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• A method to compute initial conditions on Lagrangian invariant tori is proposed.
• Initial condition are found by imposing suitable conditions on the frequency map.
• The basic tool is an averaging-extrapolation strategy to perform frequency analysis.
• The proposed approach performs with high accuracy at a moderate computational cost.

a r t i c l e i n f o

Article history:
Received 9 June 2015
Received in revised form
19 February 2016
Accepted 21 February 2016
Available online 10 March 2016
Communicated by H.A. Dijkstra

Keywords:
Quasi-periodic Lagrangian tori
Hamiltonian systems
Symplectic maps
Derivatives of frequencies

a b s t r a c t

We present a numerical method for computing initial conditions of Lagrangian quasi-periodic invariant
tori of Hamiltonian systems and symplectic maps. Such initial conditions are found by solving, using
the Newton method, a nonlinear system obtained by imposing suitable conditions on the frequency
map. The basic tool is a newly developed methodology to perform the frequency analysis of a discrete
quasi-periodic signal, allowing to compute frequencies and their derivatives with respect to parameters.
Roughly speaking, this method consists in computing suitable weighted averages of the iterates of the
signal and using the Richardson extrapolation method. The proposed approach performs with high
accuracy at amoderate computational cost.We illustrate themethod by considering a discrete FPUmodel
and the vicinity of the point L4 in a RTBP.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

One of the most remarkable features of Hamiltonian systems
and symplectic maps is the huge abundance of quasi-periodic so-
lutions. We refer the interested reader to [1,2], and references
therein, for a wide picture of quasi-periodicity in dynamical sys-
tems. A typical way to introduce quasi-periodic solutions is to con-
sider perturbations of integrable systems. The phase space of an
integrable Hamiltonian is filled up by Lagrangian invariant tori car-
rying quasi-periodic motion (LIT). The KAM theorem states that
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most of the LITs of the integrable system, in the sense of the
Lebesgue measure, survive to small Hamiltonian perturbations.
LITs are also abundant far from integrability, as there are many
mechanisms to generate them.

As invariant tori are a fundamental class of stable solutions,
computing them is a very relevant problem in the numerical
analysis of dynamical systems, and a wide set of algorithms has
been developed for this purpose.We summarize somemethods for
computing LITs and we refer the reader to [3,4] for a more detailed
discussion of the bibliography. LITs have been approximated using
methods based on canonical transformations (e.g. implementation
of KAMproofs [5] or normal forms around an invariant object [6,7])
or using the Lindstedt–Poincaré method [6,8]. Another approach,
valid far from integrability, is to compute a parameterization of the
LIT as a solution of an invariance equation. This functional equation
can be approximated by a finite dimensional one, either by
discretizing the functional (e.g. [9,4]) or by truncating the Fourier
series of the parameterization (e.g. [10–12]). Some recent works
(e.g. [3,13]) solve the invariance equation bymethods based on the
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parameterization KAM result in [14]. Finally, invariant curves of
maps have been computed by interpolating the dynamics [15,8].
This last approach is the closest to our construction, in the sense
that it also attempts to compute the curve by finding a single point
of it.

In this paperwe compute initial conditions of LITswith prefixed
frequencies. To this end we assume that LITs can be locally
labeled by the frequency vector (e.g under the Kolmogorov non-
degeneracy condition). We can identify a point on the LIT by
equating the frequency map to the selected frequencies. This leads
to a nonlinear system of equations with dimension given by the
number of degrees of freedom. If we can evaluate the frequency
map at any point, as well as its derivatives, then this system can be
solved by the Newton method.

To compute frequencies and their derivatives at a given point,
we use an averaging-extrapolation method applied to a sample
of points of the corresponding orbit. This approach, that was
introduced in [16] to compute rotation numbers of circle maps,
allows computing the frequencies with an error of O(1/Np+1),
where p is the averaging order and N the length of the sample.
Subsequently, this method was extended to compute derivatives
of the rotation number [17], to compute quasi-periodic invariant
curves of symplectic maps [18] and to perform the frequency
analysis of an arbitrary quasi-periodic signal [19]. Notice that there
are other noteworthy methods for the quasi-periodic frequency
analysis (e.g. [20,21]) that could be used also to evaluate the
frequency map.

Our approach does not require the system to be nearly-
integrable nor to be written in a specific set of coordinates. We do
not approximate the LIT using Fourier series and we do not solve
any systemof large dimension. Hence, themethod is not limited by
memory storage (e.g. the number of Fourier coefficients needed to
approximate a LIT rapidly increaseswith the dimension). However,
in this way we do not get the parameterization of the LIT (it has to
be computed a posteriori, if required).

2. Description of the methods

In this section we introduce the formal approach to obtain
initial conditions on a LIT using the frequencymap. Thenweoutline
the basic ideas of the averaging-extrapolation methods that we
use to compute the frequency map, its derivatives, and the Fourier
coefficients of the parameterization of the LIT. We sketch the basic
formulas and parameters of the method, and refer the reader to
[17,19,16] for implementation details.

2.1. Setting of the problem and formal approach

We describe the use of the frequency map to obtain initial
conditions on a LIT with prefixed frequencies. This approach
works both for Hamiltonians and symplectic maps, assuming large
enough regularity. However, to simplify the presentation, we
concentrate on analytic Hamiltonians. Let h : U ⊂ R2r

→ R be
an analytic Hamiltonian with r degrees of freedom. We suppose
T is a LIT of dimension r of h, with Diophantine frequency vector
ω ∈ Rr :

|⟨k, ω⟩| ≥
C

|k|τ1
, ∀k ∈ Zr

\ {0}, |k|1 = |k1| + · · · + |kr |, (1)

for C, τ > 0. Thismeans that there is a parameterization ofT given
by a real analytic embedding ϕ such that:

ϕ : Tr
→ R2r , T = ϕ(Tr), Lωϕ(θ) = J∇h(ϕ(θ)), (2)

where Tr
= (R/2πZ)r , Lω =

r
j=1 ωj∂θj , and J is the matrix of the

symplectic form.We refer to (2) as the condition of invariance of ϕ.
The KAM theorem ensures that, under suitable non-degeneracy
conditions, there are plenty of real analytic LITs around T that are
invariant by h, with frequencies moving with the torus. These LITs
fill up a Cantor-like set U∗

⊂ U of large Lebesgue measure. Indeed,
the Lebesgue measure of the portion of the phase space not filled
up by LITs is exponentially small in the distance to T (e.g. [22]).
Although U∗ has empty interior, these LITs are organized as a
Whitney-C∞ Cantor family (e.g. [1]). Hence, there is a Cantor-like
set K ⊂ Rr and functions Ω : K → Rr and Ψ : Tr

× K → R2r

such that θ → Ψ (θ, I) is an analytic parameterization of a LITwith
frequency vector Ω(I). We normalize them so that ϕ(·) = Ψ (·, 0)
and ω = Ω(0). Both, Ω and Ψ , are Whitney-C∞ functions that
can be extended to C∞-functions on open sets around I = 0 and
(θ, I) ∈ Tr

× {0}, respectively. The (Kolmogorov) non-degeneracy
condition at T is det(DΩ(0)) ≠ 0. We introduce the frequency
map

F : U∗
⊂ R2r

→ Rr (3)

that assigns to any point of U∗
= Ψ (Tr

× K) the corresponding
frequency vector. The value of F (x) is defined as F (x) = Ω(Ix),
with Ix ∈ K given by the inverse of Ψ . Specifically, x = Ψ (θx, Ix)
for some θx ∈ Tr . Note that the function F (x) is only properly
defined if x belongs to some LIT of the family. However, the
Whitney-C∞ character ofΩ andΨ implies thatF can be extended
to the whole set U as a C∞ function of the initial conditions.

We use the information provided by F and its derivatives to
compute an initial condition on T . From the practical viewpoint,
we must be far away from low-order resonances. Assume that
we have a point x(0)

∈ U∗, close to T , so that we can assign to
x(0) a Diophantine frequency vector F (x(0)). We look for a small
correction∆x(0)

∈ R2r in such a way that x(0)
+∆x(0) is closer to T

than x(0). By the non-degeneracy of F , the condition x(0)
+∆x(0)

∈

T is equivalent to the following r-dimensional nonlinear system
of equations:

F (x(0)
+ ∆x(0)) = ω. (4)

The linearized system of (4) is given by

DF (x(0))∆x(0)
= ω − F (x(0)), (5)

whereDF (x(0)) is a r×2r-matrix ofmaximum range.Wemust add
appropriate normalization conditions (depending on the context
at hand) to secure a single solution of (4). Our customary choice
is to set to zero the value of r coordinates of ∆x(0). Then, we
introduce the sequence x(i+1)

= x(i)
+ ∆x(i) and we expect

F (x(i+1)) to take the value ω with an error O(|ω − F (x(i))|2).
This approach can be adapted directly to several contexts: systems
depending periodically or quasi-periodically on time, iso-energetic
non-degenerate conditions, exact symplectic maps or dependence
on external parameters.

To perform a correction of the Newton method, we follow the
next basic steps:

• Let x(0)
∈ U be a point of a LIT close to T , with unknown

frequency vector ω ≃ ω that verifies Diophantine properties
like (1). We introduce the sequence {xn} defined by xn =

φ(nT ; x(0)), where φ is the flow of h and T is a sampling time.
This sequence carries quasi-periodic motion with frequency
vector ω̄ = Tω. To compute {xn}, and its derivatives, we have
to integrate numerically the trajectory of x(0) together with the
corresponding variational equations. If x(0) belongs to a LIT of
an exact symplectic map f , with frequency vector ω, then the
sequence {xn} is directly obtained as xn = f n(x(0)), and we have
ω̄ = ω.
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• From {xn} we set a complex discrete quasi-periodic signal
{zn} with the same frequency vector ω̄. If we denote xn =

(x1n, . . . , x
r
n) we can set, for example, zn = x1n or zn = x1n +

ix2n. This choice depends on the problem at hand. Using an
averaging-extrapolation process (see Section 2.2) we construct
a new quasi-periodic signal whose rotation frequency around
the origin is a selected component of ω̄. We refer to this process
as the unfolding of the signal.

• By projecting the unfolded signal we define a quasi-periodic
signal of T. The rotation frequency of the projected signal is
computed using averaging and extrapolation (see Section 2.3),
in analogous way as it is done in [16] for the rotation number of
a map of the circle. Derivatives of the frequencies with respect
to initial conditions and parameters are computed by taking
formal derivatives on the extrapolation operators.

2.2. Unfolding of the signal

We say that the complex sequence {zn}n∈Z is a (discrete) quasi-
periodic signalwith frequency vector ω̄ ∈ Rr if there isγ : Tr

→ C
such that zn = γ (nω̄), ∀n ∈ Z. If we denote the Fourier expansion
of γ as

γ (θ) =


k∈Zr

γ̂kei⟨k,θ⟩, γ̂k =
1

(2π)r


Tr

γ (θ)e−i⟨k,θ⟩dθ,

then we have the relation

zn = γ (nω̄) =


k∈Zr

γ̂kein⟨k,ω̄⟩. (6)

In this context, we say that ω̄ is a Diophantine frequency vector if
there exists C̄, τ > 0 such that

|ei⟨k,ω̄⟩
− 1| ≥

C̄
|k|τ1

, ∀k ∈ Zr
\ {0}. (7)

The conditions in (7) for a discrete quasi-periodic signal are
equivalent to say that (ω̄, 2π) ∈ Rr+1 verifies (1) for certain C > 0.
Note that the fact that ω verifies (1) does not imply that ω̄ = Tω
verifies (7). But, if ω is far away from low-order resonances, we
expect ω̄ to behaves like (7) for the practical viewpoint. See [19]
for details.

Given ω0 ∈ R, we introduce the phase-shifted iterates

Z(l,ω0,0)
n = zn+l−1e−i(n+l−1)ω0 , n ≥ 1, l ≥ 1, (8)

the recursive sums

Z(L,ω0,p)
n =

L
l=1

Z(l,ω0,p−1)
n , n ≥ 1, L ≥ 1, p ≥ 1, (9)

and the averaged sums

Ẑ(L,ω0,p)
n =


L + p − 1

p

−1

Z(L,ω0,p)
n . (10)

We undo the phase-shift in order to introduce the sequenceZ(L,ω0,p)
n = Ẑ(L,ω0,p)

n einω0 . (11)

Then, we use the asymptotic behavior of Z(L,ω0,p)
n when L → ∞ in

order to carry out an extrapolationprocess. Given the extrapolation
parameters pu, qu ∈ N, with qu ≥ pu, we define the sequence

z(2qu ,ω0,pu)
n =

pu−1
j=0

c(pu−1)
j

Z(Lj,ω0,pu)
n , n ≥ 1, (12)

where Lj = 2qu−pu+j+1 and the (extrapolation) coefficients c(m)
j are

given by

c(m)
j = (−1)m−j 2j(j+1)/2

δ(j)δ(m − j)
,

δ(n) = (2n
− 1)(2n−1

− 1) · · · (21
− 1), δ(0) = 1.

(13)
If {zn} is an analytic signal and ω̄ verifies (7), then {z(2qu ,ω0,pu)
n }

defines a quasi-periodic signal with frequency vector ω̄ given by
the analytic function γ (2qu ,ω0,pu) : Tr

→ C. From Proposition 2.12
in [19], ifω0 is close enough to a particular component of ω̄, say ω̄1,
(in the sense that 2qu |ω̄1 − ω0| is fairly small) we have

|z(2qu ,ω0,pu)
n − γ̂ (2qu ,ω0,pu)

e1 einω̄1 | = O(2−puqu), ∀n ∈ Z,

where γ̂
(2qu ,ω0,pu)
e1 is the Fourier coefficient of γ (2qu ,ω0,pu) associated

to ω̄1. For this reason, we say that the signal associated to (12)
gives an unfolding of order pu of {zn}n∈Z for the frequency ω̄1. The
construction follows using the Richardson extrapolation method
on the explicit expression of the averaged sums (10). Notice that,
within the present context, asω ≃ ω, and the frequency vector of
the target torus is known, then we can select ω0 as Tω1.

In case that we do not have information on the frequencies of
the signal, we can use any method of quasi-periodic frequency
analysis in order to select a suitable value of ω0. These methods
are based on a refined analysis of a DFT of the signal (e.g. [20,21]).
In our context, we observe that the map

ω0 →
1
L

L−1
m=0

zme−mω0i = Z (L,ω0,1)
0

produces the DFT of the signal {zm}
L−1
m=0 when applied to a sampling

of the form ω0 =
2πk
L . Then, we refer to [19] for a construction

that uses the averaged sumsZ (L,ω0,p)
0 to improve the information

provided by the DFT. Furthermore, it is worth noticing that, using
the terminology of digital signal processing (DSP), the construction
(8)–(11) constitutes a linear band-pass filter, composed of a
frequency shift ω0 → 0, given by (8), a low-pass filter, given by
(9) and (10), and a frequency shift 0 → ω0, inverse of the first
one, given by (11). This band-pass filter attenuates amplitudes for
frequencies different from ω0 and the extrapolation (12) and (13)
enhances this attenuation effect. This attenuation produces the
unfolding mentioned above. We remark that this filter preserves
both the analyticity and frequency vector of the initial signal. If
amplitudes for frequencies different from ω̄1 ≈ ω0 are sufficiently
attenuated relative to the amplitude at ω̄1, then ω̄1 becomes the
rotation frequency around the origin (i.e, ω̄1/2π is the average
number of turns of the unfolded signal around the origin).

The fact that ω̄1 is the rotation frequency means that if we
consider the projection to T

x
(2qu ,ω0

1,pu)
n = arg(z

(2qu ,ω0
1,pu)

n ), (14)

then we can write

x
(2qu ,ω0

1,pu)
n = nω̄1 + X (2qu ,ω0

1,pu)(nω̄), (15)

where X (2qu ,ω0
1,pu) : Tr

→ R is an analytic function. The
expression (15) denotes the lift to R of the projected signal rather
than the signal of T itself (i.e. the argument must be increased by

2π whenever z
(L,ω0

1,pu)
n completes one turn around the origin). In

practice, we say that the unfolding of the signal {zn} has succeeded
if we can set ω̄1 as the value of the rotation frequency and if we
are able to track the evolution of the argument along the unfolded
iterates. Taking values pu = 2 and qu = 10 is enough in most
situations.We refer to [19] for efficient recurrences to compute the
unfolded signal.

Although we have described the unfolding process correspond-
ing to a particular frequency ω̄1, in practiceweperform this process
simultaneously for all the components of ω̄. In this way, we do not
need to store in memory the integration sample and we also save
several loops in the algorithm.
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2.3. Computation of the frequency vector and derivatives

We introduce the recursive sums

S(0)
n = x

(2qu ,ω0
1,pu)

n , S(p)
n =

n
m=1

S(p−1)
m , n ≥ 1, p ≥ 1, (16)

and the averaged sums

S(p)
n =


n + p
p + 1

−1

S(p)
n .

Given the extrapolation parameters pr , qr ∈ N, with qr ≥ pr , we
introduce the operator

Θ(pr ,qr ) =

pr
j=0

c(pr )
j

S(pr )
Nj

, (17)

where Nj = 2qr−pr+j, and the coefficients c(m)
j are given by (13). If

Eq. (15) holds, it turns out that

ω̄1 = Θ(pr ,qr ) + O(2−qr (pr+1)).

We refer the reader to [19,16] for justifications, details on optimal
selection of the parameters pr and qr , and complete description of
implementation details. We observe that to compute the recursive
sums {S(pr )

Nj
}
pr
j=0 weonly need to store inmemory a (pr+1)×(pr+1)

matrix array. We do not need to store the iterates of the signal. We
also point out the recent work [23] for a similar approach to the
computation of rotation frequencies.

Assume that the problem depends (at least C1) on a parameter
α. We observe that the linear structure of the operator Θ(pr ,qr )

(and of the unfolding procedure of Section 2.2) commutes with
the differential operator ∂α . For this reason, the above method
can be directly extended to compute derivatives with respect to
parameters. Hence, we can compute approximations of ∂αω̄1 by
taking formal derivatives on these operators. Then, we introduce

the sums ∂αS
(pr )
Nj

, associated to {∂αx
(L,ω0

1,pu)
n }, using the same

recurrences as in (16), and we obtain

∂αω̄1 = ∂αΘ(pr ,qr ) + O(2−qrpr ).

We refer the reader to [24,17] for an exhaustive discussion
and implementation details. If the signal is given through a
Hamiltonian flow or a symplectic map, we cannot expect it to be
well-defined for every value α, but only for a Cantor set. According
to the discussions in Section 2.1, we expect that ∂αω̄(α) is well
defined in the sense ofWhitney.We remark that themethodworks
for computing higher order derivatives of ω̄1, but the computations
become more difficult when the order increases. Specifically, for
a derivative of order d the extrapolation error is controlled by
O(2−qr (pr+1−d)).

To performourmethodologywehave to compute a sample ofM
points of this signal, as well as its derivatives with respect to initial
conditions and parameters. Note that if we unfold the signal using
parameter values pu and qu and we refine the frequencies using
parameter values pr and qr , thenM = 2qu + 2qr − 1.

2.4. Computation of the Fourier coefficients

In many applications, we may be interested in computing the
parameterization ϕ of a LIT rather that a single point on it. By
computing several Fourier coefficients of ϕ we obtain an initial
guess to use the parameterization method in KAM theory (e.g.
[14,3,13]). In turns out that the averaging-extrapolation method
can be adapted to deal with this scenario.

Let T be a LIT with frequency vector ω and assume that we
have computed x∗

∈ T by solving (4). Let ϕ : Tr
→ R2r be
the parameterization of T , given by (2), such that ϕ(0) = x∗

and let {ϕ̂k}k∈Zr be the Fourier coefficients of ϕ. Unfortunately, we
cannot obtain {ϕ̂k}k∈Zr directly by DFT since we only can evaluate
a trajectory on the LIT, and so, we cannot generate the values of ϕ
on an equispaced grid of points on Tr . As this trajectory is dense on
T , we have the option of using interpolation to get approximations
to the values of ϕ on the grid, but the error of interpolation can be
large when r increases. Next, we explain how we can get Fourier
coefficients by averaging an extrapolation.

We consider the signal {xn}, with xn = φ(nT ; x∗), whereφ is the
flow of h and T is the sampling time. Then, the frequency vector
of this signal is Tω. The computed values satisfy xn = ϕ(nTω).
Hence, the corresponding points of Tr are not equispaced, but
distributed according to the translational dynamics by Tω. Given
a fixed k ∈ Zr , the expression x(k)

n = xne−inT ⟨k,ω⟩ defines a discrete
quasi-periodic signal of C2r with frequency vector Tω and average
ϕ̂k. We introduce S(0)

n (k) = x(k)
n , we compute the recursive sums

S(p)
n (k) using Eq. (16), and we introduce the averages

S(p)
n (k) =


n + p − 1

p

−1

S(p)
n (k).

Given pf , qf ∈ N, with qf ≥ pf , we define

Γ
(pf ,qf )
k =

pf −1
j=0

c
(pf −1)
j

S(pf )
Nj

(k), (18)

whereNj = 2qf −pf +j+1 and the coefficients c
(pf −1)
j are given by (13).

Then, it turns out that

γ̂k = Γ
(pf ,qf )
k + O(2−qf pf ).

We refer the reader to [19] for a complete description of
implementation details.

In practice, it may be interesting to take pf = pr + 1 and
qf = qr . Then the operators in (17) and (18) are applied to
the same sample of N = 2qr iterates. Using the operator (18),
we can compute a selected set of Fourier coefficients, with high
precision, independently of the other ones. Among the drawbacks
of this approach, we stress the fact that we miss the orthogonality
properties of the DFT. This lack of orthogonality increases the
perturbative effect of the dominant Fourier coefficients when
computing ϕ̂k for large values of |k|. For this reason, it may be
a good idea to start by computing the dominant part of ϕ. If we
subtract this from the signal, then we magnify the contribution
of the high order frequencies (this is a typical approach when
performing a quasi-periodic frequency analysis with methods
based on DFT, e.g. [20,21]). We remark again that an interesting
possibility is to compute a rough approximation to ϕ, and then
to refine it by means of a parameterization method. An analogous
strategy is useful if we want a point on T , but ‘‘far away’’ from x∗

(e.g., the intersection of T with a certain transverse manifold). We
can use a rough approximation to ϕ to locate a point close to T
verifying also the desired properties. Then, we can refine this point
by the methodology of this paper.

Finally, we can use the extrapolation operator (18) to validate
the computation of the frequency in Section 2.3. Assume that we
want to check whether Θ(pr ,qr ) provides a true approximation to
ω̄1. We can proceed by computing the Fourier coefficient γ̂e1 asso-
ciated to this frequency, using Θ(pr ,qr ) to compute x(e1)

n . If Θ(pr ,qr )

approximates a frequency of {zn}, then γ̂e1 ≠ 0. Accordingly, if we
numerically obtain that γ̂e1 = 0, then Θ(pr ,qr ) is not an approxi-
mation to ω̄1. In this case we must improve the unfolding process
by taking a larger value of L to define each unfolded iterate or by
looking for a better approximation to ω̄1 than ω0

1 .
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3. Numerical examples

We consider two different examples in order to enhance
the main features and limitations of the presented methods. In
Section 3.1 we study a simple model that describes a coupled
chain of anharmonic oscillators. The main reason for considering
this discrete-time system is because dealing with this symplectic
map we can easily compute a large number of iterates with a
simple implementation and fast computational time. In Section 3.2
we compute some families of LITs in a Restricted Three Body
Problem.We consider different situations involving the planar and
the spatial cases, and also the circular and the elliptic cases.

3.1. A model of coupled anharmonic oscillators

The considered FPU model is a discretization of a canonical
model describing r anharmonic oscillators with a local coupling
that has been extensively studied in the literature (e.g. [25,26]) af-
ter the pioneering work of Fermi, Pasta and Ulam in [27]. We con-
sider x ∈ Tr and y ∈ Rr , where we set T = R/Z in order to follow
the common convention in the literature. Then, the dynamics is
given by the exact symplectic map (x̄, ȳ) = F(x, y) defined as

x̄i = xi + ȳi,

ȳi = yi −
αi

2π
sin(2πxi) +

β

2π
sin(2π(xi+1 − xi))

−
β

2π
sin(2π(xi − xi−1)),

(19)

for i = 1, . . . , r , where we identify x0 = xr and xr+1 = x1. The pa-
rameters {αi}

r
i=1 are associated to the anharmonic oscillators and

β measures the coupling between the oscillators. Notice that each
iterate is obtained just by evaluating 2r times the sinus function
and performing few elemental operations. Hence, we can compute
a huge number of iterates of themap (19), as well as its derivatives,
up to a high accuracy but with a moderate computational cost. To
exploit this fact, we perform computations using an arithmetic of
32 decimal digits.

In this example, we use pu = 2 and qu = 10 for the unfolding
procedure and we use pr = 8 and qr ≤ 20 for the computation of
the frequencies and its derivatives. We compute approximations
to the frequencies using 2qr unfolded iterates, increasing the value
of qr from 8 to 20. We stop when the difference between two
consecutive approximations is smaller than a prefixed tolerance.
Approximations of the derivatives of the frequencies are computed
by using the same number of iterates needed to validate the
frequencies. The tolerance for the computation of the frequencies
and the tolerance for the Newtonmethod are selected according to
each particular situation.

For β = 0 the model (19) turns out to be the product of r
uncoupled standard maps [28] of the form

(x, y) →


x̄ = x + ȳ, ȳ = y −

α

2π
sin(2πx)


. (20)

For α = 0, the circles T × {ω} are invariant and with rotation
numberω. Ifω is Diophantine and |α| is small enough, themap (20)
has an invariant curve with rotation number ω. Since (20) is a
twist map, the projection of this invariant curve onto T defines a
circlemapwith rotation numberω. This fact allows performing the
numerical continuation with respect to α of an initial condition on
this curve, without needing to carry out the unfolding procedure.
Hence, we obtain an analytic curve y0(α) so that (0, y0(α)) belongs
to an invariant curve of (20) with rotation number ω. We refer
the reader to [17,16] for details on this specific continuation. This
curve is used later on to initialize the computation of LITs of (19)
for higher number of coupled oscillators.

For r = 2 the model (19) defines a Froeschlé-like map Fα1,α2,β .
The Froeschlé map [29] has been used as a model to understand
Table 1
Implementation parameters of the Newton method corresponding to the colored
curves shown in Figs. 1 and 2. The rightmost column is the value of the parameter
β for the last computed LIT in the curve.

Color Tol. freq. Tol. new. Last computed β

Red 10−23 10−20 0.0277810751329753802587
Green 10−21 10−18 0.0325299413989953885507
Blue 10−18 10−16 0.0377754515433391344838
Magenta 10−16 10−14 0.0408963352103296900526
Black 10−14 10−12 0.0412699621910886738677
Orange 10−12 10−10 0.0418933219731313588506

instability channels. In this case, we can only ensure that the direct
projection of the iterates onto the angular variables (x1, x2) ∈ T2 is
well-posed if |α|, |β| ≪ 1. For general values ofα andβ , we should
use the unfolding procedure. We fix a Diophantine rotation vector
ω0

= (ω0
1, ω

0
2) (i.e., the frequency vector is 2πω0) andwe consider

the LIT of Fα1,α2,β , for β = 0, defined as the product of the invariant
curves of (20) forα = α1 andα = α2, with rotation numberω0

1 and
ω0

2 , respectively. Then, we fix the values α1 and α2, andwe perform
the numerical continuation with respect to β of the LIT of Fα1,α2,β

with rotation frequency ω0. To apply the methods of Section 2, we
consider initial conditions of the form (x01, x

0
2, y

0
1, y

0
2), with x01 = 0,

and x02 = 0, and we deal with the complex signal

zn = (1 + yn1)e
2π ixn1 + (1 + yn2)e

2π ixn2 ,

that is defined in terms of the orbit (xn1, x
n
2, y

n
1, y

n
2) = F n

α1,α2,β
(0, 0,

y01, y
0
2). Abusing notation, we denote byω1 andω2 the components

of the frequency map of Fα1,α2,β . Since the values of α1 and α2 are
fixed, and we select initial conditions with x01 = 0 and x02 = 0, we
have to evaluate the derivatives

∂ω1

∂y01
,

∂ω1

∂y02
,

∂ω1

∂β
,

∂ω2

∂y01
,

∂ω2

∂y02
,

∂ω2

∂β
. (21)

As a specific example, we consider the rotation vector ω0
=

(
√
2 − 1,

√
3 − 1), and we fix α1 = 0.1 and α2 = 0.2. We

ask for a tolerance of 10−23 in the computation of frequencies. If
the error of the frequencies is larger than 10−20 after we reach
the value qr = 20, then we do not validate the results and we
stop the computations. To perform the Newton method on the
frequencymap, we ask for a tolerance of 10−20 (i.e., we validate the
results when the frequency map equals to ω0 up to this tolerance).
Results of this continuation are shown in the red curve of Fig. 1.
The computation performs with significant accuracy (around 23
decimal digits for frequencies and 19 decimal digits for derivatives)
up to β ≃ 0.015. Beyond this point, as we approach to the
breakdown of the LIT, the width of the strip of analyticity of
the parameterization shrinks. This loss of regularity affects the
precision of the averaging-extrapolationmethods. Anyway, we are
still able to compute an initial condition on the LIT with at least 20
decimal digits up to the value β ≃ 0.02778. Although for larger
values of β we cannot keep such level of accuracy, we still observe
a nice and regular performance of the extrapolation methods in
general and, particularly, in the computation of the derivatives.
Accordingly, we expect the LIT to exist beyond the red curve. To
carry out the continuation for β > 0.02778, we ask for a higher
tolerance in the Newtonmethod. Results of the continuation under
less demanding tolerances are shown, using different colors, in
Figs. 1 and 2. The information corresponding to the color scale is
given in Table 1. We note that the accuracy of the derivatives (21)
decreases as β approach to the last computed value β ≃ 0.04189.
The asymptotic behavior of the size of these derivatives shows that
this value is close to the blow up of the derivatives with respect to
parameters. Hence, we are approaching to the breakdown of the
LIT (see Table 2).



68 A. Luque, J. Villanueva / Physica D 325 (2016) 63–73
Fig. 1. Numerical continuationw.r.t.β (horizontal axis) of the LIT of rotation vector (ω0
1, ω

0
2) = (

√
2−1,

√
3−1) of (19) forα1 = 0.1, andα2 = 0.2. Colors correspond to the

tolerance in the Newton method (see Table 1). Top-Left: initial condition y01 . Top-Right: log10 of the averaged extrapolation error in the computation of the two frequencies.
Bottom-Left: log10 of the averaged extrapolation error in the computation of the six derivatives in (21). Bottom-Right: log10 of the error in the convergence of the Newton
method.
Fig. 2. Additional plots to the numerical continuation with respect to β of Fig. 1. Left: Absolute value of the derivatives of ω1 with respect to (y01, y
0
2, β). Right: Absolute

value of the derivatives of ω2 with respect to (y01, y
0
2, β).
In order to illustrate the performance of the method when the
dimension of the LIT (i.e., the number of frequencies) increases, we
continuewith respect to β a LIT of (19) for r = 4 and r = 8. Results
for r = 4 are displayed in Table 3 and correspond to α1 = 0.1,
α2 = 0.2, α3 = 0.1, α4 = 0.2, and rotation frequencies

ω0
= (

√
2 − 1,

√
3 − 1,

√
5 − 2,

√
7 − 2). (22)

Results for r = 8 are displayed in Table 4 and correspond to
αi = 0.1, i = 1, . . . , 8, and

ω0
= (

√
2 − 1,

√
3 − 1,

√
5 − 2,

√
7 − 2,

√
11 − 3,

√
13 − 3,

√
17 − 4,

√
19 − 4). (23)
If we focus on the lasts columns of Tables 3 and 4, we observe
how the accuracy of the results is reduced as we approach to the
breakdown of the LIT.

3.2. Study of a restricted three body problem

We consider two punctual masses (called primaries) describing
an elliptic orbit, according to the Newton laws, with eccentricity e
and semimajor axis a. The elliptic restricted three body problem
(ERTBP) describes the motion of a third massless particle (an
asteroid) under the gravitational attraction of the primaries. As
usual, we consider a rotating coordinate system with origin at
the center of mass of the primaries, so that the two primaries
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Table 2
Some output data of the numerical continuation with respect to β of Figs. 1 and 2. In the last two columns we show the estimated error obtained for the frequencies in the
Newton method.

β y01 y02 |ω1 − ω0
1| |ω2 −ω0

2|

9.77716914081557254627e−07 0.416239280635578818468 0.717977454920173053136 1e−26 2e−26
5.38089767561550300719e−03 0.415535218621395843133 0.718890011733364250169 2e−26 1e−25
1.10137539367116352242e−02 0.414801405234141105449 0.719843976010496173569 2e−27 2e−26
1.68967198315117365065e−02 0.414035543304713472584 0.720842185525490944118 2e−27 4e−26
2.24027813672504887457e−02 0.413315391788239314504 0.721782443104299664683 2e−26 1e−26
2.77810751329753802587e−02 0.412604505093834489587 0.722711201685412677265 1e−24 2e−24
2.94053945778807538302e−02 0.412387760166496501515 0.722994356653690987061 6e−24 8e−24
3.15302331705021581937e−02 0.412102611401104060735 0.723366816598592656407 3e−23 3e−23
3.34036002738324504311e−02 0.411849701084173189480 0.723697108382632535398 9e−23 1e−22
3.65265450798611782387e−02 0.411425308486084343014 0.724251278520835355351 2e−22 3e−22
3.80242428972714170416e−02 0.411220816608226213801 0.724518316461670266277 2e−22 3e−22
3.93978946891543367520e−02 0.411032905535375449688 0.724763742955280848283 1e−22 2e−22
4.08963352103296900526e−02 0.410827708715062350638 0.725031821789886603282 3e−23 5e−23
Table 3
Some output data of the numerical continuation with respect to β of the LIT of (19) of rotation frequencies (22) for α1 = α3 = 0.1 and α2 = α4 = 0.2. In the last column
we show the sum of the estimated error obtained for the frequencies after the Newton method.

β y01 y02 y03 y04 |ω−ω0
|

9.779439684885e−07 0.4162392678913 0.7179773739847 0.2447614664937 0.6381604610137 1e−25
1.242005127722e−04 0.4162214880000 0.7179880933506 0.2447554403886 0.6381754561794 4e−27
4.997557667751e−04 0.4161672921146 0.7180206035566 0.2447372441062 0.6382211619743 9e−27
6.317939443707e−04 0.4161482354020 0.7180319763522 0.2447309074316 0.6382372326375 3e−23
9.995637966472e−04 0.4160951491976 0.7180634968389 0.2447134243981 0.6382819984438 3e−17
1.625618649899e−03 0.4160047558418 0.7181166259178 0.2446842270968 0.6383582157448 5e−17
2.251751970294e−03 0.4159143181082 0.7181690986610 0.2446557367438 0.6384344580512 5e−17
2.751735327176e−03 0.4158420760031 0.7182105254825 0.2446334967205 0.6384953503886 3e−17
3.503267593603e−03 0.4157334427959 0.7182720067843 0.2446009199017 0.6385868964559 1e−16
4.254904463352e−03 0.4156247366839 0.7183325551101 0.2445693631055 0.6386784763119 9e−16
4.881346034123e−03 0.4155340898778 0.7183823029776 0.2445438461321 0.6387548179573 2e−15
5.383527613237e−03 0.4154613909064 0.7184217156897 0.2445239058184 0.6388160265805 1e−14
5.397232974486e−03 0.4154594064151 0.7184227855827 0.2445233679744 0.6388176971853 1e−12
Table 4
Some output data of the numerical continuation with respect to β of the LIT of (19) of rotation frequencies (23) for αi = 0.1, i = 1, . . . , 8. In the last column we show the
sum of the estimated error obtained for the frequencies after the Newton method.

β y01 & y05 y02 & y06 y03 & y07 y04 & y08 |ω−ω0
|

8.721026636145e−07 0.4162397440728 0.7249722133046 0.2447614773163 0.6419081663358
0.3217096059857 0.6029467432330 0.1431926686372 0.3625911181005 2e−23

6.104690229538e−06 0.4162417545974 0.7249725942790 0.2447612546689 0.6419086441563
0.3217089437365 0.6029470295899 0.1431922227900 0.3625892646069 5e−21

2.703455495136e−05 0.4162497977287 0.7249741172879 0.2447603646304 0.6419105550262
0.3217062949516 0.6029481748676 0.1431904395238 0.3625818498993 1e−18

1.107463501067e−04 0.4162819867430 0.7249801951158 0.2447568132825 0.6419181915871
0.3216957036192 0.6029527535822 0.1431833083655 0.3625521793992 3e−16

3.339203121380e−04 0.4163679521865 0.7249962918378 0.2447474116802 0.6419384941006
0.3216674995059 0.6029649448522 0.1431643056256 0.3624729682366 5e−15

5.570164172625e−04 0.4164541018311 0.7250122280960 0.2447381094064 0.6419586893359
0.3216393752779 0.6029771092797 0.1431453199186 0.3623936297754 4e−15

7.800418216508e−04 0.4165404330789 0.7250280047780 0.2447289057641 0.6419787550248
0.3216113592776 0.6029892471999 0.1431263476848 0.3623141682097 8e−15
are fixed on the x-axis, the z-axis has the direction of the angular
momentum and the y-axis is defined to have a positive-oriented
frame. If we choose units of distance, time, and mass such that
a = 1, the period is 2π and the sum of themasses is 1, and we take
as independent variable the true anomaly f , then the Hamiltonian
He = He(x, y, z, px, py, pz, f ) for the third particle is 2π-periodic
on f and is given by (e.g. [30])

He =
(px + y)2 + (py − x)2 + p2z + z2

2

−
1
E


x2 + y2 + z2

2
+

1 − µ

r1
+

µ

r2


, (24)

where E = 1 + e cos f , px = ẋ − y, py = ẏ + x, pz = ż,
r21 = (x−µ)2+y2+z2, r22 = (x−µ+1)2+y2+z2, andµ ∈ (0, 1

2 ]
is the mass of the smallest primary. The connection between f and
the time t is given by:

ḟ = (1 − e2)−3/2(1 + e cos f )2. (25)

For e = 0, we obtain the Circular Restricted Three Body Problem
(CRTBP), given by the autonomous Hamiltonian

H0(x, y, z, px, py, pz) =
p2x + p2y + p2z

2
+ ypx − xpy

−
1 − µ

r1
−

µ

r2
. (26)

Although for e ≠ 0 the Hamiltonian (24) is 2π-periodic, it has five
equilibrium points. Three of them (the Eulerian points L1, L2, and
L3) are on the x axis, and the other two (the Lagrangian points L4
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Fig. 3. Left: We show initial conditions α0 (horizontal axis) versus ρ0 (vertical axis) corresponding to the continuation of two families of LITs of the planar CRTBP, starting
from (28) and satisfying ω1 = ω0

1 and ω2 = ω0
2 , respectively (see (29)). Right: Zoom of the previous figure. The red curve corresponds to ω1 = ω0

1 and the green curve
corresponds to ω2 = ω0

2 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
and L5) are on the plane xy and form an equilateral triangle with
the primaries. We focus on L5 (the point L4 is equivalent), given by
(µ−

1
2 ,

√
3
2 , 0, −

√
3
2 , − 1

2+µ, 0). It iswell-known that for e = 0 and
0 < µ < µR, whereµR =

1
2 (1−

√
23/27) ≃ 0.03852 is the Routh

critical value, the point L5 is linearly stable (elliptic) with normal
frequencies

ω
(L5)
1 =


1
2
(1 − (1 − 27µ(1 − µ))1/2)

1/2

,

ω
(L5)
2 =


1
2
(1 + (1 − 27µ(1 − µ))1/2)

1/2

,

(27)

and ω
(L5)
3 = 1 (the one of the vertical oscillations).

In this section we use the Newton method on the frequency
map to compute and continue numerically LITs around L5 of the
CRTBP and the ERTBP for the Sun–Jupiter system, given by µSJ =

0.00095388118. KAM theory (e.g. [22,31]) predicts that there is a
large set of LITs around L5. For e = 0, the frequency analysis of
the CRTBP for µ = µSJ shows that L5 is stable from the effective
viewpoint (e.g. [20,19]) in a domain larger than the one for which
the existence of LITs has been established (e.g. [32,20]).

In the computations performed below we consider initial
conditions close to L5 parameterized as follows:
x = µ + (1 + ρ) cos(2πα), y = (1 + ρ) sin(2πα),

z = z, ẋ = ẏ = ż = 0, f = 0.
This selection of variables (α, ρ) is suitably adapted to the shape
of the domain of stability of the problem. Taking zero velocity is
a normalization condition for the LIT. Given an initial condition of
this form, we assume that the corresponding trajectory belongs to
a LIT of the system (with three frequencies for the CRTBP and four
frequencies for the ERTBP). For e ≠ 0 the time-frequency is known,
so we focus on the remaining ones. For small values of e, these
frequencies are close to the ones of L5 for the CRTBP (see (27)). In
particular, the motion restricted to the plane z = 0 has only two
frequencies. We address the computation of the frequency map in
terms of the complex signal xn + iyn − Γ , where the values of xn
and yn are defined by using sampling time T = 1. This implies
that the frequencies of the discrete signal are the same as those
of the continuous one. The value of Γ is an approximation to the
average of the discrete signal, computed using with pf = 2 and
qf = 10. Notice that removing the average of the signal is a useful
trick to accelerate the convergence of the unfolding process. We
use the extrapolation parameters pu = 2 and qu = 10 for the
unfolding procedure and we use pr = 5 and qr ≤ 16 for the
computation of the frequencies and its derivatives. To integrate the
Hamiltonian He we use a Taylor method of order 22 and double
precision arithmetic.
3.2.1. The planar case
To illustrate the flexibility of our approach, we perform

different continuations of LITs of the planar CRTBP following
several criteria. As starting point, we consider the initial condition
given by

α = 0.28, ρ = 0, z = 0. (28)

By performing frequency analysis of the corresponding trajectory
(e.g. [19]) we obtain the frequencies

ω0
1/2π = 0.01258702486754,

ω0
2/2π = 0.15861068715732.

(29)

To perform the computations, we ask for a tolerance of 10−14 in the
computation of frequencies (but we do not explicitly control the
accuracy of its derivatives) and a tolerance of 10−10 for the Newton
method.

First, we continue LITs by fixing the value of one of the frequen-
cies. Abusing notation, we denote by (ω1, ω2) the components of
the frequencymap as function of the initial values ρ0 and α0. Then,
the considered equations are ω1 = ω0

1 and ω2 = ω0
2 . Each of these

equations defines a curve on the plane α0ρ0. Note that there is a
dense set of resonances as the other frequency moves along the
curve. However, since no low-order resonances are encountered,
we do not observe these holes numerically. Both curves are shown
in the left plot of Fig. 3 and they define a convex domain around the
point (α0, ρ0) = (1/3, 0), that corresponds to L5. These curves are
very close to each other. In the right plot in Fig. 3we display a zoom
to show that they are different. This close-to-degenerate behavior
is typically observed in celestialmechanics, since it is common that
frequencies move very slowly with respect to initial conditions.

Next, we deal with the iso-energetic continuation ω2/ω1 =

ω0
2/ω

0
1 using the energy E = H0 as a parameter. Now, we obtain a

continuous curve very similar to the left plot of Fig. 3. In the same
way, the value of λ defined by (ω1, ω2) = λ · (ω0

1, ω
0
2) remains

close to 1. Some points of the continuation are given in Table 5.
Finally, we consider the initial conditions of two different

LITs of the planar CRTBP, and we use the method of Section 2.4
to compute some Fourier coefficients of the corresponding
parameterizations. In this way, we illustrate that we can obtain
a good enough approximation of the parameterization with a
reasonable computational cost. As noted in Section 2.4, this
approximate parameterization an be introduced as an initial guess
for a parameterization KAM method. Explicitly, we consider the
LITs with initial conditions given by (28) and the gray row in
Table 5. In both cases the corresponding frequencies are known.
Then, we take pf = 7 and qf = 18, and we compute γ̂k, k =
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Fig. 4. We compare in the plane xy the numerical integration of a trajectory on a LIT of the CRTBP with an approximate parameterization of the LIT. Top plots correspond to
the LIT with initial condition (28) and bottom plots correspond to initial condition in the gray row of Table 5. Left plots correspond to the truncated parameterization defined
by the Fourier coefficients of order k = (k1, k2) for |k1| + |k2| ≤ 3, |k1| ≤ 2, and |k2| ≤ 2. Right plots correspond to the Fourier coefficients for |k1| + |k2| ≤ 5, |k1| ≤ 4, and
|k2| ≤ 4. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 5
A list of initial conditions on corresponding to iso-energetic continuation of the initial condition (28) for the planar CRTBP.

α0 ρ0 ω1 ω2 E

0.280192522668237 −4.746451733802e−04 1.258701184120e−02 1.586106869295e−01 −1.499615628007
0.283551429742507 −1.467835855603e−03 1.258701153345e−02 1.586106830516e−01 −1.499608162928
0.291387651385253 −2.442251747710e−03 1.258701087304e−02 1.586106747299e−01 −1.499592054697
0.312418101104665 −3.641388980651e−03 1.258700955220e−02 1.586106580907e−01 −1.499559474274
0.349860839393634 −3.620165867824e−03 1.258700942856e−02 1.586106565275e−01 −1.499556387157
0.369186023210945 −1.920472002072e−03 1.258701108022e−02 1.586106773404e−01 −1.499597121045
0.373886557767825 −5.446218663226e−04 1.258701174412e−02 1.586106857269e−01 −1.499613316143
0.373639891395473 9.059898423750e−04 1.258701170747e−02 1.586106852443e−01 −1.499612387125
0.371338111569159 1.670287803542e−03 1.258701136790e−02 1.586106809653e−01 −1.499604135924
0.364930005843379 2.685801790546e−03 1.258701056931e−02 1.586106709022e−01 −1.499584604355
0.346262823927619 3.774163590467e−03 1.258700925423e−02 1.586106543306e−01 −1.499552041160
0.337949663115750 3.901040603424e−03 1.258700905388e−02 1.586106518137e−01 −1.499547050923
0.301019986433853 2.946177436291e−03 1.258701016835e−02 1.586106658496e−01 −1.499574729371
0.281997822713248 8.833214227426e−04 1.258701167269e−02 1.586106848164e−01 −1.499611563592
(k1, k2), for |k1| + |k2| ≤ 5, |k1| ≤ 4, and |k2| ≤ 4. Results
are shown in Fig. 4. We show in red some points corresponding
to the numerical integration of the initial condition. In blue, we
plot some curves obtained by mapping by the approximated
parameterization some circles of the form θ1 = const. and θ2 =

const. In both cases we observe a very nice agreement between the
blue and red figures.

3.2.2. The spatial case
If e = 0, we cannot properly speak about the stability domain

of L5 in the spatial CRTBP, as the 3-dimensional LITs of the system
do not act as barriers in the 5-dimensional energy manifolds. The
same happens if e ≠ 0, since we have 4-dimensional LITs in the 7-
dimensional extended phase space. Hence, for a general trajectory
of these spatial problems, we can only ask for effective stability
(i.e., stability for a very long time span). Nevertheless, the domain
of effective stability of the spatial CRTBP behaves similarly as the
domain of perpetual stability in the planar CRTBP. We refer to [19]
for a complete frequency analysis of this domain.

First, we perform the numerical continuation of 3-dimensional
LITs in the spatial CRTBP. We consider the LIT of the planar CRTBP
with initial condition given in (28) and frequenciesω0

1 andω0
2 given

in (29). If we denote by F = (ω1, ω2, ω3) the frequency map of
the spatial CRTBP, defined as function of the variables (α, ρ, z),
labeling the selected initial conditions, then the equationsω1 = ω0

1
and ω2 = ω0

2 define a Cantor curve in the (α, ρ, z)-space, that
we parameterize by the arc parameter. The vertical frequency ω3
moves along this curve, close to the initial value ω0

3 = 1. We ask
for a tolerance of 10−14 in the computation of the frequencies and
10−10 in the Newton method. Results are shown in the left plot of
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Fig. 5. Numerical continuation of LITs in the spatial CRTBP defined by ω1 = ω0
1 and ω2 = ω0

2 , for different values of ω
0
1 and ω0

2 . Left: We show the continuation curve in the
(α, ρ, z)-space, for z > 0, for the frequencies (29). Right: We show the (ρ, α)-projection of the continuation curve for the initial conditions given by (30) (in red), (31) (in
green), (32) (in blue), and (33) (in magenta).
Fig. 6. Numerical continuation of LIT in the spatial ERTBP with respect to e, defined by the equations ω1 = ω0
1 , ω2 = ω0

2 and ω3 = ω0
3 , for the values of ω0

1 , ω
0
2 and ω0

3
associated to the initial conditions given by (30) (in red), (31) (in green), (32) (in blue), and (33) (in magenta). Left: We show the parameter α vs e. Right: We show the
parameter ρ vs e. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. We perform similar computations starting from other four
spatial LITs close to L5, which are characterized by the following
initial conditions

α = 0.30378, ρ = −0.0063897277308054, z = 0.16, (30)
α = 0.28194, ρ = −0.0127279858304461, z = 0.226, (31)
α = 0.37788, ρ = −0.0214910665205657, z = 0.294, (32)
α = 0.20550, ρ = −0.0048939829652115, z = 0.14. (33)

These LITs have ‘‘planar frequencies’’ given, respectively, by

ω0
1/2π = 0.0126239732852498,

ω0
2/2π = 0.158641602983746;

ω0
1/2π = 0.0123864185088543,

ω0
2/2π = 0.158640812829964;

ω0
1/2π = 0.0122301409937443,

ω0
2/2π = 0.158658687002319;

ω0
1/2π = 0.0116130461983901,

ω0
2/2π = 0.158552760666373.

These frequencies have been computed by frequency analysis
(see [19]). The corresponding continued families of LITs associated
to the equations ω1 = ω0

1 and ω2 = ω0
2 are shown in the right plot

of Fig. 5.
The final application is the numerical continuation of LITs in

the (spatial) ERTBP. If we denote the frequency map of He as
ω = (ω1, ω2, ω3, ω4), then ω4 takes the constant value ω4 =

1. Hence, we only need three parameters to characterize a LIT
of He, so we can use the variables (α, ρ, z) that parameterize
the selected initial conditions on the zero velocity manifold
having zero true anomaly. For any initial parameters (α0, ρ0, z0)
labeling an invariant torus of the spatial CRTBP (for e = 0),
with frequency vector (ω0

1, ω
0
2, ω

0
3), we continue numerically with

respect to e the LIT that verifies ω1 = ω0
1 , ω2 = ω0

2 , and
ω3 = ω0

3 . If the vector (ω0
1, ω

0
2, ω

0
3, ω

0
4 = 1) is Diophantine,

then the continuation curve is continuous in the (α, ρ, z)-space.
We illustrate this process considering the four initial conditions
given by (30)–(33). The third frequency associated to these
initial conditions is given by ω0

3/2π = 0.159157707621790,
ω0

3/2π = 0.159162876109802, ω0
3/2π = 0.159162723016639,

and ω0
3/2π = 0.159195170134776, respectively. The result

of this numerical continuation is shown in Fig. 6. We stop the
computations at the turning point that appears forα ≃ 1/3, that is,
when the LIT is situated above the point L5. It is worth mentioning
that this is not a destructionmechanism of LITs. This simplymeans
that we cannot expect to find LITs of a given frequency vector for
arbitrary values of the eccentricity. We point out that the larger
value of the eccentricity that we obtain for the selected LITs is e ≃

0.0063, which is far away from the actual value of the eccentricity
of the Sun–Jupiter system, eSJ = 0.048775. This occurs because the
values attained by the frequency map around the point L5 change
significantly when we move e. Hence, even for significantly small
values of e, we cannot expect to find a LIT of He with the same
frequencies as for the case e = 0. For example, a frequency analysis
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reveals that, for e = eSJ , the frequencies around L5 areω1 ≃ 0.0129
and ω2 ≃ 0.15784.
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