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Summary. In this work we consider time-dependent quasi-periodic perturbations of
autonomous analytic Hamiltonian systems. We focus on the effect that this kind of per-
turbation has on lower dimensional invariant tori. Our results show that, under standard
conditions of analyticity, nondegeneracy, and nonresonance, most of these tori survive,
adding the frequencies of the perturbation to the ones they already have.

The paper also contains estimates on the amount of surviving tori. The worst situation
happens when the initial tori are normally elliptic. In this case, a torus (identified by the
vector of intrinsic frequencies) can be continued with respect to a perturbative parameter
e € [0, go], except for a set of of measure exponentially small witly. In the case
thate is fixed (and sufficiently small), we prove the existence of invariant tori for every
vector of frequencies close to the one of the initial torus, except for a set of frequencies of
measure exponentially small with the distance to the unperturbed torus. As a particular
case, if the perturbation is autonomous, these results also give the same kind of estimates
on the measure of destroyed tori.

Finally, these results are applied to some problems of celestial mechanics, in order to
help in the description of the phase space of some concrete models.
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1. Introduction

Let H be an autonomous analytic Hamiltonian system witlegrees of freedom, having
the origin as an elliptic equilibrium point. If we take the linearization at this point as a
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first approximation to the dynamics, we see that all the solutions are quasi-periodic and
can be described as the productdinear oscillators. The solutions of each oscillator
can be parametrized by the amplitude of the orbits.

When the nonlinear part is added, each oscillator becomes a one-parametric family
of periodic orbits (usually called Lyapounov orbits), that can still be parametrized by the
amplitude, at least near the origin (see [33]). Generically, the frequency of these orbits
varies with their amplitude.

The effect that the nonlinear part of the Hamiltonian has on the quasi-periodic solu-
tions is more complex. Without going into the details, KAM theorem states that under
generic conditions of nonresonance on the frequencies of the oscillators and generic
conditions of nondegeneracy on the nonlinear part of the Hamiltonian, most of these
solutions still survive. Their frequencies now vary with the amplitude, and the measure
of the destroyed tori is exponentially small with the distance to the origin (see [8]).

Usually these results are proved by first putting the Hamiltonian into the more general
form

H = Ho(l) + Hy(6, 1), I =(4,...,1p), 0 =(0,...,6p),

whereHj is small near the origin. This can be achieved, for instance, by applying some
steps of the process to put the Hamiltonian in (Birkhoff) normal form. If we neglect
H,, each quasi-periodic solution takes place on a toras | * with frequencies given

by VHo(1*). Here the question is whether these invariant tori are preserved when the
perturbing ternH; is added. The usual hypotheses are, essentially, two:

1. Nonresonance. The frequencies of the torus must satisfy a Diophantine condition,

k" VHo(1%)| > y >€—1,

e

Ikl}’
wherek” VHq(I*) denotes the scalar product kfwith the gradient ofHo, and
Kz = [Ke| + -+ + [Ke|.

2. Nondegeneracy. The frequencies must depend on the actions:

%Ho
det< al2°(| )) £0.

The necessity of the first hypothesis comes from the fact that, during the proof, we
obtain the divisork' VHo(l *). Hence, if they are too small it is not possible to prove
the convergence of the series that appear in the proof (see [1] for the details).

An interesting case is whek'" VHo(1*) is exactly zero, for som&. This implies
that, since the frequencies are rationally dependent, the flow on theltetus" is not
dense. More precisely, if one hgsindependent frequencies, the tollus- | * contains
an ¢ — ¢;)-family of ¢;-dimensional invariant tori, and each of these tori is densely
filled up by the flow. Here, the natural problem is also to study the persistence of these
lower dimensional invariant tori when the nonintegrable péyris taken into account.
Generically, some of these tori survive but their normal behaviour can be either elliptic
or hyperbolic (see [37], [26], [12], [26], and [20]). The invariant manifolds associated
with the hyperbolic directions of these tori (usually called “whiskers”) seem to be the
skeleton that organizes the diffusion (see [2]).
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Moreover, there are other families of lower dimensional tori that come from the
Hamiltonian in normal formH,. They can be obtained by combining some of the elliptic
directions associated with the fixed point; that is, they come from the product of some
of the oscillators of the linearization. These tori are generically nonresonant, and some
of them also survive when we add the nonintegrable par{see [10]). They are the
generalization of the periodic Lyapounov orbits to higher dimensional tori and hence we
will call them Lyapounov tori.

In this paper we will focus on every kind of nondegenerate low dimensional torus, in
the sense that its normal behaviour only contains elliptic or hyperbolic directions but not
degenerate ones (see [18] and [39] for results in the hyperbolic case and [28], [10], and
[30] for previous results in the general case). This implies that the torus is not contained
in a (resonant) higher dimensional invariant torus.

We will develop a perturbation theory for these tori, focussing on the case in which
the perturbation is analytic and also depends on time in a quasi-periodic ways with
basic frequencies. The Hamiltonian is of the form

H@O. % 1, y) =TT 4+ Ho(B, x, I, y) + H1(8.6.x, I, y), (1)

with respect to the symplectic forad A di’ + df A dI + dx A dy. Here,d are the
angular variables that describe an initiatimensional torus oHp, x andy are the
normal directions to the torug,are the angular variables that denote the timare the
corresponding momenta (that has only been added to put the Hamiltonian in autonomous
form), and®© e RS is the frequency associated with time.

These kinds of Hamiltonians appear in several problems of celestial mechanics: For
instance, to study the dynamics of a small particle (an asteroid or spacecraft) near the
equilateral libration points ([36]) of the earth—-moon system, one can take the earth—
moon system as a restricted three-body problem (that can be written as an autonomous
Hamiltonian) plus perturbations coming for the real motion of the earth and moon and
the presence of the sun. As these perturbations can be very well approximated by quasi-
periodic functions (at least for moderate time spans), it is usual to do so. Hence, one
ends up with an autonomous model perturbed with a function that depends on time in a
guasi-periodic way. Details on these models and their applications can be found in [9],
[13], [15], and [17]. For more theoretical results, see [22], [24], and [21].

The problem of the preservation of maximal dimension tori of Hamiltonians like (1)
has already been considered in [24]. There it is proved that most (in the usual measure
sense) of the tori of the unperturbed system survive to the perturbation, but adding the
perturbing frequencies to the ones they already have. Here we will consider the problem of
the preservation of lower dimensional invariant tori, under the same kind of perturbations.
We will show that, under some hypothesis of nondegeneracy and nonresonance (to be
specified later), some of the (lower dimensional) tori are not destroyed but only deformed
by the perturbation, adding the perturbing frequencies to the ones they previously had.

One of the main contributions of this paper is the estimates on the measure of the
destroyed tori, that have been obtained for two different formulations of the problem. In
the first one we study the persistence of a single invariant torus of the initial Hamiltonian,
under a quasi-periodic time-dependent perturbation, using as a parameter thaize (
this perturbation. Our results show that this torus can be continued for a Cantor set of
values ofe, adding the perturbing frequencies to the ones it already has. Moreover, if
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¢ € [0, gg], the measure of the complementary of that Cantor set is exponentially small
with gq. If the perturbation is autonomous this result is already contained in [20] but for
4-D symplectic maps.

The second approach s to fix the size of the perturbation to a given (and small enough)
value. Then it is possible that the latter result cannot be applied bec@asebe in the
complementary of the above-defined Cantor set. In this case, it is still possible to prove
the existence of invariant tori with+ s basic frequencies, the first of which are close
to those of the unperturbed torus and the last ones those of the perturbation. These tori
are a Cantor family parametrized (for instance) by the frequencies of the unperturbed
problem. Again, the measure of the complementary of this Cantor set is exponentially
small with the distance to the frequencies of the initial torus.

It is interesting to note the implications of this last assertion when the perturbation
is autonomous and the size of the perturbation is fixed: In this case we are proving, for
the perturbed Hamiltonian, the existence of a Cantor family of invariant tori near the
initial one (see [10] and [35]). Moreover, the measure of the complementary of this set
is exponentially small with the distance to the initial tori.

The most difficult case is when the normal behaviour of the torus contains some elliptic
directions, because the (small) divisors obtained contain combinations of the intrinsic
frequencies with the normal ones. As we will see, it is not difficult to control the value of
the intrinsic frequencies but then we have no control (in principle) on the corresponding
normal ones. This is equivalent to saying that we cannot select a torus with both given
intrinsic and normal frequencies, because there are not enough available parameters (see
[28],[5], [35], and [4] for classical methods to deal with this lack of parameters problem).
The main trick in the proofs is to assume that the normal frequencies move as a function
of ¢ (then we derive the existence of the torus for a Cantor se} of as a function of
the intrinsic frequencies (then we obtain the existence of the above-mentioned family of
tori, close to the initial one).

When the initial torus is normally hyperbolic we do not need to control the eigenvalues
in the normal direction and, hence, we do not have to deal with the lack of parameters. Of
course, inthis case the results are much better and the proofs can be seen as simplifications
of the ones contained here. Hence, this case is not explicitly considered.

Finally, we have also included examples where the application of these results helps
to understand the dynamics of concrete problems.

The paper has been organized as follows: Section 2 contains the main ideas used
to derive these results. Section 3 contains the rigorous statement of the results. The
applications of these results to some concrete problems can be found in Section 4 and,
finally, Section 5 contains the technical details of the proofs.

2. Main Ideas

Let H be an autonomous analytic Hamiltonian systend degrees of freedom if%
having an invariant -dimensional torus, G< r < ¢, with a quasi-periodic flow given
by a vector of basic frequenpiééo) € R". Let us consider the (perturbed) Hamiltonian
systemH = H + ¢H, whereH is also analytic. As mentioned before, we do not restrict
ourselves to the case of autonomous perturbations, but we will assunteé tlegiends
on time in a quasi-periodic way, with a vector of basic frequencies givel By RS.
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In what follows, we will always assume that vectors are “matrices with one column,”
so the scalar product between two vectoendv will be denoted byu " v.

2.1. Reducibility

Let us consider the variational flow around one of the quasi-periodic orbits of the initial
r-dimensional invariant torus d¢f(. The variational equations are a linear system with
quasi-periodic time dependence, with a vector of basic frequedesVhen the torus

is a periodic orbit, the well-known Floguet theorem states that we can reduce this periodic
system to constant coefficients via a linear periodic change of variables (with the same
period of the system). This change can be selected to be canonical if the equations
are Hamiltonian. So, the reduced matrix has a pair of zero eigenvalues (one associated
with the tangent direction to the periodic orbit and a second one from the symplectic
character of the monodromy matrix of the periodic orbit) plus eigenvalues that describe
the linear normal behaviour around the torus. We will assume that these eigenvalues are
all different (this condition implies, from the canonical character of the system, that they
are also nonzero). This implies that the periodic orbit is not contained in a (resonant)
higher dimensional torus. Usually, the imaginary parts of these eigenvalues are called
normal frequencies, antl? is called the vector of intrinsic frequencies of the torus.

The quasi-periodic case & 1) is more complex, because we cannot guarantee in
general the reducibility to constant coefficients of the variational equations with a linear
guasi-periodic change of variables with the same basic frequencies as the initial system.
The question of reducibility of linear quasi-periodic systems (proved in some cases, see
[19], [6], [11], [22], [24], [20], and [25], among others) remains open in the general
case. However, we can say that if this reduction is possible, we haxer@ eigenvalues
(related to the tangent vectors to the torus).

Here we will assume that such reduction is possible for the initial torus. We remark
that, if this initial torus comes from an autonomous perturbation of a resonant torus of
an integrable Hamiltonian, this hypothesis is not very strong. To justify this assertion,
we mention the following fact: Let us write the Hamiltoniantds= H(l) + 57%(9, 1),
and let7y be a low dimensional invariant tori of the integrable Hamiltorité(l ) that
survives to the perturbatim‘ﬂ(e, I). Then, under generic hypotheses of nondegeneracy
and nonresonance, this low dimensional torus exists and its normal flow is also reducible
for a Cantor set of values of The Lebesgue measure of the complementary of this setin
[0, &o] is exponentially small wittso. This fact is proved for symplectic diffeomorphisms
of R*in [20], but it is immediate to extend to other cases.

Moreover, letus assume that we canintroduce (with a canonical change of coordinates)
r angular variable8 describing the initial torus. Hence, the Hamiltonian takes the form

~ ~ ~ 1 ~ ~
HO,x, T,y)=a@T + EZTBZ+H*(6,X, Iy,

wherez” = (xT, yT), beingz, §, andl complex vectorsx andy elements ofC", and
6, and[ elements ofCS, withr + m = ¢. Here,d andx are the positions anflandy
are the conjugate momenta. In this notati®is a symmetric eh-dimensional matrix
(with complex coefficients). Moreovek, is an analytic function (with respect to all its
arguments) with 2-periodic dependence @h More concretely, we will assume that it
is analytic on a neighbourhood b= 0, | = 0, and on a complex strip of positive width
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o for the variabléd, thatis, if| Im ;| < p, forall j = 1,...,r. Then, if we assume that

H has an invariant-dimensional torus with vector of basic frequenci&?, given by

[ = 0andz = 0, this implies that the Taylor expansion®f must begin with terms of
second order in the variablésandz. If we have that the normal variational flow around

this torus can be reduced to constant coefficients, we can assume that the quadratic terms
of H, in thez variables vanish. Hence, the normal variational equations are given by the
matrix Jn3, whereJ, is the canonical 2-form of2™. We also assume that the matrix

JnB is in diagonal form with different eigenvalu@s = (A1, ..., Am, —A1, ..., —Am).

Let us make some remarks on these coordinates. First, note that we have assumed that
the initial torus is isotropic (this is, the canonical 2-form@¥ restricted to the tangent
bundle of the torus vanishes everywhere). This fact (that is always true for a periodic
orbit) is not a strong assumption for a torus, because all the tori obtained by applying
KAM techniques to near-integrable Hamiltonian systems are isotropic.

Another point worth commenting on is the real or complex character of the nfatrix
In this paper we work, in principle, with complex analytic Hamiltonian systems, but the
most interesting case happens when we deal with real analytic ones, and when the initial
torusis also real. In this case, to guarantee that the perturbative scheme preserves the real
character of the tori, we want the initial reduced mafixo come from a real matrix.

We note that this is equivalent to assuming that i§ an eigenvalue o3, thenx is

also an eigenvalue. This assumption is not true in general for every reducible torus of a
real analytic Hamiltonian system, but it holds for most of the tori one can obtain near an
initial torus with a normal flow reducible ovét. Note that in the case of a periodic orbit

one can always assume tlts real (doubling the period if necessary). The fact that

is real guarantees that all the tori obtained are also real. To see this, we note we can use
the same proof but putting,53 in real normal form instead of diagonal form, and this
makes all the steps of the proof also real. However, the technical details in this case are
a little more tedious and, hence, we have preferred to work with a diaggifal

2.2. Normal Form around the Initial Torus

The first step is to rearrange the initial Hamiltonidf? = 7 in a suitable form to apply
an inductive procedure.

In what follows, we will define the degree of a mononw&l ! as|l|; + 2|jl1. This
definition is motivated below. Let us expaﬁtio) in power series with respect wand

[ around the origin,
H(O) — § Hgo)
* 9

d>2
Whererjo) are homogeneous polynomials of degde¢hat is,
O _ (O
He = > hS@)721.
|eN?™ | jeN'
[H1+2/jl1=d

We also expand the (periodic) coefficients by using Fourier series,

9@ =" h9 expik’d), )
kez"
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with i = /=1. The definition of degree for a monomil ! counting twice the con-
tribution of the variabld is motivated by the definition of the Poisson bracket of two
functions depending o, x, |, y),

e e af (89>T
f, = —Jnl=1).
thar= ae( ) al (ae) *az 0z

Note that, if f is a homogeneous polynomial of degmeand g is a homogeneous
polynomial of degreé, then{ f, g} is a homogeneous polynomial of degoker d, — 2.
This property shows that if we try to construct canonical changes using the Lie series
method, a convenient way to ptt® in normal form is to remove in an increasing order
the terms of degree 3, 4,., with a suitable generating function.

To introduce some of the parameters (see Section 2.5), it is very convenient that the
initial Hamiltonian has the following properties:

P1 The coefficients of the monomials, ') (degree 3) andz, I', I') (degree 5) are zero.

P2 The coefficients of the monomialg, z, ) (degree 4) andl, I') (degree 4) do not
depend ord and, in the case dfz, z, I, they vanish except for the coefficients of
the trivial resonant terms.

Here, we have used the following notation: For instance, by the terms of @der)

we denote the monomialdi!, with |I|; = 2 and|j|; = 1, with the corresponding
coefficients. We will apply three steps of a normal form procedure in order to achieve
these conditions. Each step is done using a generating function of the following type:

@, x.Ly= > §T@e20,
1eN?™, jeN'

[H1+2ljl1=n

forn = 3, 4, and 5. Then, if we denote byS" the flow at time one of the Hamiltonian
system associated ®", we transform the initial Hamiltonian into

H(nfz) — H(nfs) o \I_,S‘”)
1
— H(nf?:) + {H(n73)’ S(n)} + 5{{7_[(“73)’ S(I’l)}’ S(n)} + On+1

.1 ~ 1
= 00Tl + EzTBz+ HI + {d)“’”I + EZTBz, S“‘)} + Ons1,

for n = 3,4, 5. In each step, we tak8™ such thatH""3 + {@©TT + 22" Bz, S}
satisfies conditionB1 andP2 for the monomials of degreg(n = 3, 4, 5). To compute
S we expandH{"~® and we find (formally) an expansion f&",
(n-3)
™ _ M
.0k = KT 1T

where the indices have the same meaning as in (2). If welsplidy, |,) (Z = xxy"),
the exactly resonant terms corresponckte= 0 andl, = I, (we recall that.™ =
(A, -y Amy —A1, ..., —Am))- Hence, itwould be possible to formally compute a normal
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form depending only ofi and the productsy;, j = 1,..., m. Asithas been mentioned
before, our purpose is much more modest. To kill the monomials mentioned above (in
conditionsP1 andP2) with a convergent change of variables, one needs a condition on
the smallness afk "T®© +1Tx|,k € Z" \ {0}, € N™, and|l|; < 2. We have used the
usual one,
Ho
k|7~
that we will assume true in the statement of the results. We notice that with these
conditions we can construct convergent expressions for the different generating functions
S™, n = 3, 4, 5, to achieve conditiorB1andP2. We can calll this process a seminormal
form construction.

Then, the final form for the Hamiltonian is

likT®©@ +172| >

.1 1 . PO
H=>0aOTI +§zTBz+§ITCI + H,(@, %, 1,y), 3)
for which conditionsP1 andP2 hold. Here C is a symmetric constant matrix and we
will assume the standard nondegeneracy condition,
NDC1 detC # 0.

Now let us introduce the quasi-periodic time-dependent perturbation. To simplify
the notation, we write this perturbation in the normal form variables, and we add this
perturbation to (3). We cal to the new Hamiltonian:

1 1o A . .
HO,x, 1,y ¢) =@ +§zTBz+§ITCI +H.0, X, [, y)+eH@, X, I, y,8), (4

for a fixedw©@T = (®OT, 5OT), @ e R+, wheredT = @7,67), 1T = ({7,
andz” = (xT,y"), beingd, I (s-dimensional complex vectors) the new positions and
momenta added to put in autonomous form the quasi-periodic perturbation. Hénce,
is 27 -periodic in6. Moreover,e is a small positive parameter. This is the Hamiltonian
that we consider in the formulation of the results.

2.3. The lterative Scheme

Before the explicit formulation of the results, let us describe a generic step of the iterative
method used in the proof. So, let us consider a Hamiltonian of the form

1 1. ~ . ~ ~
H@,x,1,y) =@l + ézTBz+§|TC(9)I +H. 0, %, 1, ) +eH®@, %, 1,y), (5

with the same notations of (4), where we assume that skipping the térmve have that
z =0, = 0is areducibler(+ s)-dimensional torus with vector of basic frequencies
»©, such that the variational normal flow is given by

JmB == d'ag)\.l, ey )\.m, _)\.1, “eey _)\.m),

and that def # 0, whereC means the average 6fwith respect to its angular variables.
(Although initially C does not depend @h during the iterative scheme it will.) Moreover,
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we suppose that i, the terms of ordex|’, z) vanish (that is, we suppose that the
“central” and “normal” directions of the unperturbed torus have been uncoupled up to
the first order). Here we only use the paramettr show that the perturbatian:I is of

O(e).

We expandH in power series arounfi = 0, z = 0 and we add these terms to
the previous expansion of the unperturbed Hamiltonian. This makes the initial torus no
longer invariant. Hence, the expression of the Hamiltonian must be (without writing
explicitly the dependence af):

HO,x, 1,y) =@ + H*@,x,1,y), (6)

where
1 . 1. . .
H*=a@)+b®) z+c@O) "I + EZT B®)z+ I TE@®)z+ E|TC(9)| +Q@0,x,1,y),

whereQ is the remainder of the expansion. Looking at this expression, we introduce the
notation H*]z, = B, [H*]; ;) = C, [H"] s, = E, and(H*) = H* — Q.

We have thaé, b,c—»©, B—B,C —C, andE areO(g), where if f (9) is a periodic
functionong, f = f — f.

Note that if we are able to kill the tern® b, andc — ®©, we obtain a lower
dimensional invariant torus with intrinsic frequeney®. We will try to do that by
using a quadratically convergent scheme. As is usual in this kind of Newton method,
it is very convenient to kill something more. Before continuing, let us introduce the
following notation: If Ais ann x n matrix, dp(A) denotes the diagonal part &f that is,
dp(A) = diagay 1, ..., ann) ', Wherea;; are the diagonal entries @& Here, we want
the new matrixB to verify B = J(B), where we defing/i,(B) = —Jndp(JnB) (that
is, we ask the normal flow to the torus to be reducible and given by a diagonal matrix as
for the unperturbed torus), and to elimin&éto uncouple the “central” and the normal
directions of the torus up to first order i). Hence, the torus we will obtain also has
these two properties. This is a very usual technique (see [10], [20]).

At each step of the iterative procedure, we use a canonical change of variables similar
to the ones used in [3] to prove the Kolmogorov theorem. The generating function is of
the form

SO, %, [,y)y=£6"0+d©®)+e®) z+ fO)' T + %ZTG(0)2+ (TF©®)z, (7

wheret € C",d = 0, f = 0, and G is a symmetric matrix withi,,(G) = 0. Keeping
the same name for the new variables, the transformed Hamiltonian is

HO = Ho WS =@ + H®* 9, x, T, y),
with
. 1
HY*@,x,1,y) = a®@) +bP@)Tz+cP@O) "1 + EZT BY )z

N 1. ~ .
+ITE®@O)z+ > IrcYon + @, x, 1, y).
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We wanta® = 0,b® = 0,c® — @ =0, E® = 0, andJ,,B? to be a constant
diagonal matrix. We will show that this can be achieved up to first order Bo, we
write those conditions in terms of the initial Hamiltonian and the generating function.
Skipping terms 0f0,(¢), we obtain

(eq) &— Hw® =0,

(eqp) b— 220 + BIne=0,

.
eg) c—a® - Lp® ¢ (E + (%) ) =0,

(eq) B* — Tm(B*) — 2@ + BInG — GJB =0,
(eq) E* — 0@ — FI,B=0,

a

H, T H,
a2 (1 () ) - 2 ®

al 30 0z

(z,2)
T T
E*:E—C(a—?) — aHf §+<a—q> —8H*Jme . 9
30 3l 30 0z .

Here we denote bg*a the matrix of partial derivatives with respect to the variables

q and, for instanced2»© meansy ;7 %a)j(o) . These equations are solved formally
. . . . B ) . . . . .
by expanding them in Fourier series and equating the corresponding coefficients. This

leads us to the following expressions far
(eq)

where

and

a
do) = & ex
T ©
KeZI =\ (0} ikTw©®

pikT o).
(eqp) Ifwe pute” = (e, ..., &m),

kT
kezr+s ikTw©

7N
£=0)" (c‘:—@“’) -C (E) ) ,
30

- ad\ " ad\ "
cme-ce-c(M) vo(X)
30 30

we have forf T = (fy, ..., f)

by .
g@) =y %)\jexpﬂk%).

(ecs)

and if we define

fi(0) = Z Lexp(ikTB).

ikT O
KeZ s\ (0} ikTo
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(eq) If we define
B*™ = B* — Jm(B"), (10

then we have fo = (Gj;), 1< j,| < 2m,

BTk
Gj.(0) = : L exp(ik'9), j,l=1...2m
k;s iKTw©@ +2j + A

In the definition ofG; |, we notice that we have trivial zero divisors whgn-1| =
mandk = 0, but from the expression &, in these cases the coefficieBt; ,
is 0. Moreover, the matri% is symmetric.

(ex) fF=(F)),j=1...,r,andl =1,...,2m, then

Ex
Fii©) = Z K expik ).

G K00+

Note that if we have the Diophantine hypothesis on the small divisors of these expressions,

ik 0@ 4172 > |’k‘—|°y KeZ*s\ {0}, 1eN |Ih<2 ys>r+s—1,
' (11

we can guarantee the convergence of the expansi@ \We assume that they hold in
the first step, and we want to have similar conditions after each step of the process, to
be able to iterate. As the frequenci@® are fixed in all the process aml® can be
preserved by the nondegeneracy and the kind of generating function we are using (this is
done by the& term), we will be able to recover the Diophantine properties on them. The
main problem is the eigenvalugsbecause, in principle, we cannot preserve their value.
Hence, we will control the way they vary, to try to ensure they are still satisfying a good
Diophantine condition. Our first approach is to consides a function ot (the size of
the perturbation). This leads us to eliminate a Cantor set of values of these parameters in
order to have good (in a Diophantine sense) valuesalfthe time. Another possibility
is to considen as a function of the (frequencies of the) torus. This leads us to eliminate
a Cantor set of those tori. Both procedures require some nondegeneracy conditions.

2.4. Estimates on the Measure of Preserved Tori

The technique we are going to apply to produce exponentially small estimates has already
been used in [24]. It is based on working at every stey the iterative procedure with
values ofz for which we have Diophantine conditions of the type

Hn

likT0@ + A" (e)| > W exp(=dnlkly), ke Z*S\ {0}, (12
1

wherex" (¢) denotes the eigenvalues&fB™ (¢), with B™ (¢) the matrix that replaces

B after n steps of the iterative process. Of course, we ask for the same condition for
the sum of eigenvalueg™ + A" We will see that, if we take a suitable sequence of
3n, the exponential term in (12) is not an obstruction to the convergence of the scheme.
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This condition will be used to obtain exponentially small estimates for the measure of
the values of for which we do not have invariant tori of frequene{f’ in the perturbed
system. The key idea can be described as follows: For the valuef®oivhich we can
prove convergence, we obviously have that, i§ small enoughLAf”) (&) — M| < as,
at every stem. Now, if we assume that, < uo/2, from the Diophantine bounds on
ik Tw© 44 in (11), we only need to worry about the resonances corresponding to values
of k such that
o\
Kiz (32) =K.
This is equivalent to saying that we do not have low order resonances nearby; hence we
only have to eliminate higher order ones. When we eliminate the valudsioivhich the
Diophantine condition is not fullfiled for sonkgwe only need to worry about controlling
the measure of the “resonant” sets associated |kjth> K (¢). From that, and from
the exponential ink|; for the admissible small divisors, we obtain exponentially small
estimates for the set of values©for which we cannot prove the existence of invariant
tori. If & €]0, &g] this measure is of order exp1/eg), for any 0O< ¢ < 1/y.
Note that we have usedbecause it is a natural parameter of the perturbed problem,
but this technique can also be applied to other parameters. We will do this in the next
section.

2.5. Other Parameters: Families of Lower Dimensional Tori

Let us consider the following truncation of the Hamiltonian (3):
A~ 1 1. &
&OT + EzTBz+ 5! el (13

Note that, for this truncation, there exists mparametric family of -dimensional in-
variant tori around the initial torus. One can ask what happens to this family when the
nonintegrable part (including the quasi-periodic perturbations) is added. The natural pa-
rameters in this case are the frequendies the tori of the family. We will work with

this parameter as follows: If for every we perform the canonical transformation,

[>T+ Yo -0, (14

on the Hamiltonian (13), we obtain (skipping the constant term) a Hamiltonian like (13),
replacing®© by &. So, we have that = 0, z = 0 is anr -dimensional reducible torus
but now with vector of basic frequencies given by If we consider the Hamiltonian
(3), and we perform the transformation (14), it is not difficult to see from condiftdns
andP2that thew-torus obtained from the truncated normal form remains as an invariant
reducible torus for the Hamiltonian (3), plus an erro@®f(& — &@). Then, the idea is
to considew as a new perturbative parameter (in fact the small parameterig©).
In this case we can apply the same technique as in Section 2.4 to control the measure of
the destroyed tori. It turns out that this measure is exponentially small with the distance
to the initial torus.

In fact, the proof has been done working simultaneously with both parameters
and. This allows us to derive all the results mentioned before in a unified way. In a
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perturbative problem itis usual to ask for smooth dependence on the parameters, but note
that at every step of the inductive process we need to remove the set of resonant values of
the parameters (that are dense), and this does not allow us to keep, in principle, any kind of
smooth dependence for the Hamiltonian with respect to the parameters (because now the
parameters move on a set with an empty interior). Fortunately, there are many solutions
to this problem. One possibility is to work, at every step of the inductive procedure, with

a finite number of terms in the different Fourier expansions with respéctence, we

can use the fact that the remainder of the truncated expressions is exponentially small
with the order of truncation and then, if we choose a suitable increasing sequence of
orders for the truncation at the different steps (going to infinity with the index of the
step), we can show the convergence of the sequence of changes given in Section 2.3
(with equationsieq;)—(egs) truncated at the corresponding order) on a suitable set of
parameters. Then, since we only need to deal with a finite humber of resonances at
every step, we can work on open sets with respect to the different parameters, and keep
the smooth parametric dependences in those sets. This smooth dependence allows us
to bound the measure of the resonances in the sets of parameters. These ideas are used
for example in [1], [7], and [20]. Another possibility is to consider Lipschitz parametric
dependence instead of a smooth one (this has already been done in [22] and [24]). We
can see thatitis possible to keep this Lipschitz dependence at every step (with analogous
techniques as the ones used to contr6ladependence), and this kind of dependence
suffices to bound the measure of the resonant sets. In this paper we have chosen this
Lipschitz formulation, which we describe more precisely in Section 5.1.1. This implies
that the invariant tori obtained will depend on the parameters in a Lipschitz way.

If one isinterested in obtainin@> Whitney smoothness (see [29]) for the dependence
of the invariant tori with respect to the parameters, the standard procedure is to work
with a finite number of harmonics in the Fourier expansions, so that at every step we
keep the analytic character of the Hamiltonian (see [32]).

Another approach, that also allows us to obtain Whitney regularity, is to add external
(auxiliary) parameters to the Hamiltonian, in order to have enough parameters to control
the intrinsic and normal frequencies (to avoid the lack of parameters problem), and
such that for every Diophantine vector of intrinsic and normal eigenvalues, we have the
corresponding invariant torus for a suitable value of the (enlarged) parameters. This can
be done with a Whitney smooth foliation (see [5] and [4]). Then, if we consider the value
of the external parameters for which we recover our initial family of Hamiltonians, we
only have to study which of the Diophantine tori constructed correspond to this value of
the extra parameter. It can be done under very weak nondegeneracy hypotheses by using
the theory of Diophantine approximations on submanifolds (see for instance, [35] and
[4], or [38] for the case of volume preserving diffeomorphisms).

3. Statement of Results

Now, we can state precisely the main result of this paper, whose proof we have sketched
above.
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Theorem 1. Let us consider a Hamiltonian of the for(4), satisfying the following
hypotheses:

(i) H, andH are analytic with respect t@6, x, [, y) around z= 0 and | = 0,
with 2rr-periodic dependence dh for anye € Zp = [0, o], in @ domain that is
independent on. The dependence aris assumed to be% and the derivatives of
the Hamiltonian®{ with respect te are also analytic in@, x, [, y) on the same
domain.

(i) B is a symmetric constant matrix such thgt3is diagonal with different eigen-
valuesi™ = (A1, ..., Ams —Ady - .., —Am).

(iii) C is a symmetric constant matrix wittetC # O (this is the assumptioNlDC1
above).
(iv) Forcertainug > Oandy > r +s— 1, the following Diophantine conditions hold:
likTw© 4175 > |’I:—|° keZ™S\ {0}, leN™  |l;<2
1
Then, under certain generic nondegeneracy conditions for the Hamiltonian H (that are
given explicitly inNDC2 at the end of Sectioh.4.2) the following assertions hold:

(a) There exists a Cantor s&t. C Zy, such that for every € Z, the Hamiltonian H
has a reducible (# s)-dimensional invariant torus with vector of basic frequencies
9. Moreover, for everp) < o < 1.

meg[0, £] \ Z.) < exp(—(1/E)7),

if £ is small enough (depending o where, for everg, 7, = Z,.(¢) = [0, §] N Z,.

(b) Given R > 0 small enough and a fixed < ¢ < Rom, there exists a Cantor
setW,(e,Ry)) C {® € R" : |®— @ < Ry} = V(Ry), such that for every
@ € W, (e, Ry) the Hamiltonian H corresponding to this fixed valuecdias a
reducible (r+ s)-dimensional invariant torus with vector of basic frequeneigs
o' =(@",&%T). Moreover, foreverg < o < 1,if Ryis small enough (depending
ono),

megV(Ro) \ Wi(e, Ro)) < exp(—(L1/Ro)771).
Here, megA) denotes the Lebesgue measure of the set A.

Note: ConditionNDC2is a standard nondegeneracy condition on the normal frequencies
of the initial torus. Essentially, it asks that the normal frequencies dependand on

the intrinsic frequencies of the basic family of tori (this family has been introduced in
Section 2.5). In order to formulatéDC2 in an explicit form one first has to perform one
step of normal form with respect to(see Section 5.4.1). This is why we have preferred
to keep this hypothesis inside the proof, where it arises naturally.

3.1. Remarks

The result(b) has special interest if we take= 0. It shows that for the unperturbed
system, around the initi@l-dimensional reducible torus there existsradimensional
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family (with Cantor structure) of -dimensional reducible tori parametrized By

W, (0, Ry), with relative measure for the complementary of the Cantor set exponentially
small with Ry, for values of> Ry-close ta»©. There are previous results on the existence

of these lower dimensional tori (see the references), but the estimates on the measure of
preserved tori close to a given one are not as good as the ones presented here.

Moreover, we have the same result around every 6)-dimensional torus that we
can obtain for the perturbed system for soeg 0 small enough, if we assume that
their intrinsic and normal frequencies verify the same kind of Diophantine bounds as the
frequencies of the unperturbed torus. In this case, for eRgismall enough we have a
(Cantor) family of ¢ + s)-dimensional reducible tori parametrized dye W, (e, Ry),
with the same kind of exponentially small measure with respe&gton the comple-
mentary of this set. To prove this, we remark that we can reduce to the eage It is
easy to see that Theorem 1 also holds if the unperturbed Hamiltonian depehdsdn
not only ond (that is, if the initial torus isf{ + s)-dimensional).

If the initial torus is normally hyperbolic, the problem is easier. For instance, it is
possible to prove the existence of invariant tori without using reducibility conditions.
Then, in caséa), one obtains an open set of values &dr which the torus exists, although
its normal flow could not be reducible. The reason is that the intrinsic frequencies of the
torus are fixed with respect toand the normal eigenvalues (that dependpdo not
produce extra small divisors if we consider only equati@tg)—(ecs) of the iterative
scheme described in Section 2.3 (we t&ke- 0 andF = 0 in equation (7)). Note that
now we can solveeg) using a fixed point method, because the matrigg8™ are
e-close to the initial hyperbolic matrid,/5 (which is supposed to be reducible). This
makes it unnecessary to considery) and(eg). Of course, the tori produced in this
way are not necessarily reducible. If one wants to ensure reducibility, it is necessary to
use the normal eigenvalues which can produce (depending on some conditions on those
eigenvalues; see [24]) a Cantor setcabf the same measure as the ongai. If we
consider the cas@®) when the normal behaviour is hyperbolic, the results do not change
with respect to the normally elliptic case. As we are “moving” the intrinsic frequencies,
we have to take out the corresponding resonances. The order {@ylgges to zero) of
the measure of these resonances is still exponentially smallRyi(tekee Lemma 15).

Finally, let us recall that the Diophantine conditiGn) is satisfied for all the fre-
quencieso@ and eigenvalues, except for a set of zero measure.

4. Applications

In this section we are going to illustrate the possible applications of these results to some
concrete problems of celestial mechanics. We have not included a formal verification of
the several hypotheses of the theorems, but we want to make some remarks.

The nondegeneracy conditions can be checked numerically, observing if the fre-
guencies involved depend on the parameters. As the applications we will deal with are
perturbations of families of periodic orbits, this hypothesis can be easily verified com-
puting the variation of the period along the family as well as the eigenvalues of the
monodromy matrix. The numerical verification of the Diophantine condition is more
difficult, but note that the nondegeneracy condition ensures that most of the orbits of the
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family are going to satisfy it. Let us also note that these conditions are generic, and that
the numerical behaviour observed in those examples (see below) corresponds to the one
obtained from our results.

4.1. The Bicircular Model nearl 45

The bicircular problem is a first approximation to study the motion of a small particle
in the earth—-moon system, including perturbations coming from the sun. In this model
it is assumed that the earth and moon revolve in circular orbits around their centre of
masses, and that this centre of masses moves in circular orbit around the sun. Usually, in
order to simplify the equations, the units of length, time, and mass are chosen such that
the angular velocity of rotation of the earth and moon (around their centre of masses),
the sum of masses of the earth and moon, and the gravitational constant are all equal to
one. With these normalized units, the earth—-moon distance is also one. The system of
reference is defined as follows: The origin is taken at the centre of mass of the earth—-moon
system, theX axis is given by the line that goes from the moon to earthZth&is has the
direction of the angular momentum of the earth and moon, and #ods is taken such
that the system is orthogonal and positive-oriented. Note that, in this (noninertial) frame,
called synodic system, the earth and moon have fixed positions and the Sun is rotating
around the barycentre of the earth-moon system. If we define morRgnta X — ,
Py =Y + X, andP; = Z, in these coordinates, the motion of an infinitesimal particle
moving under the gravitational attraction of the earth, moon, and sun is given by the
Hamiltonian
H = 2(P24 P24 P2+ YR XR 1 H_ H M My ging Xcos),

2 lpE rem fps a2
whered = wgt, with ws the mean angular velocity of the Sun in synodic coordinates,
u the mass parameter for the earth—moon sysggrthe semimajor axis of the sumg
the sun mass, angg, rpy, r ps defined in the following form:

e = X—w?+Y2+ 272
repy = X —pu+D%+Y24 22,
rgs = (X — X2+ (Y = Yo)? + Z2,

whereXs = ascost andYs = —as sinf.

Note that one can look at this model as a time-periodic perturbation of an autonomous
system, the Restricted Three Body Problem (usually called RTBP; see [36] for definition
and basic properties). Hence, the Hamiltonian is of the form

H = Ho(X, y) + eHi(x, y, 1),

wheree is a parameter such that= 0 corresponds to the unperturbed RTBP and 1
to the bicircular model with the actual values for the perturbation.

Note that the bicircular model is not dynamically consistent, because the motion of
the earth, moon, and sun does not follow a true orbit of the system (we are not taking
into account the interaction between the sun and the earth—-moon system). Nevertheless,
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numerical simulation shows that, in some regions of the phase space, this model gives
the same qualitative behaviour as the real system and this makes it worth studying (see
[34]).

We are going to focus on the dynamics near the equilateral pbipy®f the earth—
moon system. These points are linearly stable for the unperturbed problemQ,

SO0 we can associate three families of periodic (Lyapounov) orbits with them: the short
period family, the long period family, and the vertical family of periodic orbits. Classical
results about these families can be found in [36].

When the perturbation is added the poihtss become (stable) periodic orbits with
the same period as the perturbation. These orbits become unstable for the actual value
of the perturbationd = 1 in the notation above). In this last case, numerical simulation
shows the existence of a region of stability not very close to the orbit and outside of the
plane of motion of the earth and moon. This region seems to be centered around some of
the (Lyapounov) periodic orbits of the vertical family. See [17] or [34] for more details.

Let us consider the dynamics néays for ¢ small. In this case, the equilibrium point
has been replaced by a small periodic orbit. Our results imply that the three families of
Lyapounov periodic orbits become three cantorian families of 2-D invariant tori, adding
the perturbing frequency to the one of the periodic orbit. Moreover, the Lyapounov tori
(the 2-D invariant tori of the unperturbed problem that are obtained by the “product” of
two families of periodic orbits) become 3-D invariant tori, provided they are nonreso-
nant with the perturbation. Finally, the maximal dimension (3-D) invariant tori of the
unperturbed problem become 4-D tori, adding the frequency of the sun to the ones they
already had (this last result is already contained in [24]).

Now let us considet = 1. This value ofs is too big to apply these results. In
particulare is big enough to cause a change of stability in the periodic orbit that replaces
the equilibrium point. Hence, if one wants to apply the results of this paper to this case, itis
necessary to start by putting the Hamiltonian in a suitable form. To describe the dynamics
near the unstable periodic orbit that replaces the equilibrium point, we can perform
some steps of a normal form procedure to write the Hamiltonian as an autonomous (and
integrable) Hamiltonian plus a small time-dependent periodic perturbation (see [17],
[23], or [34] for more details about these kinds of computations). Then, if we are close
enough to the periodic orbit, Theorem 1 applies and we have invariant tori of dimensions
1, 2, and 3. They are in the “central” directions of the periodic orbit.

The application to the stable region that is in the vertical direction is more difficult.
One possibility is to compute (numerically) an approximation to a 2-D invariant torus of
the vertical family (note that its existence has not already been proved rigorously) and
to perform some steps of a normal form procedure, in order to write the problem as an
integrable autonomous Hamiltonian plus a time-dependent periodic perturbation. Then,
if the (approximate) torus satisfies the equations within a small enough error, it should
be possible to show the existence of a torus nearby, and to establish that it is stable and
surrounded by invariant tori of dimensions 1 to 4. Numerical experiments suggest (see
[17] or [34]) that this is what happens in this case.

4.1.1. Extensions.In fact, the bicircular model is only the first step in the study of the
dynamics near the libration points of the earth-moon system. One can construct better
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models taking into account the noncircular motion of the earth and moon (see [9], [15],
[17]). Our results can be applied to these models in the same way it has been done in the
bicircular case. The main difference is that now the equilibrium point is replaced by a
quasi-periodic solution that, due to the resonances, does not exist for all vakubatof

only for a Cantor set of them (see [24]).

4.2. Halo Orbits

Let us consider the earth and sun as a RTBP, and let us focus on the dynamics near the
equilibrium point that it is in between (the so-called point). It is known that there
exists a family of periodic orbits (called Halo orbits, see [31]) such that when one looks
at them from the earth, they seem to describe a halo around the solar disc. These orbits
are a very suitable place to put a spacecraft to study the sun: From that place, the sun
is always visible and it is always possible to send data back to earth (because the probe
does not cross the solar disc; otherwise the noise coming from the sun would make
communications impossible). These orbits have been used by missions ISEE-C (from
1978 to 1982) and SOHO (launched in 1995).

In the RTBP, Halo orbits are a one-parameter family of periodic orbits with a normal
behaviour of the type centresaddle. Unfortunately, the RTBP is too simple to produce
good approximations to the dynamics. If one wants to have a cheap station keeping it is
necessary to compute the nominal orbit with a very accurate model (see [14], [15], [16],
and [17]).

The usual analytic models for this problem are written as an autonomous Hamiltonian
(the RTBP) plus the effect coming from the real motion of the earth and moon, the effect of
Venus, etc. All these effects can be modelled very accurately using functions that depend
on time in a quasi-periodic way. Hence, we end up with an autonomous Hamiltonian
plus a quasi-periodic time-dependent perturbation withO frequencies. As usual, we
add a parameterin front of this perturbation.

Then, Theorem 1 implies that dfis small enough, the Halo orbits become a cantorian
family of (r + 1)-D invariant tori. The normal behaviour of these tori is also of the type
centrexsaddle.

To study the case = 1 we refer to the remarks for the case of the bicircular problem.

5. Proofs

This section contains the proof of Theorem 1. It has been splitin several parts to simplify
the reading. Section 5.1 introduces the basic notation used in the proof. In Section 5.2 we
give the basic lemmas needed during the proof. Section 5.3 gives quantitative estimates
on one step of the iterative scheme and Section 5.4 contains the technical details of the
proof.

5.1. Notations

Here we introduce some of the notations used to prove the different results.
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5.1.1. Norms and Lipschitz Constants.As usual we denote byy| the absolute value
of v € C, and we use the same notation to refer to the (maximum) vectorial or matrix
norm onC" or M, n,(C).

Let us denote byf an analytic function defined on a complex strip of wigth- 0,
havingr arguments and beingi2periodic in all of them. The range of this function can
be inC, C", or M, n,(C). If we write its Fourier expansion as

)= fexpik'e).

keZr

we can introduce the norm

1fl,= > | ful exp(Kl1p).

keZ’

Let f (0, ) be a 2Zr-periodic function org, and analytic on the domain
U'r=1{0,0) e C" xC": |Im6| < p, |q] < R}.
If we write its Taylor expansion arourgl= 0 as

fO.q) =Y fie)d,

leNm

then, from this expansion we define the norm,

1flor= ) Ifil,R".

leNm

If f takes values i, we putV f to denote the gradient df with respect tq®, q).

Now, we introduce the kind of Lipschitz dependence considered. Assumg(theis
afunction defined fop € £, £ c RI for somej, and with values i€, C", orMp, n,(C).
We call f a Lipschitz function with respect ip on the set if

f — f
Le(fl=  sup [ f(p2) (o] < 400
orvocE lp2 — @1l

V172

The valueL¢{ f} is called the Lipschitz constant dfon £. For these kind of functions
we define|| f || = sup,c¢ | f (@)I.

Similarly, if (6, ¢) is a 2r-periodic analytic function o for everyp € £, we
denote

| f(v ¢2) - f(v @l)lp

Leplly=" sup lp2 — @1l

P1,92€E
Y1792

In the same way we can introdugg , r{ f}, if we work with (6, g, ¢) and the norm
| - |,,r- We can also extenfi- || ¢ to both cases to defirle: ||, and|| - |l¢,, r.
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5.1.2. Canonical Transformations. In this paper, we will perform changes of variables
using the Lie series method. We want to keep the quasi-periodic time dependence (after
each transformation) with the same vector of basic frequergfésas the initial one.
This is achieved when the generating function does not depeiiid on

Let us consider a generating functise, x, I, y) such thatv Sdepends analytically
on (0, %, ,y) and it is 2r-periodic in6. The equations related to the Hamiltonian
functionSare

X 39S\ ' 3 39S\ . 3S\
0 =, 6=(—=] =0, r=—(=) .,
3l al 30
. T
(@) s
90 0z

We denote byLrtS(e, X, |, y) the flow at timet of Swith initial conditions(@, x, 1, y)
whent = 0. We note thatiS is (for a fixed t) a canonical change of variables that acts
in a trivial way ond. If we put(8(t), x(t), | (t), y(t)) = \IJF(@(O), x(0), 1(0), y(0)), we
can expres¥;° as

T

A A t/9aS .
9(t)=9(0)+f0 (ﬁ(e(r),x(r),l(r),y(r))) dr,

t/aS . T
I(t)=1(0) —/ (g(é(r),x(f), |(f),y(f))) dr,
0

T

t
z(t) = z(0) + Jm/o (g—'\:(G(T), x(0), [(v), y(f))) dr,

andd(t) = 6(0). We note that the functiowlrs— I d does not depend on the auxiliary vari-
ablesl. Then, we pue(0) =0, [ 0) = [, andz(0) = zto introduce the transformanons
US and®?, defined asiS(, x, I, y) = (0(1), x(t), [ (1), y(t)) anddS = ¥S — 1d. It
is not difficult to check thaﬂ>s(9, x, I, y) is (for a fixedt) 27 -periodic |n9.

If we consider the Hamiltonian functiod of (6), and we put

"= H S - 60, as

WS transforms the Hamiltoniahl into
HowS@, x, 1,y) = @@ TT+H*@, x, [, y)+tH™ @, x, [, )+ Z(H™, )0, x, [, y),

where
tho
2t<H**’5>=ZFL's YH™), (16)
j=2 1°
with LY(H**) = H** anngs(H**) = {LL Y H™), 8}, for j > 1.
Now, by controlling®S we will show thatH o ¥ is defined in a domain slightly
smaller tharH.

Finally, as the change of variables is selected as the flow at time one of a Hamiltonian
S, in what follows we will omit the subscrigtand we will assume that it meahs= 1.
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5.2. Basic Lemmas

5.2.1. Lemmas on Norms and Lipschitz Constantsin this section we state some
bounds used when working with the norms and Lipschitz constants introduced in Sec-
tion 5.1.1. We follow here the same notations of Section 5.1.1 for the different analytic
functions used in the lemmas.

Lemma 1. Let f(#) and g©) be analytic functions on a strip of width > 0, 27-
periodic in® and taking values itC. Let us denote by fthe Fourier coefficients of f,
f(0) = > e fkexp(ik’). Then we have

() [l = [f], exp(=[k[2p).
(i) 1fal, < fl,19l,-
(iii) Forevery0O < pg < p,
of
00,

[fl,
pepo  POEXD(D)

(iv) Let{di}kezr\(0y C C satisfy the following bounds:

el = = exp(—51K|a),
[

forsomey > 0,y > 0,0 < § < p. If we assume that = 0, then the function g
defined as

g) = k Z ;—:exp(ikTe),
€7 \{0}
satisfies the bound

YV v |f|p
on = (G Fowm)

for everypg €]9, pl.

Allthese bounds can be extended to the case when f and g take vallles i, n,(C).
Of course, in the matrix case, (in ) it is necessary that the product fg be well defined.

Proof. Items (i) and (ii) are easily verified. Proofs dfii ) and (iv) are essentially
contained in [24], but working with the supremum norm. O

Lemma 2. Let (8, q) and g6, q) be analytic functions on a domalrﬂ:,'fp< and 27 -
periodic in6. Then we have

(i) Ifwe expand 0,q) = > .y» fi(0)d', then|fi|, < ”R\—ﬁf-
(i) [falp.r < [Tl RIDl,.R
(iii) Forevery0 < pp < p and0 < Ry < R, we have

of
36,

|f|,o,R
p—po.R o £0 equ) '
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and
of

aq;
As in Lemma 1, all the bounds hold if f and g take valueS"ror My, n, (C).

f
< | |p,R

p,R—Ry - R

, i=1...,m

Proof. Items(i) and(ii) are straightforward. The first part ¢fii ) is a consequence
of Lemma 1. The second part is obtained by applying standard Cauchy estimates to the
function F(q) = >, . | fil,,0'. O

Lemma 3. Letustaked < pg < p and0 < Ry < R, and let us consider analytic
functions® (9, q) (with valuesinC") and X(@, q) (with values inC™), both2z -periodic
oné, and such thai®|,, r, < p — po and|X|, r, < R— Ro. Let (6, q) be a given
(27 -periodic ond) analytic function. If we define

F@O.9)=f@+00,0),9+ X(@,9),

then,|F|,,0’R0 < |f|p,R.

Proof. Expandingf in Taylor series (a¢i) in Lemma 2) one obtains the expansion of
F as a function of9 and X. Then the bound is a consequencéiof in 2. O

Lemma 4. Let us conside®) and X, j = 1,2, with the same conditions &3

and X in Lemma 3, but with the following bound® |, r, < p — po — & and

IXD] R, < R—Ro— x,With0 < § < p— pgand0 < x < R— Ry. Then, if we define
FOO.q)=f@+0V0.a).9+XP0.q), =12

one has

||:(1) _ F(2)| < |®<l) — ®(2)|ﬂo,Ro le(l) - X(2)|po,F\’0 11, R
wR =T e X R

Proof. We can use here the same ideas as in Lemma 3, combined with the ones used to
prove Lemmas 1 and 2.

Now we give some basic results related to the Lipschitz dependences introduced in
Section 5.1.1. For that purpose, we work with a parameter the se€ ¢ R/, for some
j =1 O

Lemma5. We consider Lipschitz functions(#) and gl¢) defined forp € &£ with
values inC, then

() Le{f+9) < Leff}+ Lelg)
(i) Lef{fg <|fllelelg)+ llalleLe{f}.
(i) Lef{l/f} < U/Af ||§£g{f}, if f does not vanish.

Moreover,(i) holds if f and g take values i6" or M, »,(C), and (ii ) and (iii ) also
hold when f and g are matrix-valued functions such that the matrix product fg is defined
(for case(ii)) and that f is invertible (for caséii )).
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Proof. It is straightforward. O

Remark. In Lemma 5 we obtain analogous results if we work with functions of the form
f(@,p)orf(0,dq,¢),definedforp € £and analytical with respectto the variab{ésq)
and the norms- |,, | - |,.r.

Lemma 6. We assume that(f, ¢) is, foreveryy € £, an analytic2r -periodic function
in 6 on a strip of widthp > 0, with Lipschitz dependence with respeaptd.et us expand
f(0.9) => ez fk(p)exp(ik6). Then, we have

(i) Le{fi} < Le(F)exp(—[Kk|1p).
(i) Forevery0O < pg < p,

af}< Le,l1) i=1...r

[-: — AN T A
e {8ej ~ poexp(l)
(iii) Let {dk(¢)}kezr\(0; be a set of complex-valued functions definedsfer £, with the
following bounds:
"
()| = — exp(—3]K|1),
INH
and
Le{de} < A+ BIK|1,

forsomeu > 0,y > 0,0 <25 < p, A>0,and B> 0. AsinLemma 1 we assume
f = Oforeveryp € £. If

fi () T
g0, ¢) = exp(ik'e),
kerr\:{o} de (@)

then, for everyg, 25 < 89 < p, we have

y )Vﬁg,p{f}+< 2y +1 )2”1 e,
(80— 8) exp(l) 1" (80 — 28) exp(1) 12

2 4
" 14 I flle,o A
(80 — 26) exp(1) u?

Proof. Itis analogous to Lemma 1, using also the results of Lemma 5. O

Lepsld) < ( B

Lemma 7. We assume that(®, q, ¢) is, for everyp € £, an analytic function ov){;’,’g
and 2 -periodic in6. Then we have

(i) If we write (0,0, ) = Ym0, @), thenLe ,{ i} < Zeznll),
(i) Forevery0 < pg < p and0 < Ry < R, we have

of Le, rlf) .
L _ — < ,m—’ =1,..., s
£ ”°’R{ae,- } = poexp(l) J '
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and
of Le,r{f} .
L Ry < &= =1....m
Proof. Asin Lemma 6, but using now the same ideas as in Lemma 2. O

5.2.2. Lemmas on Canonical Transformations.In this section we establish some lem-
mas that we will use to work with the canonical transformations that we introduced in
Section 5.1.2. The purpose is to bound the changes as well as the transformed Hamilto-
nian. We also take into account the possibility that the generating function depends on a
parametet € £ in a Lipschitz way.

To simplify the notations in the lemmas of this section, we define

A . r n r +2m
R T eexp(l) | Ro

and we will use (without explicit mention) the notations introduced in Section 5.1.

The proofs of Lemmas 8, 9, 10, and 11 can be obtained from the bounds of lemmas
of Section 5.2.1. The proof of Lemma 9 is essentially contained in [7]. The proof of
Lemma 11 is similar. The proof of Lemma 12 can also be found in [7], where it is
proved working with the supremum norm. In our case the proof is analogous to the
explicit expressions for the transformatig® given in Section 5.1.2, using the result of
Lemma 3 to bound the compositions.

, an

Lemma 8. Let us consider 9, x, [, y) and g@, x, [, y) complex-valued functions
such that f andvg are analytic functions defined dm/’)}f“zm, 2r-periodic oné.

Then, for every) < pp < p and0 < Ry < R, we have
|{ f’ g}|p7p0,R7R0 S Apo,Ro |Vg|p,R | f |p,R .

Lemma 9. With the same hypotheses of Lemma 8 we have, for the expréssiog)
introduced in(16),

1 .
|E(f, g)lp_pO,R_Ro = Z m (Apo,Ro exp(l)IVglp,R)l | f|,o,R.
j=1

Lemma 10. Assume that the complex-valued functions(®,k, r y,9) and
g, x, 1,y, @) verify that, for everyp € &, f and Vg are analytic functions on
L{:,}f”zm, 27 -periodic oné, with Lipschitz dependence gn Then, if|| f |, r < F1,
IValle.p.r < F2, Le,prif} < L1, and Lg , r{V} < Ly, we have that, for every
O<po<pandd< Ry < R,

Le p—poRro T, 0} < Apry (Filo + FoLy).
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Lemma 11. With the same hypotheses of Lemma 10, we have

1 Pl
[,g,p—po,R—Ro {E(f, g)} =< Z (m (Apo,Ro exp(1))1 FZJ l(J LoF + L1F2)> .
j>1

Lemma 12. We assume that the generating functiqd, <, I y) of Section 5.1.2 ver-
ifies thatVS is analytic om;fRS’r+2m, 2r-periodic in 6, with [VS|, g < 8, where
8 < min{p, R}. Then, with the notations of Section 5.1.2, we have

(i) 198, 5rs < VS|, r-

i 7,S . 7 /,/+s,2m+r r+s,2m—+r
(i) w=:U,"3r% — U, R :

5.2.3. Convergence LemmaWe will use the following lemma during the proof of
Theorem 1, to relate the bounds on the Hamiltonian aftgeps of the iterative scheme
as a function of bounds for the initial Hamiltonian.

Lemma13. Let {Kn}n>1 be a sequence of positive numbers with, K <
aanﬁ exp(e"c) ifn > 1, beinga> 0,b>0,c > 0,andl < ¢ < 2. Then

2n
1{/5\° co
= a ((3) 2 p(m))

Proof. The proof is a direct combination of the proofs of Lemma 5 in [22] and Lemma
2.14in [24]. O

5.2.4. Estimates on Measures in Parameter Spacén the following lemmas, we
consider a fixed©@T = (@OT, ®OT), with @@ e R" and®© e RS. Let A(¢) be a

function defined orf c R"*! with range inC, wherep™ = (&7, &), with ® € R" and

¢ € R. We assume that takes the form

M) = ho+ile +ivT (@ — 00 + i(p),

whereio, u € C,v € C', and, if we denote by = £() = {p € € 1 ]p — 90| < B},
@7 = (®©T, 0), thenwe have thal s {1} < L for certainL > 0, forall0 < & < .
Note that this Lipschitz condition ok would imply, if A were of clas<C?, thata is of
Ou(¢ — ¢@). We also assume thgt(p) — Aol < Mg — ¢©@| for all ¢ € £(9).

Now, we takey > 0,y > r +s—1,and O< § < 1 to define fromr. and& the
following “resonant” sets:

R0, Ro) = {w eR: 6-0Q <Ry, (@',80" =pe& and

3k € Z'*+5\ {0} such that |ikTw + A(¢)] < ﬁ exp(—8|k|1)} ,
1
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for everyeg > 0 andRy > 0, and
Algg, @) = {s €l0,g]: @', e)T =¢pe& and

Ik € Z'*+5\ {0} such that |ikTw + A(g)] < ﬁ exp(—8|k|l)} ,
1
forevery® € R" andeg > 0, where in both cases € R' *Sisdefined fromp™ = (&7, &)
asw' = (@', ®?T). Note that these sets dependsoand ..

As the purpose of this section is to deal with the measure of these resonant sets, we
will always assume we are in the worst caseiRe- 0. When this is not true (that is,
when there are no resonances), it is not difficult to see that th&ksatsl A are empty
if we are close enough ip© (the value of the parameter for the unperturbed system).
We want to remark that we are not making any assumption on the valueaich imuv.
According to the size of the resonant sets the worst case happens whea thand/or
Imv = 0. Hence, the proof will be valid in this case, although it is possible to improve
the measure estimates in the case that B0 and Imv # O.

Lemma 14. Ifwe assume thdtk " w© +1g| > Wy > r+s—1forallk € Z'\{0},
1
for certainjo > 2u, then, if K is the only positive solution ¢f; = M max{Ro, so} +
K Rp, we have
(i) If Rev ¢ Z', andeg, Ry are small enough (a condition that depends onlyvoih,
%o, ¥, o, and M), then,
r—1 7 r+s—1— EXp(—(SK)
megR (g0, Ro)) < 161(2y/rRo) ~H(r +5)K (1)K T
4 _ 1 ; H r
whereK (v) = sug,,, {m} with | - |2 the Euclidean norm aR'.

(i) Ifu # 0, andeg, Ry = |& — ®©| are small enough (a condition that depends only
onu, L,%, y, uwo, and M), then

exp(—4§K)

16
me$A(80, c?))) < |T/|/L(r +9) Kr+sflfy ;

Proof. We prove parti). Similar ideas can be used to pra¥e). To study the measure
of R(eo0, Ro), we consider the following decomposition:

R(eo, Ro)= | J Rxleo. Ro),

keZ"+s\{0}

whereRy (o, Rp) is defined as

Ri(eo, Ro) = {@eRf: &6 — &P <Ry, (@7,e0) =9 €&,

all
Ikl

To compute the measure of these sets, we take @@ € Ry(o, Ro), and we put
eV = @7, g0) and DT = (@DT, @OT). Then, from|ikTwD + ()] <

and |ik w4+ A(p)| < exp(—8|k|1)} .
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%exp(—8|k|1) we clearly have thatik™(® — @) + A(eD) — A(e?@)] <
lkly exp(—s|kl1), where we have splik™ = (K7, k"), with k € Z" andk € ZS. From
that and using the definition af{¢), one obtains
. ~ ~ 2
ik+v)" (@D —6®) + X)) — A(e?)| < ﬁ exp(—8(K|1).
1

Note that the seRy is a slice of the set ab such thajod — ®@| < Ry. To estimate
its measure, we are going to take the valdé® and ®@ such thato® — &@ is
(approximately) perpendicular to the slice, that is, parallel to the véctoRev. Then,
megRy) can be bounded by the product of a bound of the vl — @ | by (a bound
of) the measure of the worst (biggest) section of a hyperplane (of codimension 1) with
the setd — ®©@| < Ry.

Hence, assuming now that? — »@ is parallel to the vectok + Rev, we have

k+Rev) @Y —a®)| _ |k+v) (@Y~ &)
Ik + Rev|, - Ik + Revl,

21
(Lmax{Ro o}l — P + — K — exp(— 6|k|1>)

1 ~ (2
|w() ()|2:

<
|k + Rev|»
In consequence,
(1 _ Lmax{Ry, o}
|k + Rev|, |k+Rev|2
So, ifgg and Ry are small enough (independenti)f we can bound

21
)W” @@ < = exp(—8Kl1) —
kI,

N A 4
o® — @), < W exp(=8lklpK,
1

where we puK = K (v). From that

4
meg Rk (g0, Ro)) < exp(—81k|1) (24T Ro) K,

[

where 2/rRg is a bound for the diameter of the géte R" : |& — ®©| < Ry}. Then,
we have

m
mesR(e0. Ro)) < Y exp(—3|kl1)(2vTRo) *K. (18)
kezZr+s\{0} |k|1
In fact, in this sum we only need to considee Z'+5 \ {0} such thatRy(go, Ry) # 9.
Now, let us see thaR (o, Ro) is empty if|K|; is less than some critical valu€.
Let g € Rk(eo, Ro); then we can write

“—ly < |Ik w(O) —|—)\.o| < ||k (1)+)\,((,0)| |/\(<P) —)xo| + |k (w a)(o))l
1
5 || | eXp( 8|k|1) + M ”IaX{RO 8()} + |k|]|u) w(0)|
1

Ikll
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and then
H“o

PAISH
So, inthe sum (18), we only need to consikler Z' ™5\ {0} such thatk|; > K, whereK
(which depends oRg andsy) is defined in the statement of the lemma. We assBgand
g0 Small enough such thét > 1. Now, using#k € Z'+S: |k|; = j} < 2(r +98)j'+s1
andy >r +s— 1, we have

5 exp(—3lk
4M(2\/I‘_Ro)r_1K Z p(k V| |l)

< M max{Ry, €0} + |K|1Ro.

megR(go, Ro)) =< K
keZ"+5\{0} !
[kl1 =K
5
< 4RVTRY IR Y20 + 9 1%
j=K
< Bu(2VIRy) Hr +9KK ™7 ) “exp(~4))
i=K
_ > ras1y EXP(—=8K)
= 8u(2VTRy)" KKy —— ——
L(2VTR) (T +9) T exp(—d)
R —8K
< 1602uTRy (¢ + 9K K1y EPCAD
Whereweusequf,if0<8§1. O

Lemma 15. With the previous notations, we introduce the set
D(Ry) = {(?) eR : |&6-6? <Ry and

3k € Z'+S\ {0} such that k' w| < W exp(— 8|k|1)} )
1

Let us assumik ' w©@| > “ o for allk e Z'*S\ {0}, for certaingg > 2u. Then, if B is
small enough (dependlng only onand w), one has

exp(—§K
mesD(Ry)) < 8u(2/FRo) ~1(r + s)K'+5-1-7 %
11
where K= (ZRO)” _
Proof. Itis similar to the one of Lemma 14. 0

Lemma 16. Letuo > 0, p > 0,andl < ¢ < 2fixed. We puby, = -2, 8n = 22, and
n = o exp(—eg"), for alln > 1. Then, for every) < o < 1, we have that, if K is big
enough (depending only @n p, wo, andao),

exp(—dnK
Zun% < exp(—K?).
n

n>1
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Proof. Letn,(K) = 2. We remark thah,(K) — +oco asK — +oc. Then, ifK is
big enough one has that, for all> n,(K),

n+12ex _ Ah+1 12 _1
(n+ 12exp(—¢ )Z(n:l_)exp(g(g 1))<exp<_97>’

n2exp(—eo")
which allows us to bound
Zn exp nZexp(—o")
n>1 1 exp(——)
Hence,
exp(—8nK) 3uor? < Kp )
Up———— = n?exp —
; : Sn ; o " 372n2
3,u,onz< ) ) < . Kp )
= —— + n“exp| —o" — ——
p 1<;n r; 3m2n?
3Moﬂ2 2
< -
== nZexp( - 2n2 nZ;exp
3
Homt Zn exp(—
n>=n,
3uom? K
< %ni (exp(—g) exp(—?zpnz) exp(—g”*))
1
-
1- exp(—QT)
< exp(—=K?),
forany O0< o < 1if K is big enough. O

5.3. lterative Lemma

Here we give the details of a step of the iterative process used to prove Theorem 1. For
that purpose, let us consider a Hamiltonldn= H (9, x, 1, y, ¢) of the form

1 1. .
H=¢@+o'l + EzTB(<p)z+ E|TC(9,¢))|

+ H 0., 1, y, )+ H@, %, 1, y, 9), (19)

with the same notations as (5) wherevas introduced in Section 5.2.4. Moreover, given
¢ € £ we recall the definition oy e R" S asw’ = (@', @@T), where® comes from
the firstr components ap and»© e RS is given by the quasi-periodic time dependence.
Let us write

H@O, %, 1,y,0) =0T+ H*@,x, 1,y, ),
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where we assume that* depends on®, x, [, y) in an analytic form, that it is 2-

periodic ing, that it depends op € £ in a Lipschitz way and, moreover, thgd,) = 0

(see Section 2.3 for the definition) for all This implies that, skipping the terid (this

is the small perturbation), we have for everye £ an invariant  + s)-dimensional

reducible torus with basic frequencies Moreover, we also assume thatandC are

symmetric matrices witl/i,(B) = B and det # 0. Hence,Jy,B is a diagonal matrix,

with eigenvalues.(¢) " = (A 1(¢), ..., Am(@), —A1(@), ..., —Am(¢)), that we assume

are all different, that gives the normal behaviour around the unperturbed invariant torus.
More concretely, let us assume that the following bounds hold: For the unperturbed

part, for everyj,| = 1,...,2m with j # |, we have O< a1 < |Aj(@) — Ai(p)l,

a1/2 < |2 (p)| < axl2forallg € £, and thatCe{Aj} < B2/2. Moreover,|(C) Y[le <m

and, for certainp > 0 andR > O, |[Cllg,, < M, L ,{C} <M, |[H.llg,r < P, and

Le ,r{H.} < ¥. Finally, we bound the size of the perturbatibnby [H ¢, r < M
and/;g,p,R{HA} < L. To simplify the bounds, we will assume tht < L.

Lemma 17 (Iterative Lemma). Let us consider a Hamiltonian H such as the one we
have just described above. We assume that we can houRday, 82, m,h,m, b, 7,
M, and L by certain fixed absolute constapts Ry, 3, f5, m*, m*, m*, i*, v*, My,
and Lo, and that for some fixed'R> 0 ando; > O we have R < R andaj < o.
We assume that for evegye &, the corresponding verifies|w| < «*, for some fixed
«* > 0. Finally, we also consider fixeth > 0, > r +s— 1, anduo > O.

In these conditions, there exists a constiinidepending only on the constants above
and onr, s, and m, such that for evety> 0,8 > 0, and0 < pu < o for which the
following three conditions hold,

(@ 0< 9 < p, 0<9 < 0, and 818 < 8o,

(b) foreveryp € &,

M

K7
forallk € Z'+S\ {0}, and for all | € N?™ with ||, < 2,

() ®=NM, <1/2

ST =

likTw +1"A(p)] > exp(—3|kly), (20)

we have that there exists a functio(ﬁSx,AIA, Yy, ¢), defined for every € &, with VS
an analytic function with respect t@, x, |, y) on u;j;fgj;g, 27 -periodic ond and
with Lipschitz dependence gne &, such thall|VS||£,p783,R783 < min{s, §}. Moreover,
following the notations of Section 5.1.2, the canonical change of variabfeis well
defined for every € €&,

TS . 9 M +s,2m+r r+S,2m+r
v 'up—gs,R—gé - up—sa.R—sé’ 1)
and transforms H into
HY @, x,1,y,9) = HoWwS@,x, 1,y),

where

1 1~ N N
HY =¢W(@) + ol + 52 BY(@)z+ 5TTCY 0. )l + HD + HO,
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with (HY) = 0, and whereB® and ¢ are symmetric matrices witti,(BY) =
BD. Moreover if we put B = R— 95 and p® = R — 95, we have the following
bounds:

IVSllg )-gs.r-85 = N 5242#2’ lp@ —lle < N 8“'\'Aylt’
IBY —Blle < N (Slym Le{BY —B} < N 82+I2_yM27
ICV —Cllg,o < N = wL el Le w{CY—-C} < N 83+I3_V/43’
I Hél) — Hillg o po < N 53+'¥i#2, ﬁg,p(n,R(v{H,,Sl) -H,} < N 5“+I3_Vlt3’
l H® leporo =< N 85MV2;L4’ Le po rof H @) < N 87J’:/5|’VLM5'

Proof. Theideaisto use the scheme described in Section 2.3, to remove the perturbative
terms that are an obstruction for the existence of a (reducible) torus with vector of basic
frequenciesv up to first order in the size of the perturbation. Hence, as we described in
Section 2.3 we exparid in power series arourid= 0,z = OtoobtainH = @@ T [+H*,

where

.1 R 1. . .
H*=a@)+b®) z+c@) "I + EZT B®)z+ | TE@®)z+ E|T<:(9)| +Q@O,x,1,y),

with (@) = 0, where we have not written explicitly the dependence owe look for a
generating functiors,

SO, x,[,y)=£"6+d©)+e®) z+ fO)' | + %ZTG(O)Z +1TF@®)z,

with the same properties as the one given in (7). If we want to obtain the transformed
HamiltonianH® we need to compute (see Section 5.1.2)

—(H 5 - 550,
We introduce the decompositidt™ = H;* + H;*, with
H* = {a)TI + %ZTBZ+ %FCH H., s} _ 950,

andH;* = {H, S}. Then, we want to sele@such thatH + H;* takes the form

H+H =P (@) o'+ zTB<1>(<p>z+ TeD @, [ +HP O, x. 1.y, 9). (22
and henceH® = H;* + S(H**, S). We can explicitly computéd;*

H = (%i (IATCIA)+8|_1*>(1‘+FZ)—< o, )(a_g)T
a6 0 al a6

( H, )Jm(e+GZ+ FTI)—g—:a) (23)
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Then, it is not difficult to see that equation (22) leads to equatiegs—(egs) given
in Section 2.3, replacing© by w, and that

oD =¢—0'E, (24
BY = Jn(B*), (29
(1 f\"\ . aH, i H.
cO=—co|IT —a—Qf—C<8—A> I—aA g+(3—‘3') +a Jne ,
236 a0 al a0 9z W
(26)
HY = Q@+ Hf* — (H*). (27

We will prove that, from the Diophantine bounds of (20), it is possible to construct a
convergent expression f& and to obtain suitable bounds for the transformed Hamil-
tonian.

The first step is to bound the solutions(efy)—(egs), using lemmas of Section 5.2.1.
In what follows, N denotes a constant that bounds all the expressions depending on all
the fixed constants of the statement of the lemma, and its value is redefined several times
during the proof in order to simplify the notation. Moreover, sometimes we do not write
explicitly the dependence agn but all the bounds hold for ay € £. First, we remark
that using the bounds df, and from Lemmas 2 and 7 we can bound| e.pandLle o{.}
ofa—¢,b,c—d, B—B, E, andC — C by NM andN L, respectively, with arN
that only depends oR*, r, andm. We recall that from the expressions of Section 2.3
the solutions ofeq,)—(egs) are unique, and for them we have (working here for a fixed
@ € &) the following:

(eqq) From the expression afas a function of the coefficients of the Fourier expansion
of a, it is clear that if we use the bounds on the denominators given by the
Diophantine conditions of (20) and Lemma 1 we can see that

14 Y al,
dy_y, < ——— ) =2,
Al = ((x—a)expu)) 1t

if p > x > §, and then using tha#|, < |a — ¢|,, we can write

.M
dlp—y < N——.
P (x—8ru

2 y Y1
s = (g (Gvemm) w)

forall p > x > 8. Consequently,

(ecp) We have fore

el < R—
ST
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T aANT
c_a)_c<3—‘i')
00
=X

v 2|d|,—ys2
*INM — ),
) Sn]< +wcbxexm1)

(eqs) First we boundt

€] = 1(C)~'Ce| < |(O)HICE| < mr*

T
89

wherep > x > 25. Hence,

o—x

< m (|c—c?)|p +

M
Bl =N sy

forall p > x > 26. Then, forc* we have

- ad\ " ad\ "
-ceo(9) e (X)
30 30
p—x

IA

IC*[p—x

< (¢l +cl, | 1]+ <ad)T
- 30
p—X
A o 2|d|pfxl2 A M
< |c— m* — 2 ) < N————.
=lemel ("g' Trenew) = -2
Hence, ifo > x > 36,
Y *
fl,, < 3y |C*| p—24/3 N M .
(x — 38)exp(1) w (x —38)2r+1u?
(ew) From the definition oB* given in (8), we have
|B* - B|p7x =< |B - B|pfx
aH, ad\ " dH,
8| 86 (Z.Z) o—x (Z,Z) o—x
< |H*|p R 2|d|p—)(/2
< NM 2m+ Dr : —=
= NMem+ Dress (51 S e
2|H*|p,R
+ 24m R)3 € p—y»
and then
N M
B*-Bl,., < N—————
1B Bl = NG o

if p > x > 28, and the same bound holds f@**|,_, (see (10)). Lemma 1
allows us to bound

1 3y Y1
G|,_ — - —)2m|B** ,
(Glo—x = (a;‘ * ((x —36>exp<1>> u) m{B7, 205
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with p > x > 35. Hence,

- M
T

(ex) If p > x > 28, we have forE* defined in (9)
(ae)T |:8H* ( (ad>T)}
Cl|— + — &+ —
a0 ol a0 .
p—X (1,2
Q 2|e|p7x/2
<NM+|C|,2m——2~
o2 exp(D)

|H*|p,R ( 2|d|pxl2> 2|H*|p.R
+ 4mr + + 8m —€l,—,.
ol G ()3 o

|E*|pfx 5 |E|r0_X+

p—x

Then,
~ M
[ PR —c—
X (x —28)rp
Now, if p > x > 39,
2 3 v
R .
ay (x —33)exp)) n pmex
that implies
N M
N——————.
(x = 39)+iy?
Now, we repeat the same process to bound the Lipschitz constants for the solutions
of these equations. For that purpose, we will also need the results of Lemmas 6 and

7 to work with the different Lipschitz dependences. We remark that, for the different
denominators, we can bound

IFl,—y <

LelikTw+1TA} < |kl + %lell,
for everyk € Z'+S,1 € N?™ |l|; < 2. Moreover, we will also use the hypothebis< L
to simplify the bounds. Then we have

(eqp) We need to take into account thedependence for all the functions, and sodor
we have

do. 9= > &P oynikTa).

kT
keZr 75\ {0} ik'o
Then, using Lemma 6 anfls ,{a} < L¢ ,{a — ¢}, one obtains

( y )y Le {8 +< 2y +1 )ZV“ lals.,
(x — &) exp(1) U (x —28)exp(1) w?

< N ;’
T (x =292
for everyp > x > 26.

Le p—y{d}
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(eqp)
y ” Le (b} ( 2y +1 )2”1 Iblle.
Le,—, €} < +
eoorleh = ((x —9) exp(l)) jz (x —26) exp(d) w2
N 2y % |Iblle., B3
(x — 28) exp(1) n? 2
2 4 B;
+O[_I££,p{b} + (a—;)ZHb”’g’”7
N L
T (-2
if p > x> 26.

(e) If p > x > 35, we have

Lefey < Le{©7Y

ad\ "
c—o-C (—)
L

i} Nz L
HIO) e Le.p—y {c_c:)_c (_) } <N

30 (x —38)2r+2u2’
where we have used that, from Lemma 5,
Le{(©)™ < 1O HELAC) < (MM2Le ,{C),

and also that

A 3
Le p—y {(@) } = mﬁs,p—les{d},

andlg ,— {C— &} < L¢ ,{c—}. Then,ifp > x > 38, using thatCs ,_, {€} <
Le ,—y{C— @}, one has

. - ad\ "
Lep (€} < Lepy{E) + Lepey {cs} + Loy {c <£) }

. L
Ne— —
T (x =38t
Hence,
3y Y Le p—aqi3{C*}
Lo, Af =2
£oorlfh = <(x —38>exp<1>> m
22+ \TT I lep20s _ g L
(x — 68) exp(1) w2 T (x —68)%¥r s

if p > x > 66.
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(eqs) We first bound

dH, ad
Lep-x(B" =B} = Lep—y{B — B} + Lep—y {[ (EJF( ) )] }
ol 30 -

+L [aH* J e] <N L
E,.p— Ao = S Ao\ 0
=X 97 m 22 (x — 38)27’+2,u2

if p > x > 3§, and the same bound holds 8¢ ,_,{B**}. This implies

Eé‘,p—x {G} (2m 1) ES p— X{B**} + (Zm 1) ” B**”S,p—)(.B;

1
(a7)?
V' Le oo 2X/3{B**}

2
* m((x 5 exp(D)

+2m( 32y +1) )2”1 ||B**||gpzxfs
(

X — 65) exp(1)

2
YIB* ||5p 2413

am <(x 65) exp(1) bz

A

(x — 63)3V+2u

if p > x > 66.
(egs) From the definition oE*,

aH, ad\ "
Lc‘:,p—)( {E*} = £€,p—x {E} + E&',p—x A~ S + <_A)
ol 20 (.2
ae\ " aH
+Le C(—A) +Le - [ - e]
o { a0 } o { 9z (.2

. L
N——
(x —48)2r+2p?

if o > x > 438. Hence, if nowp > x > 63, we can bound

B3
2

Le, ,{F} < 2m= ,Cgp AE* b+ 2m- )2||E*||5p .
l 21

)y Le - 2X/3{E }

+2m<
(x — 36) exp(1)
+2m< 32y +1) )ZV“ |E*||gp 203

x = 63) exp(1)

2
4 ”E*”c‘:p 2x13 ﬁz
2

2
* m((x % exp(D)

A~

N—
T (x —68)%¥ s
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Before bounding the transformed Hamiltonian, let us check that the change given by
the generating functioB is well defined. First, we have that
M

(x = 402772 9

IVSlep—yr < N

and that
L

(x — 787733
provided thato > x > 75. If we selecty = 8§, and if we consider (28), we have a
bound of the type

Le, 4 r{VSI<N

~ M
IVSlle ,-g5.r85 < N52y+2M2'

Before continuing, let us ask that the quantity

N~ M
(r + (r + 2m) exp(1) max{1, 80}) N m (29
be bounded by 1/2 (this will be used in (30) and (31)). This can be achieved by redefining
N such that (29) is bounded Iy = 827+3 5. Hence, the condition we are asking for is
e <1/2.
From this last bound one obtains
®s - N
VS —————— < min{$, §/8g} < min{s, 6}, 30
IVSlle ,—g5,r—85 max{l 5ol { o} {8, 8} (30)
and
AS,S exp(l)”VS”g’p_gg,R_gg <0, (31)

where we use the definition a; ; given in (17).

From (30) and Lemma 12 we have thiat is well defined (for every < £), according
to (21). From (31) and Lemma 9 we can bound the expressi&{df*, S) that appears
in the transformed Hamiltonian,

1 /1)
||Z(H**7 S)”E,p(D,R(D < (Z m <§> ) O H**“&p—&S,R—BS'

j=1

Similarly, for the Lipschitz constant we can use Lemma 11 to produce

1 A oA PN
Le p0 ro {E(H**, S)} = Z <J 11 (Aa 5 eXp(l)) l(J LoF1 + Lle)),
j=1

~

with Fy = [H**[lz ,_gs r_gir F2 = [IVSle g5 rssr L1 = Le ,_g5 r_gs{H*™), and
L, = Lg,p_&s’R_gg {VS}. Then

i1\t .
Le ,0 R {E(H**, S)} = ( ra— <_> A sexp(D)LzFy
g ; j+1\2 53

1\ -
+ (Z m (§> ) A&,S exp()L1F.

j=1

[
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With those expressions, boundingyfH**, S) is reduced to boundi**, with the only
j— In(1— j i— 1-v)In(1—

remark that the sumy);; 170/t = — RO andy . vl Tt = SR

are well defined fop = 1/2.

Now, we can bound the transformed Hamiltonian. From the bounds that come from

the solutions ofeq,)—(eg) we have

M

ok ]
||H1 ”&pfx,an = N (X — 48)2y+311«2

max{1, x/n},
and

L
(x — 78)3r+4,3
To obtain these bounds, we use the explicit expressittfdiven in (23), and Lemmas
1, 2, 6, and 7 to bound the different partial derivatives. We remark that here we need to

use thafw| < «* for any¢ € £. Moreover, from the bound for the Poisson brackets
given in Lemmas 8 and 10 we have, fd§*,

Le p—y, Ry {Hf*} <N max({1, x/n}.

M2

IH:*Nepyrn < N—o—
2 =X n (X _ 48)2y+3M2

max({1, x/n},

and

LM
(x — 76)3r+4,3

The techniques that we use to control the reduction in the different domains when we
use Cauchy estimates are analogous to the ones used in all the previous bounds. Hence,
it is clear that we can estimat¢** with bounds analogous to the ones ff*.

Finally, using all those bounds and from the explicit expressionsof BV, @,
H", andH @ in (24)—(27) itis not difficult to obtain the findll such that all the bounds
in the statements of the lemma hold. O

‘CS,pfx,Rfr] {Hz**} < N max{1l, X/]’]}

5.4. Proof of the Theorem

We split the proof of the theorem in several parts: In the first one we use one step of
the iterative method described in Section 2.3 as a linear scheme to reduce the size of the
perturbation. Then, we introducgas a new parameter to describe the family of lower
dimensional tori near the initial one. The next step is to apply the bounds of the iterative
scheme given by Lemma 17, and we prove the convergence of this scheme for a suitable
set of parameters. Finally, we obtain the different estimates on the measure of this set.

5.4.1. Linear Scheme with Respectte. We consider the initial Hamiltonian given in

the formulation of Theorem 1, and we apply one step of the iterative method described
in Section 2.3. We remark that from the Diophantine bounds in the statements of the
theorem, we can guarantee that this step is possible for small enough vaduasathat

it keeps the initialC? differentiability with respect te on the transformed Hamiltonian.
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We putH © for this Hamiltonian which, up to constant terms that are irrelevant, is
©) o1 1 rz0 1700 [ ©) [
HY = o |+§ZB (8)Z+§| CHO,e)l +H,70,x,1,y,¢)

+ 210, x, 1.y, ), (32)

with the same kind of analytic properties with respeaptox, Il y) as the initial one, in

a new domain that is independento(small enough). We remark that the new matrices
B© andC© depend or, and thaC® depends also of. Moreover, forH, we do not
have the seminormal form conditions givenRt and P2. As this step comes from a
perturbative (linear) method, we have ti&® — B, C© —C, andH % — H, are ofO(e).

Our aim is to repeat the same iterative scheme. We remark that in the next step and
in the ones that follow, we cannot guarantee good Diophantine properties for the new
eigenvalues ofl,,B© because this matrix changes at each step of the process. This is
the reason that forces us to use parameters to control these eigenvalues. So, we can only
work in the set of parameters for which certain Diophantine bounds hold. But before
that, we want to introduce a new parameter.

5.4.2. Introduction of the Vector of Frequencies as a ParametenVe consider values
of & € R' close ton'?, and for any of these values we perform the change given in (14).
So, puttingg” = (&', ¢), we obtain the following family of Hamiltonians,

- . 1
HY@,x, 1, y,¢) = 09T+ 0971 + 74— 0)) + EzTB“’)(e)z

+%(IA +C M@ —a9)TC0, ) (1 + Mo — &)

+HO@, x, [ +C 7o — ), y,¢)

+&?HO 0, x, [ +C Yo — d?), y, ¢).
Now, we use the seminormal form structure that we haveHfpand the fact that,©
is e-close toH, to expand

1 1. ~ ~
HY = 9P (@) + o'l + EZTB(l)(w)ZJr EITcﬂ)(e, ol +HP @, %, 1.y, 9)
+HD0,x,1,y,9),

where H® contains all the terms that are 6h(¢ — ¢©@), p©@T = (®©T, 0), and

o’ =(@",®?T). Note that this Hamiltonian takes the same form as (19) in Section 5.3.
We remark that we have differentiable dependence of this Hamiltonian with respect to
¢ (in fact it is analytic with respect t®) but, as has been mentioned at the end of
Section 2.5, we replace the differentiable dependence with a Lipschitz one (in the sense
given in Section 5.1.1). To quantify all these facts, we takep < 1,0< R < 1, and

0 < ¥ < 1,suchthatifwe pyp® = pandR® = R, then we have bounds analogous to

the ones described in Section 5.3 for (19), givep By, R, and some positive constants

aP, o, g5, MmO MmO M@ 5D andb® ontheseE® = {p € R™1: [g—p©@| < 9},
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with respect to the “unperturbed part.” For the perturbatid®, if we work with sets
of the forméW = EV @) = {p € EV:]p — 9@ < ¥}, forall 0 < & < ¥, we can
replaceM andL by N;92 andN; 2, for someN; > 0. To simplify the following bounds,
we assume, without loss of generality, tihat> 1.

Finally, we finish this part with an explicit formulation of the nondegeneracy hypoth-
esis of the normal eigenvalues with respect to the parameters. Let us cas$id&y
construction, we have that, B is a diagonal matrix. Then, using ti&# differentia-
bility with respect top, we can write its eigenvalues as

WP () = 4 +ivje +iv] @ — @) + i (), (33

for j = 1,...,2m, with u; € C andy; e C', and where the Lipschitz constantif’
onéWD is of O(¥). Then, those generic nondegeneracy conditions are

NDC2 For anyj such that Re; = 0, we haveu; # 0 andRe(v;) ¢ Z'. Moreover, if
we defineu;; = u; — u andv;; = v; — v, we have these same conditions €y
andv; foranyj # | such that R&; — A;) = 0.

Note that we have used ti#* dependence op to ensure that the Lipschitz constant of
XJ-(D oné® is O(H). If the dependence 8 we can only say that this constanbig?).
Nevertheless, it is still possible in this case to derive the same results asGA tase,
but the details are more tedious.

The nondegeneracy conditions with respect @re the same ones used in [24] to
study the quasi-periodic perturbations of elliptic fixed points, and the nondegeneracy
conditions with respect to th-dependence are analogous to the ones that appear in
[27] and [10], but in those cases they were formulated for an unperturbed system having
anr -dimensional analytic family af-dimensional reducible elliptic tori.

5.4.3. Inductive Part. We want to apply here the iterative lemma in an inductive form.
For this purpose, we defing = 2n2 for everyn > 1, and we note tha‘zn>lon =1.
From this definition, we put, = %2, §, = 2& and we introduce™? = p™ — 95,
andR™Y = R™ _ 9§, for everyn > 1. We also consider a fixed4 o < 2, to define
tn = exp(—a") to.

We suppose that, at stepwe have a Hamiltoniahl ™ like H® defined forp in a set
EM c £W, with analogous bounds &$, replacing the superscript) by (n) in the
unperturbed part, and with bounds for the perturbation giveRlpy= My (9) = Nao?'
andL, = Lo(®) = Ny9?~1, in every set of the forn€™ (9), for all 0 < § < 4,
being N, independent o . We will show that this is possible i#; is small enough,
with conditions ony, that are independent of the actual step.

At this point, we define the new s&t"*V of good parameters frofi™ looking at
the new Diophantine conditions. We have that £ if ¢ € £™ and the following
conditions hold:

K o +1T20 ()| > £ T = exp(—dnlk|p), (34

forallk e Z'*s\ {0},] € N®™, |I|; < 2.
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Now, we use the iterative lemma fpre £V First we remark that at every step we
havep™ < p, RI2 < R™ < R, 8n/8n = pIR, pn < 1o, and, agh; < 1, we have that for
everyp € £V |w| < max{|a)(°)| |©©@| + 1}. Moreover, we assume that we can bound

(1)/2 < ain) aén) < Za(l) ,32 < 2,3<l) m" < 2m®, m® < 2O MM < 2mM®,
v(”) <20 5 < 25D, and N2 =2 < N;. We remark that all those bounds hold for
n = 1. Then we consider the constaXt given by the iterative lemma, corresponding
to these bounds.

If we assume that in the actual step we havedgr= N N (S’;'VZT ®n < 1/2, then we

can apply the iterative lemma to obtain the generating funcsi®no, x, Il Y, @), with
IVS™ | cwin_po_gs,. rm_g5, < MiN{8n. 8n}. SO, in this case we have, fars”,

ENSON r+s,2m-r r+s,2m+r
v . up<n+1>, R(+1) umeSBH, RM—85,"

The next step is to bound the transformed Hamiltorigfi? = H™ o wS” . We work

in a set of the forn€ ™1 for all 0 < ¥ < ¥;,. From the bounds of the iterative lemma,
and the explicit expressions &f, 8, andu,, we can deduce that there exiﬁts{we can
assumeN > 1) depending on the same constant§lasuch that

Nn*™% (exp(0")*Ny 5%,

IA

Il vsm ||g‘<n+1>,p(n),35n, RM —8,

||¢(n+1) _ ¢(n)”gm+h < N n2+2y eXp(Q“) Nn;’zn,
||B(n+1) _ B(n)||g<n+1) < N n?+2r eXp(Qn) an’zn’
Lenn{B™Y — B} < Nn* (exp(o")?Nad? ™,
”C(n+l) - C(n)||g'(n+1>,p<n+1) =< N n*+4 (exp(Qn))anﬁzn,

C(n+1) _ C(n)} N n6+6y (eXp(Qn))3an_92Ll,
N4 (exp(o™)2Nn %,

N (exp(")*Nad > 2,
N t2+8v (exp(o ))4 2192"+

Nn+1% (exp(o™)°NZH2"~

IA

£5<n+1)‘p(n+l> {
(n+1)
IMH =

IA

n
H,i ) ||g(n+1)7p(n+1)q R(+1)

;Cg(n+1),p(n+1). R(+1) { H*(n+l) - H*(n)}

A

IA

I H (D ||5‘(n+1),p(n+1>, R(+1)

IA

q@
Eé(n+1),p(n+l)7R(n+1) { H( )}

Moreover, we assume that we can boudg < N5 (exp(o™)?N,9Z", with the
same constarli. Then, we use all these expressions as a motivation to difine=
N 1% (exp(o™)°NZ, for n > 1. To bound how fasN, 1 grows withn and N; we
use Lemma 13,

on—1
1((5\""" 50
Nﬂfﬁ((ﬁ) imen(2))

if n > 1. If we also defineNn,1 = Nn®*% (exp(o™)°Ny, for n > 1, we clearly have,
using thatN; > 1 andN > 1, thatN,, < N, forn > 2.

Now, we have to verify that we can use the iterative lemma in this inductive form
whenn > 2. To this end we need to see that the bounds that we have assumed at the step
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n (to defineN and to use the iterative lemma) hold at every step ifs small enough.
So, we note that if*; is small enough, the following sum,

D Nopatf 2, (35

n>1

is bounded byN* that depends op and the same constants s This bound is not
difficult to obtain if we look at how fash,, grows. Moreover the same ideas can be used
to prove thatN,92'~2 < Ny, if n > 1 andy; is small enough.
Then, we can define™™" = o™ — 2N,,102", o™ = o + 2N, 192", B =

SV Ny 92 7L 0D = m® 4 Ny o2, M) = m® 4 Ny 92— 50D =
5™ 4 Nppp92', and 5D = 5™ 4 Ny, 192 2, that from the convergence of (35)
allows us to apply another step of the iterative scheme, at least for sufficiently small
values of},. Moreover, it is clear tha®, < Nn+11912" < N*ﬁf < 1/2, takeny, small
enough. Then, it only remains to bourid™+?. For that purpose we first consider the
bound||C™Y — C w000 < Nnyr9Z', and then, if we work with a fixed value of
¢ € EMD(91), we have for anyw e C",

ICOHOW > (MW — |(EM — CO) W] > ((mm))—l _ Nn+11912”> IW].

We note that, from the equivalenp€ ™)1 < m™ «— |IC™W| > m™)~1jw|,

for anyW e C', we can taken™? = 17m<mn)+1 5 provided thath™ N,,192 < 1.

Then, using this expression we can see th&t < 2m® for anyn > 1, if 9 is small
enough; if we assume that it holds forwhen we computen®™+? we have that

1

M Nps 197 < 20D Ny 107 < >

if 4 is small enough. Moreover, we have by induction that

n
- _ 1
M <m® ] — -
j=1 1-2m Nj+1l91

So, it is clear that, i}; is small enough,

- . 1
> 2N w? < 2mP N2 < > In(2),
j=1

and hence, if we note that when<0X < 1/2,

1 X X
nNn{——])=In{1+ < < 2X,
1-X 1-X 1-X

we can bound IfM®™ ) < In (M®) + In (2), which provesn™ < 2m®,
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5.4.4. Convergence of the Changes of Variable®Now, we are going to prove the
convergence of the composition of changes of variables€tet Np-1E™ be the set
of ¢ where all the transformations are well defined. We consider a fixecc*, but in
fact, the results will hold in the whole sét provided that; is small enough.

We putd® = W@ o...o W™ forn > 1, which goes fromd! 51, toud, 22,

whered ™ meansilg"’. Then, if p > q > 1, we have
p-1
VCERLIESY (q,<1+1> _ q,u‘)) '
i=q
To bound¥I+Y — D), we definep) = p — p/4 andR = R — R/4, and we put

A~

Apr= + 2T Now, let us see that

_1
exp(Dp

I\I,(J+1) \I;(J)|p — |\il(l)o~~~o\i’(j+l> —_y®,.. O\y(J)lp

j+2° |+2 i+22 J+2

IA

(l + 4Ap’R|&>(l)|p(2)’R(2))

X (U@ o oWt @ 6. 0G|, o (36)

J+z
where we notel ™ — Id = " = ™, if n > 1. To prove this, we writd/@ o - - o
VD =4@o...0 @) 4+ D oY@ o...0 WD), foreveryj > 1, and then we note
that we can bounull(2> o\IJ(H'l) —ldly R, ,and[¥®@ o co ) —1dl, PR

by min{p® — o/, — ,0/4 R® — — R/4} We prove the first bound, the second is
analogous. To prove this, we have

|\i/(2) o oWt g o/ < |\il(2) oot g [ pti+2 Ri+2

j
3060 pUD
1=2

g 4 \II(J+1)|p(]+2)’R|J+2)
_Hq,(H-l) _ |d|p(j+2)’R(j+2> < Z |<I><|>|pu+1),Ru+1)
1=2

j+2° J+2

IA

j+1 3
= Y _min{s, &)
=2
= min{p®@ — pi+? R@ _ RI+2)
= min{p® — P12 — pl4, R® — {2 — RI4},
where we have used Lemma 3 to bound the norms of the compositions. From that, we

can prove (36) from Lemma 4. Now, if we iterate (36) using similar ideas at every step,
we produce the bound

j
[+ gy, o <]—[<1+4Ap,R|q><'>|p(.+n,Ru+n)|q>“+1>|p<,-+2),R(,v+z>.
1=1

J+2 J+2
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So, from Lemma 12,
A~ 2n
|(D(n)|pm+1),R(n+1) < |Vs(n)|p<n)788n,R(”’78gn < Npu197,

and if we assume
4AP,RZ N|+12912I < 4Ap,RN*23‘12 <In2,
1>1
we have that
J ~ |
1_[ (1 + 4Ap,RN|+1z§‘12) <2, for everyj > 1.
=1

Hence, using the convergent character of the sum (35), one obtains

o v i+l
@ — TP ypa <D 2N0f -0, asp,q— +oo.
izq

This fact allows us to define
U® = lim ¢™,

n— 400
that maps/, ;550" into /) 132
So, as we remark in Section 5.1.2 for this kind of canonical transformations, we only
need to show that the final Hamiltonian is well defined to obtain the convergence of the
final canonical chang@ ®, defined as the composition of all thieS”. This follows
immediately from the different bounds for the terms-bfV.
Hence, the limit Hamiltoniard ® takes the form,

1 1 ~
H®@,x,1,y,¢) =% (@)+wl +§zTB<*> (ga)z+§zTc<*> O, 9)z+HP 6, %, 1, Y, ),

with (H*) = 0; that is, for everyy € £*, we have ar( + s)-dimensional reducible
torus.

5.4.5. Control of the Measure. To prove the assumptior(a) and (b) of Theorem 1,

we only need to control the measure of the set of parameters for which we can prove
convergence of the scheme or, in an equivalent form, which is the measure of the different
sets that we remove at each step of the iterative method: The key idea is to study the
characterization of these sets given by the Diophantine conditions of (34). Hence, we only
need to look at the eigenvaluesi®if’ . From the bounds of the inductive scheme, we have
that |2 — A" | s0 = 02(9) andLew {A™ — AV} = O(D) for everyj = 1,...,2m

andn > 2, provided that O< & < ¥, where the constants that give the differ&®)
andO(¥) are independent omand j. Then, from expression (33) we can write

WP () = & +iuje +iv] @ — @) + A"V (p),

with Lgn {A"} < L and|A”(p) — Aj| < M|p — @], for certainL andM positive.
Then, if we use the nondegeneracy conditiond2 plus the Diophantine assumptions
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for the frequencies and eigenvalues of the initial torus, the resuits @nd(b) are the
consequence of the lemmas of Section 5.2.4. Here we skip any kind of “hyperbolicity”
and we assume that we are always in the worst case; that is, we assume all the normal
directions to be of elliptic type.

(a) From the bound for the measure of the gein Lemma 14, we clearly have that if
we put in this lemma. = 2™ or» = 4™ — 4™, j # |, in the setf = £® with
Yo = %1, L = un, ands = §,, we can bound

mesZ™ \ Z+Dy — O<Kr+s_1_yﬂnw> 7
n

with T = (¢ € [0,8] : (@©7,¢)" = ¢ € £M} (¢ > 0 small enough) and we
1

can takeK such thati = Mg; that is,K = K (&) = (52)7. Then, if we put

T, = Nn=1Z™ we have from the bounds of Lemma 16 that for every & < 1, if

K (¢) is big enough (that is implied by takirigsmall enough) depending @h
mes([0, 2]\ Z,) < exp(—(1/&)7).

(b) Now we can use resuli) of Lemma 14 plus Lemma 15, working on sets of the
formW™(eg, R)) = {® e R : (@7, )" = ¢ € EM}. We have

mesw(ﬂ) \ W(rH-l)) — O<R(r)lKr+s_l_yMn exp(—anK)>

Sn ’

where forK we can take (depending oy and Ry), K = min{Ky, K3}, with

2I|L<_01V = M max{Ry, o} + K1 Ry, a condition that comes from Lemma 14, afgl=
(%)ﬁ, that comes from Lemma 15. Then, if we take a fixed 8 < ROm (we

__1
recallRy < 1), we can obtain a lower bound f&rof O(R, 1), where the constant
that gives this order depends only gg, y, andM. So, if we use Lemma 16 we
have the desired bound for the measure of th@'\ggto, Ry) = Nh=1WV™ (g0, Ro),

mesV(Ro) \ Wi (e, Ry)) < exp(—(1/Rp)71),

forevery O< o < 1, if Ry is small enough depending on
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