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Abstract We compute invariant Lagrangian tori of analytic Hamiltonian systems
by the parameterization method. Under Kolmogorov’s non-degeneracy condition, we
look for an invariant torus of the system carrying quasi-periodic motion with fixed
frequencies. Our approach consists in replacing the invariance equation of the parame-
terization of the torus by three conditionswhich are altogether equivalent to invariance.
We construct a quasi-Newton method by solving, approximately, the linearization of
the functional equations defined by these three conditions around an approximate
solution. Instead of dealing with the invariance error as a single source of error, we
consider three different errors that take account of the Lagrangian character of the
torus and the preservation of both energy and frequency. The condition of conver-
gence reflects at which level contributes each of these errors to the total error of the
parameterization. We do not require the system to be nearly integrable or to be written
in action-angle variables. For nearly integrableHamiltonians, the Lebesguemeasure of
the holes between invariant tori predicted by this parameterization result is ofO(ε1/2),
where ε is the size of the perturbation. This estimate coincides with the one provided
by the KAM theorem.
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1 Introduction

The study of the existence of Lagrangian invariant tori of Hamiltonian systems, carry-
ing quasi-periodic motion, is an outstanding problem of the dynamical systems since
the pioneering work of Kolmogorov. In Kolmogorov (1979), Kolmogorov considered
a real analytic integrable Hamiltonian for which the frequency map verifies appro-
priate non-resonance and non-degeneracy conditions for some value of the action
variables. If the system has r degrees of freedom, the non-resonance condition is that
the corresponding frequency vector ω ∈ R

r is Diophantine, i.e.

|〈k, ω〉| ≥ γ |k|−ν
1 , ∀k ∈ Z

r \ {0}, (1)

for some ν ≥ r − 1 and γ > 0, where |k|1 = |k1| + · · · + |kr |. Hence, the inte-
grable Hamiltonian has a Lagrangian invariant torus carrying quasi-periodic motion
with frequencies ω. Non-degeneracy means that the frequency map of the integrable
system is a local diffeomorphism between actions and frequencies around the selected
action. This latter fact is usually referred to as Kolmogorov’s non-degeneracy condi-
tion. Kolmogorov’s theorem states that this torus persists, slightly deformed, under
small analytic Hamiltonian perturbations. The invariant torus of the nearly integrable
system also carries quasi-periodic motion with frequencies ω. The proof of this result
is performed in Kolmogorov (1979) through the application of a sequence of canonical
transformations to the nearly integrable system, with (almost) quadratic rate of conver-
gence. This process leads to a limit Hamiltonian with a specific form—Kolmogorov’s
normal form—in which the invariant torus also corresponds to a constant value of the
action variables.

Assuming that the frequencymap of the integrable systemdefines a diffeomorphism
in an open set for the action variables, Arnol’d addressed in Arnold (1963) a global
version of Kolmogorov’s theorem. Since Moser investigated in Moser (1962) the
persistence of quasi-periodic invariant curves of finitely differentiable planar maps,
the result of Arnold (1963) is referred to as the KAM theorem and is regarded as one
of the most celebrated results of the mechanics. The extension of the KAM theorem to
several contexts, as well as the investigation of related results, has led to a very fruitful
field of research. There are several nice surveys of KAM theory in the literature
(e.g. Broer et al. 2010; de la Llave 2001).

The KAM theorem states that there is a Cantor-like subset of the phase space filled
by Lagrangian invariant tori of the nearly integrable Hamiltonian. These tori carry
quasi-periodic motion and frequency change with the torus. The Lebesgue measure of
the set defined by the holes between invariant tori is bounded from above byO(ε1/2),
where ε is the size of the non-integrable perturbation (e.g. Neı̆shtadt 1981; Pöschel
1982). This estimate cannot be improved in general. The proof of the KAM theorem
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in Arnold (1963) is also performed through a quadratically convergent sequence of
canonical transformations. The limit Hamiltonian of this process is integrable, but it
is only defined for a Cantor set of actions. The frequencies associated with the limit
Hamiltonian verify the Diophantine conditions (1), with γ bounded from below by
O(ε1/2). Therefore, within the framework of the KAM theorem, the lower bound on
γ guaranteeing persistence of the torus of frequencies ω of the integrable system is
directly related to the upper bound of the Lebesgue measure of the complementary of
the Cantor set filled by the surviving tori.

The strategy to build the sequence of canonical transformations leading to Kol-
mogorov’s normal form (for a specific torus of the nearly integrable system) is different
from the KAM theorem. Kolmogorov’s normal form is defined only on a neighbour-
hood of the selected torus, but it is still given by an analytic Hamiltonian. Hence, it is
not uncommon that KAM and Kolmogorov’s theorems end up giving lower bounds
for γ of different order with respect to ε, when discussing the persistence of a specific
torus of the integrable system. Indeed, the reduction of the nearly integrable system
to Kolmogorov’s normal form requires solving two coupled small divisor equations
(usually referred to as cohomological equations) at each iteration. The reduction to
an integrable system on a Cantor set of the KAM theorem involves a single small
divisor equation at each step. The quantitative estimates of the solution of each small
divisor equation involve a division by γ . For this reason, if we study the persistence
of a torus of frequencies ω of the integrable system, by the reduction to Kolmogorov’s
normal form, the natural lower bound for γ ensuring persistence turns out to be of
O(ε1/4). This is the lower bound on γ that follows from Kolmogorov (1979) as well
as the one obtained by several authors in subsequent proofs of Kolmogorov’s theorem
(e.g. Benettin et al. 1984). Indeed, it is necessary to carry out elaborate estimates on
the reduction to Kolmogorov’s normal form (see Villanueva 2008) to show that it
converges under a lower bound for γ of O(ε1/2).

Since the primary purpose of this work is to adapt to parameterization methods
both the result and the methodology of Villanueva (2008), we summarize the main
aspects taken into account in Villanueva (2008). First, we note that the distance of a
Hamiltonian to Kolmogorov’s normal form has two natural sources of error. One error
term is zero when the torus defined by a constant value of the actions is invariant.
The other error term vanishes when the dynamics on this invariant torus is quasi-
periodic. The distance toKolmogorov’s normal is typically controlled by themaximum
size of both errors. In Villanueva (2008), these error terms are dealt with separately.
Indeed, the proof takes advantage of the triangular structure of the cohomological
equations to define a normalized error that behaves appropriately. Second, canonical
transformations and transformed Hamiltonians are written using explicit formulas, as
compact as possible. Finally, the expressions of the cohomological equations are used
to rewrite some components of the errors after each iteration in terms of the errors of
the previous step, rather than in terms of the solutions of these equations.

The reduction to Kolmogorov’s normal form is better suited to applications than the
KAM theorem, for both performing numerical computations and rigorous verification
of the persistence of a specific torus (e.g. Gabern et al. 2005; Locatelli and Giorgilli
2001). However, dealing with Kolmogorov’s normal form still presents some draw-
backs. Kolmogorov’s theorem does not require the system to be nearly integrable,
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since it can be applied to any Hamiltonian defined as a small perturbation of Kol-
mogorov’s normal form. But the Hamiltonian should be expressed in terms of an
appropriate system of action-angle coordinates. The celebrated Liouville–Arnol’d the-
orem ensures that these coordinates exist for any integrable Hamiltonian with bounded
solutions. Actually, a set of action-angle coordinates can always be introduced around
any Lagrangian torus, so that it corresponds to a constant value of the actions (see Perry
and Wiggins 1994). Although this local result is enough within the present context,
building a system of action-angle variables around a specific torus may be computa-
tionally very expensive. We refer the reader to Jorba and Villanueva (1998) for the
explicit construction of a system of action-angle-like coordinates around a periodic
orbit of a Hamiltonian system. A second drawback of Kolmogorov’s normal form
is that we should perform a sequence of canonical transformations. If we are only
interested in computing the parameterization of a specific invariant torus, but we do
not need the normalized expression of the Hamiltonian around it, introducing action-
angle coordinates and using transformation theory appear to be a huge effort in order
to obtain the parameterization.

In de la Llave et al. (2005), it introduced a new method for addressing the persis-
tence of Lagrangian tori of analytic Hamiltonian system, that avoids using canonical
transformations. This result can be regarded as the extension of ideas previously devel-
oped by several authors (e.g. Celletti and Chierchia 1997; Jorba et al. 1999; Moser
1966a, b; Rüssmann 1976; Salamon and Zehnder 1989; Zehnder 1976). The approach
of de la Llave et al. (2005) consists in finding the parameterization of the torus by
solving the corresponding invariance equation. The parameterization is defined as
an embedding τ of the standard torus Tr = (R/2πZ)r in the phase space R

2r . If
ω ∈ R

r is the frequency vector of the torus, then the invariance equation is that the
pullback by τ of the dynamics is the quasi-periodic linear flow of Tr defined by ω.
Under Kolmogorov’s non-degeneracy condition, this nonlinear PDE for τ is solved
by a quasi-Newton method. The proof is constructive and takes advantage of the geo-
metric and dynamical properties of Hamiltonian systems to solve, approximately, the
linearized equations of the Newton method. Hence, only the parameterization is cor-
rected iteratively, but not the Hamiltonian. This construction is usually referred to as
the parameterization method in KAM theory.

The parameterization method does not require the Hamiltonian to be neither nearly
integrable, nor to be written in action-angle variables. Indeed, this approach is referred
in de la Llave et al. (2005) as KAM theory without action-angle variables. It is only
necessary to know a good enough approximation to the parameterization of the invari-
ant torus. Quantitatively, the convergence condition is satisfied if γ −4ρ−4νε is small
enough, i.e. if γ is bounded from below by an expression of O(ε1/4). Here, ε is the
size of the invariance error of the initial approximation and ρ is the width of the strip
of analyticity around Tr of this initial parameterization. If the Hamiltonian is a pertur-
bation of a system (not necessarily integrable) for which an invariant torus is known,
then it is easy to realize that ε is directly related to the size of the perturbation.

The presentation of de la Llave et al. (2005) is performed for both Hamiltonian
systems and exact symplectic maps (the discrete-time version of Hamilton’s mechan-
ics). Later on, the foundation ideas of the parameterization method for Lagrangian
tori have been extended to several contexts, such as lower-dimensional (isotropic)
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tori that are hyperbolic or elliptic, non-twist invariant tori in degenerate systems and
dissipative (conformally symplectic) systems (e.g. Calleja et al. 2013; Fontich et al.
2009; González-Enríquez et al. 2014; Luque and Villanueva 2011). The result of de
la Llave et al. (2005), combined with analytic smoothing techniques, has been used
to address the existence of invariant tori of finitely differentiable symplectic maps
(see González and de la Llave 2008). The parameterization method leads to very
efficient algorithms for computing invariant tori (e.g. Calleja and de la Llave 2010;
Huguet et al. 2012). Moreover, if we want to prove the existence of a specific torus
in the framework of computer-assisted proofs (CAPs), parameterization methods per-
form better than results based on transformation theory (e.g. Haro et al. 2016). In
order to carry out the rigorous verification of the result of de la Llave et al. (2005),
the Fourier expansion of an approximate parameterization may be obtained by means
of any numerical method for computing Lagrangian tori (see Luque and Villanueva
2016 for an overview of methods). For a detailed exposition of the performances of
the parameterization method in the KAM theory, we refer the reader to the recent
survey (Haro et al. 2016).

In this paper, we present a new approach to the parameterization method for
Lagrangian tori of Hamiltonian systems. Our starting point is the same as in de la
Llave et al. (2005), but instead of dealing directly with the invariance equation, we
address the persistence of the torus in terms of a set of three different equations for
the parameterization. Separately, each of these equations is apparent when the torus
is invariant. Altogether, these three equations are equivalent to invariance. The iter-
ative scheme is constructed by solving these functional equations simultaneously by
a quasi-Newton method. This indirect approach is motivated by our feeling that, if
we address the computation of the torus in terms of the invariance equation for of
the parameterization, then it is very tough to obtain sharp estimates. Indeed, there are
some components of the invariance error after each iteration that are difficult to bound
accurately, unless you have accurate bounds of some projections of the invariance
error at the previous step.

The selected conditions for the parameterization have very clear geometric and
dynamical meaning and are easy to relate to Kolmogorov’s normal form. The first one
is that the torus belongs to some energy level set of the Hamiltonian. The second one
implies that the torus is a Lagrangianmanifold. The third condition is that the dynamics
on the torus is quasi-periodic. If theHamiltonian is ε-close to one forwhich an invariant
torus is known, then the size of the error associated with each of the selected equations
is ofO(ε). Roughly speaking, the convergence condition in this perturbative scenario is
γ −2ρ−2ν−1ε sufficiently small. However, the convergence condition of Theorem 2.6
is a little more involved, since it reflects the separate contribution of each of these
three errors to the total error of the initial approximation. Besides decomposition of
the error, for the presented construction we also adapt the idea of Villanueva (2008) of
using expressions as compact as possible for the involved objects. In particular, with
compactness we mean that to define the sequence of parameterizations of the quasi-
Newton method we replace, where possible, addition of functions by composition
of functions. Indeed, the cohomological equations to be solved at each iteration are
equivalent to those of de la Llave et al. (2005), but the sequence of parameterizations
is not the same.

123



500 J Nonlinear Sci (2017) 27:495–530

The contents of the paper are organized as follows. In Sect. 2, we present some basic
notations and definitions and we state the main result of the paper (Theorem 2.6). Our
approach to the parameterization method is introduced in Sect. 3 (see Remark 3.4 for
the description of one step). Section 4 is devoted to the proof of Theorem 2.6.

2 Statement of the Main Result

Let h = h(z) be a real analytic Hamiltonian with r degrees of freedom, where the
coordinates z = (x, y) ∈ R

2r are symplectic with respect to the two-form dx ∧ dy.
Although we can easily address the problem when some of the variables are angular
coordinates (see Remark 2.2), we restrict the presentation to Hamiltonians written in
Cartesian coordinates. The crucial point that we want to stress here is that we do not
need any angular coordinate inherent to the system to parameterize the tori. We do not
assume that h has any specific form. In particular, we do not need to know whether h
is nearly integrable or not. The Hamilton equations for h are ż = J∇h(z), where ∇
stands for the gradient operator and J is the matrix representation of the symplectic
two-form, i.e.

J =
(

0 Idr
−Idr 0

)
,

For further uses, we recall that J verifies J	 = −J and J 2 = −Id2r = −Id.
Given a Diophantine frequency vector ω ∈ R

r , we are concerned with the exis-
tence of an invariant torus of h (of dimension r ) carrying quasi-periodic motion
with frequencies ω. Specifically, we seek a parameterization of this torus defined
on T

r = (R/2πZ)r . Next, we introduce some notations and basic properties to be
used throughout the paper (see de la Llave et al. 2005 for more details).

Definition 2.1 Let T ⊂ R
2r be a real analytic torus of dimension r and τ : Tr → R

2r

be an analytic parameterization of T (i.e. τ is an embedding between T
r and T =

τ(Tr )). We introduce the matrix functions

N (θ) = (Dτ(θ))	Dτ(θ), 
(θ) = (Dτ(θ))	 J Dτ(θ), θ ∈ T
r , (2)

where Dτ is the Jacobian matrix of τ . Hence, N is the matrix representation of the
pullback by τ of the standard scalar product and 
 is the matrix representation of the
pullback by τ of the symplectic form. Specifically, τ ∗(〈·, ·〉)(θ)[u, v] = u	N (θ)v

and τ ∗(dx ∧ dy)(θ)[u, v] = u	
(θ)v. Since T is a non-degenerate manifold, we
have that det(N (θ)) 
= 0, ∀θ ∈ T

r . We also note that N	 = N and 
	 = −
.
Moreover, since the symplectic form is exact, dx ∧ dy = d(−y dx), it is not diffi-
cult to verify that 
 = (Dα)	 − Dα, where α = −(Dτx )

	τy and τ = (τx , τy).
Here, α is the vector representation of the pullback by τ of the one-form −ydx ,
i.e. τ ∗(−y dx)(θ) = ∑r

j=1 α j (θ) dθ j . In particular, we have that 〈
〉θ = 0, where
〈(·)〉θ = (2π)−r

∫
Tr (·) dθ is the average of any function defined on T

r . The torus T
is a Lagrangian manifold iff 
 = 0. In this latter case, the columns of the 2r × r -
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dimensional matrices J DτN−1 and Dτ form a symplectic basis ofR2r , at every point
of the torus.

Remark 2.2 If h is written in action-angle coordinates, (x, y) ∈ T
r ×R

r , and the torus
T is homotopic to T

r × {0}, then the parameterization of T should be of the form
θ ∈ T

r �→ (θ + τx (θ), τy(θ)), where τ : Tr → R
2r . The adaptation of Theorem 2.6

to this context is straightforward.

Definition 2.3 We assume that the components of ω ∈ R
r are rationally independent

and that the torus T of Definition 2.1 is an invariant torus of h, carrying quasi-periodic
motion with frequencies ω. Then, there is a parameterization τ of T such that the pull-
back by τ of the dynamics of h is the quasi-periodic linear flow of Tr with frequencies
ω. This parameterization is unique if we fix the value of τ at any point and verifies

Lωτ(θ) = J∇h(τ (θ)), ∀θ ∈ T
r , (3)

where Lω(·) = ∑r
j=1 ω j ∂θ j (·) is the Lie derivative with respect to ω. We refer to

this nonlinear system of PDEs as the invariance condition of τ . Equation (3) means
that the correspondence t ∈ R �→ τ(ωt + θ0) defines a quasi-periodic trajectory of h,
∀θ0 ∈ T

r . Equation (3) also implies that Lω
 = 0 [see (17) and (21)]. Since 〈
〉θ = 0
by Definition 2.1, we have that 
 = 0 [see (5)]. Consequently, any invariant torus
of h of dimension r , with quasi-periodic dynamics, is automatically a Lagrangian
manifold.

The assertion
 = 0 of Definition 2.3 follows from the analysis of the small divisor
equation

Lω f (θ) = g(θ), θ ∈ T
r , (4)

where f and g may be scalar-valued, vector-valued or matrix-valued. If we expand g
in Fourier series,

g(θ) =
∑
k∈Zr

ĝ(k) ei〈k,θ〉,

then the average of g, 〈g〉θ = ĝ(0), should be zero if we want a solution for f of (4).
If 〈g〉θ = 0, then the Fourier coefficients of f verify i〈k, ω〉 f̂ (k) = ĝ(k), ∀k ∈ Z

r .
Consequently, if we introduce the notation f̃ = f − 〈 f 〉θ , then there is a unique
formal solution for f̃ of (4) and f̂ (0) is free to take any value. Explicitly, any formal
solution for f takes the form f (θ) = 〈 f 〉θ + L−1

ω g(θ), where

L−1
ω g(θ) =

∑
k∈Zr \{0}

ĝ(k)

i〈k, ω〉 e
i〈k,θ〉. (5)

In the particular case g = 0, we conclude that f should be constant. Hence, conditions
Lω
 = 0 and 〈
〉θ = 0 altogether imply that 
 = 0 in Definition 2.3.
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To ensure the convergence of (5) when g 
= 0, we should take into account the
regularity of g and the effect of the “small divisors” 〈k, ω〉. Lemma 2.4 provides quan-
titative estimates for L−1

ω g if g is analytic and ω is Diophantine. To state Lemma 2.4,
we introduce the following notations:


(ρ) = {θ ∈ C
r : |Im(θ)| < ρ}, ‖ f ‖ρ = sup

θ∈
(ρ)

| f (θ)|, ρ > 0, (6)

where |x | is the sup-norm of the complex vector x . If A ∈ Mn×m(C), we also denote
by |A| the compatible matrix norm. Hence, the set 
(ρ) is the complex strip of width
ρ around R

r and ‖ f ‖ρ the associated sup-norm for a complex-valued function f .

Lemma 2.4 (Rüssmann estimates Rüssmann 1975) Let g be a complex-valued func-
tion defined on R

r and 2π -periodic in all the variables. We suppose that g can be
analytically extended to the interior of
(ρ), for some ρ > 0, and that g is bounded in
the closure of 
(ρ). Let ω ∈ R

r be a Diophantine vector which verifies (1), for some
γ > 0 and ν ≥ r − 1. If 〈g〉θ = 0, then Eq. (4) has a unique solution f = L−1

ω g,
which is analytic in 
(ρ), is 2π -periodic in all the variables and has zero average on
T
r . This solution is given by (5) and verifies the following estimates:

‖L−1
ω g‖ρ−δ ≤ σ

‖g‖ρ

γ δν
, ∀ 0 < δ ≤ ρ,

where σ ≥ 1 can be taken as

σ(r, ν, |ω|1/|ω|) = 3π

2ν+1 6
r/2

√
ν�(2ν)

( |ω|1
|ω|

)ν

,

where �(·) stands for the gamma function. Moreover, if g is real analytic, then so is
f .

Remark 2.5 To use Lemma 2.4 for a vector-valued (resp., matrix-valued) function g,
we extend the notation ‖g‖ρ to it by computing the | · |-norm of the constant vector
(resp., matrix) defined by the ‖ · ‖ρ-norms of the entries of g. Another advantage of
this definition is that if the product of two matrix-valued functions g1 and g2 is well
defined, then ‖g1 g2‖ρ ≤ ‖g1‖ρ · ‖g2‖ρ .

Finally, if F : U ⊂ C
2r → C is an analytic function defined in an open set U and

bounded in the closure of U , then we introduce the norm

‖F‖U = sup
z∈U

|F(z)|. (7)

We extend the notation ‖ · ‖U to vector-valued and matrix-valued functions as done in
Remark 2.5 for the norm ‖ · ‖ρ .

We use notations introduced above to state our main result.
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Theorem 2.6 Let h : U ⊂ R
2r → R be a Hamiltonian with r degrees of freedom,

defined in an open setU, and τ : Tr → R
2r a parameterization of a torus of dimension

r such that T = τ(Tr ) ⊂ U. We suppose that h = h(z) can be analytically extended
to the open set U ⊂ C

2r , with U ⊂ U , and that τ = τ(θ) can be analytically extended
to the complex strip 
(ρ), for some ρ > 0, with τ(
(ρ)) ⊂ U . We assume that the
following estimates hold, for some constants {m j }6j=1:

‖D2h‖U ≤ m1, ‖D2(∂z j h)‖U ≤ m2, j = 1, . . . , 2r, (8)

‖Dτ‖ρ < m3, ‖N−1‖ρ < m4, dτ,ρ,U > m5 > 0, (9)

where D2(·) is the Hessian matrix of the scalar function (·) and we introduce the
notation

dτ,ρ,U = dist(τ (
(ρ)), ∂U), (10)

where ∂U stands for the boundary of U and dist(·, ·) denotes the distance between
two complex sets (using the sup-norm). Moreover, we introduce the r-dimensional
symmetric matrix function S,

S(θ) = (N (θ))−1(Dτ(θ))	
[
J D2h(τ (θ)) J + D2h(τ (θ))

]
Dτ(θ) (N (θ))−1,

(11)
and we suppose that det(〈S〉θ ) 
= 0 and that

|(〈S〉θ )−1| < m6. (12)

From these quantities, we define � > 0 as

� = min
{
m3 − ‖Dτ‖ρ,m4 − ‖N−1‖ρ, dτ,ρ,U − m5,m6 − |(〈S〉θ )−1|

}
. (13)

We consider a Diophantine (frequency) vector ω ∈ R
r that verifies conditions (1), for

some 0 < γ ≤ 1 and ν ≥ r − 1, and we denote by σ = σ(r, ν, |ω|1/|ω|) the constant
provided by Lemma 2.4. From h, τ and ω, we compute the (error) functions e1, e2,
and e3, defined as

e1(θ) = h(τ (θ)) − 〈h(τ (θ))〉θ , e2(θ) = 
(θ)ω,

e3(θ) = (N (θ))−1(Dτ(θ))	 J∇h(τ (θ)) − ω, (14)

and we suppose that, for some constants 0 ≤ μ j ≤ 1, j = 1, 2, 3, we have

‖∇e1‖ρ ≤ μ1, ‖e j‖ρ ≤ μ j , j = 2, 3. (15)

There is a constant m ≥ 1, that depends only on r, σ and {m j }6j=1, for which the
following result holds. Given 0 < δ < min{1, ρ/10}, we suppose that the quantities
{μ j }3j=1 are small enough so that:
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m

γ δν+1

(
μ3 + μ1 + μ2

γ δν

)
< min

{
1

22(ν+2)
,
�

2

}
. (16)

Then, there is τ ∗ : Tr → R
2r giving the analytic parameterization of an invariant

torus T ∗ of h, carrying quasi-periodic motion with frequencies ω. Specifically, we
have that T ∗ = τ ∗(Tr ) ⊂ U, that τ ∗ can be analytically extended to the complex
strip 
(ρ∗), where ρ∗ = ρ − 10δ, with τ ∗(
(ρ∗)) ⊂ U , and verifies

Lωτ ∗(θ) = J∇h(τ ∗(θ)), ∀θ ∈ T
r ,

‖τ ∗ − τ‖ρ∗ ≤ 2m

γ δν

(
μ3 + μ1 + μ2

γ δν

)
,

‖Dτ ∗ − Dτ‖ρ∗ ≤ 2m

γ δν+1

(
μ3 + μ1 + μ2

γ δν

)
.

Moreover, if we denote by N∗ and S∗ the expressions defined by replacing τ by τ ∗ in
the definitions of N and S, then we have that det(〈S∗〉θ ) 
= 0 and

‖Dτ ∗‖ρ∗ ≤ m3, ‖(N∗)−1‖ρ∗ ≤ m4, dτ∗,ρ∗,U ≥ m5, |(〈S∗〉θ )−1| ≤ m6.

The proof of Theorem 2.6 is constructive and well suited for both numerical pur-
poses and CAPs (see Remark 3.4). In particular, we do not apply any transformation
to h. The cornerstone of Theorem 2.6 is that conditions ∇e1 = e2 = e3 = 0 [see (14)]
are equivalent to the invariance condition (3) for τ . We refer the reader to Sects. 3.2
and 4 for details. In fact, to ensure invariance, we should also verify that the columns
of the matrix functions Dτ and J Dτ form a basis at any point of the torus. This latter
assumption is automatic if μ2 is small enough, as guaranteed by (16).

Remark 2.7 The non-degeneracy condition det(〈S〉θ ) 
= 0 that only depends on h and
τ was introduced in de la Llave et al. (2005). If T is an invariant torus, then the matrix
S defines the infinitesimal approximation of the frequency map around the torus.
Explicitly, we can define a 2r × r -dimensional matrix function T (θ), whose columns
are symplectically conjugate directions to the tangent ones of T at τ(θ), with the
following property. If we consider the torus τ(θ)+T (θ) ξ , for small values of ξ ∈ R

r ,
then, at first order, this torus is invariant with frequency vector ω − 〈S〉θ ξ . For more
details, see the last paragraph of Sect. 3.1. Furthermore, in the action-angle framework,
the condition det(〈S〉θ ) 
= 0 reads as Kolmogorov’s non-degeneracy condition when
formulated on an invariant torus of a Hamiltonian written in Kolmogorov’s normal
form. Explicitly, if we consider the Hamiltonian (24) and compute S for the invariant
torus Tr × {0}, parameterized by τ(θ) = (θ, 0), then we obtain that S = −A.

Remark 2.8 We do not provide any specific value for the constant m of Theorem 2.6,
but since in Sect. 4 we display explicit formulas for the expressions involved in the
proof, it is not difficult to generate it. In the way we define m, it does not depend
on ‖∇h‖ρ , δ, ρ, γ and on the size of any component of ω. This fact is mainly due
to the strategy followed in the proof. When performing a CAP, since the constants
in the statement take specific numerical values, it may be recommendable to modify
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some steps of the proof in order to improve the numerical value of the condition of
convergence. Indeed, it may be a good idea adding to the statement a constant m7 so
that ‖D2(∂θ j τ)‖ρ < m7, ∀ j = 1, . . . , r , and then controlling the size of D2(∂θ j τ)

iteratively throughout the proof.

Remark 2.9 If h is a ε-small perturbation of a Hamiltonian for which we know the
parameterization τ of an invariant torus, then the size of e j is of O(ε), j = 1, 2, 3
(in fact, we can set e2 = 0). If h is not a natural perturbation of a simpler system,
but we know the size of the invariance error e associated with the parameterization τ

of a quasi-torus of h [see (17)], then we can relate each e j to e [see (36)]. However,
bounding e1 and e2 in terms of e involves the resolution of a small divisor equation,
whichmeans an estimate of the formO(‖e‖ρ/γ ). Hence, when applying Theorem 2.6,
it seems more useful dealing with e1, e2, and e3 as specific errors, independent of the
invariance error e [see Eqs. (51) and (54) for the expression of e in terms of e1, e2,
and e3].

Remark 2.10 It may be interesting to combine Theorem 2.6 with analytic smoothing
techniques to extend this parameterization result to finitely differentiableHamiltonians
(compare with González and de la Llave 2008). Since the maximum exponent of δ in
the condition of convergence (16) is 2ν + 1, our guess is that the minimum regularity
that we should ask to h is C�, with � > 2ν + A, for some A ≥ 2 (we observe that the
definition of μ1 involves ∇h). The best case scenario is to be able to set A = 2, in
accordance with Pöschel (1982), Salamon (2004).

Remark 2.11 If h is ε-close to an integrable Hamiltonian, then we may use The-
orem 2.6 to prove the classical KAM theorem, without writting h in action-angle
variables. Let 
 ⊂ R

r be the set of frequencies attained by the frequency map of the
integrable system, and let 
γ ⊂ 
 be the Cantor-like set defined by the values ω ∈ 


that verify the Diophantine conditions (1). Using Theorem 2.6, we may try to set a
priori a value γ = O(

√
ε) so that there is an invariant torus of h, with frequencies ω,

for each ω ∈ 
γ . Indeed, we introduce the frequencies ω ∈ 
γ as a parameter, we
consider the family of parameterizations ω �→ τω provided by the integrable system
as initial approximations, and we apply Theorem 2.6 to prove that there is a family
of parameterizations ω �→ τ ∗

ω giving an invariant torus of h with frequencies ω. To
control the measure of the portion of the phase space filled by these invariant tori,
it is enough to show that the dependence ω �→ τ ∗

ω is Lipschitz [e.g. see the elegant
proof of the classical KAM theorem performed in Pöschel (2001)]. To carry out the
explicit control of the Lipschitz constant of ω �→ τ ∗

ω, we may use analogous strate-
gies as those in Jorba and Villanueva (1997a, b) for proving existence of families of
lower-dimensional tori of Hamiltonian systems, of dimension s < r , using ω ∈ R

s as
a parameter.

Remark 2.12 Weare convinced that the approach ofTheorem2.6 can easily be adapted
for dealing with conditions of non-degeneracy different from the one of Kolmogorov.
The most straightforward case appears to be the iso-energetic KAM theorem. It would
also be interesting to consider the extension of this result to dynamical systems that
are not Hamiltonian. A very natural context is the Lagrangian tori of exact symplectic
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maps (under Kolmogorov’s non-degeneracy condition). For these discrete dynamical
systems, the error functions {e j }3j=1 of the parameterization can be defined in terms
of the map, the rotation frequency of the torus and the one-form of the symplectic
structure. Details are discussed in a work currently in preparation.

3 Formal Presentation of the Methodology

In this section, we introduce our approach to the parameterization method for
Lagrangian tori of analytic Hamiltonian systems. In Sect. 3.1, we outline some of
the main aspects of the original construction of de la Llave et al. (2005). This brief
summary is useful to set some basic notations and properties to be used throughout
the paper, as well as to point out some differences between de la Llave et al. (2005)
and the presented method. In Sect. 3.2, the set of equations which define our approach
to the parameterization method is introduced. The formal aspects of the quasi-Newton
method used to solve these equations are developed in Sect. 3.3 (see Remark 3.4 for
a summary).

In what follows, we use definitions and notations introduced in Sect. 2. To simplify
notations, from now on we omit the explicit dependence on θ of τ , N , and 
.

3.1 The Parameterization Method for Lagrangian Tori

Let ω ∈ R
r be a Diophantine frequency vector, fixed from now on. Our aim is to

compute the parameterization τ of an invariant torus T of h, carrying quasi-periodic
motion with frequencies ω. Indeed, we should set to zero the invariance error of τ ,
defined as:

e = Lωτ − J∇h(τ ). (17)

If the norm ‖e‖ρ is “small”, for someρ > 0,we say thatT is a quasi-torus of h. Assume
known the parameterization τ of a quasi-torus of h. The core idea of parameterization
methods is to compute a newparameterization τ (1) = τ+
τ , where
τ is obtained by
solving (at least approximately) the linearized invariance equation for τ (1) around τ . If
e(1) is the invariance error for τ (1), then it should be almost quadratic with respect to e
(quadratic modulo the effect of the small divisors associated withω and the performed
Cauchy estimates). If the initial error is small enough, we expect convergence of the
iteration of this quasi-Newton method to the parameterization τ ∗ of an invariant torus
of h.

Since e is small, we have that the columns of the matrices J Dτ N−1, and Dτ form
an approximate symplectic basis at any point of T [see Eq. (21) and comments below
on the smallness of 
]. The method of de la Llave et al. (2005) takes advantage of this
fact to look for the improved parameterization τ (1) as follows:

τ (1) = τ + 
τ, 
τ = J DτN−1 a + Dτ b, (18)

where a(θ) and b(θ) are r -dimensional (small) vector functions ofTr to be determined.
If we formulate the invariance condition for τ (1) and we linearize it around τ , then we
obtain the following linear system of PDEs for 
τ (Newton method):
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R(
τ) = −e, (19)

whereR(·) = Lω(·)− J D2h(τ (θ))(·) is a linear differential operator acting on vector
functions of θ of dimension 2r and, more in general, on matrix functions of θ with 2r
rows. The cornerstone of de la Llave et al. (2005) is to show that the action of R on
the columns of the matrices J DτN−1 and Dτ takes the following form:

R(Dτ) = E1, R(J DτN−1) = −Dτ S + E2, (20)

where S is the r -dimensionalmatrix function defined in (11) and E1 and E2 are “small”
matrices, with size controlled in terms of the size of e. Consequently,

R(
τ) = J DτN−1 Lωa − Dτ Sa + Dτ Lωb + E3,

where E3 is quadratic with respect to e, a, and b. The crucial point to get formulas
in (20) is that the size of the matrix 
 is controlled by the size of e through the Lie
derivative Lω
. Specifically:

Lω
 = (Lω(Dτ))	 J Dτ + (Dτ)	 J Lω(Dτ) = (De)	 J Dτ + (Dτ)	 J De, (21)

where we have used that Lω commutes with D = Dθ to obtain

Lω(Dτ) = D(Lωτ) = D(Dτ ω) = D(J∇h(τ ) + e) = J D2h(τ )Dτ + De. (22)

Since definition of
 implies that 〈
〉θ = 0, the size of
 can be bounded by applying
L−1

ω to the rightmost expression of (21) (see Lemma 2.4). If we multiply Eq. (19)
by (Dτ)	 J and N−1(Dτ)	 J and we remove the quadratic terms, then we obtain the
following (cohomological) equations for a and b:

Lωa = (Dτ)	 Je, Lωb = Sa − N−1(Dτ)	e. (23)

We can solve this triangular system of equations provided that det(〈S〉θ ) 
= 0 and that
〈(Dτ)	 Je〉θ = 0. This latter condition is automatic from the definition of e in (17)
(see details in de la Llave et al. 2005). The solutions for a and b of (23) are unique up
to the value of the average of b, that is free to take any value. Since 〈b〉θ only influences
on the origin of the parameterization, we take 〈b〉θ = 0. By constructing τ (1) in this
way, it is not difficult to realize that e(1) is (almost) quadratic with respect to e. In de
la Llave et al. (2005), it is shown that the iteration of this procedure converges to τ ∗
if γ −4ρ−4ν‖e‖ρ is sufficiently small, where the values of γ and ν are those of the
Diophantine conditions in (1) and ‖e‖ρ is the size of the initial error.

To illustrate the main geometric and dynamical aspects of the construction above,
firstly we consider the case in which the torus T is invariant. This means that e is zero
and so are 
, E1, and E2. Then, in de la Llave et al. (2005) it is shown that formulas
in (20) imply that the variational equations of h around T can be reduced to constant
coefficients (in the aim of quasi-periodic Floquet theory) by a linear quasi-periodic
transformation. The reducing transformation and the reduced matrix can be written
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explicitly in terms of Dτ , J DτN−1, and S. This property is usually referred to as the
automatic reducibility of Lagrangian tori. Explicitly, we compute B = L−1

ω (S−〈S〉θ )
and we introduce T = J DτN−1 + Dτ B. The 2r × 2r dimensional matrix function
M , defined by joining together the columns of the matrices T and Dτ , is a symplectic
matrix function of Tr . Then, the reducing transformation is z = M(ωt)Z and the
reduced matrix is given, by blocks, by

( 0 0−〈S〉θ 0

)
. If T is a quasi-torus of h, then

formulas in (20) imply quasi-reducibility ofT , also automatically. Although automatic
quasi-reducibility is not explicitly involved in our approach to the parameterization
method for Lagrangian tori (at least not in a visible manner), it is a crucial aspect of
parameterization methods in KAM theory.

3.2 A Modified Approach to the Parameterization Method

In this section, we introduce the equations which define our approach to the parame-
terization method. The selected set of equations is inspired by Kolmogorov’s normal
form. Let us suppose, just for a moment, that the Hamiltonian h is written in a sym-
plectic system of action-angle variables, i.e. h = h(θ, I ), where (θ, I ) ∈ T

r × R
r .

The Hamilton equations for h are

θ̇ = ∇I h(θ, I ), İ = −∇θh(θ, I ).

We say that h is in Kolmogorov’s normal form (at I = 0) if it can be written as

h(θ, I ) = λ + 〈ω, I 〉 + 1

2
〈I, A(θ)I 〉 + F(θ, I ), (24)

for some λ ∈ R, ω ∈ R
r , a symmetric matrix function A(θ), and a scalar func-

tion F = O3(I ). Hence, the torus Tr × {0} is an invariant manifold of (24) with a
linear conditionally periodic flow for θ , i.e. θ̇ = ω. If the components of ω are ratio-
nally independent, then the dynamics on the torus is quasi-periodic. Kolmogorov’s
non-degeneracy condition for this torus reads as det(〈A〉θ ) 
= 0. Synthetically, expres-
sion (24) is equivalent to the following conditions on h:

∇θh(θ, 0) = 0, ∇I h(θ, 0) = ω.

Consequently, if we want to control the distance of any given Hamiltonian h to the
reduced form (24), then we have two different sources of error:

e1(θ) = h(θ, 0) − 〈h(θ, 0)〉θ , e2(θ) = ∇I h(θ, 0) − ω.

The condition e1 = 0 means that the torus Tr × {0} belongs to an energy level set of
h. This condition automatically implies that this torus is invariant by h, regardless of
the value of e2. The reason that e1 = 0 means invariance of Tr × {0} is that, since we
are working with action-angle coordinates, then Tr × {0} is a Lagrangian manifold in
a straightforward way (see Proposition 3.1). The vector condition e2 = 0 implies that
the dynamics on this invariant torus is quasi-periodic, with frequencies ω.
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Classical proofs of Kolmogorov’s theorem define the distance of h to the reduced
form (24) as ε = max{‖e1‖ρ, ‖e2‖ρ} and show convergence of the reduction to Kol-
mogorov’s normal form if γ −4ρ−sε is sufficiently small. The particular value of s > 0
varies depending on the author [e.g. s = 8(r + 1) in Benettin et al. (1984)]. In Vil-
lanueva (2008), the norms of e1 and e2 are dealt with separately and the convergence
condition can be written as γ −1ρ−ν−5(‖e2‖ρ + γ −1ρ−ν‖∇e1‖ρ) sufficiently small.
This expression reveals the specific role played by each initial error, e1 and e2, in the
convergence of the method. A convergence condition like this latter one is what we
pursued when formulating Theorem 2.6 [see (16)]. We note that, in terms of ε defined
as above, the convergence condition of Villanueva (2008) reads as γ −2ρ−2ν−6ε suf-
ficiently small.

We resume the study of the case in which τ is the parameterization of a quasi-torus
T of a Hamiltonian h written in Cartesian coordinates. With Kolmogorov’s normal
form in mind, the most significant difference with respect to the action-angle context
is the control of how far is T from being a Lagrangian manifold. In some situations,
the first approximationmay be a Lagrangian torus by the context. However, preserving
this property iteratively, without using canonical transformations, seems beyond the
scope of parameterization methods. A natural way to measure this distance is through
the norm of the matrix function 
 [see (2)]. As shown in de la Llave et al. (2005),
the size of 
 can be related to the size of the invariance error e of τ [see (17)]
through the Lie derivative Lω
 [see (21)]. Proceeding in this way, we end up with an
estimate of the form ‖
‖ρ−2δ = O(γ −1δ−ν−1‖e‖ρ), which involves a division by γ

that we want to avoid. Actually, using e to control 
, we obtain the impression that
establishing convergence of the parameterization method when γ is bounded from
below by O(ε1/2) appears to be a very difficult task. Hence, one of the crucial points
of our construction is to deal with the distance of T to being a Lagrangian manifold as
a specific error, independent of e. The way in which we address the parameterization
method for Lagrangian tori is supported by the basic results stated in Propositions 3.1
and 3.2.

Proposition 3.1 Let τ be the parameterization of a Lagrangian torus T of R2r . If T
belongs to an energy level set of the Hamiltonian h, then T is an invariant torus of h.
If in addition τ verifies ω = N−1(Dτ)	 J∇h(τ ), for some constant vector ω ∈ R

r ,
then τ is a solution of the invariance Eq. (3).

Proof of Proposition 3.1 We have that 
 = 0 and that the columns of J DτN−1 and
Dτ form a symplectic basis at any point of T . Then, we can write the Hamiltonian
vector field of h as follows:

J∇h(τ ) = Dτ a + J Dτ b, (25)

for some vector functions a, b : Tr → R
r . If wemultiply (25) by (Dτ)	 and (Dτ)	 J ,

then we obtain

(Dτ)	 J∇h(τ ) = Na, (Dτ)	∇h(τ ) = Nb.
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Since T belongs to an energy level set of h, we have that h(τ ) = h0 on T
r , for

some constant h0. By taking partial derivatives with respect to θ , we obtain that
Dh(τ )Dτ = 0 and, equivalently, that (Dτ)	∇h(τ ) = 0. This equality means that
b = 0. Consequently, we can rewrite (25) as

J∇h(τ ) = Dτ N−1(Dτ)	 J∇h(τ ). (26)

Formula (26) implies that the correspondence θ ∈ T
r �→ J∇h(τ (θ)) defines a tangent

vector field on T (i.e. the vector J∇h(τ ) is a combination of the columns of Dτ ).
Hence, T is an invariant torus. Finally, since we have that Lωτ = Dτ ω and that the
rank of the matrix Dτ is maximum at any point, the invariance Eq. (3) is equivalent
to the condition ω = N−1(Dτ)	 J∇h(τ ). ��
Proposition 3.1means that is τ is the parameterization of the torus T , then τ is solution
of the invariance Eq. (3) iff it is solution of the following set of nonlinear equations
on Tr :

(eq1) h(τ ) = 〈h(τ )〉θ , (eq2)
 = 0, (eq3) N
−1(Dτ)	 J∇h(τ ) = ω. (27)

We note that the result of Proposition 3.1 holds even if the components of ω are not
rationally independent. The same comment applies to Proposition 3.2 below.

Equations in (27) offer a way to address the computation of the parameterization τ

which is not based on the direct verification of the invariance condition.However, using
equation
 = 0 to impose thatT is a Lagrangianmanifold,we still have the impression
that this is not a good way to obtain the desired estimates. The most obvious reason for
this assertion is that, since 
 is an anti-symmetric matrix, the equation 
 = 0 implies
r(r − 1)/2 equations for the 2r -dimensional vector function τ . This means that the
condition 
 = 0 involves many dependencies, which are evident at the limit, but that
perhaps are not easy to manage iteratively. See also Eq. (30) and comments below.
Therefore, our goal is to replace (eq2) in (27) by an appropriate vectorial equation
involving the Lagrangian character of T .

Proposition 3.2 Let τ be the parameterization of a r-dimensional torus T ofR2r . We
suppose that the columns of the matrices Dτ and J Dτ form a basis of R2r at any
point of the torus. We also suppose that T belongs to an energy level set of h and that
τ verifies ω = N−1(Dτ)	 J∇h(τ ), for some constant vector ω ∈ R

r . Then, τ is a
solution of the invariance Eq. (3) iff 
ω = 0.

Proof of Proposition 3.2 We consider formula (17) for τ , and we discuss the invari-
ance condition e = 0. Since the columns of Dτ and J Dτ form a basis at any
point, the equation e = 0 is equivalent to the set of two equations (Dτ)	e = 0
and (Dτ)	 Je = 0. If we multiply (17) by (Dτ)	 and (Dτ)	 J , then we obtain the
relations:1

Nω = (Dτ)	 J∇h(τ ) + (Dτ)	e, 
ω = −(Dτ)	∇h(τ ) − (Dτ)	 Je. (28)

1 We note that if a = a(θ) is a scalar-valued or a vector-valued function, then Lωa = Da ω.
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By using thatω = N−1(Dτ)	 J∇h(τ ) and that h is constant alongT , equations in (28)
are equivalent to (Dτ)	e = 0 and 
ω = −(Dτ)	 Je. From these expressions, the
result is straightforward. ��
Proposition 3.2 implies that we can seek the parameterization τ as solution of the
following equations:

(eq1) h(τ ) = 〈h(τ )〉θ , (eq2)
ω = 0, (eq3) N
−1(Dτ)	 J∇h(τ ) = ω. (29)

We observe that, since equations in (29) altogethermean thatT = τ(Tr ) is an invariant
torus of h carrying quasi-periodic motion, then the condition
 = 0 is straightforward
from them. However, the condition
ω = 0 alone means that
 = 0. This assertion is
consequence of the following relation, which constitutes one of the basic ingredients
of the proof of Theorem 2.6 [as a substitute of Eq. (21)]:

Lω
 = D(
ω) − (D(
ω))	. (30)

Expression above also supports our (heuristic) claim that we may obtain better esti-
mates by dealing with equation 
ω = 0 rather than by dealing with equation 
 = 0.
Indeed, Eq. (30) means that 
 is naturally related to 
ω through the resolution of a
small divisor equation. To derive (30), we consider the following homotopy formula
(e.g. Weinstein 1979):

LX� = iX (d�) + d(iX�). (31)

We take as X the constant vector field defined by the frequency vector ω, and we
compute the exterior derivative of (31). Then, we obtain:

Lω(d�) = d(iω(d�)). (32)

We apply (32) to the one-form � = τ ∗(−y dx). Hence, formula (30) follows from
the fact that the coordinate representation of d� = τ ∗(dx ∧ dy) is given by the anti-
symmetric matrix 
 and that the coordinate representation of iω(d�) is given by the
vector (ω	
)	 = −
ω. As a matter of fact, we observe that the direct application
of formula (31) to X and � as above shows the following relation between 
ω and
the vector α giving the coordinate representation of τ ∗(−ydx) (see Definition 2.1):

Lωα = −
ω + ∇(〈ω, α〉). (33)

Although formula (33) is not used throughout the paper, we observe that it means
that we may consider replacing in (29) equation 
ω = 0 by the equivalent one
Lωα = ∇(〈ω, α〉).

3.3 Formal Description of the Modified Method

We perform the formal construction of the quasi-Newton method used to prove The-
orem 2.6. Given the parameterization τ of a quasi-torus of h, we introduce a new
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parameterization τ (1) by approximately solving the linearization of equations (eq1)-
(eq3) in (29) around τ . The error functions for τ are:

e1 = h(τ ) − 〈h(τ )〉θ , e2 = 
ω, e3 = N−1(Dτ)	 J∇h(τ ) − ω. (34)

Remark 3.3 We note that 〈e1〉θ = 0 and that 〈e2〉θ = 0. In particular, equation e1 = 0
is equivalent to ∇e1 = 0. To apply Proposition 3.2, besides the conditions e j = 0,
j = 1, 2, 3, we also need to ensure that the columns of the matrices Dτ and J Dτ

form a basis at any point. If we define the matrix N as

N = N (Idr + N−1 
 N−1 
), (35)

then, it is not difficult to realize that this last assertion is equivalent to the fact that
detN 
= 0 at any point. For details, see Eqs. (51) and (54) that express e in terms of
e1, e2, and e3. Since 
 = 0 if the torus is invariant, a natural condition to ensure that
N is invertible is that ‖N−1 
‖ρ < 1, for some ρ > 0. Finally, we observe that we
also can relate each e j to e as:

e1 = L−1
ω 〈∇h(τ ), e〉, e2 = −∇e1 + (Dτ)	 Je, e3 = −N−1(Dτ)	e. (36)

To obtain the first one, compute Lωe1 and use (17). For the other two, see Eqs. (52)
and (53).

Another crucial aspect of the presented construction is thatwe seek τ (1) in the following
form:

τ (1)(θ) = τ̄ (1)(θ + b(θ)), (37)

where
τ̄ (1) = τ + 
τ, 
τ = J Dτ N−1 a, 〈b〉θ = 0, (38)

for some r -dimensional (small) vector functions a(θ) and b(θ) to be determined (the
condition 〈b〉θ = 0 ensures the uniqueness of solution for b). The reason of considering
this expression for τ (1) is our guess that we may obtain better estimates by using
formulas as compact as possible for the involved object. This idea is motivated by the
already mentioned approach of Villanueva (2008) to Kolmogorov’s theorem. Since a
and b are small, the first-order approximation of τ (1) in (37) is τ (1) ≈ τ+ J DτN−1 a+
Dτ b, which coincides with the expression considered in de la Llave et al. (2005)
[see (18)]. Hence, introducing the contribution of b as a composition in (37) only
means a small correction on τ (1). However, in this way we avoid some tricky terms
on the error functions for τ (1) that, perhaps, do not behave appropriately.

Synthetically, the effect of a in formula (38) is to make quadratic both the errors on
the energy and errors on the symplectic geometry of the torus τ̄ (1). Hence, the vector
function a enters through equations e1 = 0 and e2 = 0. The vector function b means
a reparameterization of the torus parameterized by τ̄ (1). So, it only enters through the
equation e3 = 0, that is the one responsible of the inner dynamics of the torus.
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For further discussions, we also introduce

N (1) = (Dτ (1))	Dτ (1), 
(1) = (Dτ (1))	 J Dτ (1),

and the corresponding error functions for τ (1):

e(1)
1 = h(τ (1))−〈h(τ (1))〉θ , e(1)

2 = 
(1) ω, e(1)
3 = (N (1))−1(Dτ (1))	 J∇h(τ (1))−ω.

(39)
By linearization around the approximate parameterization τ , we obtain the following
expressions:

h(τ (1)) = 〈h(τ )〉θ + e1 − 〈ω, a〉 + O2, e(1)
1 = e1 − 〈ω, ã〉 + O2, (40)

e(1)
2 = e2 − Lωa + ∇(〈ω, a〉) + O2, e(1)

3 = e3 − Lωb + S a + O2, (41)

ã = a − 〈a〉θ , the (symmetric) matrix S is defined as in (11), and O2 synthetically
denotes the higher-order terms. Computations leading to expressions (40) and (41)
are not difficult but involve some cancellations that are not obvious at first glance. We
leave the details to Sect. 4. We only emphasize that to obtain these expressions we do
not use (explicitly) the automatic reducibility of Lagrangian tori.

Inspection of the expressions in (40) makes it clear that, if we want e(1) to be a
quadratic error, then we must select a such that 〈ω, ã〉 = e1. There are infinitely many
solutions for ã of this equation, but there is only one of the form ã = ∇g, for some
scalar function g defined on T

r . Specifically, g verifies:

Lωg = e1, 〈g〉θ = 0,

where the normalizing condition 〈g〉θ = 0 ensures the uniqueness of solution for g.
Then, every solution for a of equation 〈ω, ã〉 = e1 can be written in the following
form:

a = ã + ξ, ã = ∇g + d, (42)

where ξ = 〈a〉θ ∈ R
r is free to take any value and the vector function d is free among

those verifying:
〈d〉θ = 0, 〈ω, d〉 = 0, (43)

If we introduce expression for a in (42) in for formula for e(1)
2 in (41), then we obtain

e(1)
2 = e2 − Lω(∇g + d) + ∇(Lωg) + O2 = e2 − Lωd + O2.

Hence, to obtain a quadratic expression for e(1)
2 , we should select d as the solution of

the following equation:
Lωd = e2, 〈d〉θ = 0. (44)

By using the definition of e2 in (34) and the anti-symmetric character of 
, we have
that d verifies:

Lω(〈ω, d〉) = 〈ω, Lωd〉 = 〈ω, e2〉 = 〈ω,
ω〉 = 0.

123



514 J Nonlinear Sci (2017) 27:495–530

Since the components of the vector ω are rationally independent, equation Lω(〈ω, d〉)
= 0 means that 〈ω, d〉 is a constant function. The normalization 〈d〉θ = 0 implies that
〈ω, d〉 = 0. Hence, the solution for d of (44) is compatible with conditions in (43).
Finally, to achieve a quadratic error e(1)

3 in (41), we should define b as follows:

b = L−1
ω (S a + e3). (45)

To do this, we need that 〈Sa + e3〉θ = 0. We can get rid of this average by selecting
the following value for ξ in (42):

ξ = −(〈S〉θ )−1 (〈S ã〉θ + 〈e3〉θ ). (46)

As a summaryof the above computations,wehave established the following expression
for a:

ã = L−1
ω (∇e1 + e2), a = ã + ξ, (47)

with ξ given by (46). Moreover, the vector function a verifies:

〈ω, a〉 = e1 + 〈ω, ξ 〉. (48)

From now on, we focus on formulas in (45), (46), (47), and (48). Indeed, the role of the
functions g and d introduced above is to ensure that the construction is well defined,
but their explicit computation is not required to implement the method.

Remark 3.4 Let us summarize the specific steps to be followed to compute the new
parameterization τ (1) from τ . This recap can be useful for people willing to carry
out the numerical implementation of the method. Given τ , firstly we compute Dτ ,
h(τ ), ∇h(τ ), D2h(τ ), N , N−1, 
, S, 〈S〉θ , {e j }3j=1, and ∇e1 [see Eqs. (2), (11),
and (34)]. Next, we compute ã, ξ , a, and b by the formulas displayed in (45), (46),
and (47). Finally,we compute
τ , τ̄ (1), and τ (1) by the expressions (37) and (38). From
the numerical viewpoint, we approximate each of these objects by a trigonometric
polynomial of θ ∈ T

r . We note that these computations involve several compositions
of functions (as well as products of matrices and the computation of N−1). Since
we are dealing with expressions which are 2π -periodic in all the variables, it is not
necessary to use an algebraic manipulator to carry out this scheme. We just need to
evaluate each of these expressions on a suitable r -dimensional grid of points θ ∈ T

r

and then performing a FFT. This approach in terms of FFT is one of the advantages
of parameterization methods in KAM theory and remain a valid stratgey to perform
a CAP. We refer to Calleja and de la Llave (2010), Haro et al. (2016), Huguet et al.
(2012) for details.

4 Proof of Theorem 2.6

Weproceedby the iterative application of the quasi-Newtonmethodwehave developed
in Sect. 3.3. In this way, we introduce a sequence {τ (n)}n≥0 of parameterizations, with
τ (0) = τ , and we show that τ ∗ = limn→∞ τ (n). According to Proposition 3.2, we
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should verify that e∗
1 = 0 and that e∗

2 = e∗
3 = 0, where these error functions are

defined as in Eq. (34), but now in terms of τ ∗ instead of τ . As noted in Remark 3.3,
we can replace the condition e∗

1 = 0 by ∇e∗
1 = 0. We also need to verify that the

columns of the matrices Dτ ∗ and J Dτ ∗ form a basis along the torus. This condition
is immediate from the proof.

Explicit expressions of one step of themethod We consider the initial parameterization
τ , the associated matrices N ,
, S, andN defined in Eqs. (2), (11), and (35), as well as
the error functions e1, e2, and e3 defined in (34). Some useful expressions that follow
from (34) are:

De1 = Dh(τ ) Dτ, ∇e1 = (Dτ)	∇h(τ ), Dh(τ )J Dτ = −(ω	 + e	
3 ) N .

(49)
Key hypotheses for the upcoming computations are that det(〈S〉θ ) 
= 0 and that N and
N are invertible matrix functions (see Remark 3.3). After application of the method,
the new parameterization τ (1) is defined by (37) and (38), where a, ξ , and b are given
by Eqs. (45), (46), (47) [see also (48)]. Our aim is to provide explicit formulas for the
(new) errors e(1)

1 , e(1)
2 , and e(1)

3 , defined as in (34), but now in terms of τ (1) instead of
τ . For this purpose, we also denote by N (1),
(1), and S(1) the expressions obtained by
computing N ,
, and S in terms of τ (1). Further, we introduce the auxiliary expressions
N̄ (1), 
̄(1), S̄(1), ē(1)

2 , and ē(1)
3 , which are defined like those above, but now in terms

of τ̄ (1) [see (38)]. In the following computations, we are only concerned with the
formulas of e(1)

1 , e(1)
2 , and e(1)

3 , but we do not discuss the conditions guaranteeing that
these formal expressions are well defined for the initial τ .

Remark 4.1 Computation of {e(1)
j }3j=1 is performed by expanding them up to first

order around τ (plus a quadratic error). By means of some cancellations, due to the
cohomological equations, we show that the new errors have (almost) quadratic size
with respect to {e(1)

j }3j=1. Themost technical aspects of the proof appearwhenwewrite
some terms in a way allowing to check that they behave appropriately with respect to
γ and δ (see the second part of the proof for the bounds).

The key points of the proof, those leading to the desired estimates, are the two first
steps below [see Eqs. (50) and (51)]. In the proof of the original parameterization
theorem of de la Llave et al. (2005), the invariance error e is the (only) source of error
for τ and 
 is related to e through Eq. (21). Moreover, in de la Llave et al. (2005) a
crucial role is played by the automatic quasi-reducibility, which means controlling the
size of the matrices E1 and E2 of Eq. (20) in terms of the sizes of e and 
. As noted
before, automatic quasi-reducibility is not explicitly involved in the next presentation.

Firstly, we consider the invariance error e of τ [see (17)] and the matrix representation

 of the pullback by τ of the symplectic form. Both expressions appear explicitly in
some computations, so we need to relate them to e1, e2, and e3. The matrix 
 can be
written in terms of e2 through formula (30):


 = L−1
ω (De2 − (De2)

	). (50)
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To compute e, we use that the columns of Dτ and J Dτ form a basis at any point. As
noted in Remark 3.3, this assertion is equivalent to the invertibility ofN . On its turn,
the invertibility of N can be guaranteed by controlling the size of the matrix N−1
.
Then, we express e as

e = Dτ α + J Dτ β, (51)

for some vector functions α(θ) and β(θ). To determine α and β, we multiply both
sides ofEq. (51) by (Dτ)	 J and N−1(Dτ)	, respectively, thus obtaining the following
relations:


α − Nβ = (Dτ)	 Je, α + N−1
β = N−1(Dτ)	e.

By performing the same multiplications on Eq. (17), we obtain

(Dτ)	 Je = 
ω + (Dh(τ )Dτ)	 = e2 + ∇e1, (52)

N−1(Dτ)	e = ω − N−1(Dτ)	 J∇h(τ ) = −e3. (53)

After some computations, we end up obtaining the next formulas:

α = N−1
(

N−1(e2 + ∇e1) − N e3

)
, β = −N−1(e2 + ∇e1 + 
 e3). (54)

To compute e(1)
1 , we use Taylor’s formula to expand h(τ̄ (1)) as follows:

h(τ̄ (1)) = h(τ ) + Dh(τ )J Dτ N−1 a + R2 = h(τ ) − (ω	 + e	
3 ) a + R2

= 〈h(τ )〉θ − 〈ω, ξ 〉 + Ē (1)
1 ,

where2

R2(θ) = (
τ(θ))	
[∫ 1

0
(1 − s)D2h(τ (θ) + s
τ(θ)) ds

]

τ(θ),

Ē (1)
1 = −〈e3, a〉 + R2. (55)

After composition with θ + b(θ), we obtain

e(1)
1 = h(τ (1)) − 〈h(τ (1))〉θ = Ē (1)

1 (θ + b) − 〈Ē (1)
1 (θ + b)〉θ . (56)

2 We use that f (a + x) − f (a) − Df (a)x =
∫ 1

0

d

ds
[F(s)]ds = x	

[∫ 1

0
(1 − s)D2 f (a + sx) ds

]
x ,

where F(s) = f (a + sx) + (1 − s)Df (a + sx)x .
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To display ē(1)
2 , we introduce the auxiliary vector function c = N−1 a, so that


τ = J DτN−1 a = J Dτ c = J
r∑
j=1

c j ∂θ j τ,

D(
τ) = J Dτ Dc + J
r∑
j=1

c j ∂θ j (Dτ). (57)

Hence,

(Dτ)	 J D(
τ) ω = −NLωc −
r∑
j=1

c j (Dτ)	∂θ j (Dτ) ω,

(D(
τ))	 J Dτ ω = (Dc)	Nω +
r∑
j=1

c j ∂θ j (Dτ)	Dτ ω.

From these expressions, we obtain:

ē(1)
2 = Ar
(1) ω = (Dτ̄ (1))	 J Dτ̄ (1) ω = (Dτ + D(
τ))	 J (Dτ + D(
τ)) ω

= e2 + (Dτ)	 J D(
τ) ω + (D(
τ))	 J Dτ ω + (D(
τ))	 J D(
τ) ω

= e2 − NLωc + (Dc)	Nω +
r∑
j=1

c j
(
∂θ j (Dτ)	Dτ − (Dτ)	∂θ j (Dτ)

)
ω

+ (D(
τ))	 J D(
τ) ω.

Next step is to express ē(1)
2 in terms of a = N c. To do that, we use the following

relations:

Lωa = NLωc + (LωN ) c, (LωN ) c =
r∑
j=1

c j Lω((Dτ)	∂θ j τ),

a =
r∑
j=1

c j (Dτ)	∂θ j τ, Da = NDc +
r∑
j=1

c j D((Dτ)	∂θ j τ).

From the last formula above, we also obtain:

(Dc)	Nω = (Da)	ω −
r∑
j=1

c j
(
D((Dτ)	∂θ j τ)

)	
ω

= (D〈ω, a〉)	 −
r∑
j=1

c j
(
D((Lωτ)	∂θ j τ)

)	
.
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The combination of expressions above allows obtaining the following formula for
ē(1)
2 :

ē(1)
2 = e2 − Lωa + (D〈ω, a〉)	 +

r∑
j=1

c j Vj + (D(
τ))	 J D(
τ) ω,

where, for any j = 1, . . . , r , the r -dimensional vector function Vj is given by

Vj = Lω((Dτ)	 ∂θ j τ) −
(
D((Lωτ)	 ∂θ j τ)

)	 + ∂θ j (Dτ)	 Lωτ − (Dτ)	 ∂θ j (Lωτ).

It is not difficult to realize that Vj = 0. Explicitly, this assertion follows from the
expression

D((Lωτ)	 ∂θ j τ) = (Lωτ)	 ∂θ j (Dτ) + (∂θ j τ)	 Lω(Dτ).

To obtain this formula, we use that if u and v are two vector functions then D(u	v) =
u	Dv + v	Du. Consequently, we have established the following expression for ē(1)

2 :

ē(1)
2 = (D(
τ))	 J D(
τ) ω = (D(
τ))	 J Lω(
τ). (58)

Bounding ē(1)
2 from formula (58) requires bounding Lω(
τ). As shown below in the

proof, we obtain a better quantitative estimate for Lω(
τ) if, instead of controlling
the Lie derivative Lω(
τ) by Cauchy estimates on the partial derivatives of 
τ , we
consider the following formula for it:

Lω(
τ) = Lω(J Dτ N−1 a)

= J Lω(Dτ)N−1 a + J Dτ Lω(N−1) a + J DτN−1(∇e1 + e2), (59)

where we have computed Lωa from Eq. (47). Regarding the Lie derivative Lω(Dτ)

we consider Eq. (22) and, to control Lω(N−1), we consider the following expressions:

Lω(N−1) = −N−1 (LωN ) N−1, LωN = (Lω(Dτ))	Dτ + (Dτ)	Lω(Dτ).

(60)
By using strategy above for controlling Lω(Dτ) and Lω(N−1) [aswell as Lωc in (72)],
we not only avoid performing some extra Cauchy estimates, but we also prevent the
constant m of Theorem 2.6 from depending on the size of the components of ω. In
order to compute e(1)

2 from ē(1)
2 , we observe that

Dτ (1) = Dτ̄ (1)(θ + b) (Id + Db). (61)

Then, by taking also into account Eq. (45) for b, we obtain

e(1)
2 = 
(1) ω = (Dτ (1))	 J Dτ (1) ω = (Id + Db)	Ar
(1)(θ + b) (ω + Lωb)

= (Id + Db)	(ē(1)
2 (θ + b) + Ar
(1)(θ + b) (S a + e3)). (62)
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In analogy to Eq. (50) for 
, we can relate Ar
(1) above to ē(1)
2 = Ar
(1) ω through

formula (30):

Ar
(1) = L−1
ω

(
Dē(1)

2 −
(
Dē(1)

2

)	)
. (63)

Next, we consider the auxiliary error ē(1)
3 :

ē(1)
3 = (N̄ (1))−1(Dτ̄ (1))	 J∇h(τ̄ (1)) − ω. (64)

We point out that we do not claim that ē(1)
3 is a quadratic error [see Eq. (74)]. We only

require a quadratic behaviour for e(1)
3 [see Eq. (78)]. To control (64), we introduce the

following notations:

N̄ (1) = (Dτ̄ (1))	Dτ̄ (1) = N + 
N̄ = N (Idr + N−1 
N̄ ),

∇h(τ̄ (1)) = ∇h(τ ) + R̄1 = ∇h(τ ) + D2h(τ )
τ + R̄2, (65)

where3


N̄ = (Dτ)	D(
τ) + (D(
τ))	Dτ + (D(
τ))	D(
τ), (66)

R̄1(θ) =
[∫ 1

0
D2h(τ (θ) + s
τ(θ)) ds

]

τ(θ), (67)

R̄2; j (θ) = (
τ(θ))	
[∫ 1

0
(1 − s)D2(∂z j h)(τ (θ) + s
τ(θ)) ds

]

τ(θ), (68)

for any j = 1, . . . , 2r . Equation (65) implies that the invertibility of N̄ (1) is equivalent
to the invertibility of Idr + N−1
N̄ which, on its turn, is guaranteed if the norm of
N−1
N̄ is smaller than one. We assume that Idr + N−1
N̄ is invertible and we
compute (see definition of e3 in (34)):

(Idr + N−1
N̄ ) ē(1)3 = N−1(Dτ + D(
τ))	 J∇h(τ̄ (1)) − (Id + N−1
N̄ ) ω

= e3 + N−1
(
(Dτ)	 J D2h(τ )
τ + (D(
τ))	 J∇h(τ ) − 
N̄ ω

)

+N−1
(
(Dτ)	 J R̄2 + (D(
τ))	 J R̄1

)
. (69)

To control the rightmost part of Eq. (69), we discuss more precisely 
N̄ ω and
(D(
τ))	 J∇h(τ ). Regarding 
N̄ω, we perform the following auxiliary computa-
tions [see (57)]:

3 We have used that f (a + x) − f (a) =
∫ 1

0

d

ds
[F(s)] ds =

[∫ 1

0
Df (a + sx) ds

]
x , where F(s) =

f (a + sx).
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(Dτ)	D(
τ) ω = 
 Lωc +
r∑
j=1

c j (Dτ)	 J ∂θ j (Dτ) ω,

(D(
τ))	Dτ ω = −(Dc)	
ω −
r∑
j=1

c j ∂θ j (Dτ)	 J Dτ ω.

We apply expressions above to formula (66), and we obtain:


N̄ ω = 
 Lωc − (Dc)	e2 + W + (D(
τ))	Lω(
τ), (70)

where

W =
r∑
j=1

c j
(
(Dτ)	 J ∂θ j (Dτ) − ∂θ j (Dτ)	 J Dτ

)
ω. (71)

To simplify Eq. (71), we take partial derivatives with respect θ j , j = 1, . . . , r , in the
definitions of e2 in (34) and of e in (17) (this latter derivative is given by the column
j of De in (22)). Then, we obtain:

W =
r∑
j=1

c j
(
2(Dτ)	 J ∂θ j (Dτ) ω − ∂θ j e2

)

= 2(Dτ)	 J
r∑
j=1

c j
(
J D2h(τ ) ∂θ j τ + ∂θ j e

)
− (De2) c

= −2(Dτ)	D2h(τ ) Dτ c + 2 (Dτ)	 J (De) c − (De2) c.

To control the contributions of Lω(
τ) and Lωc to Eq. (70), we use Eq. (59) for
Lω(
τ) and we rewrite Lωc as follows [see Eq. (47)]:

Lωc = Lω(N−1 a) = Lω(N−1) a + N−1(∇e1 + e2). (72)

Regarding (D(
τ))	 J∇h(τ ), once again we use Eq. (57). We obtain:

(D(
τ))	 J∇h(τ ) = (Dc)	(Dτ)	∇h(τ ) +
r∑
j=1

c j ∂θ j (Dτ)	∇h(τ ).

To simplify expressions above, we consider the formula for ∇e1 given in Eq. (49).
In particular, if we take partial derivatives with respect to θ j of this formula, for any
j = 1, . . . , r , then we obtain:

∂θ j (Dτ)	∇h(τ ) + (Dτ)	D2h(τ ) ∂θ j τ = ∂θ j (∇e1).
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Consequently,

(D(
τ))	 J∇h(τ ) = (Dc)	∇e1 +
r∑
j=1

c j (∂θ j (∇e1) − (Dτ)	D2h(τ ) ∂θ j τ)

= (Dc)	∇e1 − (Dτ)	D2h(τ )Dτ c + (D2e1) c.

We use computations above to rewrite (69) as follows [see formula (38) for 
τ and
recall c = N−1a]:

(Idr + N−1
N̄ ) ē(1)
3 = e3 + S a + Ē (1)

2 ,

where S is the symmetric matrix defined in (11) and

Ē (1)
2 = N−1

(
(Dc)	(∇e1 + e2) − 
 Lωc + ((D2e1) + De2 − 2 (Dτ)	 J (De)) c

−(D(
τ))	Lω(
τ) + (Dτ)	 J R̄2 + (D(
τ))	 J R̄1

)
. (73)

From these expressions, we obtain

ē(1)
3 = (Idr + N−1
N̄ )−1(e3 + S a + Ē (1)

2 ) = e3 + S a + Ē (1)
3 , (74)

where

Ē (1)
3 =

(
(Idr + N−1
N̄ )−1 − Idr

)
(e3 + S a) + (Idr + N−1
N̄ )−1 Ē (1)

2 . (75)

To display e(1)
3 , we consider the following computations [see (37), (39), (45), (61),

and (64)]:

(Idr + Db) e(1)3 = (Idr + Db)
(
(N (1))−1(Dτ (1))	 J∇h(τ (1)) − ω

)

= (N̄ (1)(θ + b))−1(Dτ̄ (1)(θ + b))	 J∇h(τ̄ (1)(θ + b)) − (Idr + Db) ω

= ē(1)3 (θ + b) − Lωb = ē(1)3 (θ + b) − e3 − S a, (76)

where we also used that

N (1) = (Dτ (1))	Dτ (1) = (Idr + Db)	 N̄ (1)(θ + b) (Idr + Db). (77)

If we apply Eqs. (74) to (76), then we obtain the following formula por e(1)
3

e(1)
3 = (Idr + Db)−1 Ē (1)

4 , (78)

where, in order to make clear the quadratic behaviour of e(1)
3 , we write Ē (1)

4 as follows:

Ē (1)
4 = Ē (1)

3 (θ+b)+e3(θ+b)−e3+S(θ+b) (a(θ+b)−a)+(S(θ+b)−S) a. (79)
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Indeed, we can write

e3(θ + b(θ)) − e3(θ) =
(∫ 1

0
De3(θ + s b(θ)) ds

)
b(θ), (80)

as well as analogous expressions for a(θ + b) − a and for any column of the matrix
S(θ + b) − S.

Bounding one step of the method We derive quantitative estimates on the different
objects involved on procedure above. The only required tools are Lemma 2.4 (to
bound the solutions of the small divisors equations), as well as some basic properties
of the norm ‖ · ‖ρ [see Eq. (6) and Remark 2.5 for the definition]. Explicitly, if f is
an analytic function of Tr (scalar-valued, vector-valued or matrix-valued), then we
have the following bounds for the average of f and for the derivatives of f (Cauchy
estimates):

|〈 f 〉θ | ≤ ‖ f ‖ρ, ‖ f̃ ‖ρ ≤ 2‖ f ‖ρ, ‖∂θ j f ‖ρ−δ ≤ ‖ f ‖ρ

δ
, j = 1, . . . , r,

where f̃ = f − 〈 f 〉θ . Moreover, we control the inverse of a matrix that is close to
the identity by Neumann’s series. Indeed, if A ∈ Mr×r (C) verifies |A| < 1, then the
matrix Idr + A verifies:

|(Idr + A)−1| ≤ 1

1 − |A| , |(Idr + A)−1 − Id| ≤ |A|
1 − |A| .

If A is an analytic matrix function of Tr , then expressions above also hold for the
norm ‖ · ‖ρ .

Let τ be the parameterization of the quasi-torus of the statement of Theorem 2.6.
Our aim is to construct a constant m for which the theorem holds. To achieve this
purpose, during the next sequence of bounds the value of m is redefined recursively
to meet a finite number of conditions. The last value of m obtained is the one of
the statement. We use the constants of the statement of Theorem 2.6 to introduce the
following normalized error:

μ = μ3 + μ1 + μ2

γ δν
.

To guarantee that we can apply the quasi-Newton method to the parameterization
τ and to provide quantiative estimates on the involved objects, we suppose that the
following bound holds for all the values ofm (i.e. for the last one) of this finite sequence
of constants [see (13) and compare with condition (16)]:

m
μ

γ δν+1 < min

{
1

2
,�

}
. (81)
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Firstly, we use Lemma 2.4 and the Cauchy estimates to bound the matrix
 from (50):

‖
‖ρ−δ=‖L−1
ω (De2 − (De2)

	)‖ρ−δ ≤ σ
‖De2 − (De2)	‖ρ

γ δν
≤ 2rσ‖e2‖ρ

γ δν+1 ≤ m
μ

δ
.

By redefining m, we also have that ‖N−1
‖ρ−δ ≤ mμ/δ, so (81) implies that
‖N−1
‖ρ−δ ≤ 1/

√
2. Hence, by Neumann’s series, the matrix N defined in (35)

is non-singular and verifies:

‖N−1‖ρ−δ ≤ ‖N−1‖ρ

1 − ‖N−1
‖2ρ−δ

≤ 2m4 ≤ m.

By Remark 3.3, this means that the columns of the matrix functions Dτ and J Dτ

form a basis at any point of the set 
(ρ − δ). This fact allows using formulas (51)
and (54) to obtain:

‖α‖ρ−δ ≤ mμ, ‖β‖ρ−δ ≤ mμ, ‖e‖ρ−δ ≤ mμ, ‖De‖ρ−2δ ≤ m
μ

δ
,

where we use (81) to ensure that μ/δ ≤ 1. From the rightmost part of Eq. (22) and
formulas in (60), we also obtain

‖Lω(Dτ)‖ρ−2δ ≤ m, ‖LωN‖ρ−2δ ≤ m, ‖Lω(N−1)‖ρ−2δ ≤ m.

From Eqs. (11), (38), (45), (46), (47), and (59), we obtain (we recall that c = N−1a):

‖S‖ρ ≤ m, ‖̃a‖ρ−δ ≤ mμ, |ξ | ≤ mμ, ‖a‖ρ−δ ≤ mμ, ‖b‖ρ−2δ ≤ m
μ

γ δν
,

‖c‖ρ−δ ≤ mμ, ‖
τ‖ρ−δ ≤ mμ, ‖D(
τ)‖ρ−2δ ≤ m
μ

δ
, ‖Lω(
τ)‖ρ−2δ ≤ mμ.

As discussed before, the discrepancy between the bounds on D(
τ) and Lω(
τ)

above is due to the fact that the size of D(
τ) is controlled by Cauchy estimates while
for Lω(
τ) we use formula (59).

To guarantee that the new parameterization τ (1)(θ) = τ̄ (1)(θ +b(θ)) is well defined
[seeEqs. (37) and (38)], we need to control the domain of definition of this composition
of functions. By condition (81) and bounds above, we have that ‖b‖ρ−2δ ≤ δ. This
fact implies that

(· + sb(·))(
(ρ − jδ)) ⊂ 
(ρ − ( j − 1)δ), ∀s ∈ [0, 1], j = 2, 3, 4, (82)

and that this inclusion also holds for the closures of 
(ρ − jδ) and 
(ρ − ( j − 1)δ).
Since we have that τ̄ (1) = τ +
τ is well defined on the closure of 
(ρ − δ), we have
that τ (1) is analytic on 
(ρ − 2δ). To control τ (1) − τ , we express it as follows:
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τ (1)(θ) − τ(θ) = τ(θ + b(θ)) − τ(θ) + 
τ(θ + b(θ))

=
(∫ 1

0
Dτ(θ + sb(θ)) ds

)
b(θ) + 
τ(θ + b(θ)).

Hence, we have

‖τ (1) − τ‖ρ−2δ ≤ m
μ

γ δν
, ‖Dτ (1) − Dτ‖ρ−3δ ≤ m

μ

γ δν+1 .

Then, we can control the distance of τ (1)(
(ρ − 2δ)) to the boundary of U as follows
[see Definition (10)]:

dτ (1),ρ−2δ,U ≥ dτ,ρ,U − ‖τ (1) − τ‖ρ−2δ ≥ dτ,ρ,U − m
μ

γ δν
> m5, (83)

where the last inequality follows from condition (81). Bound (83) implies that we
can evaluate h and its derivatives on the set τ (1)(
(ρ − 2δ)). By using once again
condition (81), we have

‖Dτ (1)‖ρ−3δ ≤ ‖Dτ‖ρ + ‖Dτ (1) − Dτ‖ρ−3δ ≤ ‖Dτ‖ρ + m
μ

γ δν+1 < m3.

To show that the matrix function N (1) is non-singular, we consider the following
bounds [see (66)]:

‖
N̄‖ρ−2δ ≤ m
μ

δ
, ‖N−1
N̄‖ρ−2δ ≤ m

μ

δ
, ‖Db‖ρ−3δ ≤ m

μ

γ δν+1 .

By condition (81), we have thatmμ/δ ≤ 1/2 and thatmμ/(γ δν+1) ≤ 1/2. Hence, the
matrix functions N̄ = Idr + N−1
N̄ , N̄ (1) [see (65)], and Id + Db are non-singular
and verify:

‖N̄−1‖ρ−2δ ≤ 2, ‖N̄−1 − Id‖ρ−2δ ≤ m
μ

δ
,

‖(N̄ (1))−1‖ρ−2δ ≤ m, ‖(Id + Db)−1‖ρ−3δ ≤ 2.

From bounds above and formula (77), we conclude that N (1) is non-singular and we
derive the straightforward bound ‖(N (1))−1‖ρ−3δ ≤ m. We note that to provide this
latter estimate, we should take into account that the composition (N̄ (1))−1(θ + b(θ))

is well-defined ∀θ ∈ 
(ρ − 3δ) [see inclusion (82) for j = 3]. To bound (N (1))−1

more accurately, we consider the following formulas:
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N−1 − (N (1))−1 = (N (1))−1(N (1) − N )N−1

= (N (1))−1
[
(Idr + Db)	
N̄ (θ + b) (Idr +Db)

+ (Db)	N (θ + b)

+ (Idr + Db)	N (θ + b) Db + N (θ + b) − N
]
N−1,

Ni, j (θ + b(θ)) − Ni, j (θ) =
(∫ 1

0
DNi, j (θ + sb(θ)) ds

)
b(θ), i, j = 1, . . . , r.

From these expressions, we derive the following bounds [see condition (81)]:

‖N (θ + b) − N‖ρ−3δ ≤ m
μ

γ δν+1 ,

‖(N (1))−1 − N−1‖ρ−3δ ≤ m
μ

γ δν+1 , ‖(N (1))−1‖ρ−3δ < m4.

Next step is to deal with the matrix 〈S(1)〉θ , where [compare with the definition of S
in (11)]:

S(1) = (N (1))−1(Dτ (1))	
[
J D2h(τ (1))J + D2h(τ (1))

]
Dτ (1)(N (1))−1.

The difference S(1) − S can be controlled in terms of bounds on N−1, (N (1))−1, Dτ ,
Dτ (1), D2h(τ ), D2h(τ (1)), (N (1))−1−N−1, Dτ (1)−Dτ , and D2h(τ (1))−D2h(τ ).We
observe that hypothesis (8) implies that‖D2h(τ )‖ρ ≤ m1 and that‖D2h(τ (1))‖ρ−3δ ≤
m1, since these compositions are well defined on the corresponding domains. Hence,
D2h(τ (1))− D2h(τ ) is the only expression of the list that we have not yet considered.
By writing D2h(τ (1)) − D2h(τ ) column by column, we have

∇(∂z j h)(τ (1)) − ∇(∂z j h)(τ )

=
(∫ 1

0
D2(∂z j h)(τ + s(τ (1) − τ)) ds

)
(τ (1) − τ), j = 1, . . . , 2r.

By means of analogous computations as those performed in (83), we have that
dτ+s(τ (1)−τ),ρ−3δ,U > m5, ∀s ∈ [0, 1]. Hence, by using hypothesis (8), we conclude
that ‖D2(∂z j h)(τ + s(τ (1) − τ))‖ρ−3δ ≤ m2. Consequently,

‖D2h(τ (1)) − D2h(τ )‖ρ−3δ ≤ m
μ

γ δν
, ‖S(1) − S‖ρ−3δ ≤ m

μ

γ δν+1 .

Now, we write:

〈S(1)〉θ = 〈S〉θ (Idr + (〈S〉θ )−1 (〈S(1)〉θ − 〈S〉θ )),
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and we consider the bound

|(〈S〉θ )−1 (〈S(1)〉θ − 〈S〉θ )| ≤ m6 ‖S(1) − S‖ρ−3δ ≤ m
μ

γ δν+1 .

Since mμ/(γ δν+1) ≤ 1/2, we have that 〈S(1)〉θ is non-singular and, by bounding
Neumann’s series,

|(〈S(1)〉θ )−1 − (〈S〉θ )−1| =
|((Idr + (〈S〉θ )−1 (〈S(1)〉θ − 〈S〉θ ))−1 − Idr ) (〈S〉θ )−1| ≤ m

μ

γ δν+1 .

By using once again condition (81), we deduce:

|(〈S(1)〉θ )−1| ≤ |(〈S〉θ )−1| + |(〈S(1)〉θ )−1 − (〈S〉θ )−1| ≤ |(〈S〉θ )−1| + m
μ

γ δν+1 < m6.

To finish this part of the proof, we should bound the new errors {e(1)
j }3j=1. From (55)

and (56), we have:

‖R2‖ρ−δ ≤ mμ2 ‖Ē(1)
1 ‖ρ−δ ≤ mμ2, ‖e(1)1 ‖ρ−2δ ≤ mμ2, ‖∇e(1)1 ‖ρ−3δ ≤ m

μ2

δ
.

To control R2, we used that mμ < dτ,ρ,U − m5 [see (81)] to derive the bound
dτ+s
τ,ρ−δ,U > m5, ∀s ∈ [0, 1] [compare with (83)]. Then, we have that ‖D2h(τ +
s
τ)‖ρ−δ ≤ m1. Moreover, to control the composition Ē (1)

1 (θ + b), we used (82) for
j = 2. From Eqs. (58), (62), and (63), we obtain:

‖ē(1)
2 ‖ρ−2δ ≤ m

μ2

δ
, ‖Ar
(1)‖ρ−4δ ≤ m

μ2

γ δν+2 , ‖e(1)
2 ‖ρ−5δ ≤ m

μ2

δ
,

where to control e(1)
2 we have used (82) for j = 2, 4 and thatμ/(γ δν+1) ≤ 1 [see (81)].

To estimate e(1)
3 from (78), we should consider Eqs. (67), (68) (for any j = 1, . . . , 2r ),

(72), (73), (75), (79), and (80) (as well as analogous expressions for a(θ + b) − a and
S(θ + b) − S). We obtain (involved compositions have been discussed above):

‖R̄1‖ρ−δ ≤ mμ, ‖R̄2‖ρ−δ ≤ mμ2, ‖Lωc‖ρ−2δ ≤ mμ,

‖S(θ + b) − S‖ρ−2δ ≤ m
μ

γ δν+1 ,

‖e3(θ + b) − e3‖ρ−2δ ≤ m
μ2

γ δν+1 , ‖a(θ + b) − a‖ρ−3δ ≤ m
μ2

γ δν+1 ,

‖Ē (1)
2 ‖ρ−2δ ≤ m

μ2

δ
, ‖Ē (1)

3 ‖ρ−2δ ≤ m
μ2

δ
,

‖Ē (1)
3 (θ + b)‖ρ−3δ ≤ m

μ2

δ
, ‖Ē (1)

4 ‖ρ−3δ ≤ m
μ2

γ δν+1 .
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From them, we obtain the estimate

‖e(1)
3 ‖ρ−3δ ≤ m

μ2

γ δν+1 .

From now on, we set the value of the constant m as the one for which all previous
estimates are fulfilled. We use bounds above as motivation to introduce the following
quantities:

ρ(1) = ρ − 5δ, μ
(1)
1 = μ

(1)
2 = m

μ2

δ
, μ

(1)
3 = m

μ2

γ δν+1 .

Hence, at this point we have established the following conclusions. Let us suppose
that hypotheses on the statement of Theorem 2.6 hold and that μ verifies (81) for the
selected value of δ. Then, inequalities (9), (12), and (15) of the statement still hold if
we replace τ , N , S, {e j }3j=1, ρ, and {μ j }3j=1 by τ (1), N (1), S(1), {e(1)

j }3j=1, ρ
(1), and

{μ(1)
j }3j=1, respectively. Moreover, if we define:

� = max
{

‖Dτ (1) − Dτ‖ρ(1) , ‖(N (1))−1 − N−1‖ρ(1) , |(〈S(1)〉θ )−1 − (〈S〉θ )−1|
}

,

(84)
then we have proved that

‖τ (1) − τ‖ρ(1) ≤ m
μ

γ δν
, � ≤ m

μ

γ δν+1 . (85)

Iterative application of the method We conclude the proof by showing that the iter-
ative application of the method to the initial parameterization τ converges to τ ∗. We
introduce the following notations:

τ (0) = τ, N (0) = N , S(0) = S, ρ(0) = ρ, δ(0) = δ, μ(0) = μ,

μ
(0)
j = μ j , j = 1, 2, 3.

Let us assume that we can iterate n times, n ≥ 1. Then, we denote by τ (n), N (n), and
S(n), the corresponding expressions after the n-iteration. Moreover, we also introduce
the following recurrences (defined in terms of the value of m already fixed):

δ(n) = δ(n−1)

2
, ρ(n) = ρ(n−1) − 5δ(n−1), μ

(n)
1 = μ

(n)
2 = m

(μ(n−1))2

δ(n−1)
,

μ
(n)
3 = m

(μ(n−1))2

γ (δ(n−1))ν+1
,

μ(n) = μ
(n)
3 + μ

(n)
1 + μ

(n)
2

γ (δ(n))ν
=m(1 + 2ν+1)

γ δν+1 2(n−1)(ν+1)(μ(n−1))2=2−n(ν+1)χ2n−1μ,
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where

χ = m
2ν+1(1 + 2ν+1)

γ δν+1 μ. (86)

In particular, we have that ρ∗ = limn→∞ ρ(n) = ρ − 10δ. According to the notations
introduced above and the bounds that we have established for the first step of the
process, we conclude that can iterate n times provided that the following bounds hold
[see (81)]:

m
μ( j)

γ (δ( j))ν+1
< min

{
1

2
,�( j)

}
, j = 0, . . . , n − 1, (87)

where �( j) is defined as � in (13), by replacing τ , N , S, and ρ, by τ ( j), N ( j), S( j),
and ρ( j), respectively. In particular �(0) = �, so the inequality (87) for j = 0 reads
like (81). Our aim is to show that, if condition (16) holds, then the inequality (87) is
fulfilled ∀ j ≥ 0. Firstly, since condition (16) means that χ < 1/2 in (86), we have:

m
μ( j)

γ (δ( j))ν+1
= m

μ

γ δν+1χ2 j−1 ≤ m
μ

γ δν+1

(
1

2

) j

≤ m
μ

γ δν+1 <
1

2
, ∀ j ≥ 0.

Moreover, we also have:

+∞∑
j=0

m
μ( j)

γ (δ( j))ν+1
≤ m

μ

γ δν+1

+∞∑
j=0

(
1

2

) j

≤ 2m
μ

γ δν+1 < �,

+∞∑
j=0

m
μ( j)

γ (δ( j))ν
≤ 2m

μ

γ δν
< �.

To verify inequalities of (87) involving the definition of�( j), we proceed by induction
with respect to n. The fist step is immediate, since condition (16) implies that (87)
holds for n = 1 (i.e. for j = 0). Let us assume that (87) is satisfied up to some n ≥ 1.
This fact implies that we can iterate n times and that if we define �( j) as � in (84),
but by replacing τ , τ (1), N , N (1), S, S(1), and ρ(1) by τ ( j), τ ( j+1), N ( j), N ( j+1), S( j),
S( j+1), and ρ( j+1), respectively, then we have [compare with (85)]:

‖τ ( j+1) − τ ( j)‖ρ( j+1) ≤ m
μ( j)

γ (δ( j))ν
, �( j) ≤ m

μ( j)

γ (δ( j))ν+1
, j = 0, . . . , n − 1.

(88)
These bounds mean that, in particular, we can control the size of ‖Dτ (n)‖ρ(n) by the
following sum:

‖Dτ (n)‖ρ(n) ≤ ‖Dτ (0)‖ρ(0) +
n−1∑
j=0

‖Dτ ( j+1) − Dτ ( j)‖ρ( j+1) ≤ ‖Dτ‖ρ

+
n−1∑
j=0

m
μ( j)

γ (δ( j))ν+1
.

Consequently, by using the definition of � in (13), we obtain:
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m
μ(n)

γ (δ(n))ν+1
≤ ‖Dτ‖ρ − ‖Dτ (n)‖ρ(n) +

n∑
j=0

m
μ( j)

γ (δ( j))ν+1
�

< ‖Dτ‖ρ − ‖Dτ (n)‖ρ(n)+ ≤ m3 − ‖Dτ (n)‖ρ(n) .

By performing analogous computations for ‖(N (n))−1‖ρ(n) , dτ (n),ρ(n),U , and
|(〈S(n)〉θ )−1| we verify that mμ(n)/(γ (δ(n))ν+1) < �(n). Only the control of
dτ (n),ρ(n),U leads to a slightly different casewith respect to‖Dτ (n)‖ρ(n) , since it involves
the bounds of ‖τ ( j+1) − τ ( j)‖ρ( j+1) in (88) instead of the bounds of �( j). Therefore,
we make this case equivalent to the other ones by using that 1/(δ(n))ν ≤ 1/(δ(n))ν+1.
Consequently, the inequality (87) also holds for j = n, so we can iterate again. Hence,
results on the statement of Theorem 2.6 follow by taking the limit n → +∞. In par-
ticular, we have:

‖τ ∗ − τ‖ρ∗ ≤
+∞∑
j=0

‖τ ( j+1) − τ ( j)‖ρ( j+1) ≤
+∞∑
j=0

m
μ( j)

γ (δ( j))ν
≤ 2m

μ

γ δν
,

and similarly for ‖Dτ ∗ − Dτ‖ρ∗ .
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