

(
1

j + 1

(
1ρ0,R0 exp(1)

) j
F j−1

2 ( j L 2F1+ L1F2)

)
.

Lemma 12. We assume that the generating function S(θ, x, Î , y) of Section 5.1.2 ver-
ifies that∇S is analytic onU r+s,r+2m

ρ,R , 2π -periodic in θ , with |∇S|ρ,R ≤ δ, where
δ < min {ρ, R}. Then, with the notations of Section 5.1.2, we have

(i) |8̂S|ρ−δ,R−δ ≤ |∇S|ρ,R.

(ii) 9̂S : U r+s,2m+r
ρ−δ,R−δ −→ U r+s,2m+r

ρ,R .

5.2.3. Convergence Lemma.We will use the following lemma during the proof of
Theorem 1, to relate the bounds on the Hamiltonian aftern steps of the iterative scheme
as a function of bounds for the initial Hamiltonian.

Lemma 13. Let {Kn}n≥1 be a sequence of positive numbers with Kn+1 ≤
anbK 2

n exp(%nc) if n ≥ 1, being a> 0, b≥ 0, c> 0, and1< % < 2. Then

Kn+1 ≤ 1

a

((
5

3

)b

aK1 exp

(
c%

2− %
))2n

.

Proof. The proof is a direct combination of the proofs of Lemma 5 in [22] and Lemma
2.14 in [24].

5.2.4. Estimates on Measures in Parameter Space.In the following lemmas, we
consider a fixedω(0)> = (ω̂(0)>, ω̃(0)>), with ω̂(0) ∈ Rr andω̃(0) ∈ Rs. Let λ(ϕ) be a
function defined onE ⊂ Rr+1 with range inC, whereϕ> = (ω̂>, ε), with ω̂ ∈ Rr and
ε ∈ R. We assume thatλ takes the form

λ(ϕ) = λ0+ iuε + i v>(ω̂ − ω̂(0))+ λ̃(ϕ),

whereλ0, u ∈ C, v ∈ Cr , and, if we denote bȳE ≡ Ē(ϑ̄) = {ϕ ∈ E : |ϕ − ϕ(0)| ≤ ϑ̄},
ϕ(0)> = (ω̂(0)>, 0), then we have thatLĒ{λ̃} ≤ Lϑ̄ for certainL ≥ 0, for all 0≤ ϑ̄ ≤ ϑ0.
Note that this Lipschitz condition oñλ would imply, if λ̃ were of classC2, that λ̃ is of
O2(ϕ − ϕ(0)). We also assume that|λ(ϕ)− λ0| ≤ M |ϕ − ϕ(0)| for all ϕ ∈ Ē(ϑ0).

Now, we takeµ > 0, γ > r + s− 1, and 0< δ ≤ 1 to define fromλ andE the
following “resonant” sets:

R(ε0, R0) =
{
ω̂ ∈ Rr : |ω̂ − ω̂(0)| ≤ R0, (ω̂>, ε0)

> = ϕ ∈ E, and

∃k ∈ Zr+s \ {0} such that |ik>ω + λ(ϕ)| < µ

|k|γ1
exp(−δ|k|1)

}
,
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for everyε0 ≥ 0 andR0 ≥ 0, and

A(ε0, ω̂) =
{
ε ∈ [0, ε0] : (ω̂>, ε)> = ϕ ∈ E and

∃k ∈ Zr+s \ {0} such that |ik>ω + λ(ϕ)| < µ

|k|γ1
exp(−δ|k|1)

}
,

for everyω̂ ∈ Rr andε0 > 0, where in both casesω ∈ Rr+s is defined fromϕ> = (ω̂>, ε)
asω> = (ω̂>, ω̃(0)>). Note that these sets depend onδ andµ.

As the purpose of this section is to deal with the measure of these resonant sets, we
will always assume we are in the worst case: Reλ0 = 0. When this is not true (that is,
when there are no resonances), it is not difficult to see that the setsR andA are empty
if we are close enough toϕ(0) (the value of the parameter for the unperturbed system).
We want to remark that we are not making any assumption on the values Imu and Imv.
According to the size of the resonant sets the worst case happens when Imu = 0 and/or
Im v = 0. Hence, the proof will be valid in this case, although it is possible to improve
the measure estimates in the case that Imu 6= 0 and Imv 6= 0.

Lemma 14. If we assume that|ik>ω(0)+λ0| ≥ µ0

|k|γ1
,γ > r+s−1, for all k ∈ Zr+s\{0},

for certainµ0 ≥ 2µ, then, if K is the only positive solution ofµ0

2K γ = M max{R0, ε0} +
K R0, we have

(i) If Rev /∈ Zr , andε0, R0 are small enough (a condition that depends only onv, L,
ϑ0, γ , µ0, and M), then,

mes(R(ε0, R0)) ≤ 16µ(2
√

r R0)
r−1(r + s)K̂ (v)K r+s−1−γ exp(−δK )

δ
,

whereK̂ (v) = sup̂k∈Zr

{
1

|k̂+Rev|2

}
, with | · |2 the Euclidean norm ofRr .

(ii) If u 6= 0, andε0, R0 = |ω̂ − ω̂(0)| are small enough (a condition that depends only
on u, L,ϑ0, γ , µ0, and M), then

mes(A(ε0, ω̂)) ≤ 16µ

|u| (r + s)K r+s−1−γ exp(−δK )

δ
.

Proof. We prove part(i ). Similar ideas can be used to prove(i i ). To study the measure
ofR(ε0, R0), we consider the following decomposition:

R(ε0, R0) =
⋃

k∈Zr+s\{0}
Rk(ε0, R0),

whereRk(ε0, R0) is defined as

Rk(ε0, R0) =
{
ω̂ ∈ Rr : |ω̂ − ω̂(0)| ≤ R0, (ω̂>, ε0)

> = ϕ ∈ E,

and |ik>ω + λ(ϕ)| < µ

|k|γ1
exp(−δ|k|1)

}
.

To compute the measure of these sets, we takeω̂(1), ω̂(2) ∈ Rk(ε0, R0), and we put
ϕ( j )> = (ω̂( j )>, ε0) andω( j )> = (ω̂( j )>, ω̃(0)>). Then, from|ik>ω( j ) + λ(ϕ( j ))| <
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µ

|k|γ1
exp(−δ|k|1), we clearly have that|i k̂>(ω̂(1) − ω̂(2)) + λ(ϕ(1)) − λ(ϕ(2))| <

2µ
|k|γ1

exp(−δ|k|1), where we have splitk> = (k̂>, k̃>), with k̂ ∈ Zr and k̃ ∈ Zs. From

that, and using the definition ofλ(ϕ), one obtains

|i (k̂+ v)>(ω̂(1) − ω̂(2))+ λ̃(ϕ(1))− λ̃(ϕ(2))| < 2µ

|k|γ1
exp(−δ|k|1).

Note that the setRk is a slice of the set of̂ω such that|ω̂ − ω̂(0)| ≤ R0. To estimate
its measure, we are going to take the valuesω̂(1) and ω̂(2) such thatω̂(1) − ω̂(2) is
(approximately) perpendicular to the slice, that is, parallel to the vectork̂+Rev. Then,
mes(Rk) can be bounded by the product of a bound of the value|ω̂(1)− ω̂(2)| by (a bound
of) the measure of the worst (biggest) section of a hyperplane (of codimension 1) with
the set|ω̂ − ω̂(0)| ≤ R0.

Hence, assuming now thatω̂(1) − ω̂(2) is parallel to the vector̂k+ Rev, we have

|ω̂(1) − ω̂(2)|2 = |(k̂+ Rev)>(ω̂(1) − ω̂(2))|
|k̂+ Rev|2

≤ |(k̂+ v)
>(ω̂(1) − ω̂(2))|
|k̂+ Rev|2

≤ 1

|k̂+ Rev|2

(
L max{R0, ε0}|ω̂(1) − ω̂(2)| + 2µ

|k|γ1
exp(−δ|k|1)

)
.

In consequence,(
1− L max{R0, ε0}

|k̂+ Rev|2

)
|ω̂(1) − ω̂(2)|2 ≤ 2µ

|k|γ1
exp(−δ|k|1) 1

|k̂+ Rev|2
.

So, if ε0 andR0 are small enough (independent ofk), we can bound

|ω̂(1) − ω̂(2)|2 ≤ 4µ

|k|γ1
exp(−δ|k|1)K̂ ,

where we putK̂ = K̂ (v). From that

mes(Rk(ε0, R0)) ≤ 4µ

|k|γ1
exp(−δ|k|1)(2

√
r R0)

r−1K̂ ,

where 2
√

r R0 is a bound for the diameter of the set{ω̂ ∈ Rr : |ω̂− ω̂(0)| ≤ R0}. Then,
we have

mes(R(ε0, R0)) ≤
∑

k∈Zr+s\{0}

4µ

|k|γ1
exp(−δ|k|1)(2

√
r R0)

r−1K̂ . (18)

In fact, in this sum we only need to considerk ∈ Zr+s \ {0} such thatRk(ε0, R0) 6= ∅.
Now, let us see thatRk(ε0, R0) is empty if|k|1 is less than some critical valueK .

Let ϕ ∈ Rk(ε0, R0); then we can write
µ0

|k|γ1
≤ |ik>ω(0) + λ0| ≤ |ik>ω + λ(ϕ)| + |λ(ϕ)− λ0| + |k̂>(ω̂ − ω̂(0))|

≤ µ

|k|γ1
exp(−δ|k|1)+ M max{R0, ε0} + |k̂|1|ω̂ − ω̂(0)|

≤ µ

|k|γ1
+ M max{R0, ε0} + |k̂|1R0,
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and then
µ0

2|k|γ1
≤ M max{R0, ε0} + |k|1R0.

So, in the sum (18), we only need to considerk ∈ Zr+s\{0} such that|k|1 ≥ K , whereK
(which depends onR0 andε0) is defined in the statement of the lemma. We assumeR0 and
ε0 small enough such thatK ≥ 1. Now, using #{k ∈ Zr+s : |k|1 = j } ≤ 2(r + s) j r+s−1

andγ > r + s− 1, we have

mes(R(ε0, R0)) ≤ 4µ(2
√

r R0)
r−1K̂

∑
k∈Zr+s\{0}
|k|1≥K

exp(−δ|k|1)
|k|γ1

≤ 4µ(2
√

r R0)
r−1K̂

∑
j≥K

2(r + s) j r+s−1 exp(−δ j )

j γ

≤ 8µ(2
√

r R0)
r−1(r + s)K̂ K r+s−1−γ ∑

j≥K

exp(−δ j )

= 8µ(2
√

r R0)
r−1(r + s)K̂ K r+s−1−γ exp(−δK )

1− exp(−δ)
≤ 16µ(2

√
r R0)

r−1(r + s)K̂ K r+s−1−γ exp(−δK )

δ
,

where we used 1
1−exp(−δ) ≤ 2

δ
, if 0 < δ ≤ 1.

Lemma 15. With the previous notations, we introduce the set

D(R0) =
{
ω̂ ∈ Rr : |ω̂ − ω̂(0)| ≤ R0 and

∃k ∈ Zr+s \ {0} such that |k>ω| < µ

|k|γ1
exp(−δ|k|1)

}
.

Let us assume|k>ω(0)| ≥ µ0

|k|γ1
for all k ∈ Zr+s \ {0}, for certainµ0 ≥ 2µ. Then, if R0 is

small enough (depending only onγ andµ0), one has

mes(D(R0)) ≤ 8µ(2
√

r R0)
r−1(r + s)K r+s−1−γ exp(−δK )

δ
,

where K=
(
µ0

2R0

) 1
γ+1

.

Proof. It is similar to the one of Lemma 14.

Lemma 16. Letµ0 > 0, ρ > 0, and1< % < 2 fixed. We putσn = 6
π2n2 , δn = σnρ

18 , and
µn = µ0 exp(−%n), for all n ≥ 1. Then, for every0< σ < 1, we have that, if K is big
enough (depending only on%, ρ, µ0, andσ ),∑

n≥1

µn
exp(−δnK )

δn
≤ exp(−K σ ).
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Proof. Let n∗(K ) = ln K
ln % . We remark thatn∗(K )→ +∞ asK → +∞. Then, if K is

big enough one has that, for alln ≥ n∗(K ),

(n+ 1)2 exp
(−%n+1

)
n2 exp(−%n)

=
(

n+ 1

n

)2

exp
(−%n(% − 1)

) ≤ exp

(
−% − 1

2

)
,

which allows us to bound∑
n≥1

n2 exp
(−%n

) ≤ n2
∗ exp(−%n)

1− exp
(
− %−1

2

) .
Hence,∑

n≥1

µn
exp(−δnK )

δn
=
∑
n≥1

3µ0π
2

ρ
n2 exp

(
−%n − Kρ

3π2n2

)

= 3µ0π
2

ρ

( ∑
1≤n<n∗

+
∑
n≥n∗

)
n2 exp

(
−%n − Kρ

3π2n2

)
≤ 3µ0π

2

ρ
n2
∗ exp

(
− Kρ

3π2n2∗

)∑
n≥1

exp
(−%n

)
+3µ0π

2

ρ

∑
n≥n∗

n2 exp
(−%n

)
≤ 3µ0π

2

ρ
n2
∗

(
exp(−%) exp

(
− Kρ

3π2n2∗

)
exp

(−%n∗
))

× 1

1− exp
(
− %−1

2

)
≤ exp(−K σ ),

for any 0< σ < 1 if K is big enough.

5.3. Iterative Lemma

Here we give the details of a step of the iterative process used to prove Theorem 1. For
that purpose, let us consider a HamiltonianH = H(θ, x, I , y, ϕ) of the form

H = φ(ϕ)+ ω> I + 1

2
z>B(ϕ)z+ 1

2
Î >C(θ, ϕ) Î

+ H∗(θ, x, Î , y, ϕ)+ Ĥ(θ, x, Î , y, ϕ), (19)

with the same notations as (5) whereϕ was introduced in Section 5.2.4. Moreover, given
ϕ ∈ E we recall the definition ofω ∈ Rr+s asω> = (ω̂>, ω̃(0)>), whereω̂ comes from
the firstr components ofϕ andω̃(0) ∈ Rs is given by the quasi-periodic time dependence.
Let us write

H(θ, x, I , y, ϕ) = ω̃(0)> Ĩ + H∗(θ, x, Î , y, ϕ),
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where we assume thatH∗ depends on(θ, x, Î , y) in an analytic form, that it is 2π -
periodic inθ , that it depends onϕ ∈ E in a Lipschitz way and, moreover, that〈H∗〉 = 0
(see Section 2.3 for the definition) for allϕ. This implies that, skipping the term̂H (this
is the small perturbation), we have for everyϕ ∈ E an invariant (r + s)-dimensional
reducible torus with basic frequenciesω. Moreover, we also assume thatB andC are
symmetric matrices withJm(B) = B and detC̄ 6= 0. Hence,JmB is a diagonal matrix,
with eigenvaluesλ(ϕ)> = (λ1(ϕ), . . . , λm(ϕ),−λ1(ϕ), . . . ,−λm(ϕ)), that we assume
are all different, that gives the normal behaviour around the unperturbed invariant torus.

More concretely, let us assume that the following bounds hold: For the unperturbed
part, for every j, l = 1, . . . ,2m with j 6= l , we have 0< α1 ≤ |λj (ϕ) − λl (ϕ)|,
α1/2≤ |λj (ϕ)| ≤ α2/2 for all ϕ ∈ E , and thatLE{λj } ≤ β2/2. Moreover,‖(C̄)−1‖E ≤ m̄
and, for certainρ > 0 andR > 0, ‖C‖E,ρ ≤ m̂, LE,ρ{C} ≤ m̃, ‖H∗‖E,ρ,R ≤ ν̂, and
LE,ρ,R{H∗} ≤ ν̃. Finally, we bound the size of the perturbationĤ by ‖Ĥ‖E,ρ,R ≤ M
andLE,ρ,R{Ĥ} ≤ L. To simplify the bounds, we will assume thatM ≤ L.

Lemma 17(Iterative Lemma). Let us consider a Hamiltonian H such as the one we
have just described above. We assume that we can boundρ, R,α2, β2, m̄, m̂, m̃, ν̂, ν̃,
M, and L by certain fixed absolute constantsρ0, R0, α∗2, β∗2 , m̄∗, m̂∗, m̃∗, ν̂∗, ν̃∗, M0,
and L0, and that for some fixed R∗ > 0 andα∗1 > 0 we have R∗ ≤ R andα∗1 ≤ α1.
We assume that for everyϕ ∈ E , the correspondingω verifies|ω| ≤ κ∗, for some fixed
κ∗ > 0. Finally, we also consider fixed̃δ0 > 0, γ > r + s− 1, andµ0 > 0.

In these conditions, there exists a constantN̂ , depending only on the constants above
and on r, s, and m, such that for everyδ > 0, δ̂ > 0, and0 < µ ≤ µ0 for which the
following three conditions hold,

(a) 0< 9δ < ρ, 0< 9δ̂ < ρ, and δ/δ̂ ≤ δ̃0,
(b) for everyϕ ∈ E ,

|ik>ω + l>λ(ϕ)| ≥ µ

|k|γ1
exp(−δ|k|1), (20)

for all k ∈ Zr+s \ {0}, and for all l ∈ N2m with |l |1 ≤ 2,
(c) 2 = N̂ M

δ2γ+3µ2 ≤ 1/2,

we have that there exists a function S(θ, x, Î , y, ϕ), defined for everyϕ ∈ E , with∇S
an analytic function with respect to(θ, x, Î , y) on U r+s,2m+r

ρ−8δ,R−8δ̂
, 2π -periodic onθ and

with Lipschitz dependence onϕ ∈ E , such that‖∇S‖E,ρ−8δ,R−8δ̂ ≤ min{δ, δ̂}. Moreover,
following the notations of Section 5.1.2, the canonical change of variables9S is well
defined for everyϕ ∈ E ,

9̂S : U r+s,2m+r
ρ−9δ,R−9δ̂

−→ U r+s,2m+r
ρ−8δ,R−8δ̂

, (21)

and transforms H into

H (1)(θ, x, I , y, ϕ) ≡ H ◦9S(θ, x, I , y),

where

H (1) = φ(1)(ϕ)+ ω> I + 1

2
z>B(1)(ϕ)z+ 1

2
Î >C(1)(θ, ϕ) Î + H (1)

∗ + Ĥ (1),
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with 〈H (1)
∗ 〉 = 0, and whereB(1) and C(1) are symmetric matrices withJm(B(1)) =

B(1). Moreover if we put R(1) = R− 9δ̂ and ρ(1) = R− 9δ, we have the following
bounds:

‖∇S‖E,ρ−8δ,R−8δ̂ ≤ N̂ M
δ2+2γ µ2 , ‖φ(1) − φ‖E ≤ N̂ M

δ1+γ µ ,

‖B(1) − B‖E ≤ N̂ M
δ1+γ µ , LE{B(1) − B} ≤ N̂ L

δ2+2γ µ2 ,

‖C(1) − C‖E,ρ(1) ≤ N̂ M
δ2+2γ µ2 , LE,ρ(1){C(1) − C} ≤ N̂ L

δ3+3γ µ3 ,

‖H (1)
∗ − H∗‖E,ρ(1),R(1) ≤ N̂ M

δ3+2γ µ2 , LE,ρ(1),R(1){H (1)
∗ − H∗} ≤ N̂ L

δ4+3γ µ3 ,

‖Ĥ (1)‖E,ρ(1),R(1) ≤ N̂ M2

δ6+4γ µ4 , LE,ρ(1),R(1){Ĥ (1)} ≤ N̂ M L
δ7+5γ µ5 .

Proof. The idea is to use the scheme described in Section 2.3, to remove the perturbative
terms that are an obstruction for the existence of a (reducible) torus with vector of basic
frequenciesω up to first order in the size of the perturbation. Hence, as we described in
Section 2.3 we expand̂H in power series around̂I = 0,z= 0 to obtainH = ω̃(0)> Ĩ+H∗,
where

H ∗ = a(θ)+b(θ)>z+ c(θ)> Î + 1

2
z>B(θ)z+ Î >E(θ)z+ 1

2
Î >C(θ) Î +Ä(θ, x, Î , y),

with 〈Ä〉 = 0, where we have not written explicitly the dependence onϕ. We look for a
generating functionS,

S(θ, x, Î , y) = ξ>θ̂ + d(θ)+ e(θ)>z+ f (θ)> Î + 1

2
z>G(θ)z+ Î >F(θ)z,

with the same properties as the one given in (7). If we want to obtain the transformed
HamiltonianH (1) we need to compute (see Section 5.1.2)

H∗∗ = {H∗, S} − ∂S

∂θ̃
ω̃(0).

We introduce the decompositionH∗∗ = H∗∗1 + H∗∗2 , with

H∗∗1 =
{
ω> I + 1

2
z>Bz+ 1

2
Î >C Î + H∗, S

}
− ∂S

∂θ̃
ω̃(0),

andH ∗∗2 = {Ĥ , S}. Then, we want to selectSsuch thatH + H∗∗1 takes the form

H+H∗∗1 = φ(1)(ϕ)+ω> I+1

2
z>B(1)(ϕ)z+1

2
Î >C(1)(θ, ϕ) Î+H (1)

∗ (θ, x, Î , y, ϕ), (22)

and hence,Ĥ (1) = H∗∗2 +6(H∗∗, S). We can explicitly computeH∗∗1

H∗∗1 =
(

1

2

∂

∂θ̂

(
Î >C Î

)
+ ∂H∗

∂θ̂

)
( f + Fz)−

(
Î >C + ∂H∗

∂ Î

)(
∂S

∂θ̂

)>
+
(

z>B + ∂H∗
∂z

)
Jm(e+ Gz+ F> Î )− ∂S

∂θ
ω. (23)
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Then, it is not difficult to see that equation (22) leads to equations(eq1)–(eq5) given
in Section 2.3, replacingω(0) byω, and that

φ(1) = φ − ω̂>ξ, (24)

B(1) = Jm(B
∗), (25)

C(1) = C +
[

Î >
(

1

2

∂C
∂θ̂

f − C
(
∂ f

∂θ̂

)>)
Î − ∂H∗

∂ Î

(
ξ +

(
∂d

∂θ̂

)>)
+ ∂H∗

∂z
Jme

]
( Î , Î )

,

(26)

H (1)
∗ = Ä+ H∗∗1 − 〈H∗∗1 〉. (27)

We will prove that, from the Diophantine bounds of (20), it is possible to construct a
convergent expression forS, and to obtain suitable bounds for the transformed Hamil-
tonian.

The first step is to bound the solutions of(eq1)–(eq5), using lemmas of Section 5.2.1.
In what follows,N̂ denotes a constant that bounds all the expressions depending on all
the fixed constants of the statement of the lemma, and its value is redefined several times
during the proof in order to simplify the notation. Moreover, sometimes we do not write
explicitly the dependence onϕ, but all the bounds hold for allϕ ∈ E . First, we remark
that using the bounds on̂H , and from Lemmas 2 and 7 we can bound‖ ·‖E,ρ andLE,ρ{.}
of a − φ, b, c − ω̂, B − B, E, andC − C by N̂ M and N̂ L, respectively, with anN̂
that only depends onR∗, r , andm. We recall that from the expressions of Section 2.3
the solutions of(eq1)–(eq5) are unique, and for them we have (working here for a fixed
ϕ ∈ E) the following:

(eq1) From the expression ofd as a function of the coefficients of the Fourier expansion
of a, it is clear that if we use the bounds on the denominators given by the
Diophantine conditions of (20) and Lemma 1 we can see that

|d|ρ−χ ≤
(

γ

(χ − δ) exp(1)

)γ |ã|ρ
µ
,

if ρ > χ > δ, and then using that|ã|ρ ≤ |a− φ|ρ , we can write

|d|ρ−χ ≤ N̂
M

(χ − δ)γ µ.

(eq2) We have fore

|e|ρ−χ ≤
(

2

α∗1
+
(

γ

(χ − δ) exp(1)

)γ 1

µ

)
|b|ρ,

for all ρ > χ > δ. Consequently,

|e|ρ−χ ≤ N̂
M

(χ − δ)γ µ.
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(eq3) First we boundξ

|ξ | = |(C̄)−1C̄ξ | ≤ |(C̄)−1||C̄ξ | ≤ m̄∗
∣∣∣∣∣c̄− ω̂ − C

(
∂d

∂θ̂

)>∣∣∣∣∣
ρ−χ

≤ m̄∗

|c− ω̂|ρ +
∣∣∣∣∣C
(
∂d

∂θ̂

)>∣∣∣∣∣
ρ−χ

 ≤ m̄∗
(

N̂ M + |C|ρ 2|d|ρ−χ /2

χ exp(1)

)
,

whereρ ≥ χ > 2δ. Hence,

|ξ | ≤ N̂
M

(χ − 2δ)γ+1µ
,

for all ρ ≥ χ > 2δ. Then, forc∗ we have

|c∗|ρ−χ ≤
∣∣∣∣∣c̃− C̃ξ − C

(
∂d

∂θ̂

)>
+ C

(
∂d

∂θ̂

)>∣∣∣∣∣
ρ−χ

≤ |c̃|ρ + |C|ρ
|ξ | + ∣∣∣∣∣

(
∂d

∂θ̂

)>∣∣∣∣∣
ρ−χ


≤ |c− ω̂|ρ + m̂∗

(
|ξ | + 2|d|ρ−χ /2

χ exp(1)

)
≤ N̂

M

(χ − 2δ)γ+1µ
.

Hence, ifρ > χ > 3δ,

| f |ρ−χ ≤
(

3γ

(χ − 3δ) exp(1)

)γ |c∗|ρ−2χ /3

µ
≤ N̂

M

(χ − 3δ)2γ+1µ2
.

(eq4) From the definition ofB∗ given in (8), we have

|B∗ − B|ρ−χ ≤ |B− B|ρ−χ

+
∣∣∣∣∣
[
∂H∗
∂ Î

(
ξ +

(
∂d

∂θ̂

)>)]
(z,z)

∣∣∣∣∣
ρ−χ
+
∣∣∣∣∣
[
∂H∗
∂z

Jme

]
(z,z)

∣∣∣∣∣
ρ−χ

≤ N̂ M + (2m+ 1)r
|H∗|ρ,R
(R∗)3

(
|ξ | + 2|d|ρ−χ /2

χ exp(1)

)
+ 24m2 |H∗|ρ,R

(R∗)3
|e|ρ−χ ,

and then

|B∗ − B|ρ−χ ≤ N̂
M

(χ − 2δ)γ+1µ
,

if ρ > χ > 2δ, and the same bound holds for|B∗∗|ρ−χ (see (10)). Lemma 1
allows us to bound

|G|ρ−χ ≤
(

1

α∗1
+
(

3γ

(χ − 3δ) exp(1)

)γ 1

µ

)
2m

∣∣B∗∗∣∣
ρ−2χ /3 ,
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with ρ > χ > 3δ. Hence,

|G|ρ−χ ≤ N̂
M

(χ − 3δ)2γ+1µ2
.

(eq5) If ρ > χ > 2δ, we have forE∗ defined in (9)∣∣E∗∣∣
ρ−χ ≤ |E|ρ−χ +

∣∣∣∣∣C
(
∂e

∂θ̂

)>∣∣∣∣∣
ρ−χ
+
∣∣∣∣∣
[
∂H∗
∂ Î

(
ξ +

(
∂d

∂θ̂

)>)]
( Î ,z)

∣∣∣∣∣
ρ−χ

+
∣∣∣∣∣
[
∂H∗
∂z

Jme

]
( Î ,z)

∣∣∣∣∣
ρ−χ
≤ N̂ M + |C|ρ2m

2|e|ρ−χ /2

χ exp(1)

+ 4mr
|H∗|ρ,R
(R∗)3

(
|ξ | + 2|d|ρ−χ /2

χ exp(1)

)
+ 8m2 |H∗|ρ,R

(R∗)3
|e|ρ−χ .

Then, ∣∣E∗∣∣
ρ−χ ≤ N̂

M

(χ − 2δ)γ+1µ
.

Now, if ρ > χ > 3δ,

|F |ρ−χ ≤ 2m

(
2

α∗1
+
(

3γ

(χ − 3δ) exp(1)

)γ 1

µ

) ∣∣E∗∣∣
ρ−2χ /3 ,

that implies

|F |ρ−χ ≤ N̂
M

(χ − 3δ)2γ+1µ2
.

Now, we repeat the same process to bound the Lipschitz constants for the solutions
of these equations. For that purpose, we will also need the results of Lemmas 6 and
7 to work with the different Lipschitz dependences. We remark that, for the different
denominators, we can bound

LE{ik>ω + l>λ} ≤ |k|1+ β
∗
2

2
|l |1,

for everyk ∈ Zr+s, l ∈ N2m, |l |1 ≤ 2. Moreover, we will also use the hypothesisM ≤ L
to simplify the bounds. Then we have

(eq1) We need to take into account theϕ dependence for all the functions, and so ford
we have

d(θ, ϕ) =
∑

k∈Zr+s\{0}

ak(ϕ)

ik>ω
exp(ik>θ).

Then, using Lemma 6 andLE,ρ{ã} ≤ LE,ρ{a− φ}, one obtains

LE,ρ−χ {d} ≤
(

γ

(χ − δ) exp(1)

)γ LE,ρ{ã}
µ

+
(

2γ + 1

(χ − 2δ) exp(1)

)2γ+1 ‖ã‖E,ρ
µ2

≤ N̂
L

(χ − 2δ)2γ+1µ2
,

for everyρ > χ > 2δ.
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(eq2)

LE,ρ−χ {e} ≤
(

γ

(χ − δ) exp(1)

)γ LE,ρ{b}
µ

+
(

2γ + 1

(χ − 2δ) exp(1)

)2γ+1 ‖b‖E,ρ
µ2

+
(

2γ

(χ − 2δ) exp(1)

)2γ ‖b‖E,ρ
µ2

β∗2
2

+ 2

α∗1
LE,ρ{b} + 4

(α∗1)2
‖b‖E,ρ β

∗
2

2

≤ N̂
L

(χ − 2δ)2γ+1µ2
,

if ρ > χ > 2δ.
(eq3) If ρ ≥ χ > 3δ, we have

LE{ξ} ≤ LE
{
(C̄)−1

} ∥∥∥∥∥c̄− ω̂ − C
(
∂d

∂θ̂

)>∥∥∥∥∥
E,ρ−χ

+‖(C̄)−1‖ELE,ρ−χ
{

c̄− ω̂ − C
(
∂d

∂θ̂

)>}
≤ N̂

L

(χ − 3δ)2γ+2µ2
,

where we have used that, from Lemma 5,

LE{(C̄)−1} ≤ ‖(C̄)−1‖2ELE{C̄} ≤ (m̄∗)2LE,ρ{C},
and also that

LE,ρ−χ

{(
∂d

∂θ̂

)>}
≤ 3

χ exp(1)
LE,ρ−2χ /3{d},

andLE,ρ−χ {c̄− ω̂} ≤ LE,ρ{c− ω̂}. Then, ifρ > χ > 3δ, using thatLE,ρ−χ {c̃} ≤
LE,ρ−χ {c− ω̂}, one has

LE,ρ−χ {c∗} ≤ LE,ρ−χ {c̃} + LE,ρ−χ
{
C̃ξ
}
+ LE,ρ−χ

{
C
(
∂d

∂θ̂

)>}

≤ N̂
L

(χ − 3δ)2γ+2µ2
.

Hence,

LE,ρ−χ { f } ≤
(

3γ

(χ − 3δ) exp(1)

)γ LE,ρ−2χ /3{c∗}
µ

+
(

2(2γ + 1)

(χ − 6δ) exp(1)

)2γ+1 ‖c∗‖E,ρ−2χ /3

µ2
≤ N̂

L

(χ − 6δ)3γ+2µ3
,

if ρ > χ > 6δ.
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(eq4) We first bound

LE,ρ−χ {B∗ − B} ≤ LE,ρ−χ {B− B} + LE,ρ−χ
{[

∂H∗
∂ Î

(
ξ +

(
∂d

∂θ̂

)>)]
(z,z)

}

+LE,ρ−χ
{[
∂H∗
∂z

Jme

]
(z,z)

}
≤ N̂

L

(χ − 3δ)2γ+2µ2
,

if ρ > χ > 3δ, and the same bound holds forLE,ρ−χ {B∗∗}. This implies

LE,ρ−χ {G} ≤ (2m− 1)
1

α∗1
LE,ρ−χ {B∗∗} + (2m− 1)

1

(α∗1)2
‖B∗∗‖E,ρ−χβ∗2

+2m

(
3γ

(χ − 3δ) exp(1)

)γ LE,ρ−2χ /3{B∗∗}
µ

+2m

(
3(2γ + 1)

(χ − 6δ) exp(1)

)2γ+1 ‖B∗∗‖E,ρ−2χ /3

µ2

+2m

(
6γ

(χ − 6δ) exp(1)

)2γ ‖B∗∗‖E,ρ−2χ /3

µ2
β∗2

≤ N̂
L

(χ − 6δ)3γ+2µ3
,

if ρ > χ > 6δ.
(eq5) From the definition ofE∗,

LE,ρ−χ
{
E∗
} ≤ LE,ρ−χ {E} + LE,ρ−χ {[∂H∗

∂ Î

(
ξ +

(
∂d

∂θ̂

)>)]
( Î ,z)

}

+LE,ρ−χ
{
C
(
∂e

∂θ̂

)>}
+ LE,ρ−χ

{[
∂H∗
∂z

Jme

]
( Î ,z)

}

≤ N̂
L

(χ − 4δ)2γ+2µ2
,

if ρ > χ > 4δ. Hence, if nowρ > χ > 6δ, we can bound

LE,ρ−χ {F} ≤ 2m
2

α∗1
LE,ρ−χ {E∗} + 2m

4

(α∗1)2
‖E∗‖E,ρ−χ β

∗
2

2

+2m

(
3γ

(χ − 3δ) exp(1)

)γ LE,ρ−2χ /3{E∗}
µ

+2m

(
3(2γ + 1)

(χ − 6δ) exp(1)

)2γ+1 ‖E∗‖E,ρ−2χ /3

µ2

+2m

(
6γ

(χ − 6δ) exp(1)

)2γ ‖E∗‖E,ρ−2χ /3

µ2

β∗2
2

≤ N̂
L

(χ − 6δ)3γ+2µ3
.
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Before bounding the transformed Hamiltonian, let us check that the change given by
the generating functionS is well defined. First, we have that

‖∇S‖E,ρ−χ,R ≤ N̂
M

(χ − 4δ)2γ+2µ2
, (28)

and that

LE,ρ−χ,R {∇S} ≤ N̂
L

(χ − 7δ)3γ+3µ3
,

provided thatρ > χ > 7δ. If we selectχ = 8δ, and if we consider (28), we have a
bound of the type

‖∇S‖E,ρ−8δ,R−8δ̂ ≤ N̂
M

δ2γ+2µ2
.

Before continuing, let us ask that the quantity(
r + (r + 2m) exp(1)max{1, δ̃0}

)
N̂

M

δ2γ+3µ2
, (29)

be bounded by 1/2 (this will be used in (30) and (31)). This can be achieved by redefining
N̂ such that (29) is bounded by2 = N̂ M

δ2γ+3µ2 . Hence, the condition we are asking for is
2 ≤ 1/2.

From this last bound one obtains

‖∇S‖E,ρ−8δ,R−8δ̂ ≤
2δ

max{1, δ̃0}
≤ min {δ, δ/δ̃0} ≤ min {δ, δ̂}, (30)

and

1δ,δ̂ exp(1)‖∇S‖E,ρ−8δ,R−8δ̂ ≤ 2, (31)

where we use the definition of1δ,δ̂ given in (17).
From (30) and Lemma 12 we have that9S is well defined (for everyϕ ∈ E), according

to (21). From (31) and Lemma 9 we can bound the expression of6(H∗∗, S) that appears
in the transformed Hamiltonian,

‖6(H∗∗, S)‖E,ρ(1),R(1) ≤
(∑

j≥1

1

j + 1

(
1

2

) j−1
)
2‖H∗∗‖E,ρ−8δ,R−8δ̂ .

Similarly, for the Lipschitz constant we can use Lemma 11 to produce

LE,ρ(1),R(1)
{
6(H∗∗, S)

} ≤ ∑
j≥1

(
1

j + 1

(
1δ,δ̂ exp(1)

) j
F̂ j−1

2 ( j L̂2F̂1+ L̂1F̂2)

)
,

with F̂1 = ‖H∗∗‖E,ρ−8δ,R−8δ̂, F̂2 = ‖∇S‖E,ρ−8δ,R−8δ̂, L̂1 = LE,ρ−8δ,R−8δ̂{H∗∗}, and

L̂2 = LE,ρ−8δ,R−8δ̂ {∇S}. Then

LE,ρ(1),R(1)
{
6(H∗∗, S)

} ≤ (∑
j≥1

j

j + 1

(
1

2

) j−1
)
1δ,δ̂ exp(1)L̂2F̂1

+
(∑

j≥1

1

j + 1

(
1

2

) j−1
)
1δ,δ̂ exp(1)L̂1F̂2.
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With those expressions, bounding6(H∗∗, S) is reduced to boundH∗∗, with the only
remark that the sums

∑
j≥1

1
j+1ν

j−1 = − ln (1−ν)+ν
ν2 and

∑
j≥1

j
j+1ν

j−1 = (1−ν) ln (1−ν)+ν
ν2(1−ν)

are well defined forν = 1/2.
Now, we can bound the transformed Hamiltonian. From the bounds that come from

the solutions of(eq1)–(eq5) we have

‖H∗∗1 ‖E,ρ−χ,R−η ≤ N̂
M

(χ − 4δ)2γ+3µ2
max{1, χ /η},

and

LE,ρ−χ,R−η
{
H∗∗1

} ≤ N̂
L

(χ − 7δ)3γ+4µ3
max{1, χ /η}.

To obtain these bounds, we use the explicit expression ofH∗∗1 given in (23), and Lemmas
1, 2, 6, and 7 to bound the different partial derivatives. We remark that here we need to
use that|ω| ≤ κ∗ for anyϕ ∈ E . Moreover, from the bound for the Poisson brackets
given in Lemmas 8 and 10 we have, forH∗∗2 ,

‖H∗∗2 ‖E,ρ−χ,R−η ≤ N̂
M2

(χ − 4δ)2γ+3µ2
max{1, χ /η},

and

LE,ρ−χ,R−η
{
H∗∗2

} ≤ N̂
L M

(χ − 7δ)3γ+4µ3
max{1, χ /η}.

The techniques that we use to control the reduction in the different domains when we
use Cauchy estimates are analogous to the ones used in all the previous bounds. Hence,
it is clear that we can estimateH∗∗ with bounds analogous to the ones forH∗∗1 .

Finally, using all those bounds and from the explicit expressions ofφ(1), B(1), C(1),
H (1)

1 , andĤ (1) in (24)–(27) it is not difficult to obtain the final̂N such that all the bounds
in the statements of the lemma hold.

5.4. Proof of the Theorem

We split the proof of the theorem in several parts: In the first one we use one step of
the iterative method described in Section 2.3 as a linear scheme to reduce the size of the
perturbation. Then, we introducêω as a new parameter to describe the family of lower
dimensional tori near the initial one. The next step is to apply the bounds of the iterative
scheme given by Lemma 17, and we prove the convergence of this scheme for a suitable
set of parameters. Finally, we obtain the different estimates on the measure of this set.

5.4.1. Linear Scheme with Respect toε. We consider the initial Hamiltonian given in
the formulation of Theorem 1, and we apply one step of the iterative method described
in Section 2.3. We remark that from the Diophantine bounds in the statements of the
theorem, we can guarantee that this step is possible for small enough values ofε, and that
it keeps the initialC2 differentiability with respect toε on the transformed Hamiltonian.
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We putH (0) for this Hamiltonian which, up to constant terms that are irrelevant, is

H (0) = ω(0)> I + 1

2
z>B(0)(ε)z+ 1

2
Î >C(0)(θ, ε) Î + H (0)

∗ (θ, x, Î , y, ε)

+ ε2Ĥ(0)(θ, x, Î , y, ε), (32)

with the same kind of analytic properties with respect to(θ, x, Î , y) as the initial one, in
a new domain that is independent onε (small enough). We remark that the new matrices
B(0) andC(0) depend onε, and thatC(0) depends also onθ . Moreover, forH∗ we do not
have the seminormal form conditions given inP1 andP2. As this step comes from a
perturbative (linear) method, we have thatB(0)−B, C(0)−C, andH (0)

∗ −H∗ are ofO(ε).
Our aim is to repeat the same iterative scheme. We remark that in the next step and

in the ones that follow, we cannot guarantee good Diophantine properties for the new
eigenvalues ofJmB(0) because this matrix changes at each step of the process. This is
the reason that forces us to use parameters to control these eigenvalues. So, we can only
work in the set of parameters for which certain Diophantine bounds hold. But before
that, we want to introduce a new parameter.

5.4.2. Introduction of the Vector of Frequencies as a Parameter.We consider values
of ω̂ ∈ Rr close toω̂(0), and for any of these values we perform the change given in (14).
So, puttingϕ> = (ω̂>, ε), we obtain the following family of Hamiltonians,

H (1)(θ, x, I , y, ϕ) = ω̃(0)> Ĩ + ω̂(0)>( Î + C−1(ω̂ − ω̂(0)))+ 1

2
z>B(0)(ε)z

+1

2
( Î + C−1(ω̂ − ω̂(0)))>C(0)(θ, ε)( Î + C−1(ω̂ − ω̂(0)))

+H (0)
∗ (θ, x, Î + C−1(ω̂ − ω̂(0)), y, ε)

+ε2H(0)(θ, x, Î + C−1(ω̂ − ω̂(0)), y, ε).

Now, we use the seminormal form structure that we have forH∗ and the fact thatH (0)
∗

is ε-close toH∗ to expand

H (1) = φ(1)(ϕ)+ ω> I + 1

2
z>B(1)(ϕ)z+ 1

2
Î >C(1)(θ, ϕ) Î + H (1)

∗ (θ, x, Î , y, ϕ)

+ Ĥ (1)(θ, x, Î , y, ϕ),

where Ĥ (1) contains all the terms that are ofO2(ϕ − ϕ(0)), ϕ(0)> = (ω̂(0)>, 0), and
ω> = (ω̂>, ω̃(0)>). Note that this Hamiltonian takes the same form as (19) in Section 5.3.
We remark that we have differentiable dependence of this Hamiltonian with respect to
ϕ (in fact it is analytic with respect tôω) but, as has been mentioned at the end of
Section 2.5, we replace the differentiable dependence with a Lipschitz one (in the sense
given in Section 5.1.1). To quantify all these facts, we take 0< ρ ≤ 1, 0< R≤ 1, and
0< ϑ1 ≤ 1, such that if we putρ(1) = ρ andR(1) = R, then we have bounds analogous to
the ones described in Section 5.3 for (19), given byρ(1), R(1), and some positive constants
α
(1)
1 ,α(1)2 ,β(1)2 ,m̄(1),m̂(1),m̃(1), ν̂(1), andν̃(1) on the setE (1) = {ϕ ∈ Rr+1: |ϕ−ϕ(0)| ≤ ϑ1},
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with respect to the “unperturbed part.” For the perturbationĤ (1), if we work with sets
of the formĒ (1) ≡ Ē (1)(ϑ̄) = {ϕ ∈ E (1): |ϕ − ϕ(0)| ≤ ϑ̄}, for all 0 ≤ ϑ̄ ≤ ϑ1, we can
replaceM andL by N1ϑ̄

2 andN1ϑ̄ , for someN1 > 0. To simplify the following bounds,
we assume, without loss of generality, thatN1 ≥ 1.

Finally, we finish this part with an explicit formulation of the nondegeneracy hypoth-
esis of the normal eigenvalues with respect to the parameters. Let us considerB(1). By
construction, we have thatJmB(1) is a diagonal matrix. Then, using theC2 differentia-
bility with respect toϕ, we can write its eigenvalues as

λ
(1)
j (ϕ) = λj + iu j ε + i v>j (ω̂ − ω̂(0))+ λ̃(1)j (ϕ), (33)

for j = 1, . . . ,2m, with uj ∈ C andvj ∈ Cr , and where the Lipschitz constant ofλ̃(1)j

on Ē (1) is of O(ϑ̄). Then, those generic nondegeneracy conditions are

NDC2 For any j such that Reλj = 0, we haveuj 6= 0 andRe(vj ) /∈ Zr . Moreover, if
we defineuj,l = uj − ul andvj,l = vj − vl , we have these same conditions foruj,l

andvj,l for any j 6= l such that Re(λj − λl ) = 0.

Note that we have used theC2 dependence onϕ to ensure that the Lipschitz constant of
λ̃
(1)
j on Ē (1) is O(ϑ̄). If the dependence isC1 we can only say that this constant iso(ϑ̄).

Nevertheless, it is still possible in this case to derive the same results as in theC2 case,
but the details are more tedious.

The nondegeneracy conditions with respect toε are the same ones used in [24] to
study the quasi-periodic perturbations of elliptic fixed points, and the nondegeneracy
conditions with respect to thêω-dependence are analogous to the ones that appear in
[27] and [10], but in those cases they were formulated for an unperturbed system having
anr -dimensional analytic family ofr -dimensional reducible elliptic tori.

5.4.3. Inductive Part. We want to apply here the iterative lemma in an inductive form.
For this purpose, we defineσn = 6

π2n2 for everyn ≥ 1, and we note that
∑

n≥1 σn = 1.

From this definition, we putδn = σnρ

18 , δ̂n = σn R
18 and we introduceρ(n+1) = ρ(n) − 9δn

andR(n+1) = R(n) − 9δ̂n for everyn ≥ 1. We also consider a fixed 1< % < 2, to define
µn = exp(−%n)µ0.

We suppose that, at stepn, we have a HamiltonianH (n) like H (1) defined forϕ in a set
E (n) ⊂ E (1), with analogous bounds asH (1), replacing the superscript(1) by (n) in the
unperturbed part, and with bounds for the perturbation given byM̄n = Mn(ϑ̄) = Nnϑ̄

2n

and L̄n = Ln(ϑ̄) = Nnϑ̄
2n−1, in every set of the formĒ (n)(ϑ̄), for all 0 ≤ ϑ̄ ≤ ϑ1,

being Nn independent on̄ϑ . We will show that this is possible ifϑ1 is small enough,
with conditions onϑ1 that are independent of the actual step.

At this point, we define the new setE (n+1) of good parameters fromE (n) looking at
the new Diophantine conditions. We have thatϕ ∈ E (n+1) if ϕ ∈ E (n) and the following
conditions hold:

|k>ω + l>λ(n)(ϕ)| ≥ µn

|k|γ1
exp(−δn|k|1), (34)

for all k ∈ Zr+s \ {0}, l ∈ N2m, |l |1 ≤ 2.
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Now, we use the iterative lemma forϕ ∈ E (n+1). First we remark that at every step we
haveρ(n) ≤ ρ, R/2≤ R(n) ≤ R, δn/δ̂n = ρ/R,µn ≤ µ0, and, asϑ1 ≤ 1, we have that for
everyϕ ∈ E (1), |ω| ≤ max{|ω̃(0)|, |ω̂(0)| + 1}. Moreover, we assume that we can bound
α
(1)
1 /2 ≤ α(n)1 , α(n)2 ≤ 2α(1)2 , β(n)2 ≤ 2β(1)2 , m̄(n) ≤ 2m̄(1), m̂(n) ≤ 2m̂(1), m̃(n) ≤ 2m̃(1),
ν̂(n) ≤ 2ν̂(1) ν̃(n) ≤ 2ν̃(1), andNnϑ

2n−2
1 ≤ N1. We remark that all those bounds hold for

n = 1. Then we consider the constantN̂, given by the iterative lemma, corresponding
to these bounds.

If we assume that in the actual step we have for2n = N̂
Nnϑ

2n

1

δ
2γ+3
n µ2

n
,2n ≤ 1/2, then we

can apply the iterative lemma to obtain the generating functionS(n)(θ, x, Î , y, ϕ), with
‖∇S(n)‖E (n+1),ρ(n)−8δn,R(n)−8δ̂n

≤ min {δn, δ̂n}. So, in this case we have, for9S(n) ,

9̂S(n) : U r+s,2m+r
ρ(n+1),R(n+1) −→ U r+s,2m+r

ρ(n)−8δn,R(n)−8δ̂n
.

The next step is to bound the transformed HamiltonianH (n+1) = H (n) ◦9S(n) . We work
in a set of the formĒ (n+1), for all 0< ϑ̄ ≤ ϑ1. From the bounds of the iterative lemma,
and the explicit expressions ofσn, δn, andµn, we can deduce that there existsÑ (we can
assumeÑ ≥ 1) depending on the same constants asN̂, such that

‖∇S(n)‖Ē (n+1),ρ(n)−8δn,R(n)−8δ̂n
≤ Ñn4+4γ (exp(%n))2Nnϑ̄

2n
,

‖φ(n+1) − φ(n)‖Ē (n+1) ≤ Ñn2+2γ exp(%n)Nnϑ̄
2n
,

‖B(n+1) − B(n)‖Ē (n+1) ≤ Ñn2+2γ exp(%n)Nnϑ̄
2n
,

LĒ (n+1){B(n+1) − B(n)} ≤ Ñn4+4γ (exp(%n))2Nnϑ̄
2n−1,

‖C(n+1) − C(n)‖Ē (n+1),ρ(n+1) ≤ Ñn4+4γ (exp(%n))2Nnϑ̄
2n
,

LĒ (n+1),ρ(n+1){C(n+1) − C(n)} ≤ Ñn6+6γ (exp(%n))3Nnϑ̄
2n−1,

‖H (n+1)
∗ − H (n)

∗ ‖Ē (n+1),ρ(n+1),R(n+1) ≤ Ñn6+4γ (exp(%n))2Nnϑ̄
2n
,

LĒ(n+1),ρ(n+1),R(n+1){H (n+1)
∗ − H (n)

∗ } ≤ Ñn8+6γ (exp(%n))3Nnϑ̄
2n−1,

‖Ĥ (n+1)‖Ē (n+1),ρ(n+1),R(n+1) ≤ Ñn12+8γ (exp(%n))4N2
n ϑ̄

2n+1
,

LĒ (n+1),ρ(n+1),R(n+1){Ĥ (1)} ≤ Ñn14+10γ (exp(%n))5N2
n ϑ̄

2n+1−1.

Moreover, we assume that we can bound2n ≤ Ñn6+4γ (exp(%n))2Nnϑ
2n

1 , with the
same constant̃N. Then, we use all these expressions as a motivation to defineNn+1 =
Ñn14+10γ (exp(%n))5N2

n , for n ≥ 1. To bound how fastNn+1 grows withn andN1 we
use Lemma 13,

Nn ≤ 1

Ñ

((
5

3

)14+10γ

Ñ N1 exp

(
5%

2− %
))2n−1

,

if n ≥ 1. If we also defineÑn+1 = Ñn8+6γ (exp(%n))5Nn, for n ≥ 1, we clearly have,
using thatN1 ≥ 1 andÑ ≥ 1, thatÑn ≤ Nn for n ≥ 2.

Now, we have to verify that we can use the iterative lemma in this inductive form
whenn ≥ 2. To this end we need to see that the bounds that we have assumed at the step
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n (to defineN̂ and to use the iterative lemma) hold at every step ifϑ1 is small enough.
So, we note that ifϑ1 is small enough, the following sum,∑

n≥1

Nn+1ϑ
2n−2
1 , (35)

is bounded byN̂∗ that depends on% and the same constants asN̂. This bound is not
difficult to obtain if we look at how fast̃Nn grows. Moreover the same ideas can be used
to prove thatNnϑ

2n−2
1 ≤ N1, if n ≥ 1 andϑ1 is small enough.

Then, we can defineα(n+1)
1 = α(n)1 − 2Nn+1ϑ

2n

1 , α(n+1)
2 = α(n)2 + 2Nn+1ϑ

2n

1 , β(n+1)
2 =

β
(n)
2 + Nn+1ϑ

2n−1
1 , m̂(n+1) = m̂(n) + Nn+1ϑ

2n

1 , m̃(n+1) = m̃(n) + Nn+1ϑ
2n−1
1 , ν̂(n+1) =

ν̂(n) + Nn+1ϑ
2n

1 , and ν̃(n+1) = ν̃(n) + Nn+1ϑ
2n−1
1 , that from the convergence of (35)

allows us to apply another step of the iterative scheme, at least for sufficiently small
values ofϑ1. Moreover, it is clear that2n ≤ Nn+1ϑ

2n

1 ≤ N̂∗ϑ2
1 ≤ 1/2, takenϑ1 small

enough. Then, it only remains to boundm̄(n+1). For that purpose we first consider the
bound‖C̄(n+1) − C̄(n)‖E (n+1),ρ(n+1) ≤ Nn+1ϑ

2n

1 , and then, if we work with a fixed value of
ϕ ∈ Ē (n+1)(ϑ1), we have for anyW ∈ Cr ,

|C̄(n+1)W| ≥ |C̄(n)W| − ∣∣(C̄(n+1) − C̄(n)
)

W
∣∣ ≥ ((m̄(n)

)−1− Nn+1ϑ
2n

1

)
|W|.

We note that, from the equivalence|(C̄(n))−1| ≤ m̄(n) ⇐⇒ |C̄(n)W| ≥ (m̄(n))−1|W|,
for any W ∈ Cr , we can takem̄(n+1) = m̄(n)

1−m̄(n)Nn+1ϑ
2n
1

, provided thatm̄(n)Nn+1ϑ
2n

1 < 1.

Then, using this expression we can see thatm̄(n) ≤ 2m̄(1) for anyn ≥ 1, if ϑ1 is small
enough; if we assume that it holds forn, when we computēm(n+1) we have that

m̄(n)Nn+1ϑ
2n

1 ≤ 2m̄(1)Nn+1ϑ
2n

1 ≤
1

2
,

if ϑ1 is small enough. Moreover, we have by induction that

m̄(n+1) ≤ m̄(1)
n∏

j=1

1

1− 2m̄(1)Nj+1ϑ
2 j

1

.

So, it is clear that, ifϑ1 is small enough,

∑
j≥1

2m̄(1)Nj+1ϑ
2 j

1 ≤ 2m̄(1) N̂∗ϑ2
1 ≤

1

2
ln (2),

and hence, if we note that when 0≤ X ≤ 1/2,

ln

(
1

1− X

)
= ln

(
1+ X

1− X

)
≤ X

1− X
≤ 2X,

we can bound ln
(
m̄(n+1)

) ≤ ln (m̄(1))+ ln (2), which provesm̄(n+1) ≤ 2m̄(1).
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5.4.4. Convergence of the Changes of Variables.Now, we are going to prove the
convergence of the composition of changes of variables. LetE∗ = ∩n≥1E (n) be the set
of ϕ where all the transformations are well defined. We consider a fixedϕ ∈ E∗, but in
fact, the results will hold in the whole setE∗ provided thatϑ1 is small enough.

We put9̆(n) = 9̂(1) ◦ · · · ◦ 9̂(n) for n ≥ 1, which goes fromU r+s,2m+r
ρ(n+1),R(n+1) toU r+s,2m+r

ρ,R ,

where9̂(n) means9̂S(n) . Then, if p > q ≥ 1, we have

9̆(p) − 9̆(q) =
p−1∑
j=q

(
9̆( j+1) − 9̆( j )

)
.

To bound9̆( j+1) − 9̆( j ), we defineρ ′j = ρ( j ) − ρ/4 andR′j = R( j ) − R/4, and we put

1̂ρ,R = 1
exp(1)ρ + r+2m

R . Now, let us see that

|9̆( j+1) − 9̆( j )|ρ ′j+2,R
′
j+2
= |9̂(1) ◦ · · · ◦ 9̂( j+1) − 9̂(1) ◦ · · · ◦ 9̂( j )|ρ ′j+2,R

′
j+2

≤
(
1+ 41̂ρ,R|8̂(1)|ρ(2),R(2)

)
× |9̂(2) ◦ · · · ◦ 9̂( j+1) − 9̂(2) ◦ · · · ◦ 9̂( j )|ρ ′j+2,R

′
j+2
, (36)

where we notê9(n) − I d = 8̂S(n) ≡ 8̂(n), if n ≥ 1. To prove this, we writê9(1) ◦ · · · ◦
9̂( j ) = 9̂(2) ◦ · · · ◦ 9̂( j ) + 8̂(1) ◦ 9̂(2) ◦ · · · ◦ 9̂( j ), for every j ≥ 1, and then we note
that we can bound|9̂(2) ◦ · · · ◦ 9̂( j+1) − I d|ρ ′j+2,R

′
j+2

and|9̂(2) ◦ · · · ◦ 9̂( j ) − I d|ρ ′j+2,R
′
j+2

by min{ρ(2) − ρ ′j+2− ρ/4, R(2) − R′j+2− R/4}. We prove the first bound, the second is
analogous. To prove this, we have

|9̂(2) ◦ · · · ◦ 9̂( j+1) − Id |ρ ′j+2,R
′
j+2
≤ |9̂(2) ◦ · · · ◦ 9̂( j+1) − Id |ρ( j+2),R( j+2)

≤
j∑

l=2

|9̂(l ) ◦ · · · ◦ 9̂( j+1)

− 9̂(l+1) ◦ · · · ◦ 9̂( j+1)|ρ( j+2),R( j+2)

+|9̂( j+1) − I d|ρ( j+2),R( j+2) ≤
j+1∑
l=2

|8̂(l )|ρ(l+1),R(l+1)

=
j+1∑
l=2

min {δl , δ̃l }

= min {ρ(2) − ρ( j+2), R(2) − R( j+2)}
= min {ρ(2) − ρ ′j+2− ρ/4, R(2) − R′j+2− R/4},

where we have used Lemma 3 to bound the norms of the compositions. From that, we
can prove (36) from Lemma 4. Now, if we iterate (36) using similar ideas at every step,
we produce the bound

|9̆( j+1) − 9̆( j )|ρ ′j+2,R
′
j+2
≤

j∏
l=1

(
1+ 41̂ρ,R|8̂(l )|ρ(l+1),R(l+1)

)
|8̂( j+1)|ρ( j+2),R( j+2) .
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So, from Lemma 12,

|8̂(n)|ρ(n+1),R(n+1) ≤ |∇S(n)|ρ(n)−8δn,R(n)−8δ̂n
≤ Nn+1ϑ

2n

1 ,

and if we assume

41̂ρ,R

∑
l≥1

Nl+1ϑ
2l

1 ≤ 41̂ρ,RN̂∗ϑ2
1 ≤ ln 2,

we have that

j∏
l=1

(
1+ 41̂ρ,RNl+1ϑ

2l

1

)
≤ 2, for every j ≥ 1.

Hence, using the convergent character of the sum (35), one obtains

|9̆(p) − 9̆(q)|ρ/4,R/4 ≤
∑
j≥q

2Nj+2ϑ
2 j+1

1 → 0, as p,q→+∞.

This fact allows us to define

9̂(∗) = lim
n→+∞ 9̆

(n),

that mapsU r+s,2m+r
ρ/4,R/4 into U r+s,2m+r

ρ,R .
So, as we remark in Section 5.1.2 for this kind of canonical transformations, we only

need to show that the final Hamiltonian is well defined to obtain the convergence of the
final canonical change9(∗), defined as the composition of all the9S(n) . This follows
immediately from the different bounds for the terms ofH (n).

Hence, the limit HamiltonianH (∗) takes the form,

H (∗)(θ, x, I , y, ϕ) = φ(∗)(ϕ)+ω I+1

2
z>B(∗)(ϕ)z+1

2
z>C(∗)(θ, ϕ)z+H (∗)

∗ (θ, x, Î , y, ϕ),

with 〈H (∗)
∗ 〉 = 0; that is, for everyϕ ∈ E∗, we have a (r + s)-dimensional reducible

torus.

5.4.5. Control of the Measure.To prove the assumptions(a) and(b) of Theorem 1,
we only need to control the measure of the set of parameters for which we can prove
convergence of the scheme or, in an equivalent form, which is the measure of the different
sets that we remove at each step of the iterative method: The key idea is to study the
characterization of these sets given by the Diophantine conditions of (34). Hence, we only
need to look at the eigenvalues ofB(n). From the bounds of the inductive scheme, we have
that‖λ(n)j − λ(1)j ‖Ē (n) = O2(ϑ̄) andLĒ (n){λ(n)j − λ(1)j } = O(ϑ̄) for every j = 1, . . . ,2m

andn ≥ 2, provided that 0< ϑ̄ ≤ ϑ1, where the constants that give the differentO2(ϑ̄)

andO(ϑ̄) are independent onn and j . Then, from expression (33) we can write

λ
(n)
j (ϕ) = λj + iu j ε + i v>j (ω̂ − ω̂(0))+ λ̃(n)j (ϕ),

with LĒ (n){λ̃(n)j } ≤ Lϑ̄ and|λ(n)j (ϕ)− λj | ≤ M |ϕ − ϕ(0)|, for certainL andM positive.
Then, if we use the nondegeneracy conditions ofNDC2plus the Diophantine assumptions
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for the frequencies and eigenvalues of the initial torus, the results of(a) and(b) are the
consequence of the lemmas of Section 5.2.4. Here we skip any kind of “hyperbolicity”
and we assume that we are always in the worst case; that is, we assume all the normal
directions to be of elliptic type.

(a) From the bound for the measure of the setA in Lemma 14, we clearly have that if
we put in this lemmaλ ≡ λ(n)j or λ ≡ λ(n)j − λ(n)l , j 6= l , in the setE ≡ E (n) with
ϑ0 ≡ ϑ1, µ ≡ µn, andδ ≡ δn, we can bound

mes(Ī(n) \ Ī(n+1)) = O

(
K r+s−1−γ µn

exp(−δnK )

δn

)
,

with Ī(n) = {ε ∈ [0, ε̄] : (ω̂(0)>, ε)> = ϕ ∈ E (n)} (ε̄ > 0 small enough) and we

can takeK such that µ0

2K γ = M ε̄; that is,K ≡ K (ε̄) = (
µ0

2M ε̄

) 1
γ . Then, if we put

Ī∗ = ∩n≥1Ī(n) we have from the bounds of Lemma 16 that for every 0< σ < 1, if
K (ε̄) is big enough (that is implied by takinḡε small enough) depending onσ ,

mes([0, ε̄] \ Ī∗) ≤ exp(−(1/ε̄)
σ
γ ).

(b) Now we can use result(i ) of Lemma 14 plus Lemma 15, working on sets of the
formW (n)(ε0, R0) = {ω̂ ∈ Rr : (ω̂>, ε0)

> = ϕ ∈ E (n)}. We have

mes(W (n) \ W (n+1)) = O

(
Rr−1

0 K r+s−1−γ µn
exp(−δnK )

δn

)
,

where for K we can take (depending onε0 and R0), K = min {K1, K2}, with
µ0

2K γ

1
= M max{R0, ε0}+ K1R0, a condition that comes from Lemma 14, andK2 =

(
µ0

2R0
)

1
γ+1 , that comes from Lemma 15. Then, if we take a fixed 0≤ ε0 ≤ R

γ

γ+1

0 (we

recallR0 ≤ 1), we can obtain a lower bound forK of O(R
− 1
γ+1

0 ), where the constant
that gives this order depends only onµ0, γ , andM . So, if we use Lemma 16 we
have the desired bound for the measure of the setW∗(ε0, R0) = ∩n≥1W (n)(ε0, R0),

mes(V(R0) \W∗(ε, R0)) ≤ exp(−(1/R0)
σ
γ+1 ),

for every 0< σ < 1, if R0 is small enough depending onσ .
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[15] Gómez G., Jorba A., Masdemont J., and Sim´o C.:Study Refinement of Semi-Analytical Halo
Orbit Theory, ESOC Contract 8625/89/D/MD(SC), Final Report (1991).

[16] Gómez G., Jorba A., Masdemont J., and Sim´o C.:Study of the Transfer from the Earth to a
Halo Orbit around the Equilibrium Point L1, Celestial Mechanics and Dynamical Astronomy,
56 (1993), pp. 541–562.
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