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Abstract
The purpose of this work is to give precise estimates for the size of the remainder
of the normalized Hamiltonian around a non-semi-simple 1 : −1 resonant
periodic orbit, as a function of the distance to the orbit.

We consider a periodic orbit of a real analytic three-degrees of freedom
Hamiltonian system having a pairwise collision of its non-trivial characteristic
multipliers on the unit circle. Under generic hypotheses of non-resonance
and non-degeneracy of the collision, we present a constructive methodology
to reduce the Hamiltonian around the orbit to its (integrable) normal form, up
to any given order. This constructive process allows to obtain quantitative
estimates for the size of the remainder of the normal form, as a function
of the normalizing order. By selecting appropriately this order in terms of
the distance R to the resonant orbit (measured using suitable coordinates),
r = ropt(R) := 2 + �exp(W(log(1/R1/(τ+1+ε))))�, we have proved that the size
of the remainder can be bounded (for small R) by Rropt(R)/2. Here, W(·) stands
for Lambert’s W function and verifies that W(z) exp(W(z)) = z, τ � 1 is
the exponent of the required Diophantine condition and ε > 0 is any small
quantity. The reasons leading to this bound instead of classical exponentially
small estimates are also discussed.

Mathematics Subject Classification: 34C20, 37G05, 37G15

1. Introduction

In this paper we study real analytic three-degrees of freedom Hamiltonian systems having a
1 : −1 resonant periodic orbit. More precisely, we are considering a three-degrees-of-freedom
Hamiltonian with a periodic orbit for which its four non-trivial characteristic multipliers
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(i.e. those different from one) collide pairwise in the unit circle or, in an equivalent way,
its two corresponding normal frequencies are equal.

We note that the situation dealt with in this paper is very common in Hamiltonian
mechanics. First of all, we recall that periodic orbits are not isolated in Hamiltonian systems,
since if we have a periodic orbit of a Hamiltonian whose monodromy matrix does not have
other eigenvalues equal to one except the two trivial ones, then this orbit is contained within
a 1-parameter family of periodic orbits (parametrized by the energy, see [22]). What we are
asking of this family is that when the parameter moves there is a transition from stability
(the four non-trivial characteristic multipliers are different and of modulus one) to complex
instability (one non-trivial characteristic multiplier is a complex number of modulus different
from one and the other three are the complex conjugate number and the corresponding inverse
numbers) through a pairwise collision of its non-trivial characteristic multipliers in the unit
circle (at two conjugate points different from ±1). This transition is usually referred to as
the quasi-periodic Hamiltonian Andronov–Hopf bifurcation (see [18] for a broad study of this
bifurcation). Hence, the transition orbit is the one we are considering.

This simple mechanism for the generation of such resonant orbits makes this phenomenon
common in several mathematical models of science. Here we are not going to be more
explicit about the context where this transition has been detected, but refer to the introductions
of [10,16,17] for a wide description of previous works on the subject, even analytic or numeric.

In a primary classification of this resonance, we can distinguish between two cases
depending on the semi-simple or non-semi-simple character of the four-dimensional box of
the monodromy matrix associated to the non-trivial multipliers (the box corresponding to the
so-called normal directions of the orbit). Of course the generic context is the non-semi-simple
one, and it is the one we will focus on from now on. This is the non-degeneracy condition
claimed in the abstract.

Now we consider a system of symplectic coordinates in R6 given by (θ, x, I, y) ∈
T1 × R2 × R × R2, with the 2-form dθ ∧ dI + dx ∧ dy, T1 := R/2πZ, x = (x1, x2)

and y = (y1, y2). We want θ to be an angular variable describing the resonant periodic
orbit, so that it corresponds to the circle {I = 0, x = y = 0}. Such a (local) system of
coordinates always exists for a periodic orbit (see [2, 3]) and we refer to [12] for an example
with an explicit construction of it. Using this system as a framework, we perform a Floquet
transformation around the resonant periodic orbit in order to reduce the quadratic part of the
Hamiltonian in the normal directions (the ones given by (x, y)) to constant coefficients. This
is achieved by means of a symplectic change of coordinates, linear with respect to (x, y) and
2π -periodic in θ (see [1, 18] for the proof). The Hamiltonian expressed in the new variables
takes the form:

H(θ, x, I, y) = ω1I + ω2(y1x2 − y2x1) +
ε

2
(y2

1 + y2
2 ) + Ĥ(θ, x, I, y), (1)

where ω1 is the angular frequency of the orbit and ω2 is its (only) normal frequency,
so that the non-trivial characteristic multipliers of the orbit are {λ, λ, 1/λ, 1/λ}, with
λ = exp (2π iω2/ω1). The function Ĥ contains higher order terms in (x, I, y). The sign
ε = ±1 is an invariant of the collision, but by means of a change of time, t → −t , we
exchange both contexts (see [16]). In the forthcoming, we shall assume ε = +1.

A second criterion of classification for this resonance refers to the relation between ω1

and ω2. Hence, the resonance is called rational or irrational depending on the value of ω1/ω2.
Again we will focus on the generic situation and we will suppose ω1/ω2 /∈ Q. But in this
paper we will ask for something more. As usual when working with quantitative estimates on
normal forms we will require ω1 and ω2 to satisfy a Diophantine condition (see (3)). This is
the non-resonance condition we are asking for.



Quantitative estimates around non-semi-simple resonance 1143

Our set up is Hamiltonian (1), with ε = +1, that we assume can be analytically extended
to a (complex) neighbourhood of the periodic orbit. Since Poincaré’s dissertation [19], a
natural question arising from a system like (1) refers to its normal form. Of course, the
normal form associated to a 1 : −1 resonance has been previously investigated and the answer
to this question is known. We can quote [1] for the analogous case of a symplectic mapping
and [24] for the Hamiltonian Hopf bifurcation at equilibrium points in two-degrees-of-freedom
Hamiltonian systems (see also [14, 15, 21]). In [16] the specific case of a 1 : −1 resonant
periodic orbit of a three-degrees-of-freedom Hamiltonian is considered, the normal form is
computed up to any order and a detailed analysis of the dynamics of the normal form is given.

The principal difficulties when computing this normal form come from the ‘nilpotent’
term (y2

1 + y2
2 )/2, which gives rise to non-diagonalizable normal variational equations around

the orbit, and hence, to non-diagonalizable homological equations (see (16)). This makes the
analysis of the normal form more involved than, for instance, the case of an elliptic periodic
orbit.

What we have not found in the literature are previous works where this normal form has
been studied from the ‘quantitative’ point of view, that is, by controlling how the size of the
remainder behaves as a function of the normalizing order and of the distance to the periodic
orbit. We recall that in the presence of resonances normal forms computed up to infinite order
are not convergent, in general. Thus, provided with these estimates on the remainder one can
try to optimize the order of the normal form, as a function of the distance to the periodic orbit,
in such a way that the size of the remainder becomes as small as possible. This is a classical
issue that has been worked out by many researchers (see for instance [6, 7, 11, 23]).

Therefore, this quantitative approach requires not only the identification of the non-
removable terms of the normal form (this can be done in a quite standard way) but also to
compute explicitly the normalizing transformation, in such a way that we can control how its
domain of definition ‘shrinks’ as a function of the normalizing order. The explicit (constructive)
computation of the normal form transformation is not difficult if the homological equations
are diagonal (which is the case in the previous works mentioned above), giving rise to simple
bounds for the normal form. Thus, one of the main contributions of this paper is to fully
develop a constructive algorithm to solve those homological equations, which allows one to
compute the normalizing transformation for the Hamiltonian (1) (for instance, by means of
the Lie series method). This algorithm can be implemented numerically using a computer
(see [12] for a numerical computation of a normal form around an elliptic periodic orbit).

The quantitative result we have obtained is stated as follows.

Theorem 1.1. We consider the real analytic Hamiltonian H of (1), with ε = +1, that we
suppose is defined in a complex domain of the form

D(ρ0, R
(0)) := {(θ, x, I, y) ∈ C × C2 × C × C2 : |Im(θ)| � ρ0,

|I | � (R(0))2, |(x, y)| � R(0)} (2)

for certain ρ0 > 0 and R(0) > 0, where |·| stands for the supremum norm. For this Hamiltonian
we assume that the weighted norm introduced in (9) (defined from the Taylor–Fourier expansion
of H, see (6)) is finite in this domain, so that ‖H‖ρ0,R(0) < +∞. We also suppose that the vector
ω = (ω1, ω2) verifies the Diophantine condition

|〈k, ω〉| � γ |k|−τ
1 , ∀ k ∈ Z2\{(0, 0)}, (3)

for certain γ > 0 and τ � 1, where 〈·, ·〉 means the standard inner product of R2 and
|k|1 := |k1| + |k2|.
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Then, given any ε > 0 and σ > 1, both fixed, there exists 0 < R∗ < 1, depending on
ρ0, R(0), ‖H‖ρ0,R(0) , |ω1|, |ω2|, γ , τ , ε and σ , such that, for any 0 < R � R∗, there is a real
analytic canonical diffeomorphism �(R) verifying:

(i) �(R) is defined in D(σ−2ρ0/2, R) with �(R)(D(σ−2ρ0/2, R)) ⊂ D(ρ0/2, σR).
(ii) If we write�(R)−Id := (�(R), X (R), I(R), Y (R)), then all the components of this expression

are 2π -periodic in θ and satisfy

‖�(R)‖σ−2ρ0/2,R � (1 − σ−2)ρ0

2
, ‖I(R)‖σ−2ρ0/2,R � (σ 2 − 1)R2,

‖X (R)
j ‖σ−2ρ0/2,R � (σ − 1)R, ‖Y (R)

j ‖σ−2ρ0/2,R � (σ − 1)R, j = 1, 2.

(iii) The transformed Hamiltonian by the action of �(R) takes the form:

H ◦ �(R)(θ, x, I, y) = Z(R)(x, I, y) + R(R)(θ, x, I, y),

where Z(R) (the normal form) is an integrable Hamiltonian system which looks like

Z(R)(x, I, y) = ω1I + ω2(y1x2 − y2x1) +
1

2
(y2

1 + y2
2 )

+Z(R)

(
I, − (x2

1 + x2
2 )

2
,
(y1x2 − y2x1)

2

)

with Z(R)(u, v, w) a polynomial of degree less than or equal to �ropt(R)/2� (�·� means
the integer part) starting at degree two and R(R) contains higher order terms on (x, I, y).

(iv) The expression ropt(R) is given by

ropt(R) := 2 +

⌊
exp

(
W

(
log

(
1

R1/(τ+1+ε)

)))⌋
with W : (0, +∞) → (0, +∞) defined from the equation W(z) exp (W(z)) = z.

(v) Z(R) and R(R) satisfy the bounds

‖Z(R)‖R � ‖H‖ρ0,R(0) , ‖R(R)‖σ−2ρ0/2,R � Rropt(R)/2. (4)

(vi) R(R) goes to zero with R faster than any algebraic order, so that

lim
R→0+

‖R(R)‖σ−2ρ0/2,R

Rn
= 0, ∀n � 1.

Remark 1.2. The function W on the statement corresponds to the principal branch of a special
function W : C → C known as the Lambert W function (see [4] for details on it). Moreover,
for any τ > 1 fixed, the Lebesgue measure of the complementary of the set of ω ∈ R2 for
which there is γ > 0 verifying (3) is zero (see [13], appendix 4).

Remark 1.3. We have formulated theorem 1.1 in terms of weighted norms instead of the
supremum one because when working with them the proof becomes simpler. We note that
they provide upper bounds for the supremum norm (see section 2 for more details).

At this point, it is natural to compare theorem 1.1 with previous quantitative results on
normal forms. We select the case of an elliptic periodic orbit of a real analytic three-degrees-
of-freedom Hamiltonian system. After a Floquet transformation the Hamiltonian around this
orbit is

H(θ, x, I, y) = ω1I +
ω2

2
(x2

1 + y2
1 ) +

ω3

2
(x2

2 + y2
2 ) + Ĥ(θ, x, I, y). (5)
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If the vector of frequencies ω = (ω1, ω2, ω3) satisfies a Diophantine condition of the form
|〈k, ω〉| � γ |k|−τ

1 , k ∈ Z3\{(0, 0, 0)}, with γ > 0 and τ � 2, then we can compute, up to
any arbitrary order r , the normal form around the orbit, that takes the form (we keep the same
name for the transformed Hamiltonian and variables)

H(θ, x, I, y) = Z(r)

(
I,

(x2
1 + y2

1 )

2
,
(x2

2 + y2
2 )

2

)
+ R(r)(θ, x, I, y),

where Z(r)(u, v, w) is a polynomial of degree less than or equal to �r/2� and R(r) contains
higher order terms in (x, I, y). What is proved in this case (under the same analyticity
hypotheses as in theorem 1.1) is that if we pick the normalizing order r = ropt(R) :=
�b/R2/(τ+1)�, then ‖R(r)‖ρ0/4,R � a exp (−b/R2/(τ+1)), for certain a, b > 0 independent of R

(see [11]). This implies that an exponentially small bound for the remainder is obtained in the
elliptic case, which is something very much smaller than (4). Let us try to explain briefly the
reason for this completely different behaviour (see also remark 8.2).

We recall that the non semi-simple character of the variational equations of the resonant
periodic orbit of (1) is translated to the homological equations (16). Then, when solving those
equations we find the same phenomenon as when solving an algebraic linear system with a
matrix given by a n-dimensional Jordan box, with λ at the diagonal: the last component of
the solution we compute has a factor of the form 1/λn. In our context, we can identify n

with the order of the normal form we are processing at the present time, so that the size of
those boxes increases with the order, and λ is an integer combination of ω1 and ω2, depending
also on the order (the so-called small divisors). But in the elliptic case homological equations
are diagonal and only one small divisor appears in the denominator of any component of the
solution. This is a colossal difference between the semi-simple and non-semi-simple context,
that is responsible for the poor estimate (4). We do not claim that the estimates on theorem 1.1
are optimal, but we are convinced that they cannot be strongly improved with the standard
quantitative approach to bound normal forms (see remarks 7.2 and A.9).

The contents of this paper are organized as follows. The first step is to introduce the basic
notations and definitions we will use to formulate and prove the results of the paper. This is
done in section 2. In section 3 we present the specific method we will use to construct the
(canonical) normal form transformation, which is based on the Lie series method. Section 4
tackles the resolution of the homological equations related to the normal form process. More
concretely, a constructive algorithm to solve the order s homological equation and to obtain
the order s non-removable terms is presented, for any s � 3. The (formal) solutions thus
obtained are studied in quantitative form in section 5. In section 6 the full normal form process
of section 3 is considered from the quantitative point of view, giving bounds for the generating
function of the transformation in terms of the order. In section 7 those bounds are converted
into bounds for the remainder of the normal form, as a function of the order and of the distance
to the resonant orbit. The optimal way to select the normal form order as a function of this
distance is discussed in section 8. The proof of theorem 1.1 is given in section 9. Finally,
appendix A is an appendix where we have compiled some technical results used in the course
of the paper.

2. Basic notations and definitions

In this section we introduce some notations and definitions to be used throughout the
paper.
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We shall denote by E the complex vectorial space of formal Taylor–Fourier series of type

E :=
{

f = f (θ, q, I, p) : f =
∑

k,l,m,n

fk,l,m,nI
lqmpn exp (ikθ)

}
(6)

with q = (q1, q2), p = (p1, p2), k ∈ Z, l ∈ Z+ and m, n ∈ Z2
+, where Z+ = N∪{0}. Here and

throughout the paper we will use extensively the standard multi-index notation: qm = q
m1
1 q

m2
2

and so on. Given a monomial α = I lqmpn exp (ikθ) ∈ E, we define its adapted degree or
weighted order (so its degree from now on) as deg(α) := 2l + |m|1 + |n|1. Hence, the degree on
I is counted twice with respect to the degree on (q, p). The expression |u|1 means the absolute
norm of a complex vector u, given by |u|1 := ∑

i |ui |. In the same way, we will write |u| for
the supremum norm of u. We will extend the same notations to denote the associated matrix
norms.

This definition of degree is motivated by the action of the Poisson bracket on E. Given
f, g ∈ E, we define its Poisson bracket by

{f, g} := ∂θf · ∂Ig − ∂If · ∂θg +
2∑

i=1

(∂qi
f · ∂pi

g − ∂pi
f · ∂qi

g). (7)

Thus, if α, β ∈ E are two monomials, then deg({α, β}) = deg(α) + deg(β) − 2, giving the
homogeneity of the Poisson bracket with respect to the adapted degree. Related to the Poisson
bracket, we also introduce the (linear) Lie operator associated to each u ∈ E:

Lu : E −→ E,

f �→ Luf = {f, u}.
During the normalizing process we will work with several subspaces of E. Thus, Es will

stand for the subspace of E generated by the monomials of degree s. Moreover, given k ∈ Z

and l, M, N ∈ Z+, we denote by Ek,l,M,N the subspace of E2l+M+N spanned by the monomials
of the form I lqmpn exp (ikθ), with |m|1 = M and |n|1 = N . Hence,

Es =
⊕
k ∈ Z

2l + M + N = s

Ek,l,M,N . (8)

We will also refer to general (complex) polynomials on the variables (q, I, p) or (q, p) using
the standard notations Cs[q, I, p] (recall we are counting twice the degree on I ) and Cs[q, p].

As we want to work with analytic functions, we are interested in convergent series
expansions. Thus, given ρ > 0 and R > 0, we say that f ∈ E(ρ, R) if f ∈ E and the norm

‖f ‖ρ,R :=
∑

k,l,m,n

|fk,l,m,n|R2l+|m|1+|n|1 exp (|k|ρ) (9)

is finite. As we have mentioned before in remark 1.3, ‖f ‖ρ,R is an upper bound for
the supremum norm of f in D(ρ, R) (see (2) defined using (q, p) instead of (x, y)). If
‖f ‖ρ,R < +∞ it implies that f is analytic in the interior of D(ρ, R) and bounded on the
boundary. Conversely, if f is analytic in a neighbourhood of D(ρ, R), then ‖f ‖ρ,R < +∞.
We point out that the definitions of ‖ · ‖ρ,R and D(ρ, R) are coherent with the adapted degree.

In an analogous way, given f ∈ Es we say that it belongs to Es(ρ) if the norm

‖f ‖ρ :=
∑

k, l, m, n

2l + m + n = s

|fk,l,m,n| exp(|k|ρ) (10)
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is finite. For such s-homogeneous f we have ‖f ‖ρ,R = ‖f ‖ρR
s . A very important case is

when f ∈ Cs[q, I, p], where ρ plays no role. For such an f we define

‖f ‖ :=
∑
l, m, n

2l + m + n = s

|f0,l,m,n|. (11)

Some basic properties of these norms are surveyed in appendix A. Those properties are very
similar to the ones for the classical supremum norm. Therefore, we have preferred to work with
weighted norms instead of the supremum norm because several estimates become simpler with
them, for instance those on small divisors. Thus, weighted norms have been widely used to
quantify the effect of small divisors in normal forms (see, e.g. [6,7,11,18,23]). Alternatively,
one can work with the supremum norm and use the estimates of Rüssmann on small divisors
(see [20]).

The last definition in this section refers to the symmetries we will ask for the complex
coefficients of f ∈ E. In section 3 we will introduce a complexified version of Hamiltonian (1),
so that the variables (q, p) will follow from (x, y) by means of a suitable linear but
complex transformation (see (17)). This ‘complexification’ implies several symmetries on
the coefficients of the functions involved. Let S : E → E be the (linear) operator defined by

f �→ S(f ) :=
∑

k,l,m,n

(−1)m1+n2 f̄−k,l,n2,n1,m2,m1I
lqmpn exp(ikθ), (12)

where bar denotes complex conjugation. Then, we will use the notation ES to refer to the
elements f ∈ E such that S(f ) = f . Equivalently, we will say that f ∈ ES satisfies the
S-symmetries. We extend the S-notation to ES

s and ES
0,l,M,N . It is important to note that if

f, g ∈ ES , then {f, g} ∈ ES , so that the S-symmetries are preserved by Poisson brackets.
As a final remark, we observe that the definition of E and the related ones have been made

(for convenience) in terms of (q, p), but everything remains valid replacing (q, p) by (x, y).

3. Construction of the normalizing transformation

This section describes the specific method used to construct the normal form transformation.
A very natural way to compute the normalizing transformation is to look for it as a

composition of a sequence of canonical transformations, in such a way that the normal form is
computed ‘degree-wise’ by choosing the sth-transformation to remove the non-resonant terms
of degree s + 2 from the Hamiltonian obtained after the previous step, for s � 1. However,
if one is interested in further applications of the normal form (for instance a quantitative
analysis or a numerical implementation), it is advisable to use some ‘closed’ algorithm which
computes the normalizing transformation from a single canonical change. More precisely,
throughout this work we shall use the Giorgilli–Galgani algorithm (see [7–9, 23]) applied to
formal Taylor–Fourier series in E.

Definition 3.1 (the Giorgilli–Galgani algorithm). Let G = ∑
s�3 Gs , with Gs ∈ Es . We

define the map TG : E → E in the following way. Given f = ∑
l�1 fl , with fl ∈ El ,

then TGf = ∑
s�1 Fs , where Fs = ∑s

l=1 fl,s−l and the terms fl,s−l ∈ Es are computed
recursively by

fl,0 = fl, fl,s =
s∑

j=1

j

s
{fl,s−j , G2+j }, s � 1. (13)

Usually, the sum G is known as the generating function of the transformation.
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Remark 3.2. The very important property of the transformation TG is that if f and G are
convergent, then TGf = f ◦ �

−χ

ε=1, where �−χ
ε means the flow time ε of the non-autonomous

Hamiltonian −χ (the time is ε), with χ = ∑
s�1 sGs+2ε

s−1. So, the coordinate transformation
given by φ = TGθ , J = TGI , Qi = TGqi and Pi = TGpi (i = 1, 2) is canonical and
2π -periodic in θ . For an account of these properties, together with their corresponding proofs,
see [8].

The idea is thus to take f = H, the Hamilton function, to construct an ad hoc generating
function G and to apply algorithm 3.1 to cast H into its normal form. This reduction process
can be done recursively and the following algorithm can be given to determine both G and the
normal form.

Proposition 3.3. Consider H = ∑
s�2 Hs , with Hs ∈ Es , and the generating function

G = ∑
s�3 Gs . If we write TGH = ∑

s�2 Zs , with Zs ∈ Es , then the following relations
are satisfied:

Z2 = H2, {Gs, H2} + Zs = Fs, s � 3, (14)

where,

F3 = H3,

Fs =
s−3∑
j=1

j

s − 2
{Zs−j , G2+j } +

s−2∑
j=1

j

s − 2
H2+j,s−j−2, s � 4.

(15)

Here, the quantities Hl,k may be computed recursively from formulae (13).

The proof of proposition 3.3 is formally identical to the proof of the corresponding classical
one in [7] and [23], so the reader is referred to these.

From relation (14), it is clear that the important point is to investigate the solvability, in
terms of Gs and Zs , of the homological equations

LH2Gs + Zs = Fs, (16)

for a given Fs ∈ Es , in such a way that Zs takes the simplest possible form.
In order to deal with such homological equations, it is convenient to introduce the following

(complex) coordinates,

x1 = q1 − p2√
2

, x2 = i(q1 + p2)√
2

, y1 = q2 + p1√
2

, y2 = i(q2 − p1)√
2

. (17)

These relations define a linear canonical change

(θ, x, I, y) := ϕ(θ, q, I, p), (18)

which transforms the Hamiltonian H of (1) into H := H ◦ ϕ, which we expand as

H(θ, q, I, p) = H2(q, I, p) +
∑
l�3

Hl(θ, q, I, p) (19)

with Hl ∈ El , where H2 is given (for ε = +1) by

H2 = ω1I + iω2(q1p1 + q2p2) + q2p1. (20)

These kind of transformations are usual in normal forms to put the homological equations
in diagonal form. In our case this is not possible but, as we will explain in section 4, using
complex coordinates we can re-write (16) as a family of algebraic systems of linear equations
with lower-triangular matrices.
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Remark 3.4. The price we pay for these simplifications on the homological equations is that
Hamiltonian (19) is not given by a real analytic function but by a complex analytic one, so
that real values of (x, y) correspond to complex values of (q, p) such that q̄1 = −p2 and
q̄2 = p1. This is equivalent to saying that H verifies S(H) = H (see (12)), and hence
H ∈ ES . Conversely, given any convergent series F ∈ ES , then F ◦ ϕ−1 is a real analytic
function.

An alternative to the complexification of H is the chance to perform the normal form on the
real Hamiltonian and complexify the system only when solving the homological equations.
We have preferred to work with a complex Hamiltonian, but both approaches are equivalent.

4. Resolution of the homological equations

Given Fs ∈ ES
s , s � 3, the target of this section is to look for the simplest expression for

Zs ∈ ES
s (the normal form) in such a way that there exists Gs ∈ ES

s verifying (16) (see
section 2 for notations). We recall that we know a priori how Zs looks because the normal
form around a periodic orbit with a non-semi-simple 1 : −1 resonance has been previously
investigated (see [1, 16, 18]).

Proposition 4.1. We consider H2 defined in (20) with ω1/ω2 /∈ Q and the decomposition
Es = E0

s ⊕ E+
s , with

E0
s =

⊕
M=N

E0,l,M,N , E+
s =

⊕
|k|+|M−N |�=0

Ek,l,M,N , 2l + M + N = s,

so that E0
s = {0} if s is odd. Given Fs ∈ ES

s , s � 3, we write it as

Fs = F 0
s + F +

s , F 0
s ∈ E0

s , F +
s ∈ E+

s . (21)

Then, we have:

(a) There exists a unique G+
s ∈ E+

s such that LH2G
+
s = F +

s . Moreover, G+
s ∈ ES

s .
(b) If s is even, there is a real homogeneous polynomial Zs(u, v, w) of (standard) degree s/2,

which is uniquely defined in terms of F 0
s , such that if we set

Zs(q, I, p) := Zs

(
I, q1p2,

i(q1p1 + q2p2)

2

)
, (22)

then Zs ∈ E0
s ∩ ES

s and there is G0
s ∈ E0

s (not unique) verifying LH2G
0
s + Zs = F 0

s .
Moreover, G0

s can be chosen so that G0
s ∈ ES

s .

Consequently, if s is odd Gs := G+
s and Zs := 0 solve equation (16) in ES

s , and if s is even so
does Gs := G+

s + G0
s and Zs given by (22).

Remark 4.2. To relate proposition 4.1 with the normal form given in theorem 1.1, we observe
that if we return to real variables by means of the inverse change of (17) one gets

q1p2 = − (x2
1 + x2

2 )

2
,

i(q1p1 + q2p2)

2
= (y1x2 − y2x1)

2
. (23)

But the statement of proposition 4.1 does not completely solve our problem, as we want
to compute constructively Zs and Gs , so that we can give precise bounds on them. Thus, from
here and till the end of section 4 we are going to perform a constructive proof of proposition 4.1.

First of all, to simplify notations, we assume degree s � 3 fixed and we skip the subscript
s of Fs , Gs and Zs . At this stage, we consider a generic F ∈ Es , whereas the role of the
S-symmetries will be considered later on.



1150 M Ollé et al

Given a monomial α = I lqmpn exp (ikθ), direct computations show that

LH2α =
(

� + m1
q2

q1
− n2

p1

p2

)
α, (24)

where H2 is the one in (20) and � has been introduced as

� ≡ �k,|m|1,|n|1 := iω1k + iω2(|m|1 − |n|1). (25)

On the other hand, the quotient q2/q1 does not appear if the monomial α has m1 = 0. Similarly
for the quotient p1/p2. With this remark (24) is fully justified. Expression (24) implies that
all the subspaces Ek,l,M,N ⊂ Es introduced in (8) are invariant under the action of LH2 . Thus,
given F ∈ Es we decompose it according to its projection into the subspaces Ek,l,M,N , so that
F = ∑

k,l,M,N Fk,l,M,N , with 2l + M + N = s, and the same for G and Z, and we investigate
separately the equations

LH2Gk,l,M,N + Zk,l,M,N = Fk,l,M,N . (26)

As will be discussed below, equations with k �= 0 or M �= N , so that Ek,l,M,N ⊂ E+
s ,

can be solved by simply setting Zk,l,M,N ≡ 0. The only possible non-removable (or resonant)
monomials are those in E0,l,M,M , with 2l+2M = s (so s has to be even and then E0,l,M,M ⊂ E0

s ).
The explanation of this fact is that the condition ω1/ω2 /∈ Q implies that �k,l,M,N = 0 if and
only if k = 0 and M = N . In sections 4.1 and 4.2 we will consider both cases separately.

4.1. The case � �= 0

The first point we remark is that if F ∈ Ek,l,M,N ⊂ Es , then its coefficients are readily
determined by just a pair of subscripts. In view of (6), it is advisable to denote fm,n :=
fk,l,m,M−m,N−n,n, with 0 � m � M and 0 � n � N (we skip k and l since they are held fixed).
With the notation above, equation (26) can be translated into a system of linear equations for
the (complex) coefficients of Gk,l,M,N (dimC Ek,l,M,N = (M + 1)(N + 1)). For this purpose
we introduce f ≡ fk,l,M,N and g ≡ gk,l,M,N as the arrays holding the coefficients fm,n and
gm,n, respectively. We order those coefficients through the following claim: gµ,β ≺ gα,σ (gµ,β

precedes gα,σ ) if µ > α or, when µ = α, if β > σ (the same for fm,n). Therefore, g takes
the form g∗ = (g∗

M, g∗
M−1, . . . , g

∗
0), still with g∗

j = (gj,N , gj,N−1, gj,N−2, . . . , gj,1, gj,0), for
j = 0, . . . , M , where the star means transposition (and identically for f ). Hence, if we set
Zk,l,M,N ≡ 0, then equation (26) is equivalent to solve �g = f , with � ≡ �k,M,N a square
matrix of dimension (M + 1)(N + 1). It is straightforward to check that this system is written
block-wise (with M + 1 blocks of dimension N + 1) as



DN

EM DN

EM−1 DN

.. .
. . .

E1 DN







gM

gM−1

gM−2

...

g0


 =




fM

fM−1

fM−2

...

f0


 . (27)

The different blocks stand for Ej = j · IdN+1, with IdN+1 the (N + 1) × (N + 1) identity
matrix, whereas DN = � · IdN+1 − PN , with � ≡ �k,M,N (see (25)) and

PN =




0
N 0

N − 1 0
. . .

. . .

1 0


 . (28)
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It follows from this description that the matrix � is a band lower-triangular matrix, where all
the entries different from zero are placed at the main diagonal and on two bands (sub-diagonals)
below the main diagonal. Moreover, the elements of the diagonal are all equal to �. Hence,
if � �= 0, this specific part of the homological equations (we mean their components on the
subspace Ek,l,M,N ) has a unique solution which can be easily obtained.

At this point, we have proved part (a) of proposition 4.1, thus solving the projection of
equation (16) into E+ by setting Z = 0. Clearly,

G+ =
∑

2l + M + N = s

|k| + |M − N | �= 0

Gk,l,M,N . (29)

Furthermore, G+ satisfies the S-symmetries if F + does. To ensure this one can check that if
Gk,l,M,N is (the only) solution of LH2Gk,l,M,N = Fk,l,M,N , then LH2S(Gk,l,M,N) = S(Fk,l,M,N).

Remark 4.3. We point out that the Diophantine condition (3) is not required to ensure
convergence of G+ if F + does. This is because, for a fixed s, in the divisors iω1k +iω2(M −N)

appearing in the homological equation we have that M − N ranges between −s and s, and
therefore, for all k ∈ Z, these divisors are bounded from below whenever ω1/ω2 is irrational.
But we need (3) to control the amplification factor in the norm of G+ with respect to the norm
of F +.

4.2. The case � = 0

To complete the normal form reduction process we are forced to study the projection of (16)
into E0

s (i.e. we have to consider (26) with k = 0 and M = N ). Then, we have to inquire
which are the terms in F 0 that can be eliminated with a suitable G (even though � = 0), and
which ones are non-removable and have to remain as resonant terms.

To simplify notations we fix the values of l and M , with 2l + 2M = s even, and we
denote by L the linear operator LH2 restricted to E0,0,M,M , so that L : E0,0,M,M → E0,0,M,M .
Thus, we observe that given F ∈ E0,l,M,M we can express it as F = I lF̂ , with F̂ ∈
E0,0,M,M . Then, we have LH2F = I lLF̂ , and hence the expression I l is uncoupled from
equation (26). Consequently, we only have to investigate the solvability in E0,0,M,M , for M � 1
(the case M = 0 is trivial), of

LĜ + Ẑ = F̂ . (30)

The important point now is that Ker L �= {0}, which implies that Range L is strictly contained
in E0,0,M,M . What we have to do is to find a complementary subspace of Range L in E0,0,M,M .
A standard way to do this is to introduce a Hermitian product 〈·|·〉 in E0,0,M,M and to consider
the decomposition E0,0,M,M = Ker L† ⊕ Range L, where L† is the adjoint operator of L with
respect to 〈·|·〉. In this paper we do not consider this method because we will construct Ĝ and
Ẑ explicitly from F̂ , but full details of this approach in our context can be found in [18].

Given F̂ ∈ E0,0,M,M we express it in the form:

F̂ =
M∑

m=0

M∑
n=0

fm,nq
m
1 qM−m

2 pM−n
1 pn

2 =
M∑

i=0

(q1p2)
i

M−i∑
j=0

fM−j,i+j (q1p1)
M−i−j (q2p2)

j

+
M∑
i=1

(q2p1)
i

M−i∑
j=0

fM−i−j,j (q1p1)
M−i−j (q2p2)

j . (31)
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Now, we introduce ξ = (ξ1, ξ2, ξ3, ξ4) defined by

ξ1 = q1p2, ξ2 = q2p1, ξ3 = i(q1p1 + q2p2)

2
, ξ4 = (q1p1 − q2p2)

2
, (32)

so that q1p1 = −iξ3 + ξ4 and q2p2 = −iξ3 − ξ4. By replacing (q, p) in terms of ξ in (31), we
obtain an expression of the form

F̂ =
M∑

i=0

ξ i
1

M−i∑
j=0

f̂i,j ξ
M−i−j

3 ξ
j

4 +
M∑
i=1

ξ i
2

M−i∑
j=0

f̃i,j ξ
M−i−j

3 ξ
j

4 , (33)

where the coefficients {f̂i,j }0�j�M−i are easily obtained from {fM−j,i+j }0�j�M−i—the
coefficients in (31)—for any 0 � i � M , and the coefficients {f̃i,j }0�j�M−i follow from
{fM−i−j,j }0�j�M−i , for any 1 � i � M (for explicit expressions, see [18]). Moreover,
expression (33) is a real polynomial in ξ if F̂ verifies the S-symmetries (check that the
components of ξ are real under those symmetries: S(ξ) = ξ ). Now, we look for

Ĝ =
M∑
i=1

ξ i
1

M−i∑
j=0

ĝi,j ξ
M−i−j

3 ξ
j

4 +
M∑

i=0

ξ i
2

M−i∑
j=0

g̃i,j ξ
M−i−j

3 ξ
j

4 . (34)

We stress that the sums defining F̂ and Ĝ are arranged in a different way. This will ease the
computation of the coefficients of Ĝ. At this point it is convenient to know how the operator
L acts on the ξ -monomials involved in Ĝ. First we have,

{ξ1, H2} = −2ξ4, {ξ2, H2} = 0, {ξ3, H2} = 0, {ξ4, H2} = ξ2

and hence, if i � 1,

L(ξ i
1ξ

ν
3 ξ

j

4 ) = ∂ξ1(ξ
i
1ξ

ν
3 ξ

j

4 ){ξ1, H2} + ∂ξ3(ξ
i
1ξ

ν
3 ξ

j

4 ){ξ3, H2} + ∂ξ4(ξ
i
1ξ

ν
3 ξ

j

4 ){ξ4, H2}
= −2iξ i−1

1 ξν
3 ξ

j+1
4 + jξ i

1ξ2ξ
ν
3 ξ

j−1
4 = −(2i + j)ξ i−1

1 ξν
3 ξ

j+1
4 − jξ i−1

1 ξν+2
3 ξ

j−1
4 ,

where we have used that ξ1ξ2 = −(ξ 2
3 + ξ 2

4 ). Analogously, L(ξ i
2ξ

ν
3 ξ

j

4 ) = jξ i+1
2 ξν

3 ξ
j−1
4 . These

computations together on Ĝ give the following expression for LĜ:

−
M∑
i=1

ξ i−1
1

M−i∑
j=0

ĝi,j

{
(2i + j)ξ

M−i−j

3 ξ
j+1
4 + jξ

M−i−j+2
3 ξ

j−1
4

}
+

M∑
i=0

ξ i+1
2

M−i∑
j=0

j g̃i,j ξ
M−i−j

3 ξ
j−1
4

= −
M−1∑
ν=0

ξν
1

[
ĝν+1,1ξ

M−ν
3 +

M−ν−2∑
µ=1

{
(2ν + µ + 1)ĝν+1,µ−1 + (µ + 1)ĝν+1,µ+1

}

×ξ
M−ν−µ

3 ξ
µ

4 +(ν + M)ĝν+1,M−ν−2ξ3ξ
M−ν−1
4 +(ν + M + 1)ĝν+1,M−ν−1ξ

M−ν
4

]

+
M∑

ν=1

ξν
2

M−ν∑
µ=0

(µ + 1)g̃ν−1,µ+1ξ
M−ν−µ

3 ξ
µ

4 . (35)

Remark 4.4. We observe that the coefficients {g̃i,0}i=0,...,M are missing in LĜ, so that they
play no role in equation (30). They are responsible for the non-uniqueness of Ĝ. From now on
we set them g̃i,0 = 0 (to keep the symmetries and to have minimal norm). Moreover, we also
point out that there is a small ‘abuse’ of notation for the expression inside the square brackets
when ν = M − 1, because the term (ν + M)ĝν+1,M−ν−2ξ3ξ

M−ν−1
4 has no sense and has to be
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removed. Similarly, the sum from µ = 1 to µ = M − ν − 2 is empty for ν = M − 2 and
ν = M − 1.

Now, we have to compare this expression for LĜ with the one for F̂ in (33), trying to
determine the coefficients {ĝi,j } and {g̃i,j } and the resonant terms Ẑ from (30). Our first try is
to set Ẑ ≡ 0. Then by comparison of the coefficients of ξν

2 ξ
M−ν−µ

3 ξ
µ

4 , one gets the relations,

(µ + 1)g̃ν−1,µ+1 = f̃ν,µ, ν = 1, . . . , M, µ = 0, . . . , M − ν. (36)

Hence, the coefficients {g̃i,j } of Ĝ in (34) are now fully determined (see also remark 4.4).
Similarly, a comparison of the coefficients of ξν

1 ξ
M−ν−µ

3 ξ
µ

4 leads to the following family of
linear systems (0 � ν � M − 1 is the parameter):

−(2ν + µ + 1)ĝν+1,µ−1 − (µ + 1)ĝν+1,µ+1 = f̂ν,µ,

−(ν + M)ĝν+1,M−ν−2 = f̂ν,M−ν−1,

−(ν + M + 1)ĝν+1,M−ν−1 = f̂ν,M−ν

(37)

with µ = 1, . . . , M − ν − 2 in the first equation (see remark 4.4 to understand this system for
ν = M − 2 and ν = M − 1). Linear systems (37) are easily solved by backwards substitution
with respect to µ and they determine all the coefficients {ĝi,j } of Ĝ in (34). In particular, for
a fixed ν, the equation corresponding to µ = 2 gives the solution for ĝν+1,1, so that the term
ĝν+1,1ξ

ν
1 ξM−ν

3 inside the square brackets of (35) cannot be used to remove f̂ν,0ξ
ν
1 ξM−ν

3 from
F̂ . Thus, these terms have to be adjusted by taking a non-zero Ẑ. From here it is very simple
to identify the non-removable terms, which are those given by

Ẑ :=
M∑

i=0

Ẑiξ
i
1ξ

M−i
3 =

M∑
i=0

f̂i,0ξ
i
1ξ

M−i
3 +

M−1∑
ν=0

ĝν+1,1ξ
ν
1 ξM−ν

3 . (38)

Finally, if we consider a generic F 0 ∈ E0
s (with s even), then we express it as

F 0 =
s/2∑
l=0

I lF̂s/2−l

=
s/2∑
l=0

s/2−l∑
m=0

s/2−l∑
n=0

f0,l,m,s/2−l−m,s/2−l−n,nI
lqm

1 q
s/2−l−m

2 p
s/2−l−n

1 pn
2 (39)

with F̂s/2−l ∈ E0,0,s/2−l,s/2−l . Then, we solve LĜs/2−l + Ẑs/2−l = F̂s/2−l in E0,0,s/2−l,s/2−l as
described above, and we get

G0 =
s/2∑
l=0

I lĜs/2−l , Z =
s/2∑
l=0

I lẐs/2−l , (40)

solving the projection of (16) into E0
s . Furthermore, it is clear that if F 0 satisfies the

S-symmetries, then it is also true for the above-defined G0 and Z.

5. Bounds for the solution of the homological equations

At this point we know in a very precise way not only the structure of the normal form but also
an effective method to compute the generating function of the normalizing transformation,
according to definition 3.1 and proposition 3.3. Now it is time to start the quantitative part of
the process. The first step is, of course, to bound the solutions for Gs and Zs of equation (16)
in terms of Fs . This will be done by using the weighted norms introduced in section 2. The
result we have obtained is stated as follows.
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Proposition 5.1. With the same hypotheses of proposition 4.1, let Fs ∈ ES
s (ρ) for certain

ρ > 0 (see (10)) and consider equation (16). Then, the solutions for Gs and Zs given by
proposition 4.1 can be chosen (as constructed in section 4) such that Gs ∈ ES

s (ρ) with the
following bounds (recall Zs = 0 if s is odd),

‖Gs‖ρ � 2ss!

�s+1
s

‖Fs‖ρ, ‖Zs‖ � 2s/2‖Fs‖ρ, (41)

where

�s := min
k ∈ Z

2\{(0, 0)}
|k2| � s

{|〈k, ω〉|, 1}. (42)

Remark 5.2. Let us assume for a moment that ω also verifies the Diophantine condition (3),
so that �s � γ̃ s−τ , s � 1, for certain 0 < γ̃ � 1 (see lemma A.7). This estimate on �s is very
pessimistic for a lot of values of s, but we can think that ‘morally’ it is ‘quite sharp’ for an infinite
number of them (maybe by decreasing the exponent τ ). Given a generic F ∈ ES(ρ0, R0)

(see (9)) for certain ρ0, R0 > 0, we can formally solve equation LH2G + Z = F , order
by order, obtaining the bound (41) for the terms of degree s. However, from this bound
and the corresponding one of �s , one cannot ensure the convergence of G = ∑

s Gs and
hence cannot prove that G ∈ ES(ρ1, R1) for any 0 < ρ1 � ρ0 and 0 < R1 � R0. This
makes a strong difference between the semi-simple and non-semi-simple case, where the
corresponding bounds of Gs in terms of Fs , combined with the Diophantine condition, lead to
the convergence of G.

The proof of proposition 5.1 has been divided into two subsections according to
decomposition (21) of Fs and Gs . In section 5.1 we will bound G+

s in terms of F +
s and in

section 5.2 we will bound G0
s and Zs in terms of F 0

s (we observe that ‖Fs‖ρ = ‖F +
s ‖ρ + ‖F 0

s ‖
and the same for Gs).

Again, as done in section 4, we will skip the subscript s everywhere to simplify the
notation.

5.1. Bounds for G+

We start considering the projection of equation (16) into Ek,l,M,N ⊂ E+
s , with 2l + M + N = s

and � ≡ �k,M,N �= 0 (see (25)). Hence, what we have to do is to solve (27). For this purpose,
we compute explicitly the inverse of the (M + 1)(N + 1)-square matrix � ≡ �k,M,N associated
to this system. This inverse can be written block-wise as

�−1 =




(
M

0

)
D1

(
M

1

)
D2

(
M − 1

0

)
D1

(
M

2

)
D3

(
M − 1

1

)
D2

(
M − 2

0

)
D1

...
...

...
. . .(

M

M

)
DM+1

(
M − 1
M − 1

)
DM

(
M − 2
M − 2

)
DM−1 · · ·

(
0
0

)
D1




, (43)
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where we have introduced Dν = (−1)ν+1(ν − 1)!D−ν
N . To compute the powers D−ν

N (for
ν = 1, . . . , M + 1) we use the definition of DN and the binomial formula:

D−ν
N = (� · IdN+1 − PN)−ν

= 1

�ν

(
IdN+1 − 1

�
PN

)−ν

=
N∑

j=0

(−1)j

�ν+j

(−ν

j

)
P

j

N, (44)

where we have used that the matrix PN (see (28)) is (N + 1)-nilpotent. More concretely, direct
computation of the powers P

j

N , for j = 1, . . . , N , yields

P
j

N =




0
0 0
...

...
. . .

j !

N
j


 0 · · · 0

0 j !

N − 1

j


 · · · 0 0

...
...

. . .
...

...
. . .

0 0 · · · j !

j
j


 0 · · · 0




.

Hence, the only coefficients different from zero of P
j

N are those in a sub-diagonal starting at
the (j + 1)th row. Moreover,(−ν

j

)
= (−1)j

ν(ν + 1) · · · (ν + j − 1)

j !
= (−1)j

(
ν + j − 1

j

)
.

Thus, defining

aj ≡ aj (ν, �) := j !

�ν+j

(
ν + j − 1

j

)
, j = 0, . . . , N

and by substitution in (44), one obtains an explicit expression for these matrices

D−ν
N =




(
N

0

)
a0(

N

1

)
a1

(
N − 1

0

)
a0(

N

2

)
a2

(
N − 1

1

)
a1

(
N − 2

0

)
a0

...
...

...
. . .(

N

N

)
aN

(
N − 1
N − 1

)
aN−1

(
N − 2
N − 2

)
aN−2 · · ·

(
0
0

)
a0




.

The next lemma furnishes an estimate on the absolute norm of �−1 (see (43)).

Lemma 5.3. With the notations and definitions above, the following inequality holds

|�−1|1 �
(

1 +
1

|�|
)M+N

(M + N)!

|�| . (45)
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Proof. From the definition of the norm | · |1 for matrices, one has to look at the column of �−1

with the biggest absolute norm, and it is clear that it is the first one. Then,

|�−1|1 =
M∑

ν=0

(
M

ν

)
|Dν+1|1 =

M∑
ν=0

ν!

(
M

ν

)
|D−(ν+1)

N |1

=
M∑

ν=0

ν!

(
M

ν

) N∑
j=0

(
N

j

)
|aj (ν + 1, �)|

=
M∑

ν=0

N∑
j=0

ν!j !

(
M

ν

) (
N

j

) (
ν + j

j

)
1

|�|ν+j+1

� (M + N)!

|�|

(
M∑

ν=0

(
M

ν

)
1

|�|ν
) 

 N∑
j=0

(
N

j

)
1

|�|j




� (M + N)!

|�|
(

1 +
1

|�|
)M+N

,

where it has been used that, if 0 � ν � M and 0 � j � N ,

ν!j !

(
ν + j

j

)
� (M + N)!.

This ends the proof of lemma 5.3. �

Remark 5.4. We observe that bound (45) is ‘quite sharp’ in the following sense: the most
‘dangerous term’ coming from (45) is the power M + N + 1 of the small divisor 1/|�|, and
the coefficient of this power cannot be improved because the sum given by the expression of
|�−1|1 contains a summand of the form (M + N)!/|�|M+N+1.

We have opted for bounding |�−1|1 because from the definition of the absolute norm we
obtain

‖Gk,l,M,N‖ρ � |�−1
k,l,M,N |1 · ‖Fk,l,M,N‖ρ � µk,M,N‖Fk,l,M,N‖ρ

with

µk,M,N :=
(

1 +
1∣∣�k,M,N

∣∣
)M+N

(M + N)!

|�k,M,N | .

Therefore, summation of all those terms of G which are in E+
s (see (29)) yields to:

‖G+‖ρ =
∑

2l + M + N = s

|k| + |M − N | �= 0

‖Gk,l,M,N‖ρ �
∑

2l + M + N = s

|k| + |M − N | �= 0

µk,M,N‖Fk,l,M,N‖ρ

�
(

max
2l + M + N = s

|k| + |M − N | �= 0

{µk,M,N }
)

‖F +‖ρ � 2ss!

�s+1
s

‖F +‖ρ, (46)

where �s is defined in (42).
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5.2. Bounds for G0 and Z

Now it is time to bound, in terms of ‖F 0‖ (see (11) for the definition of the norm), the solutions
for the projection of equation (16) into E0

s , namely G0 and Z.
We start bounding the solutions in E0,0,M,M of (30). To do this, we find two main

difficulties. On the one hand, we have to bound the solutions for the coefficients {g̃i,j } in (36)
and {ĝi,j } in (37) in terms of {f̃i,j } and {f̂i,j }, respectively (these coefficients give F̂ and Ĝ

expressed in powers of ξ , see (33) and (34)). On the other hand, we have to translate these
bounds into a bound for ‖Ĝ‖ in terms of ‖F̂‖ (recall that ‖Ĝ‖ and ‖F̂‖ are computed from
the coefficients of Ĝ and F̂ expressed in powers of (q, p)).

In what concerns {g̃i,j }, we have from (36) (recall also that g̃i,0 = 0, see remark 4.4),

M∑
i=0

M−i∑
j=0

|g̃i,j | �
M∑
i=1

M−i∑
j=0

|f̃i,j |. (47)

The control of the {ĝi,j } is more involved. It requires doing some work with the recursive
formula defining the solutions of (37).

Lemma 5.5. For the solutions of (37), we have

M∑
i=1

M−i∑
j=0

|ĝi,j | � 1

2

M−1∑
i=0

M−i∑
j=1

|f̂i,j |.

Proof. We consider system (37) for 0 � ν � M − 3 (the particular cases ν = M − 2 and
ν = M − 1 can be easily discussed, see remark 4.4). Thus, we obtain

ĝν+1,M−ν−1 = − 1

ν + M + 1
f̂ν,M−ν, ĝν+1,M−ν−2 = − 1

ν + M
f̂ν,M−ν−1,

plus the (backwards) recurrence

ĝν+1,µ−1 = − 1

2ν + µ + 1
f̂ν,µ − µ + 1

2ν + µ + 1
ĝν+1,µ+1, µ = 1, . . . , M − ν − 2.

By taking the complex modulus, we derive the recursive bounds

|ĝν+1,µ−1| � 1

2ν + µ + 1
|f̂ν,µ| + |ĝν+1,µ+1|, µ = 1, . . . , M − ν − 2.

Then, it can be easily checked by induction that the general term of the solution verifies:

|ĝν+1,µ−1| �
�(M−ν−µ)/2�∑

j=0

1

2ν + µ + 2j + 1
|f̂ν,µ+2j |, µ = 1, . . . , M − ν.

Moreover, we note that these inequalities also work for ν = M − 2 and ν = M − 1. Now, we
sum all those components for 1 � µ � M − ν, obtaining

M−ν∑
µ=1

|ĝν+1,µ−1| �
M−ν∑
µ=1

�(M−ν−µ)/2�∑
j=0

1

2ν + µ + 2j + 1
|f̂ν,µ+2j | =

M−ν∑
σ=1

�(σ + 1)/2�
2ν + σ + 1

|f̂ν,σ |

�
M−ν∑
σ=1

σ + 1

2(2ν + σ + 1)
|f̂ν,σ | � 1

2

M−ν∑
σ=1

|f̂ν,σ |.

The desired result follows at once by summing these bounds for 0 � ν � M − 1. �
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By combining (47) and lemma 5.5, we derive the following bound for the coefficients of
Ĝ in (34) in terms of those of F̂ in (33):

M∑
i=1

M−i∑
j=0

|ĝi,j | +
M∑

i=0

M−i∑
j=0

|g̃i,j | �
M∑

i=0

M−i∑
j=0

|f̂i,j | +
M∑
i=1

M−i∑
j=0

|f̃i,j |. (48)

Moreover, using lemma 5.5 we also can control the coefficients of the non-removable terms Ẑ

given in (38), obtaining that the same bound holds,

M∑
i=0

|Ẑi | �
M∑

i=0

|f̂i,0| +
M−1∑
ν=0

|ĝν+1,1| �
M∑

i=0

M−i∑
j=0

|f̂i,j | +
M∑
i=1

M−i∑
j=0

|f̃i,j |. (49)

The next step is to translate inequalities (48) and (49) into bounds for ‖Ĝ‖ and ‖Ẑ‖ as a
function of ‖F̂‖. It forces us to control the changes of variables that relate the coefficients of
these functions in powers of (q, p) with the ones in powers of ξ . It is done in lemma A.4, and
we obtain

‖Ĝ‖ � 2M‖F̂‖, ‖Ẑ‖ � 2M‖F̂‖.
To end this section we only have to consider the expressions of F 0, G0 and Z given in (39)

and (40), thus obtaining

‖G0‖ =
s/2∑
l=0

‖Ĝs/2−l‖ �
s/2∑
l=0

2s/2−l‖F̂s/2−l‖ � 2s/2
s/2∑
l=0

‖F̂s/2−l‖ = 2s/2‖F 0‖.

Analogously, we derive the bound ‖Z‖ � 2s/2‖F 0‖. Now, by joining these bounds with (46)
the proof of proposition 5.1 follows straightforwardly.

6. Bounds for the normalizing process

In this section we resume, from the quantitative point of view, the normalizing process for the
Hamiltonian H given in (19). The recursive formulae of proposition 3.3 provide us with a
closed algorithm to compute Gs and Zs as a function of the coefficients of the Hamiltonian
H . Moreover, proposition 5.1 gives bounds for the solutions Gs and Zs of the homological
equations (16) in terms of the bounds on Fs which, in view of the recursive formula (15), can
be computed from those on the previous solutions.

The target of the present section is to convert those recursive formulae into bounds for Gs

and Zs , for s � 3, depending only on initial data H and on s.

Proposition 6.1. We consider the Hamiltonian H given in (19), with H2 given in (20). We
suppose that H ∈ ES(ρ0, R0) for certain ρ0 > 0 and R0 > 0, with ‖H‖ρ0,R0 � cR2

0 , being
c � 1. Moreover, we assume that ω1/ω2 /∈ Q. We compute the functions Gs and Zs of
the normalizing process introduced in proposition 3.3, for s � 3, where equation (16) has
been solved as stated in proposition 4.1, according to the constructive method described in
section 4 and thus with the bounds given by proposition 5.1. Then, there exists λ > 1 (universal
constant) such that,

‖Gs‖3ρ0/4 � 1

2
(s − 1)!β3 · · · βs

λs−3cs−2�s−3
s

Rs−2
0

,

‖Zs‖ � 1

2
(s − 1)!β3 · · · βs−1

2s/2λs−3cs−2�s−3
s

Rs−2
0
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for any s � 3, with

βj := 2j j !

�
j+1
j

, �j := 4 +
4

eρ0

j−1∑
l=3

1

l
, j � 3, (50)

where �j is defined in (42).

The proof of proposition 6.1 is a straightforward consequence of lemmas 6.2 and A.5. First,
lemma 6.2 gives more precise quantitative information on the objects involved in the normal
form algorithm of proposition 3.3.

Lemma 6.2. With the same hypotheses of proposition 6.1, let us consider a fixed integer s � 3.
From this value of s we introduce

µs := ρ0

4
∑s−1

l=3 1/l

and define the s-depending quantities δ
(s)
j := µs/j , j = 3, . . . , s − 1. Then, we have the

following bounds for the algorithm given in proposition 3.3,

‖Hl,m‖
ρ0−δ

(s)
3 −···−δ

(s)
m+2

� bl,m

(l + m − 1)!

(l − 1)!
β3 · · · βm+2

3mcm+1�m
s

Rl+m−2
0

(51)

for any l � 3 and m � 0, with 3 � l + m � s, and for any k � 3 we have

‖Fk‖ρ0−δ
(s)
3 −···−δ

(s)
k−1

� ak

2
(k − 1)!β3 · · · βk−1

3k−3ck−2�k−3
s

Rk−2
0

, (52)

‖Gk‖ρ0−δ
(s)
3 −···−δ

(s)
k−1

� ak

2
(k − 1)!β3 · · · βk

3k−3ck−2�k−3
s

Rk−2
0

, (53)

‖Zk‖ � ak

2
(k − 1)!β3 · · · βk−1

2k/23k−3ck−2�k−3
s

Rk−2
0

, (54)

where βj , j = 3, . . . , s and �s are those in (50). The quantities {ak} and {bl,m} are defined
through the following recurrences:

ak = 23/2

6(k − 2)(k − 1)!

k−3∑
j=1

j (j + 2)!(k −j)!a2+j ak−j +
2

k − 2

k−2∑
j=1

j

(j + 1)!

b2+j,k−j−2

3j−1
, (55)

bl,m = 1

6m(l + m − 1)!

m∑
j=1

j (j + 2)!(l + m − j)!a2+j bl,m−j (56)

with a3 = 1 and bl,0 = 1 for any l � 3.

Remark 6.3. Again, several ‘abuses of notation’ have been done in the statement of lemma 6.2.
First, the definition of µs has no sense for s = 3, but in this case it plays no role. Moreover,
we have to understand that ρ0 − δ

(s)
3 − · · · − δ

(s)
2 equals to ρ0 and β3 · · · β2 = 1. Finally, we

recall that Zs = 0 if s is odd, but we have not taken advantage of this fact.

On its turn, lemma A.5 gives a geometrical bound for the quantities {ak} and {bl,m}, so
that ak � λ̃k−3 and bl,m � λ̃m, for certain λ̃ > 1 (see remark A.6 for a numerical value of
λ̃). From here, we deduce proposition 6.1 in an easy way, by taking λ := 3λ̃ (we observe that
δ

(s)
3 + · · · + δ

(s)
s−1 = ρ0/4 in (53)).

Next to that, we prove lemma 6.2. The precise statement and proof of lemma A.5 is given
in appendix A.
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Proof of lemma 6.2. We keep fixed the value of s � 3 along the proof, so that we can remove
the s-dependence from the notation (µ ≡ µs , δj ≡ δ

(s)
j , �s ≡ � and so on). Moreover, we

consider the following simplification for the notation of the domains. We define:

σ3 := ρ0, σj := ρ0 − δ3 − · · · − δj , j = 4, . . . , s − 1.

Now let us clarify the role of µ, � and of {δj } in the proof. Let us take fl ∈ El(ρ + δl) and
fm ∈ Em(ρ + δm), for certain ρ > 0 and l, m ∈ {3, . . . , s − 1}. Then, we have (see (7)),

‖{fl, fm}‖ρ �
(

m

2eδl

+
l

2eδm

+ 4lm

)
‖fl‖ρ+δl

‖fm‖ρ+δm
= lm�‖fl‖ρ+δl

‖fm‖ρ+δm
, (57)

where we have used lemma A.1 to bound the θ -derivatives and the norm of the product. Hence,
by choosing the values for {δj } of the statement, we have that � acts as a homogenization
factor for the norm of the Poisson bracket with respect to the degree of fl and fm. Finally, as
mentioned in remark 6.3, µ is selected so that σs−1 = 3ρ0/4.

The last observation before starting the proof refers to the bound on H . The hypothesis
‖H‖ρ0,R0 � cR2

0 and the definition Hl,0 = Hl imply (recall we are using a weighted norm),

‖Hl,0‖ρ0 = ‖Hl‖ρ0 � c

Rl−2
0

, l � 3. (58)

We perform the proof by induction on the following property:

Pµ := {(51) holds for any 3 � l + m � µ, m � 0;
(52), (53) and (54) hold for any 3 � k � µ}.

For µ = 3 it is clear that P3 is true. Indeed, H3,0 = H3, F3 = H3,0 and LH2G3 +Z3 = F3. Thus,

‖H3,0‖ρ0 � c

R0
, ‖F3‖ρ0 � c

R0

and by applying proposition 5.1 we obtain

‖Z3‖ = 0, ‖G3‖ρ0 � β3‖F3‖ρ0 � β3
c

R0
.

From here, P3 follows.
Now we suppose Pk−1 true, for certain k � 4, and we want to check that Pk also holds.

We start bounding Hl,m, with l + m = k (l � 3, m � 0). The case l = k and m = 0 is
clear from (58). Hence, we suppose m � 1 and we use formula (13) on Hl,m, thus obtaining
(see (57)),

‖Hl,m‖σm+2 �
m∑

j=1

j

m
(j + 2)(l + m − j)�‖G2+j‖σm+2+δ2+j

‖Hl,m−j‖σm+2+δl+m−j
. (59)

In order to use the inductive hypothesis Pk−1 on (59), we have to check that the domains where
we want to control the norms of G2+j and Hl,m−j , for j = 1, . . . , m, are contained inside the
domains for which we have the bounds given by Pk−1. For G2+j we need,

σm+2 + δj+2 � σj+1 ⇐⇒ δ3 + · · · + δj+2 � δ3 + · · · + δm+2.

It holds if 1 � j � m. For Hl,m−j the condition is

σm+2 + δl+m−j � σm−j+2 ⇐⇒ δ3 + · · · + δm−j+2 + δl+m−j � δ3 + · · · + δm+2.

The worst case for l is clearly when l = 3 (because δl decreases with l), so that we have to
check

δ3 + · · · + δm−j+2 + δm−j+3 � δ3 + · · · + δm+2.
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It is obviously true if 1 � j � m. Thus,

‖Hl,m‖σm+2 �
m∑

j=1

j

m
(j + 2)(l + m − j)�

a2+j

2
(j + 1)!β3 · · · β2+j

3j−1cj�j−1

R
j

0

× bl,m−j

(l + m − j − 1)!

(l − 1)!
β3 · · · βm−j+2

3m−j cm−j+1�m−j

R
l+m−j−2
0

� bl,m

(l + m − 1)!

(l − 1)!
β3 · · · βm+2

3mcm+1�m

Rl+m−2
0

,

where we have used that if 1 � j � m then β3 · · · β2+jβ3 · · · βm−j+2 � β3 · · · βm+2 (we observe
that βj is increasing as a function of j , see (50)) and the inductive definition of bl,m in (56).
Now it is the turn of Fk . Formula (15) gives

‖Fk‖σk−1 �
k−3∑
j=1

j (2 + j)(k − j)

k − 2
�‖G2+j‖σk−1+δ2+j

‖Zk−j‖ +
k−2∑
j=1

j

k − 2
‖H2+j,k−j−2‖σk−1 .

Again, to use the inductive bounds Pk−1 we require certain compatibility conditions on the
domains where the norms are evaluated:

σk−1 + δ2+j � σ1+j , j = 1, . . . , k − 3,

σk−1 � σk−j , j = 1, . . . , k − 2,

which are not difficult to verify. Then, we have

‖Fk‖σk−1 �
k−3∑
j=1

j

k − 2
(2 + j)(k − j)�

a2+j

2
(j + 1)!β3 · · · β2+j

3j−1cj�j−1

R
j

0

× ak−j

2
(k − j − 1)!β3 · · · βk−j−1

2(k−j)/23k−j−3ck−j−2�k−j−3

R
k−j−2
0

+
k−2∑
j=1

j

k − 2
b2+j,k−j−2

(k − 1)!

(j + 1)!
β3 · · · βk−j

3k−j−2ck−j−1�k−j−2

Rk−2
0

� ak

2
(k − 1)!β3 · · · βk−1

3k−3ck−2�k−3

Rk−2
0

.

Here we have used, in the first sum, that β3 · · · β2+jβ3 · · · βk−j−12(k−j)/2 � β3 · · · βk−123/2,
for 1 � j � k − 3. Indeed, the case j = k − 3 is clear and the other ones are easily proved
by observing that βj

√
2 � βj+1 for any j � 3 (see (50)), and hence β32(k−j−3)/2 � βk−j .

The increasing character of the sequence {βj } ends the proof. Moreover, in the second sum,
we have used that � > 1, c � 1 and β3 · · · βk−j � β3 · · · βk−1 for 1 � j � k − 2. Then, we
use the definition of ak in (55). Finally, the bounds on ‖Gk‖σk−1 and ‖Zk‖ are a straightforward
application of proposition 5.1. �

7. Bounds for the remainder of the normal form

We compute a finite order normalizing process for the (complexified) Hamiltonian H of (19).
Thus, we have a generating function G(r) = G3 + · · · + Gr , for a certain fixed order (degree)
r � 3, and the corresponding finite order normal form Z(r) = Z2 + · · · + Zr , with Z2 = H2,
according to the algorithm of proposition 3.3.
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Now, we consider the canonical transformation TG(r)H (see definition 3.1) or equivalently

H ◦ �
−χ(r)

ε=1 , with χ(r) = ∑r−2
s=1 sGs+2ε

s−1 (see remark 3.2), then

(TG(r)H)(θ, q, I, p) = H ◦ �
−χ(r)

ε=1 (θ, q, I, p) = Z(r)(q, I, p) + R(r)(θ, q, I, p), (60)

where from proposition 4.1 we have that Z(r) takes the form

Z(r)(q, I, p) = ω1I + iω2(q1p1 + q2p2) + q2p1 + Z(r)

(
I, q1p2,

i(q1p1 + q2p2)

2

)
, (61)

where Z(r)(u, v, w) is a polynomial of (standard) degree less than or equal to �r/2� in (u, v, w),
starting at degree two.

By applying proposition 6.1 we can derive bounds for Gs , 3 � s � r , as a function of
s and of some initial data on H . The purpose of this section is to use those bounds on Gs to
estimate the size of the remainder R(r) as a function of r and of the distance to the resonant
orbit.

Therefore, before doing that let us return to real variables. We recall that the complexified
Hamiltonian H of (19) has been obtained from H in (1), with ε = +1, by replacing the variables
(x, y) by (q, p) through the canonical change ϕ of (18). As the S-symmetries induced by the
complexification (see section 2) have been preserved by the normal from algorithm of section 4
(see proposition 4.1), we can go back to real variables by means of ϕ−1 (see remark 3.4). Hence,
equation (60) is converted into the real expression

H ◦ �
−(χ(r)◦ϕ−1)

ε=1 (θ, x, I, y) = Z(r) ◦ ϕ−1 + R(r) ◦ ϕ−1. (62)

Then, a bound for R(r) ◦ ϕ−1 is given by the next result.

Proposition 7.1. With the same hypotheses of proposition 6.1 and the notation above, we
also assume that the vector ω satisfies the Diophantine condition (3). Given any σ > 1 and
0 < ε′′ < ε′, all fixed, then there exists d̃ > 0, depending on ρ0, c, |ω1|, |ω2|, γ , τ , ε′ and ε′′,
such that if we define,

σ ′′ = min{1 − σ−1, (1 − σ−2)ρ0}, σ ′ = σ ′′

d̃ + σ ′′ , R̂(r) = σ−1σ ′R0

(r − 2)(τ+1+ε′)(r−2)/2
,

then, for any r � 3 and 0 < R � R̂(r),

(a) The canonical transformation �
−(χ(r)◦ϕ−1)

ε=1 is a real analytic diffeomorphism defined in the

domain D(σ−2ρ0/2, R̂(r)) (see (2)), with �
−(χ(r)◦ϕ−1)

ε=1 (D(σ−2ρ0/2, R)) ⊂ D(ρ0/2, σR).

(b) If we set �
−(χ(r)◦ϕ−1)

ε=1 − Id := (�(r), X (r), I(r), Y (r)), then we have �(r), X (r)
j , I(r), Y (r)

j

∈ E(σ−2ρ0/2, R̂(r)), j = 1, 2, verifying

‖�(r)‖σ−2ρ0/2,R � (1 − σ−2)ρ0

2
, ‖I(r)‖σ−2ρ0/2,R � (σ 2 − 1)R2,

‖X (r)
j ‖σ−2ρ0/2,R � (σ − 1)R, ‖Y (r)

j ‖σ−2ρ0/2,R � (σ − 1)R.

(c) The following bounds hold for the normal form and for the remainder:

‖Z(r) ◦ ϕ−1‖R � ‖H‖ρ0,R0 ‖R(r) ◦ ϕ−1‖σ−2ρ0/2,R � cR2
0

(
R

R̂(r)

)r+1

.

Proof. As the value of r � 3 is held fixed throughout this proof, the superscript ‘(r)’ will be
omitted in all the r-dependent expressions.
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Now, let us start describing the main trick in the proof (it has also been used in [12]).
After we have fixed the order r of the normal form, we can use the following process to
compute the remainder: we take Gs = 0 and Zs = Fs , for s > r , as solutions of (16), and thus
R = ∑

s>r Zs , according to the recurrences of proposition 3.3. Unfortunately, the bounds on
those recurrences provided by lemma 6.2 only apply if we consider the solution of (16) given
by proposition 4.1, but not if we set Gs = 0. Of course, we have the chance of still using the
recurrences of definition 3.1 and proposition 3.3 to bound the remainder, by adapting lemma 6.2
(see, for instance [7] for an example of this and [18] for the application of this methodology
to the present context). However, we have preferred to follow a different method, trying to
overcome the tedious estimates on the above mentioned algorithm.

Let us suppose it is proved that the canonical transformation �
−(χ◦ϕ−1)

ε=1 acts as described
in items (a) and (b) on the statement. Then, by using lemma A.2 and by taking (weighted)
norms on (60), we obtain:

‖H ◦ �
−(χ◦ϕ−1)

ε=1 ‖σ−2ρ0/2,R̂ = ‖Z ◦ ϕ−1‖R̂ + ‖R ◦ ϕ−1‖σ−2ρ0/2,R̂

� ‖H‖ρ0/2,σ R̂ � ‖H‖ρ0,R0 � cR2
0 .

This inequality gives bounds on the transformed Hamiltonian without doing estimates on the
normal form algorithm. A priori, this bound on R ◦ ϕ−1 does not look quite small, but we
recall that we know by construction that the Taylor expansion on (q, I, p) of the remainder
starts at degree r + 1. It gives item (c) on the statement. This fact is another of the advantages
of working with a weighted norm. Hence, the important point is to prove (a) and (b).

From lemma A.3 we know that the action of �
−(χ◦ϕ−1)

ε=1 can be discussed in terms of
bounds on the derivatives of χ̃(θ, x, I, y; ε) := χ ◦ ϕ−1. More precisely, we have to control
χ̃1 := χ̃(·; 1),

‖∂I χ̃1‖ρ0/2,σR �
r∑

s=3

s2

2
‖Gs ◦ ϕ−1‖3ρ0/4(σR)s−2,

‖∂θ χ̃1‖ρ0/2,σR �
r∑

s=3

4s

eρ0
‖Gs ◦ ϕ−1‖3ρ0/4(σR)s,

‖∂xj
χ̃1‖ρ0/2,σR �

r∑
s=3

s2‖Gs ◦ ϕ−1‖3ρ0/4(σR)s−1,

‖∂yj
χ̃1‖ρ0/2,σR �

r∑
s=3

s2‖Gs ◦ ϕ−1‖3ρ0/4(σR)s−1

for j = 1, 2. Thus, the key expression to be studied is, for any 0 < R � R̂,

g(σR) :=
r∑

s=3

s2‖Gs ◦ ϕ−1‖3ρ0/4(σR)s−2 �
r∑

s=3

2s/2 s

2
s!β3 · · · βsλ

s−3cs−2�s−3
s

(
σR

R0

)s−2

.

To derive this estimate we have used the bounds on ‖Gs‖3ρ0/4 coming from proposition 6.1.
Furthermore, we observe that the effect of ϕ−1 in the bounds can be controlled in terms of
the degree of Gs as ‖Gs ◦ ϕ−1‖3ρ0/4 � 2s/2‖Gs‖3ρ0/4. The control of the product β3 · · · βs is
carried out in lemma A.8 (see also lemma A.7). Moreover, we also have (see (50)),

�s = 4 +
4

eρ0

s−1∑
j=3

1

j
� 4 +

4

eρ0

∫ s−1

2

dx

x
= 4 +

4

eρ0
log

(
(s − 1)

2

)
.
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Thus, if dε′′ is the constant provided by lemma A.8 we obtain

g(σR) �
r∑

s=3

dε′′2s/2 s

2
s!λs−3cs−2

(
4+

4

eρ0
log

(
s − 1

2

))s−3

(s + 1)(τ+1+ε′′)(s+1)2/2

(
σR

R0

)s−2

�
r∑

s=3

d̃(s − 2)(τ+1+ε′)(s−2)2/2

(
σR

R0

)s−2

,

where d̃ is the value asked on the statement, whose existence is clear because ε′ > ε′′ (compare
with the determination of dε in the proof of lemma A.8). Now, we observe that from the
definition of R̂ we have

g(σ R̂) �
r∑

s=3

d̃(s − 2)(τ+1+ε′)(s−2)2/2

(
σ ′

(r − 2)(τ+1+ε′)(r−2)/2

)s−2

�
r∑

s=3

d̃(σ ′)s−2 � d̃
σ ′

1 − σ ′ = σ ′′.

Hence, from the definition of σ ′′ we obtain, for any 0 < R � R̂,

max

{
2

ρ0
‖∂I χ̃1‖ρ0/2,σR,

1

(σR)2
‖∂θ χ̃1‖ρ0/2,σR

}
� 1 − σ−2,

max
j∈{1,2}

{
1

σR
‖∂xj

χ̃1‖ρ0/2,σR,
1

σR
‖∂yj

χ̃1‖ρ0/2,σR

}
� 1 − σ−1.

Then, a direct application of lemma A.3 gives (a) and (b), ending the proof. �

Remark 7.2. The bound on the product β3 · · · βs provided by lemma A.8 is the key one in
the paper: it is responsible for the estimate of theorem 1.1 for the size of the remainder of the
normal form in terms of the Lambert function (instead of, for instance, an exponentially small
one). Thus, it is quite natural to wonder if (A3) can be improved. As discussed in remark A.9,
no remarkable improvement can be expected for this estimate.

8. Optimal normalization order

After section 7 we have identified the normal form up to any order and we have also controlled
the canonical normal form transformation. Hence, the only thing that remains to do before
proving theorem 1.1 is to ask the main question of this paper: we have to discuss, according
to the bound for R(r) given by proposition 7.1, what is the ‘optimal’ choice for r as a function
of the distance, R, to the resonant periodic orbit, in such a way that the remainder of the
normal form becomes as small as possible. The answer to this question is given by the next
proposition.

Proposition 8.1. With the same statement of proposition 7.1, let us consider a fixed ε, with
0 < ε′′ < ε′ < ε. If we select the order of the normal form, r , as a function of R so that
r = ropt(R), with

ropt(R) := 2 +

⌊
exp

(
W

(
log

(
1

R1/(τ+1+ε)

)))⌋
,

where W(·) verifies W(z) exp (W(z)) = z, for any z > 0 (see remark 1.2), then we obtain the
following estimate for the remainder of the (real) normal form (62),

‖Rropt(R) ◦ ϕ−1‖σ−2ρ0/2,R � Rropt(R)/2, 0 < R � R∗,
where R∗ depends on ρ0, R0, c, |ω1|, |ω2|, γ , τ , ε, ε′, ε′′ and σ .



Quantitative estimates around non-semi-simple resonance 1165

Proof. By using the definition of R̂(r) and part (c) of proposition 7.1, we obtain

‖R(r) ◦ ϕ−1‖σ−2ρ0/2,R � cR2
0

(
(r − 2)(τ+1+ε′)(r−2)/2R

σ−1σ ′R0

)r+1

, 0 < R � R̂(r).

Now, we define r0 as the first integer such that (r − 2)(ε
′−ε)(r−2)/2 � σ−1σ ′R0, and thus,

if r � r0,

‖R(r) ◦ ϕ−1‖σ−2ρ0/2,R � cR2
0((r − 2)(τ+1+ε)(r−2)/2R)r+1, 0 < R � R̂(r). (63)

Given any R > 0 fixed, we define the following function:

h(r) := log(cR2
0) +

(τ + 1 + ε)(r − 2)(r + 1)

2
log(r − 2) + (r + 1) log R,

which equals the logarithm of the present bound for ‖R(r) ◦ ϕ−1‖σ−2ρ0/2,R . What we want to
do is to minimize (as much as possible) h(r). Thus, we compute its derivative,

h′(r) = (τ + 1 + ε)(2r − 1)

2
log(r − 2) +

(τ + 1 + ε)(r + 1)

2
+ log R

and try to look for the value of r such that h′(r) = 0. It leads to a complicated expression, and
hence, we only consider the dominant part and then

(τ + 1 + ε)(r − 2) log(r − 2) + log R = 0

⇐⇒ log(r − 2) exp(log(r − 2)) = log

(
1

R1/(τ+1+ε)

)
,

which suggests the choice r = ropt(R) on the statement. For this (integer) value of r we have
(r−2)(τ+1+ε)(r−2) � 1/R, giving from (63) the bound for ‖R(r)◦ϕ−1‖σ−2ρ0/2,R on the statement
if R is small enough (we observe that the condition ropt(R) � r0 means R small enough). �

Remark 8.2. Now, we can compare proposition 8.1 with the context of an elliptic periodic
orbit of a real analytic three-degrees of freedom Hamiltonian (see (5) and text below). Of
course, we do not plan to give full details for the elliptic case, but a reader familiar with bounds
on normal forms will find no difficulties in filling the gaps. Thus, in the elliptic context we
obtain the same bounds for ‖Gs‖3ρ0/4 as in proposition 6.1, but by setting in (50)

β−1
j := min

k ∈ Z
3\{(0, 0, 0)}

|k2| + |k3| � j

{|〈k, ω〉|, 1}.

If ω is Diophantine, we have an estimate like βj � γ̃ −1j τ , j � 1 (compare with
lemma A.7). A re-formulation of proposition 7.1 using this estimate leads to an expression of
the form R̂(r) = b/rτ+1, for certain b > 0, from which follows a bound like ‖R(r)‖ρ0/4,R �
a(rτ+1R/b)r+1, with a > 0. Thus, an exponentially small estimate of the form ‖R(r)‖ρ0/4,R �
a exp(−(c/R)1/(τ+1)) is obtained for the remainder. This result coincides with the one of [6]
for an elliptic fixed point of a Hamiltonian system (obtained also using the Giorgilli–Galgani
algorithm), but did not match the exponent 2/(τ + 1) of [11], which has been obtained using a
different strategy to quantify the normal form, which cannot be applied to the present context
(read the reason in remark 5.2).

9. Proof of theorem 1.1

The last issue that remains is to prove theorem 1.1. The proof follows from propositions 7.1
and 8.1 (see also proposition 6.1). We take the real Hamiltonian H(θ, x, I, y) and consider
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the complexified one H(θ, q, I, p) = H ◦ϕ (see (18)). In order to apply the results mentioned
above, we set R0 := R(0)/

√
2 and c := max{‖H‖ρ0,R(0) /R2

0, 1}. Hence (see lemma A.2),

‖H‖ρ0,R0 = ‖H ◦ ϕ‖ρ0,R0 � ‖H‖ρ0,R(0) � cR2
0 .

Moreover, we choose (for example) ε′ = ε/2 and ε′′ = ε′/2, thus defining R∗ from

proposition 8.1. Now, if we set r := ropt(R) as a normalizing order, �(R) := �
−(χ(r)◦ϕ−1)

ε=1 ,
Z(R) := Z(r) ◦ ϕ−1 and R(R) := R(r) ◦ ϕ−1 (see (60)–(62)), we have that items (i)–(v) on
the statement of theorem 1.1 follow directly from propositions 7.1 and 8.1. In particular, we
observe that (61) gives the desired expression for the normal form if we use (23). Part (vi) is
a consequence of (v) and of the definition of ropt(R).
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Appendix A. Lemmata

In this appendix we include some of the technical results used throughout the paper that we
have preferred not to state in the body of the paper. Our idea has been to stress in the main part
of the paper the key points of the constructions we present, and to postpone the most technical
details till this section. We hope that this presentation helps to add to the readability of the
paper.

In the first three results, that are given without proof, we want to survey some basic
properties of the weighted norms introduced in section 2. The proof of lemma A.1 is quite
direct and the proof of lemma A.2 is not difficult using lemma A.1 (just expand and bound).
The proof of lemma A.3 is more delicate, but it is very similar to a result that is well known
in terms of the supremum norm (see, for instance [5]). The differences refer to the use of the
weighted norm instead of the supremum one when bounding the composition of functions (we
have to use lemma A.2) and thus we also omit the proof (just bound the integral expressions
given by the solutions of the flow). For full details, see [18].

Lemma A.1. Let f, g ∈ E(ρ, R), and 0 < δ � ρ. Then we have:

(i) ‖f · g‖ρ,R � ‖f ‖ρ,R · ‖g‖ρ,R, (ii) ‖∂θf ‖ρ−δ,R � ‖f ‖ρ,R

δe
.

Moreover, analogous properties can be generalized to the norms ‖ · ‖ρ and ‖ · ‖ in Es(ρ) and
Cs[q, I, p], respectively.

Lemma A.2. Let us take 0 < ρ0 < ρ and 0 < R0 < R and consider the analytic functions
�, I, Qj and Pj , j = 1, 2, all belonging to E(ρ0, R0) and verifying ‖�‖ρ0,R0 � ρ − ρ0,
‖I‖ρ0,R0 � R2 and maxj=1,2{‖Qj‖ρ0,R0 , ‖Pj‖ρ0,R0} � R. Then, given any f ∈ E(ρ, R),
the function F(θ, q, I, p) defined by F := f (θ + �, Q, I, P), with Q = (Q1, Q2) and
P = (P1, P2), is such that F ∈ E(ρ0, R0) and ‖F‖ρ0,R0 � ‖f ‖ρ,R .

Lemma A.3. Let χ̃(θ, x, I, y; ε) be a real analytic function of the form

χ̃ =
∑
s�1

χ̃s+2ε
s−1
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with χ̃j ∈ Ej (ρ), j � 3, for certain ρ > 0. Given R > 0, we define

δ := 1

ρ
‖∂I χ̃|ε=1‖ρ,R,

α := max
j∈{1,2}

{
1

R
‖∂xj

χ̃|ε=1‖ρ,R,
1

R
‖∂yj

χ̃|ε=1‖ρ,R

}
,

β := 1

R2
‖∂θ χ̃|ε=1‖ρ,R

and suppose that δ, α, β < 1. Then, the canonical transformation �−χ̃
ε , defined as the flow

time ε of the non-autonomous Hamiltonian −χ̃ (the time is ε) is a real analytic diffeomorphism,
defined in D(ρε, Rε), with

ρε = (1 − |ε|δ)ρ and Rε = min{1 − |ε|α,
√

1 − |ε|β}R
for any −1 � ε � 1, and such that �−χ̃

ε (D(ρε, Rε)) ⊂ D(ρ, R). Moreover, if we set
�−χ̃

ε − Id := (�(ε), X (ε), I(ε), Y (ε)), then �(ε), X (ε)
j , I(ε), Y (ε)

j ∈ E(ρε, Rε), j = 1, 2, with

‖�(ε)‖ρε,Rε
� |ε|δρ, ‖I(ε)‖ρε,Rε

� βR2, ‖X (ε)
j ‖ρε,Rε

� αR, ‖Y (ε)
j ‖ρε,Rε

� αR.

The remaining results of this section, lemmas A.4, A.5, A.7 and A.8, are technical lemmas
used throughout the paper.

Lemma A.4. Let f ∈ E0,0,M,M with M ∈ N (see section 2). We consider the following
equivalent expressions for f (see (31)–(33)),

f =
M∑

m=0

M∑
n=0

fm,nq
m
1 qM−m

2 pM−n
1 pn

2

=
M∑

i=0

ηi
1

M−i∑
j=0

fM−j,i+j η
M−i−j

3 η
j

4 +
M∑
i=1

ηi
2

M−i∑
j=0

fM−i−j,j η
M−i−j

3 η
j

4

=
M∑

i=0

ξ i
1

M−i∑
j=0

f̂i,j ξ
M−i−j

3 ξ
j

4 +
M∑
i=1

ξ i
2

M−i∑
j=0

f̃i,j ξ
M−i−j

3 ξ
j

4 ,

where η1 = ξ1 = q1p2, η2 = ξ2 = q2p1, η3 = q1p1, η4 = q2p2, ξ3 = i(q1p1 + q2p2)/2 and
ξ4 = (q1p1 − q2p2)/2. Then, we have:

M∑
m=0

M∑
n=0

|fm,n| �
M∑

i=0

M−i∑
j=0

|f̂i,j | +
M∑
i=1

M−i∑
j=0

|f̃i,j | � 2M

M∑
m=0

M∑
n=0

|fm,n|.

Proof. We denote by f̃ ≡ f̃ (η) and f̂ ≡ f̂ (ξ) the polynomial expressions of f ≡ f (q, p)

in powers of η = (η1, η2, η3, η4) and ξ = (ξ1, ξ2, ξ3, ξ4) as given in the statement, with
f̃ ∈ CM [η] and f̂ ∈ CM [ξ ]. Thus, we have that f , f̃ and f̂ represent the same function but
expressed in different variables. We observe that if we compute the absolute norms ‖f (q, p)‖,
‖f̃ (η)‖ and ‖f̂ (ξ)‖ (see (11)), using their expansions in powers of the corresponding variables,
we obtain:

‖f (q, p)‖ = ‖f̃ (η)‖ =
M∑

m=0

M∑
n=0

|fm,n|, ‖f̂ (ξ)‖ =
M∑

i=0

M−i∑
j=0

|f̂i,j | +
M∑
i=1

M−i∑
j=0

|f̃i,j |.
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Now, we consider ξ as a function of (q, p), ξ ≡ ξ(q, p), so that ξj (q, p) ∈ C2[q, p],
j = 1, . . . , 4. Thus, using the multiplicative character of the ‖ · ‖-norm (see lemma A.1) and
‖ξj (q, p)‖ = 1,

‖f (q, p)‖ = ‖f̂ (ξ(q, p))‖ �
M∑

i=0

‖ξ1(q, p)‖i

M−i∑
j=0

|f̂i,j |‖ξ3(q, p)‖M−i−j‖ξ4(q, p)‖j

+
M∑
i=1

‖ξ2(q, p)‖i

M−i∑
j=0

|f̃i,j |‖ξ3(q, p)‖M−i−j‖ξ4(q, p)‖j = ‖f̂ (ξ)‖.

This gives the first inequality on the statement. Now, we consider η ≡ η(ξ) and compute

‖f̂ (ξ)‖ = ‖f̃ (η(ξ))‖ �
M∑

i=0

‖η1(ξ)‖i

M−i∑
j=0

|fM−j,i+j |‖η3(ξ)‖M−i−j‖η4(ξ)‖j

+
M∑
i=1

‖η2(ξ)‖i

M−i∑
j=0

|fM−i−j,j |‖η3(ξ)‖M−i−j‖η4(ξ)‖j � 2M‖f (q, p)‖,

because ηj (ξ) ∈ C1[ξ ] with ‖ηj (ξ)‖ � 2, j = 1, . . . , 4. This ends the proof. �

Lemma A.5. We consider the recurrences for {ak}k�3 and {bl,m}l�3,m�0 introduced in (55)
and (56) (see lemma 6.2). Then, there exists λ̃ > 1 such that ak � λ̃k−3 and bl,m � λ̃m.

Proof. We proceed by induction with respect to µ ≡ k − 3 ≡ m, for µ � 0. We observe that
this approach is coherent with the two recurrences because bl,m (it means µ = m) depends on
a3, . . . , am+2, bl,0, . . . , bl,m−1 (it means µ � m − 1), and ak (it means µ = k − 3) depends on
a3, . . . , ak−1, bk,0, . . . , b4,k−4 (it means µ � k − 4) and also on b3,k−3, which corresponds to
the same inductive case than ak , µ = k − 3, but whose computation only requires data from
the previous cases, µ � k − 4.

The case µ = 0 is trivial. Let us suppose now that such a value of λ̃ exists up to order
µ − 1 and we check the case µ ≡ k − 3 ≡ m, with µ � 1. We have

ak � λ̃k−3


 23/2λ̃−1

6(k − 2)(k − 1)!

k−3∑
j=1

j (j + 2)!(k − j)! +
2

k − 2

k−2∑
j=1

j

(j + 1)!

(
1

3λ̃

)j−1

 ,

(A1)

bl,m � λ̃m


 λ̃−1

6m(l + m − 1)!

m∑
j=1

j (j + 2)!(l + m − j)!


 . (A2)

Hence, the conditions that we have to impose on λ̃ become clear: we want λ̃ > 1 such that the
expressions between brackets in (A1) and (A2) are both less than or equal to one.

We consider first (A2). As we have to deal with values of l � 3, we have:

1

m(l + m − 1)!

m∑
j=1

j (j + 2)!(l + m − j)! � 1

m(m + 2)!

m∑
j=1

j (j + 2)!(m + 3 − j)! := �m,

because the case l = 3 is the one that gives the worst possibility for this expression. Now,
we observe that the term in the sum defining �m corresponding to the index j contains a
product of two factorial, given by (j + 2)!(m + 3 − j)!, that does not change if we replace j

by m − j + 1. This motivates us to consider a different alignment for the sum, by joining the
contribution of both terms. To do this, we have to distinguish between the cases m even and
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m odd. If m is even,

�m = m + 1

m

m/2∑
j=1

(j + 2)!(m + 3 − j)!

(m + 2)!
� 3

2

+∞∑
j=1

(j + 2)!(j + 3)!

(2j + 2)!
:= A< +∞,

where we have used that the quotient (m + 3 − j)!/(m + 2)! is decreasing as a function of m,
and thus, we can bound it by replacing m in the sum by the first value of m for which the
script j appears in the sum, that is, m = 2j . Then, we only have to bound it for m � 2.

If m is odd then the indexes j = (m + 1)/2 and m − j + 1 are coincident, but we obtain
an upper bound for �m counting twice their contribution. Hence,

�m � m + 1

m

(m+1)/2∑
j=1

(j + 2)!(m + 3 − j)!

(m + 2)!
� 2

+∞∑
j=1

(j + 2)!(j + 2)!

(2j + 1)!
:= B < +∞,

using analogous arguments as in the previous bound and that m � 1.
The control of the first sum inside the brackets of (A1) is very similar to the control of

�m, and we omit the details. We only mention that if we set C := max{(2/3)A, (3/4)B}, then

1

(k − 2)(k − 1)!

k−3∑
j=1

j (j + 2)!(k − j)! � C, k � 4.

Finally, the second sum inside the brackets of (A1) verifies:

2

k − 2

k−2∑
j=1

j

(j + 1)!

(
1

3λ̃

)j−1

� f

(
1

3λ̃

)
� f

(
1

3

)
= 9 − 6e1/3 := D < 1, k � 4,

where

f (x) :=
+∞∑
j=1

j

(j + 1)!
xj−1 = (x − 1)ex + 1

x2

is positive and strictly increasing for x � 0.
Thus, it is clear that we can define λ̃ > 1 as λ̃ := max{23/2C/(1 − D), A, B}/6. �

Remark A.6. The sums defining A and B can be expressed in terms of hypergeometric
functions so that a numerical value for them can be easily computed. Thus, we obtain the
following numerical estimate for λ̃ = 20.362 07. . ..

Lemma A.7. Let ω = (ω1, ω2) ∈ R2 verify the Diophantine condition (3), that is, |〈k, ω〉| �
γ |k|−τ

1 , ∀k ∈ Z2\{(0, 0)}. Then, we have the following estimate for the quantities �s defined
in (42),

�s := min
k ∈ Z

2\{(0, 0)}
|k2| � s

{|〈k, ω〉|, 1} � γ̃ s−τ , s � 1,

where 0 < γ̃ � 1 is given by γ̃ := min{(3/2 + |ω2/ω1|)−τ γ, |ω1|, 1}.

Proof. We only have to take the minimum of the following two cases:

• If 0 < |k2| � s, then there is a sole k1 ∈ Z such that |k1 + k2ω2/ω1| � 1/2. This k1

verifies

|k1| �
∣∣∣∣k1 +

k2ω2

ω1

∣∣∣∣ +

∣∣∣∣k2ω2

ω1

∣∣∣∣ � 1

2
+ |k2|

∣∣∣∣ω2

ω1

∣∣∣∣ .
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Thus, using the Diophantine condition (3) we obtain,

min
k1∈Z

{|〈k, ω〉|} � γ

(
1

2
+ |k2|

∣∣∣∣ω2

ω1

∣∣∣∣ + |k2|
)−τ

� γ̃ |k2|−τ � γ̃ s−τ .

• If k2 = 0, |〈k, ω〉| = |k1ω1| � |ω1| � γ̃ s−τ

and then the proof is complete. �

Lemma A.8. With the same hypotheses of lemma A.7, we consider the quantities βj :=
2j j !/�

j+1
j , defined in (50). Then, given any ε > 0, there is a constant dε ≡ dε(γ̃ , τ ),

such that

β3 · · · βs � dε(s + 1)(τ+1+ε)(s+1)2/2, s � 3. (A3)

Proof. Applying lemma A.7 on the definition of βj , 3 � j � s, we have,

β3 · · · βs � 23+···+s γ̃ −4−···−(s+1)[34 · · · ss+1]τ 3! · · · s!.

Now, we use Stirling’s formula, j ! = √
2πjj+1/2e−j+ξj /(12j), with 0 < ξj < 1, thus obtaining:

β3 · · · βs � 2−3+s(s+1)/2e3−s(s+1)/2γ̃ 6−(s+1)(s+2)/2(
√

2πe1/36)s−2(s!/2)τ+1/2[33 · · · ss]τ+1.

Moreover,

33 · · · ss = exp


 s∑

j=3

j log j


 � exp

(∫ s+1

3
x log x dx

)
= e9/4

39/2

(s + 1)(s+1)2/2

e(s+1)2/4
,

where we have used that f (x) := x log x is increasing if x � 3. Now, if we combine all:

β3 · · · βs � (2/e)−3+s(s+1)/2

γ̃ −6+(s+1)(s+2)/2
(
√

2πe1/36)s−2

(
s!

2

)τ+1/2
(

e9/4

39/2

(s + 1)(s+1)2/2

e(s+1)2/4

)τ+1

.

Then, it is clear that lims→+∞(β3 · · · βs)(s + 1)−(τ+1+ε)(s+1)2/2 = 0, showing the existence
of dε. �

Remark A.9. As has been pointed in remark 7.2, the estimate (A3) is a very important one.
Let us define

αs := log(β3 · · · βs)

s2 log s
.

Then, numerics suggests that for a Diophantine vector ω ∈ R2 the behaviour

lim sup
s→+∞

αs = α

for certain α > 0, is the correct one. Thus, no remarkable improvement can be
expected for (A3). The most simple case is when ω1 = 1 and ω2 = (

√
5 − 1)/2 (the

golden mean), for which lims→+∞ αs can be easily computed. Indeed, by using Stolz criteria
and Stirling’s formula we have that if

lim
s→+∞

1

2

(
1 − log �s

log s

)
exists, then it is equal to α. To compute this limit, one proceeds as follows. Let us denote by
{Fk}k�1 the Fibonacci numbers. From the well-known Diophantine properties of the golden
mean we have that there exists γ > 0 making the approximation

�Fk
= |Fk−1 − ω2Fk| ≈ γF−1

k+1,
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Figure A1. αs (vertical axis) plotted with respect to s (horizontal axis in logarithmic scale).

asymptotically valid for large values of k (recall the definition of �s in (42)). With the above
expression in mind

lim
k→+∞

log �k

log Fk

= − lim
k→+∞

log Fk+1

log Fk

= −1.

To extend this limit to non-Fibonacci numbers let Fk(s) be, for a given s, the largest Fibonacci
number not bigger than s, so Fk(s) � s < Fk(s)+1. Hence,

log �Fk(s)+1

log Fk(s)+1
� log �s

log s
�

log �Fk(s)

log Fk(s)

.

But k(s) → ∞ as s does, giving α = 1 (recall we can take τ = 1 for ω = (1, (
√

5 − 1)/2).
In figure A1 we plot αs as a function of log s for values of s from 5 × 104 to 1 × 106.
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[11] Jorba À and Villanueva J 1997 On the normal behavior of partially elliptic lower-dimensional tori of Hamiltonian
systems Nonlinearity 10 783–822
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